AD=A052 073 GEORGIA INST OF TECH ATLANTA SCHOOL OF INDUSTRIAL AN==ETC F/6 12/1
STUDIES IN SUPPORT OF THE APPLICATION OF STATISTICAL THEORY TO ==ETC(U)
DEC 75 V M BETTENCOURT DAAG39=76=C=0085

UNCLASSIFIED

NL




“"lLO 128 Jzs
= gz =
il B
JluL £ e
g e
Jlzzs e

NATIONAL BUREAU OF STANDARDS....




m Studies in Support of the Application of k
h Statistical Theory to Design and Evalua=-

: tion of Operational Tests.
° Annex B,

N éﬂ :PPLICATION OF }ULTIPLB‘&ESPONSE‘SMACE __gﬁnuzumn TO THE ;NALYSIS

""\ o
lc .\ OF;TRAINIM g?BCTS IN ££MTIONAL=§BST AND ’EVALUATION -

A THESIS,

Presented to

; ; % The Faculty of the Division of Graduate Studies
+ o.
(b ] @ Vernon Manucl/l!ettcncourt, Jr2
Cwd .
o esesd
e _
== pDDC
[ | %.g N2
§ o ~ APR 3 1078

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Operations Research

Pociv A0Sl 297 Ernret & RO5>075
This documert has been oo

for public rel*=r~ ~~d sal~; i3
| distributicn is unlirsited,

15'5’;,,
Georgia Institute of Technology

Ty

SR 216

- e A3 e




ae

UNCLASSIVIED =~ & ™ A i
SE CJRIYY CL_A;;I.;I-CA'HON QOF THIS PAGLE (When Data Entarad) o~ ot v 4
F " READ INSTRUCTION',

! REPORT NOCUMENTATION PAGE

' i.--::-'uv-(.' NOMAS

—

o T o e T S b e e
COVY ACCESSION NO. 3. RECIFIEN 1 'S

| BURORE COMPLETING } ORM

CATALOG NUMY = !

} |

4. TITLE (and Subtitle)

Studies in Support of the Application of
Statistical Theory to Design and Lvaluation
of Operational Tests (report + four annexes)

|
|
!

| 5. TYPE OF REPORT & PERIOD COVEREU
|

i Final

R e e i
| 6. PERFORMING ORG. REPORT NUMBER
|

i
i

;7. AUTHOR(S)

}

:Douglas C. Montgowery
‘Harrison M. Wadworth

. B. CONTRACT OR GRANT NUMBER(4s)

DAAG 39-76-C~0085Y

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Schoal of Industrilal & Systems Engineeringy,/
;Georgia Institute of Technology
jAtlanta, GA

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

65101A

e e et o i

ba —— S POPEEY
11. CONTROLLING OFFICE NAME AND ANDRESS 12. REPORT DATE H
’ ~ ‘
US Army Cperational Test & Evaluation Agency July 1977 {
15600 Columbia Pike {13, NUMBER OF PAGES !
(Falls Church, VA 22041 | 88 i
14, MONITORING AGENCY NAME & ADDRESS(I! different from Controlling Office) ': 15. SECURITY CLASS. (of thia report) 1

! UNCLASSIFIED

i

g
(9}
%
m
o
&
-
m
2
>

16. DISTRIBUTION STATEMENT (of thin Keport)

Approved for public release; distribution unlimited

b

'

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if ditferent from Report, \

18. SUPPLEMENTARY NOTES

Evaluation
Operational tasting
Bayesian Theory

A

/ 1

Training level
Statistics
Multivariale statistics

19. KEY WORDS (Continue on reverse side 1l necessary and identity by block number)

Sample size

\é:o ABSTRACT (Contlaue on reverse aids Il nrcessary and Identify by block number)
This report is a summary report of four studies in
of statistical theory to desiga and evaluation of o
ifour topilcs :rci

o e g

§

!

support of the application {
perational tests., The i
‘ i

LRl -1V - .




UNCLASSLYT - °
" SEGTITY CLASSIFICATION OF . 'S PAGE(Whan Data Fntered)

B e
&, .A Meithadalogy tor Determining the Pover of MANOVA vhen the
Observations are Serially (orrletcd‘ by Norviel K. Eyrich, CPT,
Artillery. o

b. A *An Application of Multiple Response Surface Optimization to the
Analysis of Yrainleg Effects in Operational Test and Evaluatlon . by
Vernon M. Bettencourt, Jr., CPT, Artillery. . ,,_//

c.N ®A Cost Optimal Approach to Selection of Experimental Designs
for Operational Testing under Conditions of Constrained Sample qizei

by Sam W. Russ, MAJ, Sigral Corps. o

a¥ g Application of Bayesian Statistical Methods in the Determination
of Sample Size for Operational Testing in the US Army’ by Robert !. Baker,
CPT, Infantry. \

-— s

e e e . .

|
|
{
|
|
{
|

tti et




AN APPLICATION OF MULTIPLE RESPONSE SURFACE OPTIMIZATION TO THE ANALYSIS

L OF TRAINING EFFECTS IN OPERATIONAL TEST AND EVALUATION

A THESIS
Presented to
The Faculty of the Division of Graduate Studies
By

Vernon Manuel Bettencourt, Jr.

-

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Operations Research

Georgia Institute of Technology

December, 1975




AN APPLICATION OF MULTIPLE RESPONSE SURFACE OPTIMIZATION TO THE ANALYSIS

OF TRAINING EFFECTS IN OPERATIONAL TEST AND EVALUATION

Approved:
Dol C it dseee [~

Douglaslnz. Montgomery, ({ﬂairman

-9 .
,2{(741‘?,1 P /é;", ( »\ﬂj—()-(‘-/;lﬁ‘.» %’\

Leslie G. Callahan, Jr. 1

i / 4
o ,(”//544/4%&

Russell G. Heikes

Date approved by Chairman: 5 [25}5‘ [773




‘-'.....,.

ii

AKNOWLEDGMENTS

This research would not have been possible without the invaluable
assistance of several persons and institutions. I would like to express
my appreciation to all those who offered assistance. An initial debt of
gratitude must be expressed to the United States Army and the Field
Artillery for allowing me two years of graduate study. I am also grate-
ful to the U. S. Army Operational Test and Evaluation Agency for the con-
tractual support of this research.

My sincere appreciation is extended to Dr. Douglas C. Montgomery
for his inspirational instruction which motivated me to study response
surfaces and for the great amount of time and effort which he spent ad-
vising this research. Dr. Leslie G. Callahan, Jr. is also thanked for
his advice pertinent to the military aspects of this research and for
the invaluable service he is providing in matching the interests of
Army graduate students with the research needs of the Army. 1 would
also like to express my gratitude to Dr. Russell G. Heikes for his in-
struction in design of experiments and his comments on this research,
especially in the utilization and analysis of computer simulation.

Special appreciation is extended to Dr. Rick Rosenthal, University
of Tennessee, who introduced me to the Geoffrion-Dyer algorithm and took
time from his own dissertation to discuss the algorithm in detail. I
would also like to acknowledge the excellent assistance in computer pro-
gramming offered by Dr. Donovan Young and his staff of computer aides.

Finally, I would like to express my admiration for my wife, Mary




iii

Ann, whose efforts to maintain domestic tranquility during the tempest

of graduate study and thesis research were truly remarkable.

ittt et




iv

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS . ¢ « o o o ¢ o o o o ¢ o ¢ o s o o o o s o o o ii
LEST OF FABLES ¢ & ¢ o & s o ol & s sl s s sl s o i o o ol o (o vi

LIST OF ILLUSTRATIONS « . ¢ ¢« o« ¢ o s o o o o o o o o o o o o o viii

S AR Y e L e e o R o e e Pl S Ca N e X
Chapter
B N TR DN G T O I e s s L s I e el e b atiel o e it ie 1

Overview: Operational Testing
Objective, Procedure, and Scope

II. REVIEW OF MULTIPLE RESPONSE SURFACE THEORY AND
OPTIMIZATION . . ¢ ¢ « ¢ o = o o o o & « s s s & & o 14

Response Surface Methodology
Multiple Response Surface Optimization Literature Survey
Multiple Objective Optimization Literature Survey

III. DEVELOPMENT OF AN OPTIMIZATION METHODOLOGY . . . . . . . 45

The Frank-Wolfe Linear Approximation Algorithm

The Geoffrion-Dyer Interactive Vector Maximal Algorithm

Adaptation of the Interactive Vector Maximal Algorithm to
the Optimization of Multiple Response Surfaces

Application of the Methodology to Multiple Response Surface
Problems

IV. APPLICATION OF MULTIPLE RESPONSE SURFACE OPTIMIZATION
TO AN OPERATIONAL TEST PROBLEM . . . . « « &« « « o & 72

Introduction to the Problem

Utilization of the AMSAA Tank Duel Simulation

Derivation of Multiple Response Surfaces

Application of the Optimization Methodology to the
Derived Multiple Response Surfaces

V. CONCLUSIONS AND RECOMMENDATIONS . . . . « ¢« ¢ ¢ & o« « & 107

Conclusions
Recommendations




APPENDIX A .

APPENDIX B .

APPENDIX C .

APPENDIX D .

APPENDIX E .

BIBLIOGRAPHY

Page
109
112
121
124
134

137




Table

10.

11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

LIST OF TABLES

Quantified Effect of the Learning-Forgetting Curve . . .

Uniform Precision and Orthogonal Rotatable Central
Composite Designs .. = ¢ s @ o o 4 s o & & a0 s o & s

Umland-Smith Optimization Results . . . « ¢ ¢ ¢ « « « &
Comparison of Fields' and Original Results . . . . . . .
Comparison of Umland and Smith Problem Seolutions . .
Algorithm Search Results, Myers and Carter Problems One
Comparison of Myers and Carter Problem One Soltuions .
Comparison of Myers and Carter Problem Two Solutions . .
Input Variable Normal Distributions . . . . . . . . . .
Distribution of U(0,1) Deviates . . « « « « o &« &+ + «
Distribution of N(O,1) Deviates . . « ¢ ¢ « « ¢« o o o &
Fixed Input Variable Values . . . . . . ¢ ¢« ¢ ¢ ¢« ¢ o« &
23 Design Variable Values, First Design . . . . . . .
Steepest Ascent Optimization From First Center Point . .
23 Design Variable Values, Second Design . . . . . . . .
Steepest Ascent Optimization From Second Center Point .
Uni-Direction Search Along £3 S R 6 BT B
23 Design Variable Values, Third Design . . . . . . . .
Axial Points Added to the Third Design . . . . . . . . .
AMSAA Tank Duel Model Output at 51 = 23.0 and 52 = 18.0
AMSAA Tank Duel Model Output at 61 = 8.0 and 52 = 5.0

AMSAA Tank Duel Model Output at El = 10.7 and 51 = 8.2 .

vi

Page

18
27
37
65
67
67
68
75
75
76
76
80
843
84
87
87
89
89
99
99

102

2




Table
23.
24,
25,

26.

Sensitivity Analysis
Sensitivity Analysis
Sensitivity Analysis

Sensitivity Analysis

Toward (8.0,5.0) .
Toward (8.0,15.0)
Toward (16.0,5.0)

Toward (16.0,15.0)

vii

Page
103
104
105

106




viii
LIST OF ILLUSTRATIONS
Figure Page
1. Major Defense Systems Acquisition Process . . . . . . . 4
2. The Learning-Forgetting Curve . . . . « ¢ « &« ¢ « o« & & 9
3, The Performance Gap o « « s o o o s o o & s o s o o = &= 11
4. The LAW Weapons Test Performance Gap. . . . . « . « . . 131
L System Total Combat Power at Varying Effectiveness . . 12
6. Response Surfaces Generated by a Second Degree
Equation With Two Independent Variables . . . . . . 21
Vi Response Surfaces Generated by a Second Degree
Equation with Three Independent Variables . . . . . 22
8. Yield Planes of Box Experiment . . . . ¢ « ¢ ¢« « o o & 25
9 Superimposition of Constraint Response on Primary
Response in Box Experiment . . . . . . . . « . . . . 25
10. Umland-Smith Response Surfaces . . . . . . « « . « . . 26
1305 Lind, et al, Cost and Yield Response Contours . . . . . 29
12, Maximum Estimated Primary Response at Specific
Values of the Constraint Responmse . . . . .« . . . . 32
13, Conditions of Constrained Maxima on Primary Response
for Fixed Values of y e e . SRR Ao 33
14. Response Surface of Myers and Carter Problem Two . . . 34
1S Hooke and Jeeves Pattern Search Technique Flow Chart . 36
16. Sample Output From the VM((Vector Maximal) Program . . 43
17. Estimation of w: S e s wE v e e e e 54
18. Example of Data Input Computer Program . . . . « « . . 60
19. Example of Interactive Optimization Computer Program . 61
20.  Algorithm Movement on Umland and Smith Problem
CEIH0 s 5.0 5 5% @ 35 % v v e s B vy Oy 64

L . — — . ——




Figure

21.

22.

23.

24,

25.

26.
27
28.
29

30.

3L,
32,
33.

34,

ix

Page

Algorithm Movement on Umland and Smith Problem,

R O R R SR ol I SRR Lot B LU o T oe e et (et 64

s

Algorithm Movement on Umland and Smith Problem,

N g S D R R B R 3 vy el e o d 65

e

First Iteration of Myers and Carter Problem Two

Optimiza bl onEE o e e e e e o e o e e e e 69
Second and Third Iterations of Myers and Carter Problem

EwoROptinlza i on It S e s 2l ol s e e e e s 70
Final Iteration of Myers and Carter Problem Two

Up timiza o R e e s e e 71
Sample Output From AMSAA Tank Duel Model . . . . . . . . 78
SPSS Multiple Linear Regression of First Design . . . . 81
SPSS Multiple Linear Regression of Second Design . . . . 85
SPSS Multiple Linear Regression of Third Design . . . . 90
SPSS Multiple Polynomial Regression of Second Order

Des Nl Sl i S I ol s Wk ol fe o ren. W Jary % v st el e, T e 91
Derived Multiple Response Surface . . . . « « « « . . . 94
Convergence Movement of the Methodology . . . . . . . . Gif!
Validation of Methodology Convergence . . « « « « « & & 98
Movement of Optimization Methodology in Training

Lo ST e 20T 0 MG G s e ¢ A A R e i T 101




SUMMARY

This research considers the analysis of training effects in op-
erational test and evaluation. Previous analysis of weapons system ef-
fectiveness highlights the importance of including training effects in
any evaluation of a weapons system. Computer simulation is proposed as
a method of extending the scope of operational testing into areas for
which it is not feasible to test in an operational test. The mutually
supporting nature of computer simulations and operational tests are
discussed.

Utilization of computer simulation facilitates the derivation of
multiple response surfaces relating weapons system effectiveness to
training related variables. The research adapts the Geoffrion-Dyer
Interactive Vector Maximal algorithm into a methodology for the optimi-
zation of multiple response surfaces. Application of the methodology
to multiple response problems previously solved in the literature is
performed with results which compare favorably to the original.

A hypothetical analysis of the effects of training on the effec-
tiveness of a new main battle tank is described in detail. The method-
ology is utilized to optimize four objective response functions which
are functions of training variables. Utilization of the methodology re-
sults in an improved training program for test personnel, in a detailed
analysis of the effects of training on the effectiveness of the new
tank, and in the inclusion of this analysis in the operational test

reports.




CHPATER I

INTRODUCTION

Overview: Operational Testing

Structure of the Major Defense Systems Acquisition Process

The large sums of federal moneys expended on major defense systems
acquisition necessitate a highly structured and well safeguarded proce-
dure. Both the Department of Defense and the Department of the Army
utilize such a procedure in their acquisition processes. The procedure
is designed to insure acquisition of only those major systems for which a
valid need exists within the defense establishment. Department of Defense
directives document the acquisition process and its procedures in great
detail (60,63,64).

The acquisition cycle of a major Army system is comprised of six
phases. The first phase is a determination by the Army staff that a valid
requirement exists for the addition of the system to the active inventory.
A Required Operational Capability (ROC) report, containing a statement of
need and conceptual approach, is approved and issued by Department of the
Army (50). Next is the conceptual development phase during which the
system's hardware is in an experimental prototype configuration. The
third phase is the validation phase in which the system's hardware is in
engineering development prototype configuration. Next is the ievelopment
phase during which the system's hardware is in a production prototype
configuration. The fifth and sixth phases are, respectively, full pro-

duction and deployment of the system to tactical units (60).




After issuance of the ROC, the Secretary of Defense must grant
approval for the system to move to each of the next phases. The decision
options available to the Secretary of Defense are to terminate the sys-
tem, to permit the system to proceed to the next phase, or to retain the
system in its present phase for remedial action. To provide information
and recommendations to the Secretary of Defense at these decision points,
a permanent advisory body, the Defense Systems Acquisition Review Council
(DSARC), has been created. Membership of the DSARC includes the Deputy
Secretary of Defense and Assistant Secretaries of Defense within areas
of responsibility pertinent to the system under consideration. A meeting
of the DSARC preceeds each decision point (64)

There exists a parallel acquisition structure within the Depart-
ment of the Army. The Army Systems Acquisition Review Council (ASARC)
has been created as a permanent advisory body to provide the Army's re-
commendation at each phase of the acquisition process to the DSARC.

The ASARC is chaired by the Vice Chief of Staff of the Army. Its mem-
bership includes the Commander of the U. S. Army Material Command, the
Commander of the U. S. Army Training and Doctrine Command, the Chief of
Research, Development, and Acquisition, and pertinent Assistant Secre-
taries of the Army. To fulfill the requirement of advising the DSARC,
the ASARC schedules meetings prior to those of the DSARC. The principle
of civilian control over the military is upheld throughout the systems
acquisition cycle by the requirement of affirmation by the Secretary

of Defense at each phase transition (60).

Testing in the Acquisition Process

Testing of a major system is conducted throughout the acquisition




process to determine whether the system is satisfying technical and
operational requirements. Acquisition testing is divided into two cate-
gories: a Development Test (DT) and an Operational Test (OT).. The DT
and OT have diverse objectives. The objective of the DT is to determine
whether the engineering design and development process is complete, to
determine whether the design risks have been minimized, and to determine
whether the system will meet its specifications. The objective of the
OT is to estimate the system's military worth in comparison with compet-
ing systems, to estimate its operational effectiveness and suitability
in its environment, and to determine whether the system required modi-
fication (60).

Three distinct DT's and OT's are usually conducted during the
acquisition process. The scheduled meetings of the ASARC are preceded
by a DT and an OT. Results of the DT and OT are reported to the ASARC
for inclusion in the report to the DSARC. To provide additional safe-
guards and validation, the DT and OT are conducted totally independent of
each other (60). Only the OT will be of interest in this research. Se-
quencing of the acquisition process is graphically depicted in Figure 1.

Operatinal Testing

Responsibility for the conduct of the OT's on major defense sys-
tems within the Department of the Army has been delegated to the U.S.
Army Operational Test and Evaluation Agency (OTEA). OTEA is independent
of the developing, procuring and using agencies or organizations. The
mission of OTEA is to support the material acquisition and force develop-
ment processes by exercising responsibility for all OT's, managing force

development testing and experimentation, and managing joint user testing
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for the Army. In an effort to stress military usage of the tested sys-
tem, the OT is conducted utilizing typical user/operators, crews, or
units in as realistic an operational environment as possible. OT's are
conducted throughout the world by several diverse testing and tactical
units. The objective of the OT is to provide the data necessary to
estimate:

1. The military utility, operational effectiveness, and operational
suitability of the system.

2. The system's desirability, considering systems already in
service (base-line systems) and other competing systems, and the system's
operational advantages and disadvantages from the user's perspective.

3. The need for modification of the system.

4. The adequacy of doctrine, organization, operating techniques,
tactics, and training for system deployment.

5. The adequacy of maintenance support for the system.

6. The system's performance in a countermeasures environment.

An independent evaluation of each OT is prepared by OTEA and sub-
mitted to the ASARC. An emphasis is placed on a comparison of the pro-
posed system, base-line systems, and competing developmental systems.
Feedback from the ASARC and DSARC is utilized to modify future OT's.(61,62).

Computer Simulation in Operational Testing

Computer simulation is finding wide application as a predictive
and investigative tool. Most major defense systems undergo a computer
simulation in a tactical environment both before and after the issuance
of the ROC. Simulation can provide useful pre-test and post-test infor-

mation for each OT. An important consideration is that computer simula-




tions and OT's are mutually supporting. OT's provide verified data in-
puts for the simulation. In return the simulation provides predictions
of input data for OT's or further investigates OT output data.

Pre-test computer simulation can enhance the OT in three basic
areas:

1. Examine the identified critical operational issues to assess
their significance.

2. Develop or discover critical operational issues that have
been overlooked.

3. Provided a sensitivity analysis to indicate the accuracy re-
quired of each measurement (50).
This information will be obtained at relatively little cost and with the
utilization of no test troops or equipment. The OT will be initialized
with useful information and critical operational issues will be verified
or identified. Data requirements in the test plan will be refined.

Post-test computer simulation can contribute to the success of an
OT in the following four areas:

1. Constraining the scope of operational field tests to manage-
able proportions by providing analytical means for test extension.

2. Extending the OT into areas which are currently infeasible
(such as two-sided combat).

3s Corroboraﬁing the impact of the OT results.

4. Supplying much needed operational performance inputs to
other agencies utilizing simulation (50).
OT results can be combined with simulation results to fulfill the strin-

gent requirements of statistical design of experiment methodology analysis.




OT results can be utilized as input for simulations of combat in real
time events, thereby eliminating rest or safety time lags. Simulation
can be utilized as an independent evaluation of an OT, thereby providing
an additional safeguard to the acquisition process.

Training in Operational Testing

The relationship between systems effectiveness and crew/unit
training has recently began to receive increased emphasis in the Depart-
ment of the Army. There are a variety of reasons for this increased
interest. Establishment of the U. S. Army Training and Doctrine Command
(TRADOC) has institutionalized the importance of training and doctrine
by fixing responsibility at a high level of the Army command. Without
the troop and equipment demands of a belligerent theater, the main mission
of the Army transforms to training for the next belligerency. The as-
cending cost of systems combined with a federal budget squeeze necessi-
tates increased combat effectiveness from fewer weapons. As previewed in
the recent Mid-East conflict, the sophistication and lethality of weapons
systems on either side dictates a rapid, deadly, and decisive first en-
counter in any future conflict. The results of these factors is increased
interest in training.

TRADOC is, of course, the major proponent of training in the Army.
Within the last year, operations research analysts at TRADOC have been
examining training and weapons system effectiveness. A general model of

systems effectiveness has been derived.

E = f(w,p,t) (1.1)

where E is combat effectiveness expressed as a function of w the perfor-




mance capability of the system, p the proficiency of the crew/unit manning
the system, and t the tactic or technique of employment. Various DT re-
sults, such as those obtained by the Army Material Systems Analysis
Agency (AMSAA), can be utilized to measure and quantify w. Results of
OT's conducted by OTEA, can also be utilized in determining w (59).

Some inconsistencies arise in the consideration of p in Equation
1.1. A Department of Defense directive states that, "Operational Test
and Evaluation will be accomplished by operational and support personnel

of the type and qualification of those expected to use and maintain the
system when deployed'".(50) Most OT's are conducted with troops/units se-

lected to satisfy this directive and then trained either by the unit or

Equipment Training Team in accordance with a training package prepared

by OTEA and/or TRADOC. Training is accomplished at home station, at the
test site, and at Military Occupational Specialty (MOS) producing schools
if required (50). Having undergone such well supervised and concentrated
training, it is not unreasonable to assume that the test personnel are
atypical of Army users in proficiency on the system.

Another inconsistency in Equation 1.1 is the effect of the learning-
forgetting curve on proficiency. Figure 2 depicts the influence of a
training season, that is a period of concentrated training in a specific
area, on proficiency followed by a forgetting slump. The training cycles
of most tactical units approximate such a curve. Table 1 quantifies the
effect of the forgetting curve among infantry trainees (59).

The weapons system effectiveness utilized by the ASARC and DSARC
is that obtained from the DT and OT. Equation 1.1 states that the afore-~

mentioned variation in actual user proficiency will cause variation in
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Figure 2. The Learning-Forgetting Curve.
From TRADOC (59).

Table 1. Quantified Effect of the Learning-Forgetting Curve.

From TRADOC (59)

Marksmanship Proficiency

AVERAGE
NUMBER OF WEEKS QUALIFICATION
IN THE ARMY SCORE OBTAINED
4-5 52
14-16 A
24-52 *30

*1 point above unqualified
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systems effectiveness. Figure 3 depicts the Probability of Hit and Kill
of a system versus Range. Note the Performance Gap between AMSAA data
(ED) and actual performance in the hands of tactical troops (EA) as pre-
dicted by Equation 1.1. This predicted Performance Gap has been verified
in actual weapons test. In May 1974, the U. S. Army Infantry Board
(USAIB) test fired the M72A2 Light Antitank Weapon (LAW) against moving
targets at varying ranges. The Performance Gap uncovered by this test is
shown in Figure 4 (59). The major problem encountered by the troops was a
lack of proper training on the graduated lead sight for a moving target.
The implications of these variations in combat effectiveness for
the national defense posture are profound. Figure 5 exhibits the varying
levels of Systems Total Combat Power for a given inventory level N as a
function of systems effectiveness. The effectiveness levels graphed are

the actual current level, E_ the designed effectiveness level, and E

E, D M

the optimum or maximum level (59). It is imperative that OTEA, functioning
as a major source of data on weapons systems effectiveness to high level
decision bodies, account for training levels in their OT reports and

analysis.

Objective, Procedure, and Scope

The objective of this research is to develop an improved methodo-
logy for optimizing a set of operational test and evaluation performance
measures which are functions of training. The research will consist of
a review and adaptation of response surface methodology, multiple response
surface optimization, and multiple objective optimization to the problem.

The Geoffrion-Dyer Interactive Vector Maximal algorithm will then be re-
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Figure 3. The Performance Gap.
From TRADOC (59).
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Figure 4. The LAW Weapons Test Performance Gap.
From TRADOC (59).
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Figure 5. System Total Combat Power at Varying Effectiveness.
From TRADOC (59).
& viewed in detail and adapted to the multiple response problem. The
adapted algorithm will then be applied to previously optimized multiple
response surfaces to demonstrate its utility.
! Multiple response surfaces and the adapted optimization algorithm
will be related to OTEA by use of the AMSAA Tank Duel Model computer f

simulation. The military application will consider:

1. The extension of an OT through computer simulation.

2. The effect of training on tested system eifectiveness.

3. The optimization of pre-test and tactical unit training pro-
grams concerning the tested system when confronted with multiple objec-

tives or criteria.

4. The role of the military decision maker in the interactive
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optimization process.

The scope of this research will be limited by four constraints.
All data values utilized in this research are '"best guess' hypothetical
values which cannot necessarily be inferred to be realistic. For demon-
stration purposes, only one tactical scenario is analyzed with the AMSAA
simualtion. The simulation is suited for various scenarios. The tacti-
cal scenario is two opposing tanks, in the open, at a range of 1000 meters,
sighting each other simultaneously. Only mean time to fire the first
round, mean time between subsequent rounds, and probability of sensing
fired rounds are assumed to be functions of crew training. All other
variables are assumed to be functions of the tested weapon system capa-

bilities.
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CHAPTER II
REVIEW OF MULTIPLE RESPONSE SURFACE THEORY AND OPTIMIZATION
Response Surface Methodology

Response surface methodology is a collection of statistical and

mathematical techniques to approximate, utilizing designed experimenta-
tion, an unknown and complex function, say

B ECE s v seiny) (2.1)

where n is the dependent response variable and Ei,i 2 L2y 0o gk, are the
independent, controllable natural variables. The approximating model is

usually a low order polynomial, such as a first order model

k
n =8, + 2. B+ 2 (2.2)
g =k
or a second order model

k k k k
2
n-60+ Z Bixi+ Z Biixi+ Z Z Bijxixj+e (2.3)
i=1 i=1 1i=14=1
i< j

In these models the xi.i =1,2,...,k, are design variables, coded within

a region of experimentation for computational simplification by

s =20 3 (2.4)
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where §., 1is the u th level of §_,
iu 3 )
N
f,’1'.: Z E’iu/N’
u =1
and
N
bY = .2
y e Mg, 5 (2.5)
S =
i N

Three fundamental assumptions are involved in response surface methodology:
1. The structure n = f(xl,x.,...,xk) exists and is either very
complicated or unknown. The variables involved are quantitiative or con-
tinuous.
2. The function f can be approximated in the region of interest
by a low order polynomial such as Equation 2.2 or 2.3.
3. The independent variables xl,xz,...,xk are controlled in the
data collection process and measured with negligible error (47).
Optimization of a response surface begins with a search for the
region of maximum response. Initiaily a first order fitted response func-

tion,

y=by+ 2, byx, (2.6)

is fitted to a region of experimentation. This fitting is accomplished
through the use of statistically designed experiments and least squares
regression. Generally orthogonal designs are used to fit the first order

model, since they greatly simplify computations and yield uncorrelated
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estimates of the response model coefficients. Next the response is im-
proved by moving along the path of steepest ascent. Using LaGrange

Multipliers to maximize Equation 2.6 subject to

k

T e, (2.7)

i
5 1

results in

Ty = bj/Zu (3= 1,2, cusnk) (2.8)
where u is a conveniently selected increment along the path. Equation
2.8 yields an initial point of experimentation for each design variable
along the path of steepest ascent. A search is conducted along the path
until an optimum response is reached. Addition of center points to the
first order design at this improved point will permit a formal analysis
of variance and a test for lack of fit. Should these reveal significant
lack-of-fit for the first order fitted response function or should the
path of steepest ascent yield minimal improvement, the experimenter
usually fits a second order response function.

Second order fitted response functions are of the form

3 k k
=b0+.zlbx jz 1 Z boxo (2.9
i = = =

s 3

There is a considerable amount of theory on the choice of design to fit

-l t\ﬂ =

Equation 2.9. Consideration is given to the bias of the predicted re-

sponse or the variance of the predicted response. Uniform Precision and




17

Orthogonal Rotatable Central Composite Designs have received the greatest
use in practice. A Central Composite Design (CCD) is well suited to the
methodology since it is comprised of the first order orthogonal design
and the addition of axial points outside the first order design region

of experimentation. A Rotatable Design is defined to be a design in
which the variance of the estimated response is a function only of dis-
tance from the center of the design and not of the direction from the cen-
ter. A Uniform Precision Design is defined to be a design in which the

~

precision of vy,

A

§!§%£Zl 2 (2.10)
o

0(y) =

at the design center is equal to the precision at a radius p = 1. Philo-
sophically, this means that the estimated response receives uniform im-
portance with the region p = 1. Table 2 depicts the choice of number of
first order design points (F), axial points (na), center points (nz),
total points (N), and displacement distance of axial points (a) for Uni-
form Precision (up) and Orthogonal Rotatable CCD (ortho) of a varying num-
ber of unknown (k) (47).

Once a design has been selected and the data collected, least
squares regression is performed to yield Equation 2.9. An ANOVA and lack-
of-fit test is then conducted. If there is significant lack-of-fit, the
experimenter can either fit a higher order response function or adjust his
region of experimentation until the second order response function is

adequate. Equation 2.9 can also be expressed in matrix notation as

y=b,+x'b+ x'Bx

5 x"Bx (2.11)
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Table 2. Uniform Precision and Orthogonal Rotatable Central
Composite Designs. From Myers (47).

k 2 3 4 S 5 6 6 7 8
{ rep Yrep 4rep 4rep
F 4 8 16 32 16 64 32 64 128
Hy 4 6 8 10 10 12 12 14 16
n, (up) 5 6 ] 10 6 15 9 14 20
ny (orthy 8 B - TR S R R R S
N (up) 13 20 31 52 32 91 53 92 164
N (orth) 16 23 36 59 36 100 59 100 177
a 1.414 1.682 2000 2378 2000 2828 2378 2828 3.364
A4 (up) 081 08 086 089 089 091 09 092 093
A4 (orth) 1.00 0.99 1.00 1.01 1.00 1.00  1.01 1.00  0.998
where
é
% b o 2 ’
R e BN - ST e :1k52
X 2 LA 2 > 2.2 y 2k 2.11)
X, by sym wale bk—l,klz
Bk

Elementary calculus optimization of Equation 2.1l yields an estimated

point of maximum response, termed the stationary point, given by ’
x. = =B 'b/2 (2.12)
..0 -—

The stationary point can lie inside or outside the region of experimenta-

tion. It is not advisable to extrapolate the response function outside

the region of experimentation.
When analyzing a multiple response system, the extrapolation

caveat assumes great importance. If the optima of all responses are in
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one region of experimentation there is no cause for concern. If second
order response equations cannot be fitted for all response in the same
region of experimentation, two courses of action are available. First,
the experimenter may choose a primary response and utilize its region of
experimentation to fit first order models to those responses which are
not optimum in the chosen region. Second, the experimenter may choose a
compromise region of experimentation between the optima and fit first
order models for the responses in this region. One must be careful not
to extrapolate for any response outside its region of experimentation.
To facilitate interpretation of the second order fitted response
function, the experimenter can perform a canonical analysis. Initially
the response function is translated from the origin to the stationary
point. Next the axes are rotated to correspond to the principle axes of
response surface. To translate Equation 2.11 to origin Xy the trans-

formation

z = XX, (2.13)
is made resulting in
y=b, +x'b+x'Bx +z'b+ z"'Bx_ +x "Bz + z'Bz. (2.14)

0" %2 " %™ 0 " %0

By defining the estimated response at the stationary point as

A~

- 1
Yo bo + X, b/2, (2.15)
Equation 2.14 becomes
=7 + £'Bs, (2.16)
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An orthogonal transformation,

z = Mu, (2.17)

is then made such that

(2.18)

0
I rvq =
|
>
o
)
N

where A i 1,2,...,k, are the eigenvalues of matrix B. By substitution

i’
of Equations 2.14, 2.16, and 2.18 the canonical form of Equation 2.11 is

T (2.19)

Interpretation of the response function is based on the A, of

i
Equation 2.19. 1If all the Ai are negative, X, is a maximum as depicted
in Figure 6(a). If all the Ai are positive, 50 is a minimum. If the Ai

have different signs, the stationary point lies in a saddle region, as
shown in Figure 6(b), and possibly indicates the existence of two maxima.

1f one Ai is extremely small, the surface is a stationary ridge, as de-

picted in Figure 6(c), with a range of possible variable combinations

yielding an approximately optimum response. Should X, lie outside the

region of experimentation, the surface approaches the shape of a rising
ridge as shown in Figure 6(d). The relative magnitudes of the Ai indi-
cates elongation or contraction of the response surface in various di-

rections. Figure 7 shows various response surfaces for the three inde-
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Figure 6. Response Surfaces Generated by a Second Degree Equation
With Two Independent Variables. Note: x, in this figure
is equivalent to J\i in the text. From Box (10)
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Figure 7.

Response Surfaces Generated by a Second Degree Equation
With Three Independent Variables. Note: x, in this figure
is equivalent to A, in the text. Figures aéove have the
following A : (a) === or ++, (b) --0, (c) -—+, (d) -00,
(3) =0+, (£y -00 X, at =, (g) --0 X at =, From Box (10).
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pendent variable case.

The foregoing review of response surface methodology is intended
to familiarize the reader with concepts utilized in Chapter IV of this
research. Should the reader desire additional information on the subject,

the text by Myers (47) is recommended as a definitive work.

Multiple Response Surface Optimization Literature Survey

In many practical applications of response surface methodology,
more than one response function is generated by the independent variables.
For instance, a chemical reaction with independent variables such as a-
mount of reactants, temperature, and pressure may have multiple response
functions such as purity, amount of yield, and cost. Each response
function will be in the form of Eguation 2.6 or 2.9. Confronted with
multiple response functions, the decision maker cannot apply simple uni-
function optimization. Research on multiple response surface optimization
was rather sparse prior to the development of mathematical programming
methodology. Each contribution to mathematical programming is ensued by
its application to multiple response surface optimization. Thus far, the
efforts seem to divide into two classes which could be termed multiple
objective optimization and constrained single objective optimization.

Initial efforts were directed toward the graphical optimization
of multiple response surfaces. Box (18), in 1954, cites an example of a
chemical reaction where two reactants, A and B, formed a mixture of C and
D. The objective was to maximize C while constraining D to be less than
20%. Canonical analysis indicated that C was maximized along a plane of

68% yield, as shown in Figure 8. A second response function was derived
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for D and set equal to 20%. As shown in Figure 9, the constraint response
function was superimposed on the maximum yield plane, allowing a visual
choice of an optimum operating point. Box (10) also recognized that ridge
systems, offering a wide choice of independent variable settings with
minimal effect on the dependent response, are extremely useful in this
type of optimization. For a three variable system, he shows a three di-
mensional grid which could display contours and assist in visual optimi-
zation. Line (42) refined this technique by use of acetate plates with
the response surfaces drawn on them. Two articles by Hunter (35,36), in
1956, also describe graphical analysis as an optimization technique.

As mathematical programming methodology was developed, its appli-
cation to response surfaces was obvious. Schrage (53), in 1957, utilized
linear programming to assist in optimization of a Catalytic Cracking oper-
ation. The gradient of the objective response was maximized in the pres-
ence of the gradients of constraint responses and bounds on the indepen-
dent variables. This optimum direction was then followed in the steepest
ascent search. Linear programming could be utilized since the gradients
of second order response functions are linear.

Quadratic response surfaces were optimized directly by Umland and
Smith (57), in 1959, through the use of LaGrange Multipliers. Yield,
Equation 2.20, was selected as the primary response and maximized con-
strained by fixed maximum values of the secondary response purity,

Equation 2.21.

~

2 2
yp 55.84 + 7.31x1 + 26.65x2—3.03x1—6.96x2 + 2.69x1x2 (2.20)
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TEMPERATURE : DEGREES CENTIGRADE

Figure 8. Yield Planes of Box Experiment
From Davies (18)

157

TEMPERATURE:
DEGREES
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Figure 9. Superimposition of Constraint Response on Primary Response in
Box Experiment. From Davies (18)
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Vg = 8572 + 21.85x + 8.59x,-9.20x)-5.18x;-6. 26x (2.21)

1%2

The response surfaces are graphed in Figure 10 and results are listed in

xXe

Figure 10. Umland-Smith Response Surfaces
From Umland and Smith (57).

Table 3. By setting the secondary response equal to maximum values,
equality constraints are created. 1In 1963 Michaels and Pengilly (43)
also utilized LaGrange Multipliers to achieve maximum yield constrained
by a fixed maximum cost function. The cost function was algebaically de-
rived. Chow (16) demonstrated that the same technique could be utilized
with inequality constraints. He also simplified the computational pro-
cedure by eliminating the need to solve a set of simultaneous equations
through use of a transformation.

Hoerl (34), in 1959, introduced two techniques to the literature.
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Table 3. Umland-Smith Optimization Results.

Purity 94.87 92.47 89.995
Maximum 95.0 92.5 90.0

Yield 83.66 86.73 88.68
Xl 0.965 1.005 1.075
X2 1.088 1.316 1.479

The first is an extension of graphical analysis to ridge analysis with
more than two independent variables. One response is maximized or mini-
mized while constrained by an upper bound on the second response. The

variables are constrained tc fall on the sphere of radius R by

n
7
Z x{ = R (2.22)
i=1

and ridge analysis is iteratively performed, starting with the indepen-
dent variable values which optimize the objective response, until the
constraint responses are satisfied. The second technique is a multiple
objective technique where the multiple responses are combined into one
response by use of subjective weightings. Montgomery, Talavage, and
Mullen (46), in 1971, pursued the weighting technique in the multiple
response surface optimization of a traffic network computer simulation.
Two responses, average delay per vehicle and average stop p:r vehicle,
were linearly combined by transforming both to seconds of delay. This

composite response was optimized according to the techniques discussed




28

in the first section of this chapter.

Nonlinear programming techniques are readily adapted for use in
constrained optimization of multiple response surfaces. Carroll (14),
in 1960, devised the Created Response Surface Technique which incorpo-
rates the constraint responses into the objective response by the use of
a penalty function. As the steepest ascent optimization approaches the
boundaries of the constraints, the objective function is penalized at a
greater rate. Thus, through the sequential application of unconstrained
optimization techniques, the stationary point is reached without violating
the constraints. This technique was a forerunner of barrier and penalty ]
function techniques in nonlinear programming. In 1960 Box (11) advocated

the use of linear programming for the solution of multiple response

chemical problems.

Lind, et al, (41) applied the graphical analysis technique to
optimize the system shown in Figure 11. The two responses were cost and
yield of a pharmaceutical process of American Cyanamid Company. A simi-
lar optimization of cost and yield was performed on a liquor fermentation
process by Remmers and Dunn (51). Smith and Rose (55), in 1963, utilize
the graphical technique with an interesting modification. One response is
is a usual empirically determined equation while two other response equa-
tions are from subjective ratings. Graphical analysis was also utilized
by Wu (68) in tool life testing, Ellis, et al, (22) in Raschig synthesis
of Hydrazine, and Taraman and Lambert (56) in selection of machining
variables. The graphical technique can and has served as both a multiple
objective and a constrained optimization technique.

While analyzing the design of extruder screws, Underwood (58)
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suggested that the advent of computers allowed for an enumerative search
for the optimum of a multiple response system. Bolker (9) utilized this
technique in studying delignification by Nitrogen compounds. He set one
response at consecutive values and solved the response functions simulta-
neously.

As nonlinear programming progressed, so did its application to
multiple response surface optimization. Baily, et al, (3) applied non-
linear optimization to the kraft pulping process. Responses such as
yield, brightness, and Kappa number were optimized by an, unfortunately,
undisclosed nonlinear technique. A method termed cheapest ascent was
developed by Heller and Staats (30), in 1973. They combined a yield re-
sponse and a cost constraint response into a profit objective response.
Since the value of the gradient is dependent upon the metric used, a
common scale of equal costs per unit change was adopted. Constraints on
the system were both algebraic and response surface functions. The sys-
tem was optimized utilizing Zoutendijk's method of feasible directions.

The LaGrange Multiplier approach was modified by Myers and Carter
(48), in 1973. They did not equate the constraint response to a specific
value, but rather devised a methodology which allowed a graphical display
of optimal primary response solutions for varying values of the constraint
response. Two problems were solved in the article. The first consisted

of three independent variables with region constraints.
—2.5§xi§2.5 (d=1,2,3) (2.23)

forming the dual responses
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2 2 2z
yp 65.39 + 9.24xl + 6.36x2 + 5.22x3~-7.32xl—-7.76x2—13.11x3 (2.24)

-l3.68x1x2—18.92x1x -14.68x2x

3 3

it 2 2 2
Yg = 56.42 + 4.65x) + 8.39x, + 2.56x, + 5.25x] + 5.62x, + 4.22x7 (2.25)

+ 8.74x1x + 2.32x1x3 + 3.78x.x

2 273

~ -

Figure 12 is solved for yp given a value of T Values of the indepen-

dent variables are then obtained from Figure 13. With A 65.0, yp was

maximized at X = 2.07, X, = -1.15, and x, = -0.6, yielding a response of

3

approximately 74.0. A second problem was solved incorporating spherical
region constraints necessitated by an unbounded primary response within
the constraint response region. Figure 14 shows the response surfaces

of the equations

;p = 53.69 + 7.26x,-10.33x, + 7.22xi + 6.43x§ +11.36x)x,  (2.26)
;S = 82.17-1.01x,-8.61x, + 1.4Oxi-8.76x§-7.20x1x2 (2.27)
Two constraints are imposed,
8u<y <88 (2.28)
and
x; + xocl. (2.29)

The primary response was maximized at 67.0 while e 87.8 and X, = 0.85

and X, = 0.6. Since this method is graphical, it is limited to two re-

sponse equations without undue difficulty of interpretation. Also the B
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matrix of both responses, shown in Equation 2.11, cannot be indefinite
or solution is impossible by this method.

Further application of nonlinear programming was accomplished by
Fields (23), in 1974. He utilized the Hooke and Jeeves Pattern Search
Technique, diagramed in Figure 15, to optimize versions of the Umland and
Smith and Myers and Carter problems discussed previously in this section.
Fields examined three formulations of the response systems:

1. A single objective function with other response functions
treated as constraints and explicitly set to a fixed value.

2. A single objective function with implicit, penalty function
type consideration of the other response functions as constraints.

3. A weighting function combination of all response functions
into a single function.
He concluded that the first formulation was unsatisfactory due to the
inability to slightly violate the constraints. The second formulation
was an improvement, though requiring numerous computer iterations from
various starting points with varying penalty sizes. Fields found the

most promise in the weighting scheme as an aid to the decision maker.

In his research, however, various weights were applied with solutions dis-

played in tabular format. Once again the computer runs required are con-
siderable and the assistarce of an expert is necessary. His results are
compared to the original authors' results in Table 4.

A recent addition to the literature is the work of Biles (8), in
1975, which utilizes the gradient projection technique of nonlinear pro-
gramming. A primary response is optimized while secondary responses are

constrained within specified bounds. The technique is mainly the usual
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Table 4. Comparison of Fields' and Original Results
Umland . Myers
Vazdabie and Smith Fields and Carter

ypl 83.66 83.4562

Va1 94.87 94.9992

X1 0.965 0.96643

X501 1.088 1.07373

sz 86.73 86.6441

Y2 92.47 92.4998

X9 1.005 1.00562

X9y 1.316 1.31055

y 88.68 88.6623

~p3

Vg3 89.995 89.9997

X5 11.075 1.08223

X3 1.479 1.47497

Ypl 73.9145 73.66
Y 64.9997 65.22
X1 2.1250 25107
X501 -1.25 =1.45
X3 -0.6222 -0.6
¥p2 67.5716 67.8
Yep 87.8056 88.19
X1 0.60 0.85
X5y -0.80 -0.6

e
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gradient search optimization unless the gradient direction leads out of
the feasible region described by the constraint responsaes. Should this
occur, gradient projection is used to bring the search direction back in-
to the feasible region.

As can be seen from this literature survey, most of the research
in multiple response surface optimization has been devoted to constrained
optimization techniques utilizing various nonlinear programming algorithms.
Such approaches require selection of a primary response with relegation
of other responses to constraint status. The application of these ap-
proaches to more than three responses has not been demonstrated. The
military decision maker may well desire to array the importance of multi-
ple responses in a more controlled manner. Thus this research is devoted
to the application of a multiple objective optimization technique to the

multiple response problem.

Multiple Objective Optimization Literature Survey

Charnes and Cooper (15), in 1961, proposed goal programming as a

solution technique for multiple linear objectives with linear constraints.

1f xl, xz, e boaty xn are a set of subgoals to be achieved and al, 32 oAy an
are technological coefficients, then the objective function is
o - + - Gl -
f(xl,xz, ,xn) a;x; +anx, + ax, (2.30)
The constraints can be expressed in the form
a,x, =b (i = 1525 envyll) (2.31)

i i -

where bi is the i th goal value. Deviation above or below a goal is ac-
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+ =
commodated by the slack variables y; or ¥y respectively. The goal pro-

gramming problem is then expressed as

+ -
Min Z =y +y (2.32)
S A A_}£+X——X+=£
0.

-+
x,d ,d

Solution by usual linear programming methods will yield values of x which
come closest to meeting the goal values, b. Nonlinear objectives or con-
straints were not considered. Ijiri (37) modified the technique of
Charnes and Cooper to develop the formulation stated in Equation 2.32.
Since most problems would not have completely compatible goals, Ijiri
proposed a weighting and ordering scheme to allow the decision maker to
set goal priorities.

In 1971, Ruefli (52) extended goal programming by adapting it to
linear decomposition models. He worked with goals being set at various
levels in an organization. Lee (39) has been a prolific advocate of
goal programming. He recognizes that goal programming is very limited
in nonlinear situations and cites no examples in his text written in
1972. Lee does detail applications of linear goal programming ranging
from financial decisions to academic planning to government decision
analysis. Lee and Moore (40), in 1973, apply goal programming to the
linear optimization of multiple objective transportation problems. In
that same year Hindelang (32) discussed the application of multiple ob-
jective linear goal programming to Quality Control optimization.

Johnsen (38), in 1968, reviews the basic results of Charnes and

Cooper and Ijiri prior to researching the application of computer simula-
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tion to the multiple objective problem. He proposes that simulations be
performed on a multiple objective system with varying limits on the ob-
jectives. This technique would apply only to situations which could be
simulated in total and would require considerable computer time.

When confronted wit™ optimization of a refinery, Seinfeld and
McBride (54), chose two formulations of the multiple objective problem.
Their two objectives were to maximize total profit and to minimize the
sensitivity of profit to variations in refinery conditions. The first
formulation was a weighted combination of the two objectives. The second
approach was to maximize the primary objective, then minimize the second
objective while constraining the displacement of the solution from the
primary optimum. Zoutendijk's method of feasible direction was used for
the nonlinear optimization. The first formulation requires an initial
subjective weighting by the decision maker. The second approach implies
a primary objective and a secondary objective which will be violated by
an uncontrollable amount.

Another approach to the linear multiple objective problem is POP,
Progressive Orientation Procedure, devised by Benayoun, Tergny, and
Keuneman (7), in 1970. This is a sequential procedure of weighted linear
optimizations integrated interactively with the decision maker. By
answering questions concerning the current optimum, the decision maker
influences the location of the next optimization. Their algorithm, STEM,
is confined to linear problems. Geoffrion (27) utilized a similar
philosophy in Vector Maximal Decomposition Programming. He uses an im-

plicit preference function to combine multiple nonlinear objectives. The

perference function is determined interactively with the decision maker.
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This approach will be discussed in detail later in this section.
Multicriterion linear programming problems were examined by Belen-
son and Kapur (6), in 1973. They developed a two person zero-sum game
approach which interacted with the decision maker to determine dispari-
ties between the solution and his preferences. Monarchi, Kisiel, and
Duckstein (45) developed an algorithm termed a sequential multiobjective
problem solving technique, SEMOPS, to interactively solve multiple ob-
jective nonlinear goal programming problems. The algorithm involves a

surogate objective function
Min s = d (2.33)

where dt reflects whether a goal has been satisfied. SEMOPS presents the
decision maker with alternatives from which to choose. The approach is
very similar to the algorithm adopted by this research. Vemuri (65), in
1974, developed an algorithm which sought a noninferior solution set
rather than an optimum solution. It is based on deriving the Pareto
optimal set, that is, the line from which a deviation will improve no ob-
jective function. Currently this algorithm is limited to specific for-
mulations of the objective functions and no constraints.

The multiple objective optimization algorithm adopted by this re-
search is the Geoffrion-Dyer Interactive Vector Maximal algorithm. Chap-
ter III of this research will detail the algorithm, thus the following
will be a description of its development. The early theoretical work by
Geoffrion (27) has previously been discussed. Geoffrion and Hogan (29),
in 1972, formalized an algorithm and applied it to two-level organizations

with multiple objectives. An overall objective function of the decision
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maker's utility function is optimized without explicit knowledge of the
function. Marginal rate of substitution indifference tradeoffs between
objectives, interactively developed by the decision maker, are transformed
into point gradients of his utility function. These are maximized, sub-
ject to region definition constraints, to product an optimal direction
vector. The decision maker then selects an optimal solution along this
vector. Linearity is not a requirement in objectives or constraints.

Dyer (21) adapted the algorithm to Interactive Goal Programming. :
Nonlinear functions were applicable to the algorithm but Dyer cautioned
that his adaptation, "... can be expected to provide an optimal solution
to the multiple criteria problem only in restrictive special cases." He
found value in the insights and alternatives which the algorithm presented
to the decision maker. Garrido (26), in 1974, altered the suboptimization
portion of this algorithm by utilizing LaGrange Multipliers in an applica-

tion to Multi-Item Inventory systems.

In December 1972, Geoffrion, Dyer, and Feinberg (28) formalized

the basic algorithm. An article was published detailing the algorithm and

its application to the operation of an academic department. Dyer (19), in

1973, published an article describing an ALGOL computer program of the |

algorithm. He displayed output, Figure 16, of the algorithm optimizing J

an automobile purchase decision. In a later article (20), he describes an

experiment with graduate student subjects knowledgeable in mathematical

programming, solving the automobile problem with various algorithms. The }
|

Vector Maximal algorithm received unanimous subjective praise for ease of j

use and comprehension. Most recently, Courtney (17) has drafted a paper
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HP 108.3 108.3
HPG 29 275
Which do you prefer? If you are indifferent, Type I
: J
The Tradeoffs are
Cost -1 ) N
HP 10 >The vector W
MPG 33.33 J
New Operating Point
2500 140 20.5 ‘LComputed by Frank-Wolfe
New Decision Vector Algorithm (5)
23 10 200 J

Enter llumber of Points to See in Step Size-Problem
T

Select a Preferred F Vector from the Following FOWS)
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Figure 16. Sample Output From the VM (Vector Maximal) Program.
From Dyer (19)
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applying the algorithm to capital appreciation and income portfolio
selection.

This brief survey of multiple objective optimization has revealed
a majority of effort on the linear problem. The work of Geoffrion and
Dyer stands out in the nonlinear problem area. Utilization of the Inter-
active Vector Maximal algorithm would allow participation of the military
decision maker in the optimization process. His military experience and
expertise would be utilized in making controlled marginal rate of sub-
stitution decisions. After an optimal direction is determined, the mili-
tary decision maker would perform the uni-directional search optimization.
In this alliance between military decision maker and mathematical program-
ming, the "black box" fixed solution syndrome is alleviated if not elimi-
nated. Since all alternatives are presented to the decision maker in the
dependent response space rather than the independent variable space, a
multitude of alternate solutions are considered. An application of the
Geoffrion-Dyer Interactive Vector Maximal algorithm to multiple response
surface optimization would seem to generate favorable dividends. It is

in that direction which this research will now proceed.
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CHAPTER III

DEVELOPMENT OF AN OPTIMIZATION METHODOLOGY

The Frank-Wolfe Linear Approximation Algorithm

The theoretical basis of the Geoffrion-Dyer Interactive Vector
Maximal algorithm is the Frank-Wolfe Linear Approximation algorithm.
Development of a methodology involving the latter algorithm must there-
fore begin with the former. The Frank-Wolfe algorithm (69) solves the

nonlinear programming problem

Max f (x)
S. T. Ax < b €3.1)
x>0

by means of linear approximations. The linear approximation to f(y),

where y is a solution to Equation 3.1, at the feasible point l(_k is fL(Z)

where
k t k
L@ = £ + e . (3.2)
The algorithm seeks to maximize the linear approximation of the objec-

tive function within the constraint set. By substitution of Equation

3.2, Equation 3.1 becomes

Max f(gc_k) + VE @k)t(x-gt_k) (3.3)
S. T. Ay < b
h A

s s ke i e
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Futher simplification is possible by realizing that ﬁk is a fixed feasi-
ble point throughout an iteration of the algorithm, rendering several
terms in the objective function constant.
The final form of Equation 3.3 is
Max Vf (_}_(_k) t.X

(3.4)
S.T. Ay < b

E 29 .

The optimum ZF of Equation 3.4 is constrained to be feasible and is the
maximum of the linear approximation of the original objective function.

Ap improved value of f should lie on a direction gk from EF to ZF‘
d = lk"ik. (3-5)

A uni-direction search is therefore conducted along

ik + T(xk-zk) Pzt ed (3.6)

to yield an improved and feasible 5# i for the next fteration of the

algorithm. The algorithm terminates at solution point x* if y*, the

solution to Equation 3.4 where gk = x*, implies
VE (x%) " (y*-x*) < 0 . (3.7)

By substituting Equation 3.5 into 3.7 it is seen that x* satisfies the
Kuhn-Tucker conditions that are necessary for optimality. Farkas'Lemma

(69) states that

qx<0 (3.8)
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for all x such that Ax < 0 is equivalent to the statement that there

exists u > 0 such that

q +At3= 0. (3.9)
In Equation 3.4,
Ay < b~ Ay-b <0, (3.10)
thus
V(Ay-b) < 0. (3.11)

Substituting Equation 3.7 and 3.11 into 3.8 yields this version of 3.9:

VE(x*) + V (Ay-b)u = 6. (3.12)

which are the Kuhn-Tucker conditions necessary for optimality.

Zangwill (69) proves the following Convergence Theorem for a non-
linear programming problem:

Let the point-to-set map A:V > ¥ determine an algorithm that given
at point Z'eV generates the sequence {z } 1 Also let a solution set
2 CV be given.

Suppose K

(1) All points z are in a compact set XCV.

(2) There is a continuous function Z:V » E! such that:
(@) 1if z is not a solution, then for an yeA(z)

Z(y) > 2(2)

(b) 1if z is a solution, then either the algorithm terminates
or for any yeA(z)

Z(y) > z2(2)
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i (3) The map A is closed at z if z is not a solution.

Then either the algorithm stops at a solution, or the limit of any
convergent s:bsequence is a solution.
The foregoing Frank-Wolfe algorithm will now be shown to be convergent
(69). An assumption must be made that f is continuous and differentiable
and that the feasible region is compact. Compactness is equivalent to
assuming that the feasible region is closed and bounded. By this second
assumption part (1) of the Theorem is proved since EF is feasible, 1} is
feasible, and any point on a straight line between them is feasible.

To prove part (2a), assume that x' is not a solution. Then let y'

k

be the solution to Equation 3.4 with x = x'. Since x' is not a solution

Equation 3.7 becomes
vEx") @ -x") > 0. (3.13)

But Equation 3.13 states that d' is an improving direction for f. Let w

be a point on d' within Equation 3.6. Then
f(w) > £(x'") (3.14)

Part (2b) clearly holds if z = x and Z(z) = f(x).
The final step in establishing convergence of the algorithm is
proof of part (3) of the Theorem. Let
=+ x (3.15)

and

d =>d . (3.16)
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Substitution of Equations 3.15 and 3.16 into 3.5 yields
g vy =4 x {3.17)

The algorithmic map is separated into two maps, D which determines the
+
improving direction, and M which calculates EF ¢ given the improving

direction:
A = MD (3.18)

The map M was shown to be closed in the proof of part (1). To prove D
is closed, it is sufficient to show that zf solves Equation 3.4 where

© «©

@ y @
X=X . Then sinced =y -x,

x, d) eDx ).
o k k
Since y 1is one y , it is feasible. By definition of y
vE @ x> vE ) S (3.19)
for any feasible y. Taking the limit of Equation 3.19 as k + = yields
© t,6 o ™ o t o0
VEx )y -x ) 2 VE(x ) (yx ), (3.20)

which states that 1? solves Equation 3.4 for x = 5? since Equation 3.20
is true for all feasible y. The map D is thus closed. Zangwill (69) has
proven a theorem which states that if maps M and D are closed in Equation
3.18, map A is closed. This completes the proof of convergence. Wolfe
(67) has done further work to establish upper and lower bounds on the

rate of convergence of the Frank-Wolfe algorithm.
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The Geoffrion-Dyer Interactive Vector Maximal Algorithm

The development and theoretical basis of the Interactive Vector
Maximal algorithm have now been discussed. The following will be a
detailed description of the algorithm (1,19,20,28,29). The multiple

objective optimization problem can be stated as

Max U [fl(x),fz(x),...,fr(x) ] (3..2L)

S. T. xeX

where fi’ i=1,2,...,r, are distinct objective functions, X is the fea-
sible decision variable space, and U is the decision maker's utility
function defined on the range of f. The utility function U and each fi

is assumed to be concave and continuously differentiable, and U is increas-
ing in each fi' If some fi are convex, that is, utility decreases for

an increase in fi, then a change of sign for that fi will be required.

The space X is assumed to be convex and compact.

Equation 3.21 can be solved by the Frank-Wolfe algorithm as fol-

lows:
Step 0. Choose an initial feasible solution zFeX. Let k = 1.
Step 1. Determine an optimal solution xF of the direction finding
problem.
Nax 7, (£, ), 6,0 G5 1y (3.22)
S. T. yeX

Let gk - zk-gk.

Step 2. Determine an optimal solution tk of the step-size prob-




Max U (£, € + "), £,6 + e, f G+ ] (323

s ERS .

if the solution is optimal, terminate. Otherwise let

k4l _ ko, gk

(£

(3.24)
k=k+1,

and return to Step 1.
The Frank-Wolfe algorithm was chosen for its computational simplicity,
its well established convergence discussed earlier, and its rapid initial
rate of convergence as discussed by Amor (2,19).

An immediate difficulty in this procedure is the necessity of
quantifying the gradient of the decision maker's utility function in

Equation 3.22, By application of the chain rule,

E
' K k Bon 5U K
v [fl(g),fz(gt_),...,fr(i )J 3 <_—_3fi)kvifi(¥') (3.25)
=1

k
where (%% ) is the i th partial derivative of U evaluated at the point
i
(

T k B,
[fl(i ),f2(§ ),...,fr(g_)], and Yifi(ﬁ_) is the gradient of f, evaluated

at x . By substitution of Equation 3.25, 3.22 becomes

r
Max D (g%) V£ @9y (3.26)
gl N RR S
S. T. y e X

Except for the partial derivatives of U, the quantities in Equation 3.26
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are known. The solution of Equation 3.26 is not affected by multiplica-
tion of the objective function by a scalar. Thus the objective function

k
can be multiplied by the positive reciprocal of a (%) . As a stan-
oU

k s
EE_> is utilized. The original vector
i

w.)“ a_u_)“ au_\
Bfl ale afr (3.27)

dard convention, (

is colinear with the new vector

1’( e, ) k’.__’(au/afr) k\. (3.28)

aU/afl aU/af1

The components of Equation 3.28 are termed the marginal rates of

substitution between f_  and fi,i = 2,3,...,r, that is the preferred trade-

1
offs between objective 1 and objective i. There are several methods
available to obtain the tradeoffs. The method utilized in this research
is the ordinal comparison method, that is, "I prefer A to B." This
method has been shown to be superior to the other methods (20). Initial
perturbations of Af:, i=1,2,...,r, are obtained from the decision
maker. These perturbations are obtained in a direction favorable to the
decision maker, thus satisfying the need of sign determination for fi

discussed earlier in the initial assumptions. The first perturbation,

Afk is the reference perturbation.

1
The decision maker is presented with two vectors, A being fi(gk),
= k K 2k 13 k ..k .k k
i = L.2evest, Gt B being (fi + Afl’f2""’fi-l’ f1 Afi’ fi+1""’fr)'

If the decision maker prefers B, Figure 17(a), Af: is doubled. This is

repeated until A is preferred. 1If A is preferred, Af: is halved. This
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is repeated until B is preferred. After possibly several iterations of
this procedure, the decision maker is indifferent to the ordinal com-
parison presented and Af:* is determined, Figure 17(b). This procedure
is repeated until all Af:*, i=2,3,...,r, are determined.

One alternate method of determining the tradefoof is to simply ask
the decision maker what change in the first objective value would exactly
compensate a given change in each of the other objective values. Another
method would be to place the objective function values 1 and i on axes of
a graph and designate the current solution point. A reference point is
then chosen and the decision maker trades off movement on one axis
against the other. Probably the least desirable method would be to ob-
tain a range of tradeoff values from the decision maker, and solve the
direction finding problem with all values given. The decision maker would
then choose a solution from the several generated step-size problems. It
has been shown that the algorithm will converge even though errors are
made in the determination of the tradeoffs as long as the errors decrease
with each iteration (28). This is not unreasonable to assume since each
iteration will educate the decision maker in the implications of his
tradeoffs.

After the tradeoffs are determined, the approximation is made

K au/3 f: Af‘l‘
wi=——~k-=—k-,1'l,2,...,r. (3.29)
3au/3 fl Af1

By substitution of Equation 3.29, 3.36 becomes
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(b) T

Figure 17. Estimation of wi.
From Dyer (20)
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¢ Kk
Max Tty (3.30)

S. T. y e X

of which all quantities except y are known. Equation 3.22, and therefore
Step 1 of the Frank-Wolfe method, can now be solved. Step 2 is solved

by presenting the decision maker with alternatives
Fa+ed) 0<e<1 . (3.31)

By choosing his preferred alternative from Equation 3.31, the decision
maker solves 3.23. He is then allowed to return to Step 1 or terminate
the algorithm.

The Interactive Vector Maximal Algorithm is now seen to be:

Step 0. The decision maker chooses an initial point g}eX. Let

k
Step 1(a). The decision maker assesses his tradeoff weights Wy

(b). Compute the optimal solution XF of Equation 3.30.

Step 2. The decision maker chooses an optimal tk to Equation 3.31.
If the decision maker is satisfied, terminate. Otherwise proceed as in
Equation 3.24.
It is important to realize that the decision maker views the entire prob-
lem in objective value space rather than in the more confusing decision
variable space. He is making tradeoffs of objectives with no distractions
from the decision variables. He is also seeing a multitude of alternate
solutions as he progresses through the procedure. This is an educational

process for the decision maker in the implications of his tradeoffs a-
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mong objectives. There is no requirement for the decision maker to be
familiar with mathematical programming. It was shown earlier that the
algorithm converges to an optimal solution. The decision maker may sub-
jectively terminate the algorithm once he feels further iterations would
yield minimal improvement.

Adaptation of the Interactive Vector Maximal Algorithm to the
Optimization of Multiple Response Surfaces

Adaptation of the Interactive Vector Maximal Algorithm to the
optimization of multiple response surfaces must begin with an examination
of the algorithm's assumptions. Utility theory shows that the majority of
utility functions are concave and continuously differentiable. Most
multiple response problems constrain the independent design variables in
one of three ways. First the variables may be given range constraints

such as

8, <% b i=1,2,.00k . (3.32)

These constraints are of course straight line segments and describe a

convex, compact set. A second alternative would be

X4 + xj :-bij GG (R W SRR S 3.33)

These are also straight line segments and satisfy the assumption. The

third constraint definition would be

) 4
— 2
Z xg=b . (3.34)

i 1

These constraints describe a sphere which is convex and compact.
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The assumption which is violated concerns the concavity or convex-

ity of fi, the response functions. As discussed in Chapter II, and pic-
tured in Figures 6 and 7, a second order response function can take
various shapes. For ease of interpretation, the two variable case will
be discussed though the discussion applies to surfaces of more than two
variables. If the response surface is a pure maximum or minimum, the
assumptions are satisfied. If the surface is a saddle system, local and/
or alternate optima might exist. In this case the algorithm is performed
by choosing alternate starting points, 5}, and proceeding to an optimum
point in each case. A thorough procedure would be to start from each ver-
tex of the constraint space and from the origin. Experience with the
surface may dictate fewer starting points. The surface optimum would be

the optimum of the local optima.

The existence of a ridge system also requires alteration of the
algorithm. As long as the decision maker's usual tradeoffs lead to
improvement, the algorithm proceeds normally. If the current 5& lies on
the down slope of the ridge, normal tradeoffs will lead to unsatisfactory

alternatives in the step-size problem. At this point the decision maker

k
il

bring him back up the ridge to an improved point. If the current 5F lies

should reverse the sign of his &4f, perturbation and the algorithm will
on the crest of the ridge, neither sign of usual perturbations will lead
to improvement. At this time the decision maker must judiciously adjust

the sign and magnitude of his perturbations until a different search

direction is generated. This is not difficult if the interactive program
displays the coefficients of Equation 3.30. The program developed for

this research displays these coefficients and offers another method of
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solving this problem. In the nonlinear constraint version of the program,
the decision maker obtains these coefficients from the main program,
terminates the main program and optimizes the suboptimization problem
with another program, then returns to the main program. Upon returning
to the main program, he could input a new search direction to move the
current Ek off the crest of the ridge. The presence of a semi-trained
analyst might be required but the procedure is not difficult. Once an
ﬁk not on the crest is reached, usual perturbation may again be utilized.
Application of the algorithm to representative problems has shown the
occurance of a current 5& on the crest of a ridge to be extremely rare.
The three design variable constraint definitions, Equation 3,32,
3.33, and 3.34, yield three formulations of Equation 3.30. The wk and

e

foi(ﬁk) are known and are constants. Thus Equation 3.30 and 3.32 reduce

to

r
Max 2; Ciyi
i=1 (3.35)

Sa A a; < Yy :_bi S ok 3 P PR
S k
where ¢ = w V"fi(i ). Equation 3.35 can be solved by direct substitu-
tion. If cy is positive, then set Yy at its upper bound, bi. 1 3 cy is

negative, set at its lower bound, a,. Constraints of the type Equa-

tion 3.33 yield

r
w2y (3.36)
i=1 '
S« T« AR € b .
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This is the classic linear programming problem and can be solved by the
simplex method. Constraints such as Equation 3.34 yield
T
Max c

i’1
i=1 (3.37)

5
o 2
S.T.Z xi=b.
i=1

This research used the Bazaraa Cyclic Coordinate Algorithm for Optimizing
Penalty Functions computer program (5) to solve Equation 3.37.

The interactive optimization algorithm was programmed in FORTRAN
for use on a CDC computer through two programs, listed in Appendix D.
The first program is utilized for data input. As can be seen from an
example run in Figure 18, the decision maker responds to interactive
questions The only analysis required is to compute gradients of the
response functions. The upper and lower bounds of x; are defining the
region of experimentation utilized for the second order model and thus
must coincide for all response functians. An example of the interactive
optimization program is shown in Figure 19. The coefficients mentioned
as aids in ridge problems are seen between the tradeoffs and the new

decision vector.

Application of the Methodology to Multiple Response Surface Problems

This section will examine the application of the adapted Inter-
active Vector Maximal algorithm to the multiple response surface problems
utilized by Fields. These problems were previously solved by Myers and

Carter and Umland and Smith as discussed in Chapter II. It must be re-

- .
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I NPUT NUMBEF OF RESPONSE EQUATIONS
2
INPUT NUMBER OF INDEPENDENT VARIAFLES (X'"S)
2.2
INPUT INITIAL VALUE OF INDEFENDENT VARIAKLES WITH . AND ’
? 2es=2es-1s
INPUT COEFFICIENTS OF RESFONSE EQUATION I
? ‘7-231‘7-76,']3.]11001001‘13068:"]8.92:0-‘003‘14'68)0-;
? 0050050050059¢24, 663655622, 005005 65639
INPUT COEFFICIENTS OF RESPONSE EQUATION 2
? 5e25,5662,4622,00,00,8¢T4,2¢2350650053¢67850050050050e,
? 00540 65,8¢639,2¢56,0050e,56,42
1 VPUT RESFONSE EOQUATINON NAMES IN GROUTS OF TEN LETTERS
AND SPACES, RIGHT JUSTIFIED, ONE PER LINF
? MAX
? MIN
INFUT COEFFICIFENTS OF GRADIENT F IX 1
? =14.U46,-136€68,-18¢92,0e50e,924
INPUT COFFFICIENTS OF GRADIENT F IX 2
?7 =13e68,=-15652,=-14468,0e50e, 6636
INPUT COEFFICIENTS OF GRADIENT F 1X 3
?7 =18¢92,-1468,-26622,0e,0e,5.22
INPUT COEFFICIENTS OF GRADIENT F IX 4
? 00:0-}00}00100:0.
INPUT COFFFICIFNTS OF GRADIENT F IX 5
? 0e50e50e,00,00,00
INPUT COFFFICIENTS OF GRADIENT F 2X |
?7 1065580 7452632500500, 4e 65
INPUT COEFFICIENTS OF GRAUIENT F 2X 2
? BeTUs, 11e24,3¢ 78,0605 00,5639
INPUT COEFFICIENTS OF GRADIENT F 2X 3
? Pe32,30eTM58ell50e50e52¢56
INPUT COFFFICIENTS OF GFRADIENT F 2X 4
? 0010-100)00:0.)0-
INPUT COFFFICIENTS OF GRADIENT F 2X 5
? G.’O.,O.'O.,O.,O.
INPUT RECION OF INTEREST RBOUNDARY DEFINITION, 1 FOR
INTEFGER, L. FOR LINEAR, OR N FOR NONLINEAR
A |
INPUT LOVER AND UPPER EOUNDS OF X1
? -2- 5)205
INPUT LOWER AND UPPER BOUNDS OF X2
? =2¢5,2¢5
INPUT LOWER AND UPPER HQUNDS OF X3
?T =2¢5,2¢8
«214 CP SECONDS EXEQUTION TIME

Figure 18. Example of Data Input Computer Program.
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IN®UT BEPTURBATION OF FC1)s IW FAVOTARLE DIRECTION
1t o))
INTUT PEPTURBATION OF FC 2), IJ FAVOTAELF LIRECTION
7 «'8
A i
“(VICTORY) « BABET . 7450
FC(BTL ™DS) 1. 57 422 le 2948
TG ™S 55.92260 55 3226
T®IG ©0S T6e 25002 750 25
TPNG COST 537 2. BRB20 537 3o B!
THICH DC YOU PREFEP. IF YOY ARE ILJDIFFEPEIT TYPE I.

2 1

1'1°UT PEFTUNBATION OF F(

? ~5.

m(YICTORY) ‘

E(3TL 2DS) 1.
TRNG HPS 55.
TRIG ™DS 76+

TONG COST 637 2.
MHICH DO YOU PREFER. 1IF
7 1

IIPUT PEPTUPBATION OF F(
2 -s.

PCYVI CTORY )

ECETLE, RBS)
TG HPS
TIRIG RDS
TG COST

SHLCH DO ¥ OUF BPREFER

2k

TP PERTIRBATI ON OF F(

2 =530

DCULCTORY)
E(3TL PLS)

le

TG HEE 55
TRNG PLC 76
TG COST 637 e
WHICH DO YOI P2EFERe IF

A

33y TN FAVORAPLE DEFEGTIOD
o e :

2 2 D

52400

”P\f\"‘ﬂ

DEAXD

25

amenn

o P W e

YL ARE

45 I3 F

DI < 3
51« 25036
B3 73 SR 0T
N O T T R e B SR s i

a- 3
646C3 o« T4801

59422 le 2462
222672 559286
25307 766 2500
2AGEe 2 7373 %

YOU ANE INCIFFERENT TYPL 1»

Figure 19. Example of Interactive Optimization Computer Program.
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membered that the original and Fields' solutions were obtained from
algorithms designed for, and limited by, a primary and one constraint
response function. Their solutions are supposedly precise mathematical
programming solutions. In solving these problems with the methodology
of this research, close approximation to the previous solutions will be
considered validation of the methodology. More precise approximations
could have been obtained with numerous iterations of the methodology
and extremely large numbers of step-size alternatives to more accurately
approach the constraint values. Such a procedure would have approached
the numerous iterations of Fields. The solutions obtained in this re-
search are meant to approximate the effort which would be expended by a
decision maker. It will be seen that even without extensive computer time
or 1iterations, the methodology of this research compares favorably with
the other solution techniques.

The first problem .is the Umland and Smith problem shown in Figure
10 and with response functions represented by Equations 2.20 and 2.21.

A canonical analysis of Equation 2.20 indicated a stationary point, .

(2.25,2.35) and eigenvalues Al = -7.38 and Az = -2.61. This surface is
a maximum. Equation 2.21 has a stationary point 50 « (1.15, 0.11) and
eigenvalues Al = -10.99 and Xz = -3.39. This surface is also a maximum.

The initial point was chosen to be X, of the primary response. Figures

20, 21, and 22 graph the movement of the algorithm while Table 5 compares

results.
The next problem 1is the first Myers and Carter problem given by
Equations 2.24 and 2.25. A canonical analysis of Equation 2.24 yielded

Xy = (-8.08, 3.89, 3.85), which is outside the constraint region, and

SRE—————————— A




Figure 20.

Figure 21.

Algorithm Movement on Umland and Smith Problem, 0

X2

~

Algorithm Movement on Umland and

Smith Problem, ys < 92.5.

< 90.0.
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Figure 22. Algorithm Movement on Umland and Smith Problem, : 8
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< 95.0.

Table 5. Comparison of Umland and Smith Problem Solutions.
Variable Umland Fields This
and Smith Research
ypl 88.68 88.66 88.11
Ye1 89.995 89.9997 90.003
X1 1.0795 1.082 1285
X 1.479 1.475 1.343
yp2 86.73 86.64 86.29
Yg2 92.47 92.4998 92.47
X1 1.005 1.0056 1174
X539 1.3%6 1,310 1.223
yp3 83.66 83.47 83.43
Vg3 94.87 94.99 94.99
X3 0.965 0.966 1.013
X 1.088 1.074 1.058




66

eigenvalues A, = -25.65, A, = -2.63, and Aa = 0.18. This surface is a

1 2

slight saddle system with an optimum outside the region.of experimenta-
tion. One must beware of local optima during the optimization procedure.

Canonical analysis of Equation 2.25 showed = (.52,-1.18, .08) and

£

eigenvalues A, = 10.55, A, = 3.56, and A, = 0.98, which indicates a

1 2 3

minimum surface. The algorithm was initialized at various starting
points. Table 6 details the results of these searches and Table 7 com-~
pares the optimum solution with previous results. The local optima
found in this research were also found in Fields' investigation. This
surface also required the use of ridge system procedures during its op~
timization.

The final problem is the Myers and Carter Problem Two described by
Equations 2.26, 2.27, 2.28, and 2.29 and graphed in Figure 14. Canonical

analysis of Equation 2.26 indicated = (-=3.72, 4.09) and eigenvalues

_}50
Xl = 12.52 and AZ = 1.13. As seen in the Figure, this system is a minimum
with the stationary point outside the region of experimentation. Equation
2.27 has an §0 = (-.44, -.31) and eigenvalues Al = -9,91 and Az = 2,55
which indicates a saddle system. The constraint of Equation 2.29, how-
ever, is so restrictive that virtually all of the saddle effect is elim-
inated within the feasible region. It is interesting to note that such

a restrictive and arbitrary constraint was necessitated by the Myers and
Carter and Fields techniques. Utilizing the methodology of this research,
however, a more meaningful constraint such as cost or production time

could have been incorporated into the problem formulation.

The constraint formulation of the Myers and Carter Problem Two re-
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Table 6. Algorithm Search Results, Myers and Carter Problem One.

Point x1 x2 x3 : -

Starting o2 IR .08

Solution 1.00 ~ .06 -.52 70.93 64.08
Starting 2.5 =205 =2.8

Solution 2.02 =117 -0.69 7351 64.70
Starting 2D 2.5 2.5

Solution 1.29 ~0.30 —~0..61 72.09 64.73
Starting 0. 0. Q.

Solution L.59 ~0.63 -0.64 73<03 64 .58

Table 7. Comparison of Myers and Carter Problem One Solutions.

Variable angygziter Fivlds Re§2;ich

’ ;}p 73.66 73.91 73.51
Vg 65.22 64.9997 64.70

X, 2.07 2.13 2.02

x, -1.15 -1.25 -1.17

Xy -0.6 -0.62 -0.69
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quired the utilization of the Cyclic Coordinate Penalty Function subopti-
mization program. The procedure was initialized at X of ;s' Figures

23, 24, and 25 trace the iteration solutions of the optimization algorithm.
Ta .e 8 compares the results of this research with earlier results.

In the previously solved problems of this section, a close approx-
imation to past results was obtained by the methodology developed in this
research. The surfaces optimized were representative of multiple re-
sponse surface shapes. Two constraint formulations for the feasible re-
gion were optimized in two and three variable problems. Application of
the adapted Interactive Vector Maximal algorithm to multiple response
surfaces has increased the potentiality of their optimization. The re-
striction of a primary response and one or two constraint responses no
longer applies. Theoretically sound optimization may now be performed
on large scale multiple response surfaces of various feasible region

constraint definitions. In the next chapter, this research will de-

monstrate the methodology on a training problem applicable to OTEA.

Table 8. Comparison of Myers and Carter Problem Two Solutions.

Myers This

NAERRDAE and Carter FaEen Research
yp 67.80 6757 67.78

ys 88.19 86.81 87.996

X1 « 89 .60 .8502

X, -.60 -.80 -.5971
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First Iteration of Myers and Carter Problem Two Optimization.
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Final Iteration of Myers and Carter Problem Two Optimization.

Figure 25.
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CHAPTER IV

APPLICATION OF MULTIPLE RESPONSE SURFACE

OPTIMIZATION TO AN OPERATIONAL TEST PROBLEM

Introduction to the Problem

In Chapter I the importance and effects of training in operation-
al testing was discussed. The utilization of computer simulation con-
current with an OT was also discussed. In Chapter IIT a methodology was
developed to analyze and optimize multiple response surfaces. The role
of the decision maker in the interactive algorithm and the benefits ac-
crued by his participation were discussed. 1In this chapter, computer
simulation and the methodology of this research will be applied to a hy-
pothetical acquisition program.

Subsequent to the cancellation of the costly Main Battle Tank
1970 (MBT70) acquisition program, the Army began development of the less
costly MBT76. As one means of cost reduction, all factors of system ef-
fectiveness were considered rather than exclusive consideration of the
MBT76 technological capabilities. The Project Manager (PM) felt that
crew training could be of utmost importance in overall MBT76 combat ef-
fectiveness. Prior to OT II, he directed an analysis of the effects of
crew training utilizing a computer simulation of a combat situation in-
dicative of the European environment. The laser ranging and optical
tracking of the MBT76 were sophisticated enough to negate any effect
of training on weapon accuracy. Consequently the PM directed that mean

time to fire the first round, mean time between rounds, and probability
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of sensing be studied as system factors affected by crew training. In
this initial stage, he also directed that one scenario, an engagement
between two tanks in the open at a range of 1000 meters, be analyzed to
establish feasibility of the methodology. This scenario was representa-

tive of tank combat in the European theater.

Utilization of the AMSAA Tank Duel Simulation

The MBT76 Analysis Team (AT) used the AMSAA Tank Duel simulation
programmed by Mr. Robert Lake. It is a low level, small scale, two-
sided, deterministic model used to simulate brief fire engagements be-
tween two armored vehicles. The model plays a defending vehicle (MBT76,
Blue) which is stationary and fires first at an attacker (Red) which is
fully exposed. The engagement ends when a kill occurs or when a time

limit expires. It is programmed in FORTRAN IV for the BRLESC computer.

Inputs include various probabilities of hit and kill, expected time to
fire rounds, and probabilities of sensing. Outputs include the probabi-
lity of victory and expected number of rounds fired.

The AMSAA Tank Duel Model was well suited to the AT's needs with
a few modifications. Planning to use statistical analysis, the AT re-
quired a stochastic simulation. Where the model utilized the mean of
certain probability distributions, the AT decided to input random devi-
ates from the 1istributions. It was assumed that the random variables
in this model were normally distributed. The means and variances of the
various inputs, shown in Table 9, were based on OT I and DT I results
for the MBT76 and best intelligence estimates for the Red. After con-

verting the model for use on the CDC CYBER 74 computer, as shown in
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Appendix B, the AT wrote two programs to generate the random deviates.
The first program, listed in Appendix A, utilized a CDC internal

random number generator to generate 200 Uniform (0,1) random deviates.

The generator was analyzed by a Chi-square test which showed that at

a = .11 the random deviates were U(0,1). Table 10 shows the distribu-

tion of the deviates. The Chi-square statistic was computed as follows

(33)

k
- i
A i E (4.1)

to be xé = 11.0. The U(0,1) deviates were then converted to N(0,1) de-
viates and subsequently to normal random deviates of the distributions
in Table 9. This conversion was accomplished by the well known and

tested Fishman Equations (24),

(-2 logUl)l/ZCOSZﬂU

>
]

2 (4.2)

= (-2 logUl)llzsinZWU

S
|

2,

where Xi are N(0,1) and Ui are U(0,1). This conversion was acccumplished
by a computer program listed in Appendix A. A Chi-square statistic of
Xé = 5.28 was computed for the N(0,1) deviates as shown in Table 11. At
a = ,27 the deviates are distributed N(0,1).

Specification of the scenario by the PM allowed certain model
parameters to be fixed for all trials of the model. These values are

shown in Table 12. The time of flight was based on use of High Explo-

sive Anti-Tank (HEAT) rounds with a muzzle velocity of 3800 feet per
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Table 9. Input Variable Normal Distributions
BLUE RED

Input Variable Mean Variance Mean Variance
P(Hit 1st Rd) 1D .0025 .60 .0025
P(Rehit) .85 .0011 S .0011
P(Hit |Sensing lst Rd Miss) .80 .0011 -7 .0011
P(Hit [Loss of 1lst Rd Miss) 775 .0017 .625 .0017
P(Kill|lst Rd Hit) 5 .0011 .45 .0011
P(Kill|Rehit) <85 .0003 .8 .0003
P(Kill |Hit M Sensing lst Rd Miss) D .0011 .45 .0011
P(Kill[Hit M Loss of lst Rd Miss) 2 .0011 45 .0011
P (Sensing) 325 . 0006
Time to Fire lst Rd (sec) 8.5 . 6944
Time to Fire Subsequent Rd (sec) 10.5 L6944

Table 10. Distribution of U(0,1l) Deviates.

Interval Observed Expected

.00 - .05 7 10

05 = .10 9 10

10 = 15 10 10

<15 = 20 7 10

200 = 025 9 10

<29 = 330 12 10

+30 = 35 9 10

«35 = 440 11 10

.40 - (45 6 10

<45 - .50 ek 10

«20 = .55 155 10

+35 = 60 11 10

.60 - .65 ek 10

«63 = 70 8 10

70 = .75 9 10

.75 - .80 8 10 |
.80 - .85 11 10 |
.85 - .90 S 10 |
.90 - .95 12 10 |
.95 -1.00 9 10 |
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Table 11. Distribution of N(0,1) Deviates.

Interval Observed Expected
= oy =200 2 13.36
=2000 0= k5 10
=15, = 1.0 157 18.38
=1.0, = 0.5 33 29.96
0.5, 0.0 47 38.3

0.0, 0.5 35 38.3

0055 10 30 29.96

Loy LS 13 18.38

L5, 2.0 7 8.82

240, i 6 4.54

Table 12. Fixed Input Variable Values.

Input Variable Value
Engagement Time (sec) 120.0
Blue Time of Flight (sec) .86
Blue Fixed Time to Fire (sec) 7.0
Range (meters) 1000

Blue Rd Reliability 09
Red Time of Flight (sec) 1.17
Red Fixed Time to Fire (sec) it

Red Rd Reliability .825

76
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second for the MBT76 and 2800 feet per second for the Red tank. The
fixed time to fire variable accounts for the mechanical actions between
rounds such as recoil and breech operation. Thus the firing times
analyzed by the AT in this demonstration are human actions such as
issuing a fire order, loading the round, and tracking the target. A sam-

ple of the model output is shown in Figure 26.

Derivation of Multiple Response Surfaces

The modified AMSAA Tank Duel Model could now be utilized by the
AT for the derivation of multiple response surfaces. As directed by the
PM, mean time to fire the first round (51), mean time between rounds
(52), and probability of sensing (53) were chosen as independent design
variables while probability of an MBT76 victory (;l) and expected number
of MBT76 rounds fired (;2) were chosen as the response variables. Based
on experience by OTEA and TRADOC in crew performance, realistic ranges
were chosen for the design variables. Mean time to fire the first round,
human action component, ranged between 30 and 8 seconds. Mean time be-
tween rounds, human component, ranged between 30 and 5 seconds. Probabi-
lity of sensing ranged between .0 and .6. The Red probability of sen-
sing is somewhat higher since the Red round has a lower muzzle velocity
and, consequently, is easier to sense.

A full 23 experimental design was performed on the AMSAA Model.
Table 13 details the design and the responses. The values in parentheses
are the Ei (natural) independent variable values while those outside the

parentheses are the coded values as defined by Equation 2.4. Next the

AT performed multiple linear regression on this data using the Statisti-
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cal Package for the Social Sciences (SPSS) regression computer program
(49) discussed in Appendix C. Figure 27 is the output from the SPSS
program on the data of Table 13. The top half of the Figure concerns

;l while the bottom half concerns ;2. In the upper right quadrant of
each half is the ANOVA table for regression and residual error. The
lower left quadrant contains the regression coefficients of the indepen-

dent variables. The following two response equations are determined

from Figure 27,

<
[
\

= —.037xl-.023x2 + .002x3 + . 344

.3)

<
(o8]
|

= —.074xl—.054x2 + .Ole3 69

~ A~

where Y1 is probability of victory, Y, is expected number of rounds

fired, x, is time to fire the first round, x, is time between rounds,

1

and X4 is probability of sensing. An interesting result is that probabi-

2

lity of sensing over the region of experimentation is statistically in-
significant.

The AT performed two further statistical tests on the data of
Table 13. First a goodness of fit test was computed (33). The residual
sum of squares is separated into two parts, a sum of squares due to pure

experimental error and sum of squares due to lack-of-fit,

ssE = ssPE + ssLOF ¢ (4.5)

Sum of square pure error is calculated by
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Table 13. 23 Design Variable Values, First Design.

| %5 *3 Y1 p)
-1 48y - -1 (a4 L0 .407 .795
1 30y -1 20y -1 .0 341 738
X 2o 1 (30) -1 (.0) .347 .709
1 (30) 1.430) =1 (.0 .307  .581
-1 (200 -1 C20) 1 (.2) .450 .93l
1 (30) -1 (20) 1 (.2 .304 .612
-1 €20} 1 (30) 1 (.2) .356 .72
1 (30) 1 (30) 1 6.3 310 6N
0 (25) 0 (25) g .13 .318  .629
0 (25) 0 (25) 0 (.1) .30 .576
0 (25) 0 (25) 0 (.1) 342 .729
0 (25) 0 (25) g €1 329 .739
0 (25) 0 (25) 0 (.1) 371 .690
c (25) 0 (25) 0 €.1; .336  .673
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Ry
SSpp = D 42 . 4.6)
i =

where Yo.q are observations at the center point and n, is the number of
center points. Since residual sum of squares is given by SPSS and sum

of squares pure error is computed by LEquation 4.6, sum of squares lack-of

fit can be computed from 4.5. An F test statistic is then computed by

= SSLoF/(n—p—ne—l) ~ F(n-p-ne—l),ne (4.7)
7
SSPE/ ne

Fo

where n is total number of observations, p is the number of variables,

and
m
n,= 2 (pD) (4.8)
i=1

where m is the number of different variable levels and Py is the number

of observations at each level. For the first 23 design FOA = 1.86 and
yl
and FOA = 1.46, neither of which are significant at the a = .10 level
y2

Therefore the fit of Equations 4.3 and 4.4 is satisfactorv.
The final test was to establish a confidence interva

mean predicted responses at the center point of the 4

confidence intervals are computed by (33)




— _—r—h -

>

4

;Lﬁ/‘AD-A052 073 GEORGIA INST OF TECH ATLANTA SCHOOL OF INDUSTRIAL AN-=-ETC F/6 12/}
STUDIES IN SUPPORT OF THE APPLICATION OF STATISTICAL THEORY TO ==ETC(U)
DEC 75 V M BETTENCOURT DAAG39=76=C=-0085

UNCLASSIFIED

e 2
i




“l“ 10 g p

5 [ E l""z 2
it £ ke
[

ok |||||2‘ﬂre"’

B

ao




83
y -t S <u<y +t s
c a/2,n-1= —"—="7¢ a/2,n,-1 =— .9)
23V, Ve
where
Bs
2 = 2
S }: (yci-yc) /(nz'l) (4.10)
i=1
and
s
yc = At yci/nz . (4.11)
i=1

The following are 90% confidence intervals for the values of the mean

predicted responses at the center point of the first design:

Probability of Victory; -314 <y, < .352 (4.12)

Expected Number of Rounds; .622 < My, < .724 . (4.13)

Next the AT performed a steepest ascent analysis, starting from
the center point, and proceeding in directions determined by Equations
4.3 and 4.4, Table 14 shows the results of this optimization. The new

center point for the next 23 design is €1 = 10.0, €2 = 15.67 = 16.0, and

£3 = .115. Table 15 and Figure 28 show the results of this second design.

The fitted response equations for this design are

~

¥y -.025x1-.032x2—.010x3 + .525 (4.14)

Yp * -.043x1—.112x2—.031x3 + 1.158 . (4.15)

A et e P ST
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Table 14. Steepest Ascent Optimization From First Center Point.

VR & £y &5 1
PR - I RS
Base  25.0  25.0 g 7333
+5 4 20.0 21.89  .105  .357
#1058 1586 18.78 .11 .425
#1568 0.0  15.67 115 601
+164 9.0 15.05 116  .557
WTE | BG MAS LT AN

Table 15. 23 Design Variable Values, Second Design.

il 7 iy i Yy
<1 (8} -1 1) -1 (@ .59  1.190
1 @2y =1 (i) =t © .49 1.J46
-1 (8) 1 (1) -1 @ .S 0 1.093
1°Q2) 1 @y =i (9 .5& 1.082
-1 (8 =1 1 (.24) .610  1.499
1 @2 -1 an 1 (.24) .535  1.251
-1 (8) 1 (21) 1 (.24) .480  1.028
1 @ 1 (8 1 (.24) .438  0.984
0 (10) 0 (16) 0 (.12) .577  1.186
0 (10) O (16) 0 (.12) .528  1.107
0 (10) 0 (16) 0 (.12) .510 1.168
0 (10) 0 (16) 0 (.12) .514  1.206
0 (10) 0 (16) 0 (.12) .492  1.110
0 (10) 0 (16) 0 (.12) .518  1.163
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Again it is noted that probability of sensing is not statistically signi-

ficant. Goodness of fit computations for this data are F = 2.11 which

0yl

is not significant at a = .10 and F = 7.27 which is not significant at

0"
y2
a = .15. The 90% confidence intervals for the responses at the center

point are:

Probability of Victory; 499 < WY .548 (4.16)

A

A

Expected Number of Rounds;l.124 < uy, 1.190 (4.17)

Upon determining the path of steepest ascent, a change in 53,
the probability of sensing, in a negative direction was noted. Since
53 has been statistically insignificant and clearly does not improve
in the negative direction, no change in X4 was made in the initial
steepest ascent optimization. Table 16 displays the results of this
search. 51 and 52 have now reached the lower bound of their practical
ranges. From this point a uni-direction search was made along the £3
direction to determine if any further improvement could be obtained.
Table 17 shows the results of this uni-direction search. Based on this
search and the fact that 53 has been insignificant in two successive
23 designs, the AT decided to eliminate 63 from further designs as
statistically insignificant and fix it at .3, the median of its practi-
cal range. Apparently, at the given range and with the given probabil-
ities of hit and kill, the ability to sense a round is not critical. The
engagement seems to be won on the speed of firing the first round and a
second round if required. Given another scenario, it is not unreasonable

to expect that 63 would be significant. The center point is moved to




Table 16.

Steepest Ascent Optimization From Second Center Point

A -.31 -1.0 .00
Base 10 16 12 .523
54 9.69 11 .12 .572
8A 9.39 8 12 .620
94 9.07 7 12 .650
10A 8.76 6 .12 .665
114 8.45 5 .12 .671

Table 17. Uni-direction Search Along 63.

R " Yy

o2 .661 1.648
<3 .696 1.624
A .693 1.737
«5 .673 1.650
.55  .650 1.637
.6 .658 1.596

0o C© 0o 0o 0o o
(S, IV, NV, NV, NV, |

87
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= 12, = .0.
51 12.0 and 52 10.0
For the third 23 design, the design variable ranges were chosen
so as to border on the optimum lower bound and include a large portion
of the region of experimentation. Table 18 and Figure 29 show the

third design and its results. The response equations are

<
H
I

= —.042x1-.063x2 + .575 (4.18)

<
N
]

-.133x1-.174x2 9123390 . (4.19)

The FOA = 2.99 and FOA
yl y2

4.23 are not significant at ¢ = .10 which

justifies elimination of 53 as a design variable. The 90% confidence

intervals at the center point are:

Probability of Victory; 572 < uyi < .598 (4.20)
Expected Number of Rounds; 1.332 < Hy, < 1.404 (4.21)

Since the design now bordered on the lower bound of the practical
region, a second order design was employed to determine if the fit

could be improved with the use of second order equations. To create a

Uniform Precision Rotatable Central Composite Design (UP CCD), axial
points were added as shown in Table 19 and a second order polynomial was
fit using polynomial regression, as shown in Figure 30. The goodness of

fit test revealed Fo ~ = 2.66 and FO" = .60, both of which are improve-
yl y2

ments over the linear model. Thus the second order response equations

were adopted:




Table 18. 23 Design Variable Values, Third Design.

89

% %2 Y1 Y2
SRR ) R .669 1.635
1 €6y -1 (%) .581 1.318
~1 . 48) 1 (15) .538 1.235
1 (16) 1 (15) .460 1.021
0 (12) 0 (10) .577 1.3%7
0 (12) 0 (10) .585 1.380
0 (12) 0 (10) .581 1.366
0 (12) 0 (10) .573 1.332
0 (12) 0 (10) .609 1.426

Table 19. Axial Pointes Added to the Third Design.

b | = 1 Y2
-1.414(6.344) (10) .591  1.404
1.414(17.656) (10) 518  1.148
¢ an -1.414 (2.93) 617  1.504
0o (2) 1.414 (17.07)  .533  1.092
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@ 2 2
- o =y . T T T .
Y1 016xl 006x2 o+ 003x1x2 034x1 046X2 585 (4.22)
2 2 2
Y, .042x1—.031x2 + .027x1x2 .112x1 .160x2 + 1.368 (4.23)

To be meaningful for future analysis, the coded variables in Equations

4,22 and 4.23 were transformed to natural design variables

ity 2 2 £

¥ -.00151-.0002452 + .000155152 + .014&1 .006252 + 629 (4.24)

2 2 2

y, = -.000262561-.0012452 + .001355162 + .021551-.023452 (4.25)
+ 1.684

A canonical analysis was performed with the assistance of the
XEIGEN library computer program. Equation 4.22 has a stationary point
EO = (6.176,-10.99) outside the region of experimentation, and eigen-

values Al = -,016 and Az = -,006 indicating a maximum surface. Equation
4.23 has go = (-7.29, -21.18) outside the region of experimentation,

and eigenvalues A, = -.061 and Xz = -.012 indicating another maximum sur-

1
face.

Response equations relating the design variables to training were
sought from TRADOC training studies on armored crew training.l The ap-
proximating relationship between El, 52 and hours of dry (no live firing)

training (y3), in the region of experimentation for Equations 4.24 and

4.25, was found to be

1See Appendix E for an explanation of the derivation of Equations 4.26,
4,27, and 4.28
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A

vy = —2.555651-2.166752 + 87.2009 . (4.26)

The approximating equation for live training rounds fired (ya). in the

region of experimentation for Equations 4.24 and 4.25, was found to be

b M —2.61151-2.916752 + 107.30015 . (4.27)
The cost of training (ys), in the region of experimentation for Equations
4.24 and 4.25, based mainly on cost of rounds and of Petroleum, 0il, and

Lubricants (POL), was computed to be approximately

~

g = -234.99951-262.50352 + 9667.5135 . (4.28)

Application of the Optimization Methodology to the Derived Multiple
Response Surfaces

With the five multiple response surfaces derived in the last
section, the AT was prepared to present the PM with optimization and
analysis of training effects. The independent variables for his given
scenario were mean time to fire first round and mean time between rounds.
The response variables were probability of victory for the MBT76, ex-
pected number of rounds fired, hours of dry training, live training
rounds fired, and cost of training. Foreseeing minimal information gain
by its continued inclusion, the PM directed that expected number of
rounds fired be eliminated from the optimization. Figure 31 graphs the
response surfaces in the area of the region of experimentation.

To acquaint the PM and themselves with the surface, and to al-
leviate the PM's concern about convergence of the methodology, the AT

began a sample optimization with an impractical point, El = 5.0 and
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Figure 31. (Continued). Glossary for Figures 31, 32, 33 and 34.

y Probability of Victory
1

e e e Training Hours
—_ . — Y4 Training Rounds

e T e TG i Ys Training Cost in Dollars
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5y

less than $4500.00. Figure 32 depicts the operation of the methodology.

= 30.0. The objective was to maximize Y, while constraining Ys to be

It was discovered that larger violations of the constraint on each itera-
tion hastened convergence. The optimum point reached was El = 11.3444
secs and €2 = 9.6965 secs where ;1 = .5929, ;3 = 37.1966 hrs., ;4 =
49,3968 rds, and ;5 = $4456.22. A validation was run, as graphed in
Figure 33, by moving from the initial point to the region of experimenta-
tion optimum and then back to a constrained optimum. This optimum point,
which violated the constraint by $78.16 (1.7%) was El = 11.36&4 secs
and 52 = 9,2105 secs. Thus the zig-zag behavior of the PM had converged
to the optimum constrained point. The small discrepancy was caused by
the step-size intervals which were not small enough to permit the con-
straint to be satisfied exactly.

Analysis of data from the training program prior to OT I and from
OT I indicated initial crew performance on the MBT76 to be 30 secs mean
time to fire the first round and 25 secs mean time between rounds. Al-
lowing for 7 secs mechanical fixed time this converted to 51 = 23.0 secs
and Ez = 18.0 secs. Performing iterations at this level on the AMSAA
simulation, the AT obtained the data in Table 20 and a 90% confidence

interval about the probability of victory of .
.3520 < Hy, < 4332 (4.29)

In an effort to predict the optimum performance of the MBT76, stochastic
simulation iterations were performed with El = 8.0 secs and 52 = 5.0 secs.

The results are shown in Table 21 with a derived 90% confidence interval

““r““_-".--.-_-.-..-.--.-------h----lII-‘J
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Table 20. AMSAA Tank Duel Model Output at El = 23.0 and 62 = 18.0.

.390 .406 .387 .407 432
.372 .389 .420 .369 .345
.392 .387 419 .382

Table 21. AMSAA Tank Duel Model Output at El = 8.0 and 52 = 5.0.

.669 .691 .652 .665 .689
.678 .639 .674 .670 .689
.695 .720 .699 .690
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about the probability of victory of

16435 <y, < 7165 (4.30)

From this analysis of training effects on MBT76 OT performance,
it was apparent to the PM that his test personnel must receive further
training. Indications were that when OT I data was simulated in two-
sided combat, the MBT76 would not be victorious. Yet with proper crew
training, the MBT76 would be victorious 68% of the time. Certainly fur-
thur OT's must be conducted at a training level closer to optimum.

Much as a tactical unit commander would do, the PM and the AT de-
signed a training program for the test personnel. Their objective was
to maximize probability of victory. The test cycle timetable and budget,
however, imposed constraints of no more than 50 hours dry training per
crew, no more than 55 training rounds per crew, and no more than $5500.00
training cost per crew. With this problem formulation, the PM and AT
began optimization utilizing the adapted Interactive Vector Maximal
algorithm. Figure 34 graphs the four iterations of the methodology re-
sulting in an optimum point of El = 10.7 secs and 52 = 8.2 secs. Output
from the optimization methodology predicted that training to this pro-
ficiency would result in a probability of victory of .6099. The pre-
dicted training effort to arrive at this level was 41.9 hours of dry
training per crew, 55.2 live rounds fired per crew, and a cost of
$4982.62 per crew.

To confirm these results the AT ran the simulation at these levels

yielding the results in Table 22 and a 90% confidence interval around the




‘waTqoad Burureil ut £30Topoylsal UOTIEZTWFId) JO JUSWSAOK ‘y€ 2anBTg

101

Time to Fire First Round (51)

€€ 1€ 67 Lz Y4 %4 1C 6T L1 ST ti 11 6 L S
Auuv Spunoy uaamlag awy]




102

probability of victory of
5377 < My, < .6547 (4.31)

Further sensitivity analysis around the optimum point was accomplished
by iterating the adapted algorithm in varied uni-direction searches from
the optimum point. The searches are listed in the following tables:
Table 23 toward point (8.0,5.0), Table 24 toward point (8.0,15.0), Table
25 toward point (16.0, 5.0), and Table 26 toward point (16.0, 15.0).
Upon analyzing this sensitivity analysis, the PM was satisfied
with the proposed training program and its crew performance objectives.
Implimentation of the training program was begun immediately. Future
OT reports to the ASARC included a section analyzing the training level
of the test personnel and the effect of training on the performance of

the MBT76 in two-sided, European type conflicts.

Table 22. AMSAA Tank Duel Model Output at El = 10.7 and El = 8.2,

.589 .592 .662 .619 .563
.567 .650 .596 .578 «590
.561 .587




«6099
6129
6157
«6185
«6212
«6239
«6264
«6289
6313
«6336

«6359
6381

6402
<6422
«644]

+6460

Table 23. Sensitivity Analysis Toward (8.0,5.0).

1.4548
1.4653
1.4757
1.4859
1.4959
1.5057
1.5154
1.5249
1.53a1
1.5432
1.5522
1.5609
1.5694
1.5778
1.5860

1.5940

41 .9288
42.8618
A3.7947
44.7276
45.6605
46.5934
A7 5263
48.4593
49.3922
50.3251
51.2580
52.1909
53.1238
54.0568
54.9897
55.9286

$5.2458
$6.3513
57.4567
58.5628
59.6677
60.7731
61.8786
62.9841
64.0896
65.1950
6643005
67.4060
68.5114
69.6169
70.7224

71.8279

4982.6208
S082.1132
5181.6056
5281 .0980
5380.5904
5480.0827
5579.5781
5679.0675
5778 .5599
5878.0522
5977.5446
6077.0370
6176.5294
6276.0217
6375.5141
6475.006S
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6099
«6077
«6084
«6030
«6004
«5977
«5949
5920
«5890
«5859
«5826
«5792
«S$757
«5721
«5684
«5645
«5606
5565
«5583

«5480

Table 24. Sensitivity Analysis Toward (8.0,15.0).

1.4548
1.4474
1.4395
1.4311
1.a221
1.4125
1.4024
1.3917
1.3808
1.3687
1.3563
1.3434
1.3299
1.3159
1.3013
1.2862
1.2708
1.2542
1.2374

1.2200

41.9288

4] .5250

al.1211

40.7173
40.3134
39.9096
39,5057
39.1019
38.6980
38.2941
37.8903
37.4864
37.0826
36.6787
36.2749
35.8710
35.4672
35.0633
34.6595
34.2556

$5.2458
54.5834
53.9211
53.2587
52.5963
51.9340
51.2716
S0.6092
49 .9469
49 .2845
48.6221
47.9598
47 .2974
46.6350
45.9727
45.3103
44.6479
43.9856
43.3232
42.6609

4982.6208
4923.0080
4863.3951
4803.7823
4743.1694
4684.5565
A4624.9437
4565.3308
4505.7180
4446.1051
4386.4922
4326.8794
4267.2665
4207.6537
4148.0408
4088.4279
4028.8151
3969.2022
3909 .5894

3849.9765
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«6099
6096
<6091
+6083
6074
6064
<6051
<6036
«6020
«6002
5982
5960
5937
5911
5884
«5855
.5824
5791
5756

«5720

Table 25. Sensitivity Analysis Toward (16.0,5.0).

1.4548
1.4529
1.4505
1.4474
1.4437
1.4395
1.4346
1.4291
1.4230
1.4163
1.4090
1.4011
1.3926
1.3835
1.3737
1.3634
1.3525
1.3409
1.3288
1.3160

a1.9288
41.5893
a1.2498
40.9102
40.5707
40.2312
39.8917
39.5521
39.2126
38.8731
38.5336
3841940
37.8545
37.5150
37.1754
36.8359
36.4964
3641569
35.8173
35.4778

55.2458
55.0191
54.7924
54.5658
54.3391
54.1124
$3.8858
53.6591
$3.4324
53.2058
52.9791
52.7524

$2.5257

52,2991

$52.0724
51.8457
51.6191
S51.3924
$1.1657
50.9391

4982.6208
4962 .2205
4941.8202
4921.4198
4901.0195
4880.6192
4860.2188
4839.8185
4819.4182
AT99.0178
4778.6175
4758.2172
A737.8168
4717.4165
4697.0162
4476.6158
4656.2155
4635.815¢
4615.4148

4359S5.0145
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Table 26.
«6099 1.4548
«6051 1.4375
«6000 1.4198
«5948 1.4017
«5894 1.3831
«5838 1.3641
«5780 1.3446
5721 1.3246
«5659 1.3042
«5596 1.2834
+«5531 l.2621
5463 1.2403
«5394 1.2181
«5324 1.1954
«5251 l.1723
5177 1.1488
«5100 1.1248
«5022 1.1003
<4942 1.0754
4860 1.0500

41.9288
40.4489
38.9690
37.4891
36.0092

34.5294

33.0495

31.5696
30.0897
28.6098
27.1299
25.6500
24.1701
22,6902
21.2103
19.7304
18.2505
167706
15.2907
13.8108

55.2458
53.4840
51,7222
49.9605
48.1987
46.4369
44.6751
42.9134
a1.1516
39.3898
37.6280
35.8663
34.1045
32.3427
30.5609
26.8192
27.0574
25.2956
23.5338
21.7721

Sensitivity Analysis Toward (16.0,15.0).

4982.6208
4824.0610
4665.5012
4506.9414
4348.3816
4189.8218
4031.2620
3872.7022
371a.1424
3555.5826
3397.0228
3238.4630
3079.9032
2921.3433
£762.7835
2604.2237
2445.6639
2267.1041
2128.5443
1969.9845

106




107

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The field of multiple response surface methodology was found to
consist largely of applications of nonlinear programming techniques to
problem formulations of a primary and a constraint response. Contempor-
ary efforts continue to enhance this area with application of further
nonlinear programming algorithms. This research is an initial effort to
optimize multiple response surfaces by means of the Geoffrion-Dyer Inter-
active Vector Maximal algorithm.

A modified version of the Interactive Vector Maximal algorithm
was found to be well suited to the optimization of multiple response
surfaces. Various practical region of experimentation boundary defini-
tions are easily incorporated into the methodology. Algorithm assump-
tion violations were present in saddle and ridge systems. Methods for
optimization in the presence of such assumption violations were devised.
The methodology was shown to converge and to satisfy the Kuhn-Tucker
conditions necessary for optimality. FORTRAN IV computer programs were
written to perform the procedure on a CDC CYBER 74 computer.

It has been demonstrated that through computer simulation and
response surface methodology, OTEA can extend the analysis, scope and
optimization of OT results. A mutually supporting relationship between

OT's and computer simulations was discussed. The importance of the
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military decision maker and the benefits accrued by his participation in
the methodology of this research have been discussed. An application of
the methodology to the anaIysis of the effects of training in OT's has

been demonstrated.

Recommendations

This research generated several recommendations. The suboptimi-
zation algorithm of the methodology should be investigated for an algo-
rithm which would better optimize a saddle and/or a ridge system. A
nonlinear algorithm such as Zoutendijk's Method or the Conjugate Direc-
tion Method should be considered. Another aid in this area might be the
simultaneous utilization of a visual display of the response surface so
that the decision maker might better follow the implications of his op-
timization movements. Some of the other multiple objective algorithms
mentioned in Chapter II, such as SEMOPS, should be investigated for ap-
plicability to multiple response surface optimization. The design of
OT's should be analyzed from a design of experiment viewpoint. Utiliza-
tion of fractional designs would greatly reduce the number of replica-
tions, thereby perhaps making actual OT data available for analysis by
this methodology. Finally OTEA should implement the methodology of this
research to enhance and improve the resulting analysis of operational
tests. There are several excellent military computer simulations avail-
able. Hopefully this research and its reterences can serve as a guide
in the implementation of multiple response surface optimization and

analysis.
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APPENDIX A

This appendix contains two programs utilized to generate the
normal deviates necessary for input to the AMSAA Tank Duel Model. The
first program utilizes an internal CDC CYBER 74 U(0,1) generator to

generate U(0,1) deviates. The second program transforms these uniform

deviates to normal deviates of specified mean and variance through the

use of the Fishman equations.




C

CrxxxxxTHIS PRUOGRAM GENERAIES U(U,1) DEVIAIES AND STURES
CrxaaxxIN A FILE.

C

PROGRAM UNGEN(CINPUT,OQUTPUT, TAPES, TAPES=INPUT,
*  TAPE6=QUTPUIT)
DIMENSTION RAN(200)
NUM=200
CALL RANSET(O0)
DO 200 I=1,NUM
RAN(I)=RANF (0)
200 CUNTINUE
WRITE(3,%) (RANCIL),I=1,NUM)
S10P
END




C

111

CaaaarH]S PRUGKAM [RANSFURMS U(0,1) DEVIATES INTO N(O,1)

CxaxaxxDEVIATES UF GIVEN MEAN AND VARIANCE,

C
PKOGRAM NURM(CINPUI,UUTPUT, TAPES, TAPES=INPUT,
* TAPE6=0QUTPUT)
DIMENSTON RAN(2V0),RANORM(200)
NUM=200
PIz2.x5.,141592653

C

Craxx2aTHIS STATEMENT READS THE U(O,1) FROM A FILE,

C
REAL <35, 2) (RAN(J)»J=1,NUM)

€

Craaxxx[H]S SECTION COMPUTES THE NURMAL(O,1),

[

100 PrRINT S48

548 FURMAT (*WHAT AKE NOKRMAL MEAN AND VARJANCE®)
READ(S, *)URMU, ORMVAR

C

Crxrxrxx [HESE AKE THE FISHMAN EWUATIONS,

C
DU S50 J=1,NUM, 2
DUMMYZSURT (=2 *URMVARXALOG(RAN(J)))
RANURM(J) =ORMU+DUMMYACOS(PTARAN(J+1))
RANURM(J+1)SORMU+DUMMYASIN(PI*RAN(J+1))

550 CUNTINUE
ARKITE(6, 2)0URMU, URMVAK, (RANORM(J) ,J=1,NUM)
GUTU 100
STOP
END

e ———
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APPENDIX B

This appendix contains the AMSAA Tank Duel Model simulation mod-
ified for use in this research. Several of the inputs have been fixed
or rendered stochastic as discussed in Chapter IV of this thesis. Fol-
lowing the listing of the simulation is an example of an input data file
utilized by the simulation. Figure 26, page 78, is an example of the

simulation's output.




113

c
Cxxxx*xTHIS 1S THE AMSAA TANK DUEL SIMULATI@N M@DEL
C
PRBGRAM TANK(INPUT, @UTPUT, TAPE3, TAPES=INPUT, TAPE6=@UTPUT)
DIMENSIBN TMDB(A45), TMDR(45).,SDB(45),SDR(45),SKB(45),SKR
*(45)
REAL KB(45),KR(45),M(40,40),NC40.,40),NDF,N@GDEC
INTEGER RANGE
DATA SIGMA,BLUE,RED, TCUT,LS,TFB, TTB,1D1,1D2,I1D3,RANGE.
IRELB, TFR,TTR, 1D4,1D5, ID6 ,RELR/ . 5,4HBLUE, 3HRED,120.0,0.,
2.86,7¢,3HBLU, 3HBLU, 3HELU, 1000,.85,1.17,7.,3HRED, 3HRED,
33HRED, .825/
100 READ(3,912) TBl,TBS,BPH1,BPHH,BPHS,BEPHL,BKHI .,
IBKHH,BKHS,BKHL,BS
READ(3,912) TR!,TRS,RPH!,RPHH, RPHS,RPHL,RKHI .,
IRKHH,RKHS, RKHL, RS
IF (LS.EQ.0) WRITE(6,904)BLUE,RED, TCUT
IF (LS.NE.O) WRITE(6,905)BLUE,LS,RED,TCUT
WRITE(6,916)RANGE,ID1,1ID2,1D3,1D4,1DS,1D6
WR1TEC6,917) TFB, TTB, TB1, TBS,BPH! ,BPHH, BPHS, BPHL,BKH1 , BKHH,
IBKHS,BKHL,BS, RELB, TFR, TTR, TRl » TRS,RPH1 , RPHH, RPHS, RPHL,
*RKHI
2RKHH, RKHS,RKHL,» RS, RELR
CALL KASFT(KB, SKB,J@UTE,BKH! » BKHH,BKHS, BKHL,BPHI , BPHH,
*BPHS .,
IBPHL,BS,RELB)
CALL KASFT(KR,SKR,J@UTR,RKHI,RKHH, RKHS,»RKHL,RPH1,RPHH.,
*RPHS,
1RPHL, RS, RELR)
JOUT=MINO(40,MAX0(JBUTB,JBUTR))
SFTB=0.0
SFTR=0.0
IF (TFB«.GT.TFR) SFTB=TFB-TFR
IF (TFR.GT.TFB) SFTR=TFR-TFB
TMDB(1)=TBl
SDB(1)=SIGMA
D@ 120 1=2,45
120 CALL C@NL@G(TBS,SIGMA, TMDB(I1=-1),SDB(I~-1),TMDB(1),SDB
*C1))
TMDR( 1)=TRI
SDR(1)=SIGMA
IF (LS.EQ.0) GBTO 130
C
Cx»%x%%xADJUST RED TIMES F@R HEADSTART
C
TSAVE=TMDR( 1)
CALL CONL@G(TMDR(1),SDR(1), TMDB(LS),SDB(LS),»TMDR(1),SDR
*(1))
130 DO 140 1=2,40
140 CALL C@ONLOG(TRS,SIGMA, TMDR(I-1),SDRCI-1), TMDRC(I),SDR(I1))

i O AAS
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ba 150 1=1.,45
150 TMDB( 1)=TMDB(1)+FLBAT(1-1)%TTB+SFTB
IF (LS.LE.1) G@T@ 170
TSAVE=TTB*(FLBAT(LS-1))
D@ 160 I=1,40
160 TMDR( I)=TMDR(I)+TSAVE
170 D@ 180 1=1.,40 d
180 TMDRCI)=TMDR(I)+FLPAT(I=-1)*TTR+SFTR
C
C*xxxxCOMPUTE AVERAGE NUMBER @F R@UNDS FIRING ASSUMING N@
CxxkkkxKILLS.
c
RNDCB=NDF(AL@G( (TCUT/TMDB(1)>))/SDB( 1))
RNDR=NDF(ALBG( ( TCUT/TMDRC1)))/SDR(1))
L=40+LS '
D8 190 1=2,L
190 RNDB=RNDB+NDF(AL@G( (TCUT/TMDB(I1)))>/SDB(I1))
D@ 195 1=2,40
195 RNDR=RNDR+NDFC(AL@GC ¢ TCUT/TMDR(1)))/SDR(I1))
c "
C*xxx%x%M(I1,J) GIVES THE PRBBABILITY THAT BLUE FIRES HIS
Cxx*xx%x] TH RQUND BEF@RE RED KILLS WITH HIS J TH, AND
Cxx*x*xB@TH BEF@RE TCUT.
Cxx*xx%N(1,J) GIVES THE RESULTS F@R RED.
c
D@ 200 I1=1,J8UT
D@ 200 J=1,J0UT
MC{1,J)=PABAT(TCUT, TMDE(1+LS), TMDR(J),»SDB(I+LS),SDR(J))
200 NCI1,J)=PABAT(TCUT, TMDRC 1), TMDE(J+LS),SDR(1),SDB(J+LS))
. D@ 210 I1=1,JQUT
D@ 210 J=2,J0UT
K=JoUT+2-dJ
MCILK)=MCIL,K)=-MCILK=1)
210 NCILK)=NCILK)-NCi,K-1)
PWINB=0.0
PVWINR=0 .0
ANRB=0 .0
ANRR=0 .0
IF (LS.EQ.0) G@T@ 225
D@ 220 1=1,LS
TSAVE=NDF(AL@G((TCUT/THMDB(1)))/SDB(1))
PWINB=PWINB+KB(1)*TSAVE
220 ANRB=ANRB+FLOGAT(1)*KE(1)*TSAVE
ANRB=ANRB+FLOAT(LS) *SKB(LS)®KR(1)%*N(C1.,1)
225 D@ 230 LGQ=1,JQUT
PWINB=PWINB+M(LQQ, 1 )*KB(LS+LQQ)
230 ANRB=ANRB+FLOAT(LS+LQQ)*M(LQQ, 1 )*(KB(LS+LQQ)+KR(1)%SKB(
1LS+LQQ))
D@ 235 LQ=2,J0QUT
D@ 235 LQA=1,J0UT
PWINE=PWINE+KB(LS+LQQ) *M(LGG, LE)*SKR(LQ=1)
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235 ANRB'ANRB’FLGAT(LS’LQQ)‘H(LQQ:LQ)*(K&(LS+LQQ)*KR(LQ)‘

1SKB(LS+LQAQ) )»SKR(LQ-1)

IF (LS.EQ.0) GOTO 245

D@ 240 LQQ=1,JoUT
PWINR=PWINR+KR(LQQ)*N(LQQ, 1)*SKB(LS)

240 ANRR‘ANRR*FLQAT(LQQ)*N(LQQ:l)*(KR(LQQ)*SKR(LQQ)*KB(LS*I))
1%SKB(LS)
GOATo 260

245 D@ 250 LGQQ=1,J@UT
PWINR=PWINR+KR(LQQ)*NC(LGQ, 1)

250 ANRR=ANRR+FLOAT(LQQ)*N(LQQ,1)*x(KR(LQQ)+SKR(LQQ)*KB(1))

260 D@ 270 LQ=2,J0UT
DO 270 L&a=1,J0UT
PWINR=PWVINR+KR(LQQ)*N(LQQ,LQ)*SKB(LQ+LS~-1)

270 ANRE=ANRR+FLOAT(LQQ)*N(LQQ,LQ)*SKB(LQ+LS~-1)»(KR(LQQ)+
1SKR(LRQ)*KE(LS+LQ)?>
NODEC=] «0-PWINB-PWINR
ANRB=ANRE+N@DEC*RNDB
ANRR=ANRR+N@DEC*RNDR
WRITE(6,915)BLUE,PVINB, RED,PWINR,NODEC.,BLUE,ANRB, RED.,
1ANRR
GOTO 100

904 FORMAT(///710X,*A MEETING ENGAGEMENT BETWEEN*,Al10,*xANDx*
1,A10/10X,*THE TIME LIMIT IS*,F8.2,%SECONDS*)

905 FORMAT(///10X,A10,* THE DEFENDER HAS Ax*,12,*RQUND
&HEADSTARTx,

1 /10X,Al0,% IS THE ATTACKER*/10X,*THE TIME LIMIT IS,
2 F8.2,% SECONDSx)

912 FORMAT(2F5.2,9F5.4)

915 FORMAT(10X, *PROB(*,A5,% WINS)=%,F6.3/10X,*PROB(%,AS,

l* WINS)=%,F6.3/10X,*PROGB(N® DECISION)=%,F63/10X,%E(RDS
&4F@R%*, '
2 AS5,2H)=,F9.3/10X,*E(RDS FOR *,A5,2H)=,F9.3)

916 FORMAT(10X, *RANGE IS*,15,% METERS*/10X,*BLUE DATA IS =x
1,3(A3,1X)/10X,*RED DATA 1S *,3CA3,1X)/9X,3HTFL,4X,2HTT,
24X,2HT) ,4X,2HTS,2X, 3HPH 1 ,2X, 3HPHH, 2X, JHPHS, 2X, 3HPHL, 2X.,
33HKH1,2X, 3HKHH,2X, 3KKHS, 2X,» 3HKHL, 3X, 2HPS, 3X, 3HREL)

917 FORMAT(1X,4HBLUE, 1 X,4F6¢2,9F5.3,F5.2/1X,3HRED,2X,4F6.2,
19F5.3,FS.2)

STOP
END

C

CxxxxxTHIS SUBROUTINE C@MPUTES THE MEDIAN AND STANDARD

Cxxxx%DEVIATIBN F@R CONV@LUTI@N.

C

SUBRQUTINE CONLOG(XI,SIGX,ETA,SIGY,ZETA,SI1IGZ)
XBAR=X1*EXP( .S*SIGX*SIGEX)

YBAR=ETA*EXP( «5*SIGY*5IGY)
SSX=XBAR*XBAR*(EXP(SIGX*SIGX)=1.0)
SSY=YBAR*YBAR®(EXP(SIGY*SIGY)=-1.0)




c

Cxxxxx*THIS SUBROUTINE C@MPUTES THE KILL AND SURVIVAL
Cxxxx%F@R THE TW@ TANKS. y

C

100

130
135

c

Ck*%x*THIS FUNCTI@N C@MPUTES THE ELEMENTS @F
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ESIGZ=]1 .0+((SSX+SSY)/ ((XBAR+YBAR) %%2))
ZETA=(XBAR+YBAR) /SQRT(ESI1GZ)
SIGZ=SQRT(ALBGC(ESIGZ))

RETURN ‘

END

SUBRGUTINE KASFT(K,SK,JBUT,KHI,KHH, KHS,KHL,PH1,PHH,PHS.,
I1PHL,S,R)

DIMENSI@ON SK(45)

REAL K(45),KH!,KHH,KHS,KKL,L
D8 100 1I=2,45

K(1)=0.0

SKC(1)=0.0

K(1)=PHl*KHI *R
SKC(1)=1.0-K(1)

L=1.0-S

X2=PH1%(1 .0~KH1%R)
X3=(1«0~-PH1)*S

X4=(C]l .,0-PH1)%xL
Al12=PHHxKHHx*R

Al 3=PHS%®KHS*R
Al4=PHL*xKHL*R
A22=PHH=%( ] «O=-KHH*R)
A23=PHS*(] «0-KHS%R)
A24=PHL*(1 .0-KHL*R)
A32=(1+0=-PHH) %S
A33=(1.0-PHS)=%S

A34=(] .0-PHL)*S

A42=(] «0=-PHH)*L

A43=(C]1 «0-PHS) %L

A44=C]1 «O=-PHL)=%xL

DB 130 1=2,45
KC(1)=A12%X2+A1 3%xX3+Al 4%X4
X3P=A32%X2+A33*X3+A34%X4
X2P=A22%X2+A23%X3+AZ24%X4
X4P=A42%X2+A43%X3+A44%X4
X2=X2P

X3=X3P

X4=X4P

JOUT=1

SKCI)=SK(I-1)-K(I)

IF (l.LT.11) GOAT@® 130

IF (SK(I-5)¢LT«.0005) G&TE 135
CONTINUVE

RETURN

END

T IITEIIII——



CxxxxMC1,J) AND NCI,J).

C

10

20

30

40

FUNCTION PABAT(T,TA,TB,SA,SB)
REAL NDF

EXTERNAL PAFINT
C8MMON/PAF/A,B

IF (SA.GE.0.) G@T@ 2

X=T

A=TA

B=TB

GOTE 7

X=T/TA

IF (X.GT..0000001) GOTOG S
PABAT=0.

RETURN

X=ALBAG(X)/SA
A=ALBG(TA/TB)/SB

B=SA/SB

C=BxB+1 .

D=A/SQRT(C)

E=A+Bx%xX

IF (X*X+E%XE.LT.25.) GOTO 30
IF (E.LT.0.) GOTO 10
PABAT=) « =-NDF(D)

RETURN

IF (X+GT«0.) GOTO 20
PABAT=NDF(X)

RETURN

PABAT=NDF (X)

IF(A*B/C.LT.X) RETURN
PABAT=PABAT-NDF(D)

RETURN

F=SQRT(25.%C-A%A)

AB=A%*B

UZ=-A/B

UIM=(-AB=-F)/C

UlP=(-AB+F)/C

BR==5.

IF (UZ.GE.-5.) BR=UIM

TS‘S.

IF (UZ.LTe5.) TS=UIFP

IF (X-BR.LE.TS-X) GOTO 40
CALL SAMS@N(PAFINT,G,X,TS,.0001)
PABAT=] .~NDF(D)~-NDF(TS)+NDF(X)+G
PABAT=ABS(PABAT)

RETURN

CALL SAMS@NC(PAFINT,G,BR,X,.0001)
PABAT=NDF(X) -G
PABAT=ABS(PABAT)

RETURN
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END

FUNCTI@GN PAFINTC(U)
REAL NDF '
COMMBN /PAF/ALB
PAFINT=.3989422803%EXP(-U*U/2.)*NDF(A+BxU)
RETURN

END

SUBROUTINE SAMSONC(FUN,R,A,B,EPS)
IF (B-A.GE..Q001) GpTP 18
R=0.

RETURN

EPS1=EPS

NT=0

N=1

M=1

XU=B

XL=A

H=(XU=-XL)/2.

HBAP’O-
FJ=Hx(FUN(XU)+FUN(XL))
FIBAR=10000.

S=0.

X=XL+H

S=S+FUN(X)

X=X+HBAR

M=M-1

IF (M) 3,3,2

Fl=FJ+4 .*H%S

IF (FIBAR) 4,5,4
ERR=ABS((FIBAR-F1)/FI1BAR)
IF (ERR-EPSI1) 9,5.,5

IF (NT-13) 7,9.,9
NT=NT+1

FI1BAR=F1I '
FJ=(Fl+FJ)/4.

HBAR=H

H=H/2.

N=2%*N

M=N

GATO 1

R8F1/3o

RETURN

END
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C
Cxxx%%THIS FUNCTI@N IS THE CU MULATIVE NORMAL DISTRIBUTI@N
c .
REAL FUNCTI@N NDF(X)
NDF=0.
AX=ABS(X)
IF (AX«.GE.S5.) GOATO 3
NDF=(((((+S3BIE-5%AX+.488906E~-4)*AX+.380036E~-4)*AX
1+.0032776263)%AX+.0211410061 )*AX+.0498673469)*AX+1.
NDF=.5/C (NDF%%8 ) *%2)
3 IF (XeGE.O.) NDF=].=-NDF
RETURN
END




23+0018.00:.7997.8394.7932.8023.5417.8509.4977.4936.6000
08.5410.04.6754.7288.7192.6658.3920.8280.4780.4700.5398
23:0018.00.7340.8432.56220.8266.5016.8405.5029.5119.6000
08¢0411.76¢5681.7692.7328.5529.4113.8200.4135.5238.4964
23.0018.00.73968720484177770.4E818.8761.5435.4491.6000
09¢760998:6290.7826¢6420¢65994455.7613.4477.4436.4980
23+0018.00.78318917.8016.7523.5500.8369.4797.4947.6000
07¢9710.95.6494.6920.7280.6499.4529.7635.4619.4935.5795
23+0018¢00.312048516+7618.8372.4788.8600.4633.5860.6000
08+9811.32.512547780.7200.5769.3991.8738.4297.4447.5217
23¢0018+00+7525¢8318 85007487 .5192.8671.5226.4913.6000
09¢3209.04¢6423+77006613.5796:4133.7955.5360.4726.5233
23.0018.00.7225.9000.7788.7989.5328.8197.4550.4734.6000
07.0411.20.6302¢7113¢6635¢7167+4413.7977.4050.4234.5203
23.0018.00.8254.5626b6.8192.8158.4420.6646.5113.4902.6000
092011005417 7135+7738:6194.4613.7936.4402.4188.5271
23.0018.00.7180.8692.8328.7029.5280.8605.4688.5238.6000
09.0009.35.5450.8238.6955.6221.4738.8029.4658.4427.5338
23.0018.00.7790.8828.7420.8099.5200.8298.5158.4927.6000
07+5309¢58¢7112:7455¢69776171 4585.8119.4827.4343.5571
23.0018.00.7994.7920.65280.7999.4613.8309.5085.5327.6000
07.5812.35.5933:7477:6936.6286.4536.8434.4198.4605.4874
23.0018.00.6625.8780.8200.7269.4635.8885.4843.5036.6000
10+3510e39¢5965¢74367029.6398¢4539.7491.4913.4295.5100
2340018.007923+8700+7613.7296+.5738.8477.4695.5105.6000
08¢3910.44.590447529¢7119.6751.4368.7797.4077.4513.5211
23+.0018.00.7802.8113+7635.8667.4955.8488.5039.5413.6000
08.4410.34.6043.7619.7435.5618.4533.7947.4630.4615.4979
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APPENDIX C

This appendix contains two procedure files and their respective
input data files for utilization with the SPSS Multiple Linear Regression
program. The first procedure and input files are examples of those
utilized for multiple linear regression. The second files are examples
of those utilized for multiple polynomial regression. Examples of SPSS

Multiple Linear Regression output can be found throughout Chapter IV of

this thesis.




So
5.005
10.
10.005
30.
30.005
40 .
40.005
S50.
50.001
50.002
50.003

RUN NAME

MULTIPLE LINEAR REGRESSI@N @N TANK
VARIABLE LIST

Tbl,TBS,PS,PVLLEF

INPUT FERMAT
FIXED(3F6.3,F4.3,F5.3)

N@. @F CASES

14

REGRESSI@N

VARIABLES=TEl, TBS,PS,PV,ER/
REGRESS1@N=PV WITH TBl,TBS,PS(2)/
REGRESSIPN=ER W1TH Tkl,TBS,PS5(4)

-1.000-1.000-1.000.4070.795
01.000-1.000-1.000.3410.738
-1 -00001 -000’1 -000 03470 0709
01.060001.000-1.000.3070.581
~1.000-1.0000! .000.4500.931
-1.00001.00001.000.3560.721
01.0C0001.00001.000.3100.637
00.00000.00000.00C.3180.629
00.00000.0000G.000.3010.576
00.00000.00000.000.3420.729
00.00000.00000.000.329G.739
CU.00000.00000.000.3710.690
G0.06000C.00000.000.3360.673
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Se RUN NAME
5.005 MULTIPLE LINEAR REGRESSIEN @N TANK
10. VARIABLE LIST
10.005 TEl,TBS,PV,ER
30. INPUT FORMAT
30.005 FIXED(2F6¢3,F4.3,F5.3)
40 . N@. OF CASES
40.005 13
41.0 C@MPUTE
41.005 TB12=Tbl*Tb1
44.0 C@MPUTE ;
44.005 TBITBS=TEl*TBS
46.0 C@MPUTE
46,005 TbS2=TBES*TBS
5GC . REGRESS I8N
50.001 VARIABLES=TB12.,Tb1TBS,TES2, Thl
5C.002 ,TBS,PV,LER/
50.003 REGRESSI@N=PV WITH TB12,TbIlTHES
50.004 ,TBSZ,Tbl,TbS(2)/
50.005 REGRESSI@N=ER WITH Tbl2,TBITES
50.C06 ,TESZ,Tbl,TBES(4)

-1 -000’l000006691 .635
01.000-1.000.5811.315
-1.00001.0C0.5381.235
01.00001.000.4601.021
00.000CC.000.5771 337
00.00000.000.5851.380
00.00000.000.5811.366
00.00000.000.5731 .332
00.00000.000.6091.426
~1+41400.000.5911 .404
01.41400.000.5181 148
00.000~-1e414.6171.504
00.00001.414.5331.092
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APPENDIX D

This appendix contains the programs necessary for the adapted In-
teractive Vector Maximal algorithm. The first program is an interactive
data program which queries the decision maker for necessary data and
stores that data in a data file. Figure 18, page 60, is an example
of the output from and the input to this program. The program allows
a maximum of 10 response equations and 5 independent variables. The

coefficients of the response equations are input in the following

order:
2
xi i=1, Dy
X i = 2,.3.4.5,
1i
Xo1 i = 3,4,5,
xg; 1= 4,5,
¥45°

and the constant term. The gradient coefficients are input as xi,i =1
s5+++39, and the constant term. The region of interest boundaries are the
limits on the region of experimentation utilized in the second order de-
sign for the primary or all response functions. The limits must coincide
to prevent extrapolation of an equation outside its region of experiment-
ation. During optimization, these limits will not be exceeded, thus
preventing extrapolation. The second program is an interactive program

which utilizes input from both the first program of this appendix and
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from the decision maker to perform iterations of the adapted Interactive
Vector Maximal algorithm. Figure 19, page 61, is an example of the
output from and the input to this second program.

Within the program, ZX3LP is called as a subroutine. This sub-
routine is part of the IMSL library available on the Georgia Tech CDC
CYBER 74. The library subroutine ZX3LP accepts input for a linear pro-
gramming optimization problem and utilizes the simplex method to optimize
the problem. Also utilized in conjunction with the second program of
this appendix is the Bazaraa Cyclic Coordinate Algorithm for Optimizing
Penalty Functions computer program (5) available in the Georgia Tech
ISyE computer library. If the boundary definitions of the suboptimiza-
tion problem are nonlinear, the second program of this appendix terminates
after outputing the objective function coefficients of the suboptimiza-
tion problem. The Bazaraa program is then utilized to compute the opti-
mum search direction. This new direction is then input back into the

main program.
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Cxxx%xTHIS PRAGRAM INPUTS DATA INT@ A DATA FILE F@R
Cxxxx4:@PTIMIZATI@N BY THE INTERACTIVE VECTOR MAXIMAL
Cx»x%%»ALGORITHM.

c

100

101

102

103

301

107

108

313
312

PROGRAM DATAPRB(INPUT,QUTPUT, TAPE3, TAPES=INPUT, TAPE6=)
*@UTPUT)

DIMENSI@ON X(5),REQ(16,21),NAME(C10),REQG(50,6),BAUN(5,2),
1SA(50,5),SB(50)

WRITE (6,100)

FORMAT (*INPUT NUMBER @F RESPONSE EGUATI@NS*)

READ (5,%)NREQ

WRITE (3,*)NREQ

WRITE (6,101)

F@RMAT (*xINPUT NUMBER @F INDEPENDENT VARIABLES (X'"S)x*)
RKEAD (5,%)NX

WRITE (3, %)NX

WRITE (6,102)

FORMAT (*INPUT INITIAL VALUE @F INDEPENDENT VARIABLES
*WITH « AND

1,%)

READ (S,*)(X(IX),IX=],NX)

WRITE (3,%)(X(IX),IX=1,NX)

D@ 301 IM=!,NREQ

VRITE (6,103) IM

FORMAT (*INPUT CQEFFICIENTS @F RESPONSE EQUATIONx*,12)
READ (5,%)(REQ(IM,1C),1C=1,21)

WRITE (3,%)(REQ(IM,IC),IC=1,21)

CONTINUE

WRITE (6,107)

FORMAT (*INPUT RESP@ONSE EQUATI@N NAMES IN GREGUPS @F TEN
*LETTERS %/

1*AND SPACES, RIGHT JUSTIFIED, ONE PER LINE=*)

READ (S5,108)C(NAMECIN),IN=1,NREQ)

WRITE (3,108)(NAMECIN).,IN=1,NREQ)

FORMAT (A10)

D@ 312 IF=1,NREQ

DO 313 JX=1,5

WRITE (6,116) IF,JdX

FORMAT (xINPUT COEFFICIENTS OF GRADIENT Fx,12,%X%,12)
READ (5,*)(REQG(JC,KC),KC=1,6)

WRITE (3,%)(REQGC(JC,KC),KC=1,6)

JC=JC+1

CONTINUE

CBNTINUE

VRITE (6,114) :

FORMAT (*INPUT REGI@N @F INTEREST BBUNDARY DEFINITI@N, 1
*FOQR%x/

I*INTEGER, L FOR LINEAR, @R N FOR N@NLINEARx)

READ (5,115) NB@N




210

117

319

231
135

136

137

330

138

331

139

232

127

WRITE <(3:115)NB@N

FORMAT (AL)

IF (NBON.FQ.1HI) G@T@e 210

IF (NBON.EQ.lHL) GBTO 231

IF (NB@N.EG.lHN) GOT@ 232

D@ 319 KB=1,NX

WRITE (6,117)KB

FORMAT (*INPUT LBWER AND UPPER B@UNDS @F X*,11)
READ(S5,*)(BOUNCKB,LE),LB=1,2)

WRITE (3,%)(BAUNCKB,LB),LB=1,2)

CONTINUE

GOTE 232

WRITE (6,135)

F@RMAT (*INPUT NUMBER @F LESS THAN @R EQUAL CONSTRAINTS*)
READ (S,*)MIl

WRITE (3,x%)MI

WRITE (6,136)

FORMAT (*INPUT NUMBER @F EQUALITY CBNSTRAINTS*)
READ (5,%)M2

WRITE (3,%)M2

IAS=M1+M2+2

WRITE (3,%)IAS

IF (Ml.EQ.0) G@Te 330

D@ 330 IMi=1,MIl

WRITE (6,137)NX,IMI

FBRMAT (*INPUT *,11,% COEFFICIENTS @F LESS THAN
*CONSTRAINT*,12) '

READ (S,*)(SACIMLI,JM1),JdMI=]1,NX)

WRITE (3,%)(SACIMI ,JM1),JMLl=],NX)

CEONTINUE

IF (M2.EQ.0) G@T@ 33l

D@ 331 IM2=],M2

WRITE (6, 138)NX, IM2

FORMAT (*INPUT *,11,* COQEFFICIENTS @F EQUALITY C@NSTRAINT
*%,12)

READ (5,%)(SAC(M1+IM2),JM2),JM2=1],NX)

WRITE (3,%)(SAC(MI+IM2),JM2),JM2=],NX)

CONTINUE

1SB=M1+M2

WRITE (6,139)

FORMAT (*INPUT RHS @F CONSTRAINTS AS INPUT AB@VEx)
READ (5,%)(SB(JSB),JSB=1,1SB)

WRITE (3,%)(SB(JSB),JSB=1,1SB)

GRT@® 232

ENDFILE 3

REWIND 3

ST@P

END
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PR
Cxx%%xADAPTED INTERACTIVE VECTOR MAXIMAL @PTIMIZATI@N
Cxx**x*ALGORITHM. '

C

PR@AGRAM GPTlMIZ(INPUT;BUTPPT;TAPES;TAPES=INPUT:TAPE6=
*9UTPUT)

DIMENSION SFCI10),SYC10),W(10),DF(10,20),Eb(10),NANMEC10),
*G(20).,
1REQG(S50,6),REQJ(10,5),WG(5),BOUN(S5,2),D(S5),F(10),REQ(C10.,
*21).,
1X¢5),Y¢(5),2¢(5),SA(50,5),5B(50),PS@L(5),DS@L(SO0),RW(2650)
*, IWC172)

D@ 305 11=1,5
X(I11)=0.

305 CONTINUE
W(lr=1.
C
CxxxxxTHIS SECTI@N READS INPUT DATA FROM A DATA FILE.
C

READ (3,*)NREQ

READ (3,%)NX

READ (3,%)(X(IX),IX=]1,NX)

D@ 30! IM=1,NREQ

READ (3,x%)(REQ(IM,IC),IC=1,21)

301 CONTINUE ‘ :
READ (3,1081)C(NAMECIN), IN=] ,NREQ)
1081 FORMAT (Al10) ’ )
JC=1
D@ 312 IF=l,NREQ
D@ 313 JX=1,5
READ (3,%)(REQG(JC,KC)>»KC=1,6)
JC=JC+1
313 CONTINUE
312 CONTINUE

READ (3,1151)NB@N
1151 FPRMAT (Al)

IF (NB@N.EQ.l1HL) G@T@ 233

IF (NBE@N.EQ.lHI1) G@T@ 234

IF (NBEON.EG.JHN) GOT@ 215

234 D@ 319 KB=1,NX
READ (3.*)(BAUN(CKB,LB),LB=1,2)
319 CONTINUE

GOTB 215

C

Cx**%%x%THIS SECTI@N PRESENTS THE DECISI@N MAKER WITH
*ALTERNATIVES E

Cx*%%x%AND READS HIS TRADEQFF INPUTS.

c

233 READ (3,*)Ml
READ (3,*)M2
READ (3,%)1AS




1SB=M] +M2
D@ 332 1ISA=],1ISB
READ (3,%)(SACISA,JSA),JSA=],NX)
332 CONTINUE
READ (3,%)(SB(JSB),JSB=1,15B)
GOTE 215
215 CALL REQEV(NREQ,F,NX, REQ,X)
D@ 324 MS=1,NREQ
SF(MS)=F(MS)
324 CONTINUE
JC=1
LC=1
L=1
WRITE (6,104)
104 F@RMAT (*INPUT PERTURBATIGN @F FC(l1), IN FAV@RABLE
*DIRECTI@Nx*)
READ (5, %*)DF@NE
BB(1)=F(1)+DF@NE
D@ 308 JB=2,NREQ
BB(JB)=F(JB)
308 CONTINUE
D@ 307 KT=2,NREQ
WRITE (6, 105)KT
105 FBRMAT (*INPUT PERTURBATI@N @F F(*,I12,%), IN FAVBGRABLE
*DIRECTIONx*)
READ (5,%)DF(KT,L)
204 IF (KT.EQ.2) GO@T@ 200
BB(KT-1)=F(KT-1)
200 BB(KT)=F(KT)-DF(KT, L)
WRITE (6,106)
106 FORMAT (25X,1HA,16X,1HB)
D@ 309 NW=l1,NREQ
WRITE (6,109)NAMECNW) » F(NW) ,BB(NW)
109 FORMAT (A10,10X,F10.5,5X,F10.5)
309 CONTINUE
WRITE (6,110)
C
Cx*x%x%xTHIS SECTI@GN ADJUSTS THE ALTERNATIVES PRESENTED T@
Cx*%x%*xTHE DEC1SI@N MAKER UNTIL HE IS INDIFFERENT.
C
110 FORMAT (*WHICH D@ Y@U PREFER. IF Y@GU ARE INDIFFERENT
*TYPE I.%) .
READ (5,111)NDEC
111 FORMAT (Al)
IF (NDEC.EQ.1HI) GOT@® 201
IF (NDEC.EQ.1HA) G@T@ 202
DF(KT,L+1)=2%DF(KT, L)
L=aL+l
GOTO 204
206 WRITE (6,106)
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BB(KT)=F(KT)~-DF(KT, L)
D@ 310 JW=1,NREQ
WRITE (6, 109)NAMEC(JW) ,F(JW) »BB(JW)

310 CONTINUE

WRITE (6,110)

READ (5,111)NDEC

IF (NDEC.EG.1HA) G@T@ 203
IF (NDEC.EQ.1HB) G@T@ 208
G@Te 201 -

202 G(L)=DF(KT,L)

203 DF(KT,L+1)=DF(KT»L)-(G(L)/2.)
GC(L+1)=G(L) /2.

L=L+|
G@Ta 206

208 DF(KT,L+1)=DF(KT,L)+(G(L)/2.)
G(L+1)=G(L)/2. RNy
L=L+1 i
GOT@ 206

c

Cx*x*xTHIS SECTIBN C@MPUTES THE TRADE@GFF VALUES.

(o

201 W(KT)=(DFBNE) /CDF(KT,L))

307 CONTINVE
WRITE (6,112)

112 FORMAT (xTHE TRADE@FFS AREx)

D@ 3!1 LT=1,NREQ
WRITE (6,113)NAMECLT),WC(LT)

113 FORMAT C(A10,10X,F10.5)

311 CONTINUE

c

Cxxx%%THIS SECTION C@MPUTES THE COEFFICIENTS @F THE

CxxxxxSUBPGPTIMIZATION @BJECTIVE FUNCTIGN.

c -

D@ 314 1lJ=1,NREG

D@ 315 JJ=1,5

E=0.

D@ 316 JS=1,NX
E=E+(REQGC(LC,JS))*X(JS)

316 CONTINUE
REQJ(1J,JJ)=E+(REQG(LC,6))
LC=LC+!

315 CONTINUE

314 CONTINUE
D@ 317 Kw=l,NX
WG(KW)=0.

D@ 318 LW=1,NREQ
VG(KW)=WGCKW) +(W(LW)*REQJ(LW,KW))

318 CONTINUE
WRITE (6, %)WGC(KW)

317 CONTINUE
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D@ 1 IIW=1,NX
WRITE (6,%) WGCIIW)

1 CONTINUE

C

Cwxx%kxTHIS SECTI@GN PERFPRMS THE SUB@PTIMIZATI@N.
¢

IF (NBON.EQ.lHI) CALL SINT(Y,WG,BPAUN.,NX)

IF (NBBN.EQ.lHL) CALL ZX3LP(SA,S0,SB,WG,NX,MI,M2,S,Y

IDS@L,L,RW, IW, IER)

IF (NBON.EG.1HN) CALL NLP(Y,NX), RETURNS(214,999)
214 D@ 321 1D=],NX .

DCID)=YCID)-X(CID)
321 CONTINUE

WRITE (6,118)
118 FORMAT (%xNEW DECISI@N VECT@Rx)

D@ 322 JD=1,NX

WRITE (6,119)JD,Y(JD)
119 FORMAT (xYx*x,11,5X,F10.5)
322 CONTINUE

WRITE (6,120)
120 FORMAT (*NEW QPERATING POINTx)

CALL REQEV(NREQ,F,NX,REQ,Y)

Dp 323 1Y=],NREG

WRITE (6,121) FC(1Y)
121 FORMAT (Fl0.5)
323 CONTINUE

WRITE (6,122)
C
Cxx%%%THIS SECTI@N PERF@RMS THE STEP-SIZE GPTIMIZATI@N.
C
122 FORMAT (*INPUT NUMBER @F PRINTS T@ SEE IN STEP SIZEx)

READ (5,%)KS

T=le/(KS=-1)

D@ 325 NS=1,NREQ

SY(NS)=F(NS)
325 CONTINUE

WRITE (6,123)(SF(MW),MW=1,NREGQ)
123 FORMAT (SF12.4/5X,5F12.4)

KZ=KS-2 i

D@ 326 MT=l,KZ

D@ 327 MX=] ,NX

ZCMX)=X(MX)+( T*MTx*D(MX))
327 CONTINUE ;

CALL REQEV(NREQ.,F,NX,REQ,2)

WRITE (6, 123)(F(MZ),MZ=1,NREQ)
326 CONTINUE

WRITE (6,123)(SY(MY),MY=]1,NREQ)

WRITE (6,124)
124 FB@RMAT (*INPUT NUMBER @F PREFFERED P@INTx*)

READ (5,%)MN
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‘D@ 328 NN=1,NX
X(NN)=X(NN)+(D(NN)*Tx(MN=-1))
328 CONTINUE :
WRITE (6,125)
125 FORMAT (%xIF YQU WISH T@ TERMINATE TYPE T. @THERVISE,
*TYPE Ce.x)
READ (5,130)NTER i
130 FORMAT (Al)
IF (NTER.EQ.lHC) G@BT@ 215
WRITE (6,126)(X(M@),M@B=1,NX)
126 FORMAT (#@PTIMAL X*/5F12.4)
999 STOP
END
c
Cxxxx*THIS SUBRGUTINE EVALUATES THE RESP@NSE EQUATI@NS.
Cc
SUBRQUTINE REQEV(NREQ, F,NX,REQ,X)
DIMENSI@N FC(10),REQ(C10,21),X(5)
D@ 300 JT=1,NREQ
F(JT)=0.
D@ 302 1S=1,NX
FC(JT)=F(JT)+(REQCJT, IS) ) *(XC(IS)*%2)
302 CONTINUE
D@ 303 IA=2,NX
F(JT)=F(JT)+(REQC(JT, IA+4) ) *(X(1)%*X(I1A))
303 CONTINUE
D@ 304 1IB=3,NX
FCJT)=F(JT)+C(REQ(JT, IB+T7) )% (X(2)%X(IB))
304 CONTINUE
F(JIT)=F(JT)+(REQ(JT, 13))%(X(3)%X(4))+(REQ(JT,14))%(X(3)
*%X(5))
FC(JTI=SF(JT)+(REQCJT,15))*(X(4)%X(5))
D@ 306 10=1,NX
F(JT)=F(JT)+(REQ(JT,19+15)*XC10))
306 CONTINUE '
FCJTI=F(JT)+REQ(JT,21)
300 CONTINUE
RETURN
END -
(]
Cxx%x*xTHIS SUBROUTINE PERFPRMS THE SUB@PTIMIZATIGN F@R
C**xxxINTEGER REGI@BN @F EXPERIMENTATIG@N B@UNDARIES.
c = -
SUBROUTINE SINT(Y,WG,B@BUN,NX)
DIMENSI@BN Y(5),WG(S),BAUN(S,2)
D@ 320 IP=1,NX
YCIP)=0.
IF (WGCIP)«LT.0.) Y(IP)=B@UNCIP,1)
IF (WGCIP)«GTe0e) YCIP)=BAUNCIP,2)
320 CONTINUE
RETURN
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END
c .
Cx**xx*xTHIS SUBR@QUTINE RQUTES THE PROGRAM T@ THE PROGRAM
Cxx**xF@R THE SUB@PTIMIZATI@GN @F NONLINEAR REGI@N @F
Cxxxx*xEXPERIMENTATI@N BOUNDARIES. :
c § 5,
SUBR@UTINE NLP(Y,NX), RETURNS(AAA,BBB)
DIMENSI@N Y(5)
WRITE (6,140) :
140 FORMAT (xIF Y@U D@ N@T HAVE Y, INPUT N@, @THERWISE YES%)
READ (S5,145)ITER
145 FORMAT (A2)
IF (ITER.EQ.2HN@) RETURN BBB
WRITE (6,150)
150 FORMAT (*xINPUT VALUES @F Yx)
READ (5,%)(Y(1),1I=1,2)
RETURN AAA
END
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APPENDIX E

In keeping with the hypothetical nature of Chapter IV, Equation
4.26, 4.27 and 4.28 were not actually obtained from TRADOC. An interview
was conducted with Armor officers studying Operations Research at Georgia
Tech. To insure commonality of independent variables for all response
equations, time to fire the first round and time between rounds were
treated as independent variables in the interview with trainings hours
and training rounds as dependent variables.

Initially an attempt was made to fit second order equations to
the training responses in the optimum region of experimentation of
Equations 4.24 and 4.25. A statistically satisfactory fit was not pos-
sible in the optimum region of experimentation. A first order approxi-
mation in.the optimum region of experimentation to the training curves
was then fit by use of the SPSS regression program. The input to the

program was:

X *2 3 Y4

=17 @ <1 (5 48 60
1 (16) -1 (5) 30 48
-1 (8) 1 15 40 54
1 (16) 1 @s) 12 19
0 (12) 0 (10) 36 48

The SPSS output is found on the next page of this Appendix, y5 on top

Yy at the bottom.

The SPSS output yielded the following two response equations,

-

¥ = —11.5x1-—6.5x2 * 33.2
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~

y, = ~10.75=8.75x, + 45.8.

After decoding the above are

¥y = —2.5556&1-2.166752 + 87.2009
¥, —2.611151—2.916752 + 107.30015.
The regression F statistics are F"_ = 20.057, significant at a = .047

y3

and F;4 = 6.208, significant at o« = .139. A response equation for Vs

~

was derived by multiplying Y, by a cost of $90.00 per training round

136

fired and adding a POL cost of $10.50. Manpower costs were not included

since they are fixed no matter what the personnel are doing.
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