

A SECRETARY OF SEC

NAVAL POSTGRADUATE SCHOOL

Monterey, California

naster's THESIS

SINGLE HYDROPHONE TECHNIQUE FOR OBTAINING SPECTRAL SOURCE LEVELS OF MARINE MAMMALS IN COASTAL WATERS

Richard Mo Bostian

Thesis Advisor:

Herman Medwin

Approved for public release; distribution unlimited

251 450

The transfer of the transfer o

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)					
REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
4. TITILE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED			
Single Hydrophone Technique f	or Obtaining	Master's Thesis;			
Spectral Source Levels of Mar	ine Mammals	December 1977			
in Coastal Waters		. PERFORMING ONG. REPORT NUMBER			
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(s)			
Richard Massey Bostian					
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Naval Postgraduate School		AREA & WORK UNIT NUMBERS			
Monterey, California 93940	-				
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE			
Naval Postgraduate School		December 1977			
Monterey, California 93940		50			
14. MONITORING AGENCY NAME & ADDRESS(II differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)			
		Unclassified			
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE			
16. DISTRIBUTION STATEMENT (of this Report)		!			
Approved for public release;	distribution	unlimited			
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)					
The bist kills flow of a family (or any assured units)					
18. SUPPLEMENTARY NOTES					

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

During the annual Gray Whale migration from the Aleutians to Baja California, the mammals travel in coastal waters, thereby presenting an opportunity for the study of their sound spectral and source levels and vocabulary. However, such measurements are

DD 1 JAN 73 1473 (Page 1)

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 | Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

distorted by surface and bottom reverberation. Using the theory of rough surface scattering, knowledge of the bottom impedance, and correlation techniques, it is possible to decompose the shallow water reverberation into the contributions from different paths. From this, the range, depth and the deverberated spectral source levels of the sounds of the mammal can be determined by use of only one hydrophone rather than the conventional three or four. The theory, deverberation programming, and experimental results are presented for a model of the whale's pulsed radiation in a laboratory model coastal environment.

T	T	FT18 FD0 FRANNOUNCED	
	AVAIL, BRO OF SPECIAL		To the state of th

Approved for public release; distribution unlimited

Single Hydrophone Technique for Obtaining

Spectral Source Levels

of Marine Mammals in Coastal Waters

by

Richard M. Bostian Lieutenant Commander, United States Navy B.S., University of Florida, 1967

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING ACOUSTICS

from the

NAVAL POSTGRADUATE SCHOOL December 1977

Approved by:

Approved by:

Thesis Advisor

Second Reader

Mulli

Chairman, Department of Physics and Chemistry

Dean of Science and Engineering

ABSTRACT

During the annual Gray Whale migration from the Aleutians to Baja California, the mammals travel in coastal waters, thereby presenting an opportunity for the study of their sound spectral and source levels and vocabulary. However, such measurements are distorted by surface and bottom reverberation. Using the theory of rough surface scattering, knowledge of the bottom impedance, and correlation techniques, it is possible to decompose the shallow water reverberation into the contributions from different paths. From this, the range, depth and the deverberated spectral source levels of the sounds of the mammal can be determined by use of only one hydrophone rather than the conventional three or four. The theory, deverberation programming, and experimental results are presented for a model of the whale's pulsed radiation in a laboratory model coastal environment.

TABLE OF CONTENTS

ACKNOW	LEDGEMENTS	6
I,	INTRODUCTION	7
II.	THEORY	8
III.	PROCEDURE	18
IV.	DATA PROCESSING AND RESULTS	21
V.	CONCLUSIONS	28
COMPUT	ER PROGRAM AUTOPEAK	29
COMPUT	ER PROGRAM DEVERB	34
COMPUT	ER PROGRAM TDEVERB	42
LIST O	F REFERENCES	48
INITIA	L DISTRIBUTION LIST	49

THE THE PARTY OF THE PROPERTY OF THE PARTY O

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to

Dr. Herman Medwin for guidance, motivation and resources
which he provided for this work. Special thanks are also
due to Mrs. Jeanie Savage for her invaluable help in editing
and modifying the computer programs used in this thesis.

Discussions with Dr. William C. Cummings, formerly of NOSC
(San Diego), and Dr. William A. Watkins of Woods Hole Oceanographic Institution (Massachusetts) have been very valuable.
The financial assistance of the Office of Naval Research is
appreciated.

I. INTRODUCTION

Once yearly, the Gray Whale, Eschrichtius glaucus, migrates southward from the Aleutians and passes very close to the California coast in shallow water. During this migration, the sounds in the water close to the whales can easily be recorded; but, they may not be the true sounds produced by the whale. The whale normally produces an intermittent, short duration signal which in shallow water is received at the hydrophone via direct, surface reflected and bottom reflected paths. Since the path lengths are different, the signals arrive at the hydrophone at different times and they interfere. To obtain the true sounds produced by the whales, this interference, which is called reverberation, must be eliminated.

The purpose of this thesis is to model in the laboratory the whale sounds in the shallow water and to develop a technique to determine the range, eliminate the surface and bottom reverberation and calculate the spectral source levels as a function of time.

II. THEORY

In a reverberant environment, the original signal can only be realized if the reverberation is removed. The method used to remove the reverberation, which is here called "deverberation," assumes that the whale is a point source, the geometrical spreading is spherical, the water is isovelocity and the water depth is constant.

Before the deverberation technique can be applied, the direct, surface reflected and bottom reflected path distances must be known. Normally, this information is obtained by knowing the source position and calculating the path distances from the known geometry. Determining the horizontal source position is difficult and requires at least two directional or three omnidirectional hydrophones, accurately fixed with respect to each other at all times. determine the depth requires at least one additional hydrophone at a different depth. Generally, three or four hydrophones are deployed [Refs. 1 and 2]. With each additional hydrophone, the complexity of the system is increased since each hydrophone requires its own amplifying and recording system. In shallow water, however, taking advantage of the surface and bottom reflections, one can use a single hydrophone and gather all the information necessary for the application of the deverberation technique.

Consider the direct, surface scattered, and bottom scattered sounds received at only one hydrophone which

is deployed in shallow water as depicted in figure 1. It will be shown that when the differences between the arrival times for the three paths are known the three path distances can be calculated. Using the surface specularly scattered path, $R_{\rm g}$, it is seen that

$$R_{5} = R_{5}^{'} + R_{5}^{'}$$

 $R_{5}^{'2} = D^{2} + S^{'2}$
 $R_{5}^{"2} = H^{2} + S^{"2}$

where

$$S'^{2} = \frac{D^{2}}{(H+D)^{2}} \left[R^{2} - (H-D)^{2} \right]$$

$$S''^{2} = \frac{H^{2}}{(H+D)^{2}} \left[R^{2} - (H-D)^{2} \right]$$

Substituting and rearranging terms gives

(1)
$$R_{S}' = \frac{D}{(H+D)} (R^{2} + 4HD)^{\frac{1}{2}}$$

(2)
$$R_S'' = \frac{H}{(H+D)} (R^2 + 4 HD)^{\frac{1}{2}}$$

Using $\tau_{\rm S}$, the time difference between the direct path arrival and the surface reflected path arrival and C, the mean speed of sound, gives

and therefore

(3)
$$CT_S = (R^2 + 4HD)^{\frac{1}{2}} - R$$

Similarly using the bottom specularly scattered path

$$R_B = R_B' + R_B''$$

 $R_B'^2 = (2 - D)^2 + B'^2$
 $R_B''^2 = (2 - D)^2 + B''^2$

DEPLOYMENT OF ONE HYDROPHONE IN A SHALLOW WATER ENVIRONMENT FIGURE 1:

where

$$B' = \frac{(z-D)}{(2z-H-D)} \left[R^2 - (H-D)^2 \right]^{\frac{1}{2}}$$

$$B'' = \frac{(z-H)}{(2z-H-D)} \left[R^2 - (H-D)^2 \right]^{\frac{1}{2}}$$

Substituting and rearranging

(4)
$$R_B^{'} = \frac{(z-D)}{(2z-H-D)} \left[R^2 + 4(z^2+HD-zH-zD) \right]^{\frac{1}{2}}$$

(5)
$$R_B^* = \frac{(z-H)}{(2z-H-D)} \left[R^2 + 4(z^2+HD-zH-zD) \right]^{\frac{1}{2}}$$

Using $\tau_{\mbox{\footnotesize{B}}}$, the time difference between the direct path arrival and the bottom reflected path arrival gives

and, therefore,

(6)
$$CT_B = [R^2 + 4(z^2 + HD - zH - zD)]^{\frac{1}{2}} - R$$

Solving equations (3) and (6) simultaneously for R, the range of the source from the receiver and D, the depth of the source, produces

(7)
$$D = \frac{\tau_s(c^2\tau_s\tau_B + 4z^2 - 4zH) - \tau_s(c\tau_B)^2}{4[H\tau_B + \tau_s(z-H)]}$$

(8)
$$R = \frac{4HD - (c\tau_B)^2}{2c\tau_S}$$

The equation for the range is left as a function of the water depth to facilitate its being programmed. Now that the range and depth are known, the other two path distances can be calculated. From equations (1) and (2), the surface reflected

path distance is

(9)
$$R_s = (R^2 + 4HD)^{\frac{1}{2}}$$

and from equations (4) and (5), the bottom reflected path distance is

(10)
$$R_B = [R^2 + 4(z^2 + HD - zH - zD)]^{\frac{1}{2}}$$

Therefore, when the time arrival differences for the different paths are known, equations (8), (9), and (10) can be used to determine the first three path distances. The paths for multiple reflections can be calculated directly from the known geometry, assuming specular scatter.

For a transient signal, determination of the differential arrival times τ_S and τ_B can be realized by the use of an autocorrelation technique. The correlation function can be defined as [Ref. 3]

(11)
$$R(\tau) = E\{[v(t)-u][v(t+\tau)-u]\}$$

where v is the time average, u is the mean, and E is the expected value of the received signal. This process is programmed using a digital summation

(12)
$$R(\tau) = \frac{1}{n-\tau} \sum_{i=1}^{n-\tau} \left[v_i(t) - u \right] \left[v_{i+\tau}(t) - u \right]$$

with n representing the total number of samples in the record.

Performing the autocorrelation on the reverberant signal at
the one hydrophone gives peaks at delay times corresponding

to zero delay time, and the arrival delay times from the reflected signals. The peaks are realized only when the direct signal is delayed enough to correlate with the reflected signals. The computer program called AUTOPEAK performs the autocorrelation and then applies an envelope detection to determine the delay times for the peaks. These delay times are then used in equations (7), (8), (9), and (10) to determine the range, depth, and reflected path distances. Thereby, all the geometrical information necessary for the deverberation technique has been obtained.

Computer programs have been developed for deverberation in either the frequency or time domain.

The computer program designed to eliminate the reverberations in the frequency domain is called DEVERB. For the time being, assume only one frequency component, whose amplitude and frequency are functions of time. For a signal with timevarying frequency and amplitude, we can describe the pressure at the receiver, due only to the direct path signal as [Ref. 4]

(13)
$$P_{D}(t) = C(t) e^{\lambda \omega(t) t}$$

Then, taking into account spherical divergence, the spatial phase shift, and specular scattering from a Gaussian rough surface, the pressure at the hydrophone due to the surface scattered signal can be written as

(14)
$$P_{s}(t') = P_{s}(t-\tau_{s}) = \frac{R}{R_{s}}e^{-\frac{9}{2}}C(t)$$

 $t \ge \tau_{s}$

and the pressure due to the once bottom reflected signal is

$$(15) P_{B}(t'') = P_{B}(t - \tau_{B}) = \frac{R}{R_{B}} R C(t) e$$

$$t \ge T_{B}$$

 $\mathbb Q$ and $e^{-g/2}$ are the frequency-dependent pressure amplitude reflection coefficients, and $\mathbb Z$ and $\mathbb Z$ are the phase shifts due to the bottom and surface reflections, respectively. The surface reflection coefficient depends on the roughness of the surface. The exponent for specular scattering is [Ref. 5]

(16)
$$g^{\frac{1}{2}} = \frac{4\pi\sigma}{\lambda} \cos \Theta_S$$

where σ is the R.M.S. wave height, λ is the wavelength of the sound signal and θ_S is the angle of incidence. Equations (14) and (15) are derived from previously received direct path pressures, corrected for path differences and phase shifts and represent the pressures due to the single reflected paths. The coherent sum of equations (13), (14) and (15) is the pressure sensed by the receiver when these three components are present.

The signal processing is done digitally. Therefore, the continuous time dependence is replaced, whenever it occurs in the previous equations, by digital block numbers, indicated by the subscript index "k." Each block contains enough data samples of the incoming signal to give the desired spectral frequency resolution during a block duration which is small compared to the total duration of the time-varying signal. The frequency change of the signal within a block

duration is assumed to be much smaller than the frequency resolution of the digital processing. The block duration is

$T = \frac{\text{NUMBER OF SAMPLES IN THE BLOCK}}{\text{SAMPLING FREQUENCY}}$

The time the block ends is related to the continuous time t by

(17)
$$t = TK$$
; $K = 1, 2, 3 \cdots$

A MANAGE TO STATE OF THE PARTY OF THE PARTY

The index "i" is used for the spectral frequency component of the complex wave being analyzed.

The equation for the source pressure at unit distance using the frequency deverberation correction is

(18)
$$D_{K,i}(1) e^{i(g_{K,i} - RR_i)} = R \{ C_{K,i} e^{i \phi_{K,i}}$$

$$- \left[\frac{R}{R_s} e^{-\frac{g}{2}} D_{N,i} e^{i(\alpha_{N,i} - (R_s - R)R_i - T)} \right] 1 (K-N)$$

$$- \left[\frac{R}{R_B} R D_{M,i} e^{i(\alpha_{M,i} - (R_B - R)R_i - S)} \right] 1 (K-M)$$

$$- \left[\frac{R}{R_{SB}} R e^{-\frac{g}{2}} D_{L,i} e^{i(\alpha_{L,i} - (R_{SB} - R)R_i - T - S)} \right] 1 (K-L)$$

$$- ETC. \}$$

where 1(K-N), 1(K-M) and 1(K-L) are unity factors with values

$$1(K-N) = 1 \quad K \geq N$$

= 0 otherwise

$$1(K-M) = 1 \quad K > M$$

= 0 otherwise

$$1(K-L) = 1$$
 $K \ge L$
= 0 otherwise

ことの 大田の子の一日の大田の大田の のでは ちょうしゃ

The pressure amplitude of the ith frequency component in block K of the receiver reverberant signal is represented by $C_{K,i}$ and its phase represented by $\phi_{K,i}$. The deverberated pressure amplitude is represented by $D_{K,i}$ and its phase by $\mathbf{g}_{K,i}$. The first term on the right hand side of the equation represents the received signal. The second term represents the correction due to a single specular scatter from the surface; the third represents a single bottom reflection correction, and the fourth represents the correction for a path which includes one surface and one bottom reflection. The equation can be expanded to include other multiple reflections.

The block indices are determined by

(19)
$$M = K - \frac{\tau_B}{T}$$

(20)
$$N = K - \frac{\tau_s}{T}$$

(21)
$$L = K - \frac{\tau_{58}}{T}$$

The output of the frequency deverberation program is a series of spectra of the consecutive blocks and its Fourier transform is a time plot of the deverberated signal.

The above procedure takes the signal from the time domain (the time series after A/D conversion) by Fourier

transform to the frequency domain, where the known frequency dependent reflection coefficients are easily applied, and then back to the time domain to verify the effectiveness of the process.

When the reflection coefficients can be assumed to be frequency-independent, a simple point-by-point deverberation procedure can be applied in the time domain. The applicable temporal deverberation equation is

$$(22) D_{k} = C_{K} + \langle e^{-\frac{q}{2}} \rangle \frac{R}{R_{S}} D_{N} - R \frac{R}{R_{B}} D_{M} + \langle e^{-\frac{q}{2}} \rangle R \frac{R}{R_{SB}} D_{L} + ETC.$$

 C_K represents the pressure amplitude for the $K^{\hbox{th}}$ sample. The other terms are similar to those in equation (18). For low roughness surfaces g < 1 and the use of $e^{-g/2}$ over the appropriate frequencies will be a good approximation which is essentially independent of frequency. One advantage of the temporal deverberation technique is the relative freedom from restrictions of block size; the block size is determined only by the desired frequency resolution and the rate of change of frequency of the transient source.

III. PROCEDURE

the state of the s

In order to model the Gray Whale's environment in Monterey Bay, a three meter cube "anechoic" water-filled tank was used. An artifical bottom made of hard rubber with an experimentally determined pc of approximately 2.4 x 10^b mks rayls was positioned one meter below the water surface. This type of bottom was chosen for its specific acoustic impedance since the bottom at the listening area in Monterey Bay has a ρc of approximately 3 x 10^6 mks rayls. The depth of the bottom and relative placement of the source and receiver were determined in order to obtain realistic modeled delay times between the reflected signals and the direct signal. A 1.8 cm diameter spherical source was used because of its small size and its ability to transmit a signal with minimum distortion; but it also limited the minimum frequency to about 10 kHz. An FM up-sweep of varying widths and sweep rates was used to model one of the sounds produced by the Gray Whale.

The equipment was connected as in figure 2 with the master unit pulse generator being used to synchronize the sampling frequency oscillator which determined the start and stop frequencies, sweep rate and pulse width. The pulse repetition rate was determined by the master unit pulse generator. The signal was then amplified and sent to the source. The reverberent signal was received by an LC-10 hydrophone, and then amplified again and sent to the analog-to-digital

という ないとういいとうかいはな のいない でいいしゃ

converter. The A/D converter was triggered through the delay generator via the unit pulse generator and the sampling frequency oscillator. A sampling frequency of 320 kHz was used. The delay generator delays the trigger by the time required for the signal to be transmitted through the water and then this delayed pulse triggers the unit pulse generator. The unit pulse generator was used to determine the total ontime of the sampling frequency oscillator. The oscillator determined the samples per second taken by the converter during the oscillator's on-time. This complex equipment setup was designed to allow the A/D converter to sample only during the time when the direct and reflected signals were present, thereby reducing the amount of computer time and storage required to process the data. Reflections from other surfaces in the tank were eliminated wherever possible in the sampling time by varying the pulse repetition rate of the master pulse generator or by varying the source and receiver placement. After the analog signal was changed by the converter to digital form, it was stored on cassette memory and then analyzed using the programs AUTOPEAK and DEVERB.

The state of the state of the

IV. DATA PROCESSING AND RESULTS

Mary Control of the

The autocorrelation plots of reverberation for two different sweep widths are seen in figure 3 with the scale factor for the delay time equal to 3.125 µ seconds. plot of the 90 kHz sweep width shows a steeper slope of the envelope, thus a more clearly defined peak than the one with only a 10 kHz sweep width. This indicates, as expected, that as the difference between the upper and lower frequencies decreases, the correlation peaks become harder to determine. In the limit of only one frequency being present, there would be no peaks in the envelope. Figure 4 shows the range error (computer determination compared to direct measurement) versus the ratio of the upper frequency to the lower one. The graph indicates that for a ratio above 1.2 to 1 the frequency sweep of the signal is sufficient to get accurate time differences for the reflections and thereby to determine the source range and depth from the autocorrelation processes.

The frequency deverberation program is designed to give a true spectrum of the signal by eliminating frequency dependent reverberations. Since the signal is time-varying, a small block of time is desirable to keep the change in the signal to a minimum during the block. The limiting factor to the minimum block size is the desired frequency resolution. For a spectrum to accurately represent an instant of time rather than being a spectrum averaged over a length of

FIGURE 3.

AUTOCORRELATION OF DIRECT AND SURFACE REFLECTED CHIRP

The state of the second second

time, the frequency change during the block time should be much less than the frequency resolution. In addition, where possible, the block duration should be equal to, or a submultiple of $|T_s - T_b|$ in order to permit equation (18) to be applied.

From figure 4, it is known that depth and range can be determined only when the frequency ratio of the chirp is greater than 1,2 to 1. Figure 5 shows the reverberant and deverberated signals for a chirp from 46 kHz to 54 kHz with a ratio of 1.17 to 1. The reverberant signal, top of figure 5, was divided into blocks, equal to τ_{R} - τ_{S} , and then transformed back into the time domain which is shown at the bottom of the figure. Some improvement can be seen but the expected slowly increasing frequency at the approximately constant amplitude has not been realized. It is believed that the inadequate deverberation is due to the fact that the frequency sweep during a block is approximately four-tenths of the frequency resolution. A slower sweep rate or a larger block duration would have cured this problem. However, a slower sweep rate for the model would have decreased the accuracy of the range determined by the autocorrelation; and a large block duration was precluded by the geometry which determined $|\tau_{R} - \tau_{S}|$. The temporal deverberation technique which is presented next did not suffer from these limitations.

The result of applying the temporal deverberation program to a signal with a sweep width from 5 kHz to 95 kHz can be seen in figure 6 with the reverberant signal on the top and

FREQUENCY DEVERBERATION

The the till the state of the time to the

FIGURE 6
TEMPORAL DEVERBERATION

the deverberant signal below. Since the source was resonant at 64 kHz, the FM sweep grows in amplitude to 64 kHz and then decreases. The deverberated signal shows the frequency and amplitude modulation cleanly until the end of the direct signal. The reverberation after that time is due to scattering from the side walls of the tank. Possible reverberation due to the fourth and later terms on the right hand side of equation (22) were excluded by limiting the duration of sampling by the computer.

and the state of t

V. CONCLUSIONS

The work described in this thesis demonstrates the feasibility of obtaining a non-reverberant spectrum of a transient source in a reverberant environment. The technique includes calculation of the autocorrelation of the received signal to determine range and depth of the source and computer processing to correct for the surface and bottom reflections,

The autocorrelation function provides an accurate method for obtaining the range and depth of a source of transient sound in shallow water. The correlation technique can be performed for a chirp sound with ratio of upper to lower frequency of greater than 1.2 to 1. At least two reflections are required to obtain the depth and range of the source with respect to the receiver.

Frequency and time deverberation programs which use the position data from the autocorrelation have been developed to eliminate the reverberations and, thereby, to obtain corrected spectra or corrected time plots. Either technique can be used; however, because the output of the computer is a time series, it is natural to apply temporal deverberation. This becomes very simple if the surface and bottom reflection coefficients are independent of frequency.

COMPUTER PROGRAM AUTOPEAK

```
REM
                  DATE OF LAST CORRECTION: 10/31/77
     ***********
                        AUTOPEAK -- 9/29/77
JEANIE SAVAGE, PROGRAMMER
SPECIFICATIONS BY RICK ECSTIAN
THIS PROGRAM PERFORMS AN AUTO-
CORRELATION ON SIGNAL DATA
THEN PICKS OUT THE TWO PEAK
                 *
                                                                                       *
                                                                         AND
                 REMAN
            V$(48),V1$(6),Z$(1)
A(1000),B(1000),Y(1000)
Z1$(1),Z2$(1),S(1),D(1),Z4$(1)
P(500,1),Z3$(1),M(50,2),R(1,2)
      DIM
      DIM
      REM
Z4$="N"
Z$="Y"
REM
REM
                          ***DRIVER ROUTINE***
PERFORM INITIALIZATION PROCEDURE
      GOSUB 500
IF Z4$="Y"
                        GCTO 140
      REM
GOSUB 1000
                          READ DATA FROM TAPE
      REM
GOSUB 1300
REM
                          BUILD CTHER ARRAY
                          PERFORM AUTO-CURRELATION
      GOSUB 1500
                          DETERMINE INTERMEDIATE PEAK VALUES
      GOSUB 2000
IF Z3$="N"
                        GCTO 185
PRINT INTERMEDIATE VALUES
      REM
      GOSUB 2500
                          DETERMINE TWO PEAK VALLES
      GOSUB 3000
           Z8=1 GOTO 150
      REM
                          PRINT TIME DIFFERENCES
      GOSUB 4000
                          CALCULATE SOURCE DEPTH, S-R RANGE
      GOSUB 4500
                          PRINT DEPTH AND RANGE
      GOSUB 5000
REM
GOSUB 5500
REM
GOSUB 6000
PRINT 748
                          CALCULATE REFLECTION PATH DISTANCES
                          PRINT DISTANCES
               "ARE YCU FINISHED? (Y DR N)--"
      INPUT Z$
IF Z$="Y" THEN STOP
PRINT "SAME DATA? (Y OR N)--"
      INPUT Z4$
PRINT "SAME PARAMETERS? (Y OR N)--"
INPUT Z$
IF Z$="N" GOTO 115
Z2$="Y"
GOTO 127
      REM ***INITIALIZATION PROCECURE***
IF Z $="N" GOTO 525
PRINT "AUTOPEAK"
PRINT
      PRINT
PRINT
PRINT
               "SAMPLING FREQUENCY MUST BE FOUR TIMES THE"
"GREATEST FREQUENCY OF INTEREST."
      PRINT
PRINT
INFUT
PRINT
PRINT
PRINT
PRINT
INPUT
               "NUMBER OF POINTS PER BLOCK--"
N2
"MINIMUM TIME DIFFERENCE BETWEEN DIRECT PATH"
" AND FIRST REFLECTED PATH RECEPTION (IN"
PRINT " SAMPLES)--"
                D8
```

おんとう いいしまりせいある

```
PRINT "NUMBER OF POINTS TO BE USED FROM EACH PLOCK"
PRINT " (NUMBER OF POINTS PLUS DELAY MUST EE LESS"
PRINT " THAN NUMBER OF POINTS IN BLOCK)--"
         535
PRINT "THAN NUMBER CF POINTS IN BLOCK)--"
INPUT N1
PRINT "MAXIMUM LAG--"
INPUT 1:
PRINT "PRINT PEAK VALUES? (Y OR N)--"
INPUT 23
IF ZS="N" THEN PRINT "CONTINUING WITH CALCULATIONS"
IF ZS="N" THEN RETUPN
PRINT "IS THIS THE 1ST BLOCK OF A MULTIPLE RUN? (Y/N)--"
INPUT ZS
PRINT "SAMPLING FREQUENCY--"
INPUT S1
PRINT "SPEED OF SOUND (M/SEC)--"
INPUT CPRINT "DEPTH OF WATEP (M)--"
INPUT "NPUT H
PRINT "DEPTH OF RECEIVER (M)--"
INFUT "RETURN
RETURN
REM
PRINT "SWITCH TO HIGH SPEED."
IF Z2S="Y" THEN INPUT ON (2) V$
K1=0
INPUT ON (2) V$
IF OR J=1 TO 4 & STEP 6
V1$=""
FOR K=0 TO 5
IF V$(J+K,J+K)="" GOTO 1050
V1$=""
FOR K=0 TO 5
IF V$(J+K,J+K)="" GOTO 1050
V1$=""
INPUT Z1$
PRINT "CONTINUE?"
INPUT Z1$
PRINT "CONTINUER"
INPUT Z1
                                                                                                     N1 MAXIMUM LAG--"
A8=0
B8=C
                                            FOR I=0 TO N1-1
A8=A8+A(I)
B8=B8+B(I)
                                           B8=B8+B(I)

NEXT I

A8=A8/N1

B8=B8/N1

FOR I=O TO L1

N9=N1-I

S8=C

FOR J=O TO N9-1

IS=J+I

S8=S8+(A(J)-A8)*(B(I9)-B8)
                                           SE= SB+(A(J

NEXT J

Y(I) = S8/N9

NEXT I

RETURN

REM

REM

IF Y(1)>Y(
                                                                                                                                                                  ***DETERMINE INTERMEDIATE PEAK VALUES***
                                                                        Y(1)>Y(0) THEN E=1
```

£ ...

- Alle

```
2010 IF Y(1)<Y(0) THEN E=-1
          ***PRINT INTERMEDIATE PEAK VALUES***
```

```
315C IF ABS(M(I,1));
3155 IF ABS(M(I,1));
316C NEXT I
3165 R(1,0) = M8
317C R(1,1) = M(I8,C)
317C R(1,2) = M(I8,C)
318C RETURN
3185 REM
4000 REM ***
4005 PRINT
4010 PRINT "TIME DIF
                    ABS(M(I,1))>ABS(M8) THEN I8=I
ABS(M(I,1))>ABS(M8) THEN M8=M(I,1)
                                             ***PRINT TIME DIFFERENCES***
 ***CALCULATE SOURCE DEPTH AND S-R RANGE***
5010 PRINT "-----"
5015 PRINT TAB(9); "PEAK VALUES"
5020 PRINT TAB(5); "DEPTH"; TAB(19); "RANGE"
5030 PRINT USING " @@.@@@@ ",S(0),D(0)
5035 PRINT
504C PRINT
505C RETURN
505C RETURN
505C RETURN
5500 REM CALCULATE DISTANCES OF REFLECTED PATHS**
5510 T=SQR(D(0) 2-(R-S(C)) 2)
5515 REM CALCULATE DISTANCE OF SURFACE REFLECTION PATH
552C X=S(0)*17(R+S(0))
552C X=S(0)*17(R+S(0))
5530 U=SQR(X 2+S(C) 2)
5545 W=SQR(Y 2+R 2)
5545 REM CALCULATE DISTANCE OF BOTTOM REFLECTION PATH
5555 A=(H-S(0))*17(2*H-R-S(C))
5565 F=SQR(B 2+(H-R) 2)
5566 F=SQR(B 2+(H-R) 2)
5577 DI=E+F
8577 RETURN
5580 REM
            PRINT TAB(9); "PEAK VALUES"
PRINT TAB(5); "DEPTH"; TAB(19); "RANGE"
PRINT USING " @@.@@@@@ ",S(0),D(0)
PRINT
PRINT
```

PRINT PATH DISTANCES ***

6005 PRINT "SURFACE REFLECTION PATH DISTANCE IN METERS:"

6010 PRINT "SURFACE REFLECTION PATH DISTANCE IN METERS:"

6015 PRINT USING " @@@.@@@@@",DO

6020 PRINT "BOTTOM REFLECTION PATH DISTANCE IN METERS:"

6035 PRINT "BOTTOM REFLECTION PATH DISTANCE IN METERS:"

6040 PRINT USING " @@@.@@@@@",D1

6045 PRINT

6050 PRINT

6050 PRINT

6050 PRINT

6050 PRINT

6050 RETURN

6060 END

The second of th

COMPUTER PROGRAM DEVERB

```
*****************
COCCOCCOCC
                               DEVERB 10/21/77
JEANIE SAVAGE, PROGRAMMER
SPECIFICATIONS BY RICK BOSTIAN
IN THIS PROGRAM DEVERBERATION
IS PERFORMED IN THE FRE-
QUENCY DOMAIN.
LAST CORRECTION: 12/06/77
               INTEGER XGRID
INTEGER *2 IZ2,IZ3,IZ4,IZ5,IZ6,YES,IZ7
DATA YES/'Y '/
DIMENSION ISTACK(20),A(1000),B(1000),IARY(1000)
DIMENSION X(1000),Y(1000)
DIMENSION FINAL(1000,2),IBEG(20),IEND(20),ICASE(20)
COMMON SF,ISF,IBM,THETA,SIGMA,GAMMA,C,D,RCOLFF,N2,
&ISIZE,DB,DS,NBLK,IZ3,IZ4
CCCCC
                                      ***********
                                      INITIALIZATION ROUTINE
                    IREAD=0
                   PRINT 500
FORMAT('0', DEVERB')
PRINT 510
   500
                      RINT 510
FORMAT('0', NUMBER OF POINTS PER SIGNAL (PCWER OF 2)',
                  FÖRMAT(**), NUMBER OF POINTS PER SIGNAL (PCWER UP 2)

( 15)---)

READ 520, N2
FORMAT(15)

PRINT 530
FORMAT(**, 'IS THIS THE FIRST SIGNAL OF A MULTIPLE*,

( RUN? (Y/N)-')

READ 540, IZ2
FORMAT(A1)

PRINT 550
FORMAT(**, 'SAMPLING FREQUENCY (F9.3)---')

READ 560, SF
FORMAT(F9.3)

PRINT 570
FORMAT(**, 'DIRECT PATH DISTANCE (F9.5)---')

READ 580, D

READ 580, D
   510
   520
   530
   540
   550
   560
   570
                   READ 580, D
FORMAT (F9.5)
   580
                  FORMAT (F9.)
PRINT 590
FORMAT ( ' ' ' READ 580, DS
PRINT 600
FORMAT ( ' ' ' READ 580, D)
PRINT 610
PRINT 610
PRINT 610
                                                       , SURFACE PATH DISTANCE IN METERS (F9.5)-- )
   600
                                                       , BOTTOM PATH DISTANCE IN METERS (F9.5)--- )
                                                DB
                                                   ', 'SURFACE REFLECTION TIME IN MSEC (F9.5)--')
TS
                  FORMAT(' ', 'SURFACE REFLECTION TIME IN MSEC (F9.5)--')
READ 580, TS
TS=TS/1000
PRINT 620
FORMAT(' ', 'BOTTOM REFLECTION TIME IN MSEC (F9.5)--')
READ 580, TB
TB=TB/1000
PRINT 630
FORMAT(' ', 'BOTTOM REFLECTION COEFFICIENT (F9.5)--')
READ 58C, RCOEFF
WRITE(6,711)
FORMAT(' ', 'RMS WAVE HEIGHT (F9.5)--')
READ 580, SIGMA
PRINT 720
FORMAT(' ', 'SURFACE ANGLE IF INCIDENCE (IN RADIANS)',
S' (F9.5)--')
READ 580, THETA
PRINT 730
FORMAT(' ', 'BOTTOM PHASE SHIFT (F9.5)--')
READ 580, GAMMA
PRINT 640
   610
   620
   630
   711
   730
```

```
FORMAT(' ', 'SPEED OF SOUND (F9.3)--')

READ 560, C

PRINT 650

FORMAT(' ', 'FREQUENCY PLOT? (Y/N)--')

READ 540, IZ3

PRINT 655

FORMAT(' ', 'TIME PLOT BEFORE FFT? (Y/N)--')

READ 540, IZ7

IF(IZ7.NE.YES) GOTO 659

PRINT 657

FORMAT(' ', 'NUMBER OF POINTS TO BE PLOTTED (I5)--')

READ 520, INUM1

PRINT 660

FORMAT(' ', 'TIME PLOT AFTER FFT? (Y/N)--')

READ 540, IZ4

IF(IZ4.NE.YES) GOTO 672

PRINT 657

READ 520, INUM2

PRINT 675

FORMAT(' ', 'ALL BLOCKS? (Y/N)--')

READ 540, IZ5

IF(IZ5.EQ.YES) GOTO 1000

KPTR=0

PRINT 680
  640
  650
  655
   657
   659
   660
  672
              F(125.EQ.YES) GOTO 1000

KPTR=0

PRINT 680

FORMAT(' ', SPECIFIC BLOCKS (I2) (INPUT 99 WHEN',
&' FINISHED)--')

READ 700, ITEMP

FORMAT(I2)

IF(ITEMP.EQ.99) GOTO 1000

KPTR=KPTR+1

ISTACK(KPTR)=ITEMP

GOTO 690
   680
CCCCC
                                     ******
                                    READ DATA TAPE
  1000
                     IF(IREAD.EQ.1) GOTO 2000
                 PRINT 1005
FORMAT(' ','READY TO READ DATA TAPE')
IF(IZ2.NE.YES) GOTO 1020
READ (5,1010) KEND
FORMAT(816)
DO 1030 I=1,N2,8
ITEMP=I+7
PEAD(5,1010) (IARY(J).J=I.ITEMP)
   1005
   101C
102C
                  RÉAD(5,1010) (IARY(J),J=I,ITEMP)
CONTINUE
   1030
00000
                                    PRINT 1501
FORMAT(' ', 'CONTINUING WITH CALCULATIONS')
DO 1510 I=1,N2
TIME=(I-1)/SF
IF(TIME.LT.TS) GOTO 1510
ISF=I
                 ISF=I
GOTO 1520
CONTINUE
ISF=N2+1
GOTO 1540
DO 1530 I=1,N2
TIME=(I-1)/SF
IF(TIME.LT.TB) GOTO 1530
   151C
                   IBM=I
                  GOTO 1550
CONTINUE
IBM=N2+1
1530
1540
C
                  ***DETERMINE NUMBER OF POINTS IN EACH SECTOR***
NPT1=ISF-1
   1550
```

```
NPT2=IBM-ISF
IF(IBM.LT.ISF) NPT2=ISF-IBM
NPT3=N2-IBM+1
               IF(IBM.LT.ISF) NPT3=N2-ISF+1
  CCCCCC
                            *****
                            DETERMINE BLOCK SIZE
               ***FIND SMALLEST AND MIDDLE NUMBER OF POINTS IN SECTOR ISMALL=MINO(NPT1,NPT2)
ISMALL=MINO(NPT3, ISMALL)
IF(ISMALL.EC.NPT1) MIDDLE=MINO(NPT2,NPT3)
IF(ISMALL.EC.NPT2) MIDDLE=MINO(NPT1,NPT3)
IF(ISMALL.EC.NPT3) MIDDLE=MINO(NPT1,NPT2)
    1700
            ***DETERMINE NUMBER OF POINTS PER BLOCK***
) IF(IABS(MIDDLE/2-ISMALL).GT.(MIDDLE-ISMALL))
&ISIZE=ISMALL
IF(ISIZE.EQ.ISMALL) GOTO 2200
DO 2010 K=1,30
IF(ISMALL.EQ.MIDDLE/K) GOTO 2020
IF((ISMALL.EQ.MIDDLE/K).LT.(ISMALL-MIDDLE/(K+1)))
&GCTO 2020
CONTINUE
ISIZE-MIDDLE/K
    2000
    2010
                 ISIZE=MIDDLE/K
  c
              ***DETERMINE NUMBER OF BLOCKS PER SECTOR***
NBLK1=NPT1/ISIZE
NBLK2=NPT2/ISIZE
    2200
               NBLK3=NPT3/ISIZE
C
C
2300
              ***DETERMINE NUMBER OF POINTS SKIPPED EACH SECTOR***
NSKIP1=NPT1-NBLK1*ISIZE
NSKIP2=NPT2-NBLK2*ISIZE
NSKIP3=NPT3-NBLK3*ISIZE
  CC
              ***PRINT SECTOR INFORMATION***
WRITE(6,2405) ISIZE
_FORMAT('0','ISIZE=',I3)
   IT1=1
    IT2=2
    IT3=3
    WRITE(6,2410) IT1,NBLK1,NSKIP1
2410 FORMAT("0","SECTOR ",II," CONTAINS ",I2," BLGCKS,",
$2X,I3," POINTS SKIPPED")
    WRITE(6,241C) IT2,NBLK2,NSKIP2
    WRITE(6,241C) IT3,NBLK3,NSKIP3
 C
C
C
C
2500
                            *********
                            BUILD STACK IF PROCESSING ALL BLOCKS
              IF(IZ5.NE.YES) GOTO 2700

NUMBLK=N2/ISIZE

DO 2510 I=1, NUMBLK

ISTACK(I)=I

CONTINUE

KETP-NUMBLK
  2510
               KPTR=NUMBLK
 C
C
C
C
C
2700
C
C
                            *****************
                            I6=0
               ***BLOCKS IN 1ST SECTOR***
ITEMP=NSKIP1+1
DO 2710 I=1,NBLK1
               I6=I6+1
IBEG(I6)=ITEMP
IEND(I6)=ITEMP+ISIZE-1
```

```
ICASE(I6)=1
ITEMP=IEND(I6)+1
C 2710
              ***BLOCKS IN 2ND SECTOR***
              TIEMP=ISF

ITEMP=ISF

ITEMP1=NSKIP2

DO 2720 I=1,NBLK2

I6=I6+1
              I BEG( 16 )= ITEMP
I END( 16 )= ITEMP + I S I ZE - 1
I TEMP = I END( 16 ) + 1
              ITEMP=1 END(10)+1
ICASE(16)=2
IF(ISF.GT.IBM) ICASE(16)=3
IF(ITEMP2.EQ.O) GOTO 2720
ITEMP=ITEMP+1
ITEMP1=ITEMP1-1
 2720
C
C
              CONTINUE
             ***BLOCKS IN 3RD SECTOR***
DO 2730 I=1,NBLK3
             16=16+1
 2730
C
C
C
C
C
C
C
C
                          ********
                         PRINT TIME PLOT BEFORE FFT ************
             IF(IZ7.NE.YES) GOTO 3000
IF(INUM1.GT.1000) GOTO 2910
NUM=INUM1
           NUM=INUM1

KPLGTS=1

GOTO 2920

KPLOTS=INUM1/1000+1

NUM=1000

DC 2940 I=1,KPLGTS

IF((I.EQ.KPLGTS).AND.(I.NE.1)) NUM=INUM1-(KPLGTS-1)

E*1000

DC 2930 J=1,NUM

Y(J)=FLGAT(IARY((I-1)*1000+J))

X(J)=((I-1)*1000+J-1)/SF

CONTINUE
  2910
 2920
              CONTINUE
  2930
             XGRID=NUM/10
IF(MOD(NUM,10).NE.O) XGRID=XGRID+1
CALL PLOTDV(X,Y,NUM,XGRID,3,NBLK)
CONTINUE
 2940
C
C
C
C
C
C
C
C
C
C
                          *******
                          PROCESS BLOCKS
                          *******
             DO 3110 I=1,KPTR
NBLK=ISTACK(I)
              ***DETERMINE BOUNDARIES AND CASE OF BLOCK***
              IBEGO=IBEG(NBLK)
IENDO=IEND(NBLK)
ICASEO=ICASE(NBLK)
   ***PROCESS BLOCK***
PRINT 3015, IBEGO, IENDO, ICASEO
3015 FORMAT(///* ", "IBEG=", I4, 4X, "IEND=", I4, 4X, "ICASE=", I1)
             K=1
DO 3020 J=IBEGO, IENDO
A(K)=FLOAT(IARY(J))
B(K)=0.0
             K=K+1
CONTINUE
  3020
```

```
CALL SIGNAL (A,B,FINAL,IBEGO,ICASEO,ISIZE)

IF((I.NE.1).OR.(NSKIP1.EQ.O)) GOTC 3040

DC 3030 J=1,NSKIP1

SLOPE=FINAL (IBEG(I)+1,1)-FINAL (IBEG(I),1)

FINAL(J,1)=-SLOPE+FINAL (IBEG(I),1)

SLOPE=FINAL (IBEG(I)+1,2)-FINAL (IBEG(I),2)

FINAL(J,2)=-SLOPE+FINAL (IBEG(I),2)

CONTINUE

IF((I.GT.NBLK1+NBLK2).OR.(I.LE.NBLK1+1)) GOTO 3110

IF(NSKIP2.EC.O) GOTO 3110

DO 3050 J=1,NSKIP2

ITEMP=IEND(NBLK1+I)+1

TEMP=FINAL (ITEMP+1,1)-FINAL (ITEMP-1,1)

FINAL (ITEMP+1,2)-FINAL (ITEMP-1,2)

FINAL (ITEMP+1,2)-FINAL (ITEMP-1,2)

FINAL (ITEMP+1,2)=FINAL (ITEMP-1,2)+TEMP

CONTINUE

CONTINUE
         3050
        3110 CONTINUE
C
C
C
C
C
C
C
C
C
                                                                      *********
                                                                     PRINT TIME PLOT AFTER FFT
                                  IF(IZ4.NE.YES) GO
DO 3308 I=1,KPTR
NBLK=ISTACK(I)
N=ISIZE
IBEGO=IBEG(NBLK)
IENDO=IEND(NBLK)
                                                                                                                        GOTO 3500
                                   TENDOTIENDO

K=1

DC 3304 J=IBEGO, IENDO

A(K)=FINAL(J,1)

B(K)=FINAL(J,2)
       X=K+1

3304 CONTINUE

CALL CFFT2(A,B,N,N,N,1)

DO 3306 J=1,ISIZE

FINAL(IBEGO+J-1,1)=A(J)
                           DO 3306 J=1, ISIZE
FINAL(IBEGO+J-1,1)=A(J)
6 CONTINUE
IF(NSKIP1.EC.O) GOTO 3313
DO 3312 I=1,NSKIP1
FINAL(I,1)=(FINAL(IBEG(1),1)/(NSKIP1+1))*I
2 CONTINUE
3 IF(NSKIP2.EC.O) GOTO 3315
DO 3314 I=1,NSKIP2
ITEMP=(NBLK1+I)+1
TEMP=FINAL(ITEMP+1,1)-FINAL(ITEMP-1,1)
FINAL(ITEMP+1,1)=FINAL(ITEMP-1,1)+TEMP
4 CCNTINUE
5 IF(INUM2.GT.IEND(KPTR))INUM2=IEND(KPTR)
IF(INUM2.GT.1000) GOTO 3310
NUM=INUM2
KPLOTS=INUM2/1000+1
NUM=INUM2
KPLOTS=INUM2/1000+1
NUM=1000
DO 3340 I=1,KPLOTS
IF((I.EQ.KPLOTS).AND.(I.NE.1)) NUM=INUM2-(KPLCTS-1)
8*1000
PC 3330 J=1,NUM
Y(J)=FINAL((I-1)*1000+J,1)
Y(J)=Y(J)/FLOAT(ISIZE)
X(J)=((I-1)*1000+J-1)/SF
CCNTINUE
XGRID=NUM/10
IF(MOD(NUM,10).NE.0) XGRID=XGRID+1
CALL PLOTDV(X,Y,NUM,XGRID,2,NBLK)
CCNTINUE
        3306
3308
 3310
  3320
  3330
 3340
C
C
C
                                                                       ******
                                                                      CONCLUSION
```

*

10 mm

```
C
3500
3510
                                       *****
                     PRINT 3510
FORMAT(' ', 'ARE YOU FINISHED? (Y/N)--')
READ 540, IZ6
IF(IZ6: EQ.YES) STOP
                     IREAD=1
GOTO 672
DEBUG SUBCHK
                     END
   0000
                                                                           ****SIGNAL SUBROUTINE**
                 SLBROUTINE SIGNAL (A,B,FINAL,IBEGO,ICASEO,N)
DIMENSION FINAL (1000,2)
DIMENSION X(1000),Y(1000),A(1000),B(1000)
INTEGER*2 YES,IZ3,IZ4
CCMMON SF,ISF,IBM,THETA,SIGMA,GAMMA,C,D,RCOEFF,N2,
&ISIZE,DB,DS,NBLK,IZ3,IZ4
INTEGER XGRID
REAL KO
DATA YES/'Y '/
  00000100000000
                                       *****
                                       PERFORM FFT
                                       *****
                     CALL CFFT2(A,B,N,N,N,-1)
                                       **********
                                      PERFORM CORRECTIONS
                    DO 520 I=1,N

FINAL(IBEGO+I-1,1)=A(I)

FINAL(IBEGO+I-1,2)=B(I)

FREQ=(I-1)*SF/N

PI=3.14159

KO=2.*PI*FREQ/C

IF(ICASEO.EQ.1) GOTO 52

IF(ICASEO.EQ.3) GOTO 51
                                                                    GOTO 520
GOTO 510
                    ***CORRECTION FOR SURFACE REFLECTION***

G=((4.*PI*SIGMA*FREQ/C)*COS(THETA))**2

ITEMP=(IBEGO+I-1)-(ISF-1)

TMAG=SQRT(FINAL(ITEMP,1)**2+FINAL(ITEMP,2)**2)

TPHASE=ATAN2(FINAL(ITEMP,2),FINAL(ITEMP,1))

S=D/DS*EXP(-G/2.)*TMAG

SPHASE=TPHASE-(DS-D)*KO-PI

FINAL(IBEGO+I-1,1)=FINAL(IBEGO+I-1,1)-S*COS(SPHASE)

FINAL(IBEGO+I-1,2)=FINAL(IBEGO+I-1,2)-S*SIN(SPHASE)

IF(ICASEO.EQ.2) GOTO 520
C
510
                    ***CORRECTION FOR BOTTOM REFLECTION***
ITEMP=(IBEGC+I-1)-(IBM-1)
TMAG=SQRT(FINAL(ITEMP,1)**2+FINAL(ITEMP,2)**2)
TPHASE=ATAN2(FINAL(ITEMP,2),FINAL(ITEMP,1))
S=RCOEFF*D/DB*TMAG
SPHASE=TPHASE-(DB-D)*KO+GAMMA
FINAL(IBEGO+I-1,1)=FINAL(IBEGO+I-1,1)-S*CCS(SPHASE)
FINAL(IBEGO+I-1,2)=FINAL(IBEGO+I-1,2)-S*SIN(SPHASE)
CONTINUE
      520
  CCCC1000
                                       *******
                                      PRINT FREQUENCY AND TIME PLCTS ***********
                     IF(IZ3.NE.YES) GOTO 1020
                     ***FREQUENCY PLOT***
                     K=0
```

14.10

```
ITEMP=N/2
DO 1010 I=1,ITEMP
                     K=K+1

Y(K)=FINAL(IBEGO+I-1,1)**2+FINAL(IBEGO+I-1,2)**2

Y(K)=10*ALOG10(Y(K)*D)

X(K)=(K-1)*SF/N

CONTINUE
1010
                    XGRID=NUM/1C

IF(MOD(NUM,10).NE.O) XGRID=XGRID+1

CALL PLOTOV(X,Y,NUM,XGRID,1,NBLK)

RETURN
                      NUM=K
   1020
                      CEBUG SUBCHK
                      END
00000
                                                                                  **** PLOT SUBROUTINE ***
                     SUBROUTINE PLOTOV(X,Y,N,XGRID,M,NE)
INTEGER D,XGRID,YGRID,AXIS
DIMENSION Y(1000),C7(101),O(6),X(1000),KAXIS(51)
DATA IDASH/1H-/,ISTAR/1H*/,IDOT/1H-/
DATA IBAR/1HI/,IPLUS/1H+/,IBLANK/1H/,IX/1HX/
                     AXIS=51
YGRID=6
                     XGRID=XGRID+1
2120
                     N1=N-1
                    N1=N-1

Y6=Y(1)

Y1=Y(1)

D0 2200 I=1,N

IF(Y6-Y(I).GE.O.O) GOTO 2180

Y6=Y(I)

IF(Y1-Y(I).LE.O.O) GOTO 2200

Y1=Y(I)

CONTINUE

S=Y1*(AXIS-1)/(Y6-YI)
2180
                    CONTINUE
S=Y1*(AXIS-1)/(Y6-Y1)
X1=X(1)
X10=X(N)
0(1)=Y1
0(6)=Y6
IIX=XGRID-1
DC 2410 I=1,IIX
C7(I)=X((I-1)*10+1)
CONTINUE
C7(XGRID)=C7(XGRID-1)+10*(X(2)-X(1))
IF(N.EQ.(XGRID-1)*10) C7(XGRID)=X(N)
IIY=YGRID-1
DC 2440 I=2,IIY
0(I)=(FLOAT(I-1)*(Y6-Y1)/FLOAT(YGRID-1))+Y1
CONTINUE
2200
2410
                   O(I)=(FLOAT(I-1)*(Y6-Y1)/FLOAT(YGRID-1))+Y1
CONTINUE
WRITE(6,2460)
FORMAT(///,'')
IF(M.NE.1) GOTD 2485
PRINT 2470,NB
FORMAT('0',32X,'BLOCK',1X,I2)
IF(M.EQ.1) PRINT 2486
FCRMAT(''',27X,'DB''S VS. FREQUENCY')
IF(M.EQ.2) PRINT 2488
FORMAT(''',23X,'VOLTAGE VS. TIME (AFTER FFT)')
IF(M.EQ.3) PRINT 2487
FORMAT(''',23X,'VOLTAGE VS. TIME (BEFORE FFT)''
WRITE(6,2500) (O(I),I=1,YGRID)
FORMAT(9X,11(1PE10.2))
S1=(X10-X1)/IO.0*(XGRID-1)
D=1
L1=1
2440
2460
2470
2485
2486
2488
                                                                                                                        TIME (BEFORE FFT) ')
2487
2500
                    D=1
L1=1
L=1
IZ=IFIX(-S+1.5)
ITEMP=(XGRID-1)*10+1
DO 2900 I1=1,ITEMP
IF(N.LT.II) GOTO 2510
```

COMPUTER PROGRAM TDEVERB

```
* ****************
COCOCOCOCO
                                  TDEVERB 12/07/77 *
JEANIE SAVAGE, PRCGRAMMER *
SPECIFICATIONS BY RICK BOSTIAN *
IN THIS PROGRAM DEVERBERATION *
IS PERFORMED IN THE TIME *
DOMAIN.
                      * LAST CORRECTION: 12/08/77 **************
                     INTEGER XGRID
INTEGER*2 122,123,124,125,126,YES,127
DATA YES/'Y '/
DIMENSION ISTACK(20),A(1000),B(1000),IARY(1000)
DIMENSION X(1000),Y(1000)
DIMENSION FINAL(1000),IBEG(20),IEND(20),ICASE(20)
                                           *********
                                           INITIALIZATION ROUTINE
                     IREAD=0
PRINT 500
FORMAT('O', 'DEVERB')
PRINT 510
FORMAT('O', 'NUMBER OF POINTS PER SIGNAL (PCWER OF 2)',
    500
                    FORMAT(*0', NUMBER OF POINTS PER SIGNAL (PC)

(15)--')

READ 520, N2
FORMAT(15)
FORMAT(15)
PRINT 550
FORMAT(*', SAMPLING FREQUENCY (F9.3)--')

READ 560, SF
FORMAT(F9.3)
PRINT 570
FORMAT('', DIRECT PATH DISTANCE (F9.5)--')

READ 580, D
FORMAT(F9.5)
PRINT 590
    510
    520
540
    550
    560
    570
                   FORMAT(F9.5)
PRINT 590
FORMAT('', SURFACE PATH DISTANCE IN METERS (F9.5)--')
READ 580, DS
PRINT 600
FORMAT('', BOTTCM PATH DISTANCE IN METERS (F9.5)--')
READ 580, DB
PRINT 610
FORMAT('', SURFACE REFLECTION TIME IN MSEC (F9.5)--')
READ 580, TS
TS=TS/1000
PRINT 620
FORMAT('', BOTTCM REFLECTION TIME IN MSEC (F9.5)--')
READ 580, TB
TB=TB/1000
PRINT 630
FORMAT('', BOTTCM REFLECTION CCEFFICIENT (F9.5)--')
READ 580, RCOEFF
WRITE(6,711)
FORMAT('', RMS WAVE HEIGHT (F9.5)--')
READ 580, SIGMA
PRINT 720
FORMAT('', SURFACE ANGLE OF INCIDENCE (IN RADIANS)',
&' (F9.5)--')
READ 580, THETA
PRINT 730
FORMAT('', BOTTOM PHASE SHIFT (F9.5)--')
READ 580, GAMMA
PRINT 640
FORMAT('', SPEED OF SOUND (F9.3)--')
    580
                      PRINT 590
FORMAT (
    590
    600
    610
    620
    630
    711
    720
    730
                     READ 580, GAMMA
PRINT 640
FORMAT(* ', SPEED OF SOUND (F9.3)--*)
    640
                    READ 560, C
PRINT 645
FORMAT(* *, *BLOCK SIZE (I5)--*)
READ 520, ISIZE
PRINT 650
       645
```

```
FORMAT(' ', 'FREQUENCY PLOT BEFORE CORRECTIONS?',
(Y/N)--')
READ 540, IZ3
PRINT 652
FORMAT(' ', 'FREQUENCY PLOT AFTER CORRECTIONS? (Y/N)--')
               PRINT 652
FCRMAT(' ', 'FREQUENCY PLOT AFTER CORRECTIONS? (Y/N)--')
READ 540, IZ2
PRINT 655
FORMAT(' ', 'TIME PLOT BEFORE CCRRECTIONS? (Y/N)--')
READ 540, IZ7
IF(IZ7.NE.YES) GOTO 659
PRINT 657
FORMAT(' ', 'NUMBER OF POINTS TO BE PLOTTED (I5)--')
READ 520, INUM1
PRINT 660
FORMAT(' ', 'TIME PLOT AFTER CORRECTIONS? (Y/N)--')
READ 540, IZ4
IF(IZ4.NE.YES) GOTO 672
PRINT 657
READ 520, INUM2
PRINT 675
FORMAT(' ', 'ALL BLOCKS? (Y/N)--')
READ 540, IZ5
IF(IZ5.EQ.YES) GOTO 1000
KPTR=0
PRINT 680
FORMAT(' ', 'SPECIFIC BLOCKS (I2) (INPUT 99 WHEN FINIS READ 700, ITEMP FORMAT(')
IF(ITEMP.EQ.99) GOTO 1000
KPTR=KPTR+1
ISTACK(KPTR)=ITEMP
GOTO 690
  655
  657
   659
   660
  680
690
700
                  ISTACK (KPTR )=ITEMP
00000
                                 *****
                                 READ DATA TAPE
                    IF(IREAD.EQ.1) GOTO 2500
   1000
                PRINT 1005

FORMAT(" ', 'READY TO READ DATA TAPE")

FORMAT(816)

DO 1030 I=1,N2,8

ITEMP=I+7

READ(5,1010) (IARY(J),J=I,ITEMP)

CONTINUE
  1005
1010
1020
CCCCC
                                  *********
                                  DETERMINE DIVISION BOUNDARIES
                PRINT 1501
FORMAT(' ', 'CONTINUING WITH CALCULATIONS')
DO 1510 I=1,N2
TIME=(I-1)/SF
IF(TIME.LT.TS) GOTO 1510
   1500
                 ISF=I
                GOTO 1520
CONTINUE
ISE=N2+1
  1510
                GGTO 1540

CO 1530 I=1,N2

TIME=(I-1)/SF

IF(TIME-LT-TB) GOTO 1530
   1520
                  IBM=I
                GOTO 2500
CONTINUE
   1530
                                  ******************
                                 BUILD STACK IF PROCESSING ALL BLOCKS
```

The state of the s

```
C
2500
            IF(IZ5.NE.YES) GOTO 2900
NUMBLK=N2/ISIZE
DO 2510 I=1, NUMBLK
ISTACK(I)=I
             CONTINUE
251C
             KPTR=NUMBLK
5900
C
C
C
                         ********
                         PRINT TIME PLOT BEFORE CORRECTIONS
            IF(IZ7.NE.YES) GOTC 3000
IF(IZ5.NE.YES) GOTO 2950
            ***TIME PLOT FOR ENTIRE SIGNAL***
IF(INUM1.GT.1000) GOTO 2910
             NUM=INUM1
             KPLOTS=1
GGTO 2920
KPLOTS=INUM1/1000+1
2910
            NUM=1000
DC 2940 I=1,KPLOTS
IF((I.EQ.KPLOTS).AND.(I.NE.1)) NUM=INUM1-(KPLCTS-1)*
2920
           %1C00
DG 2930 J=1,NUM
Y(J)=FLOAT(IARY((I-1)*1000+J))
X(J)=((I-1)*1000+J-1)/SF
            CONTINUE
XGRID=NUM/10
IF(MOD(NUM, 10).NE.0) XGRID=XGRID+1
2930
            CALL PLOTDV(X,Y,NUM,XGRID,3,NBLK)
CONTINUE
GCTO 3000
             NBLK=-
2940
            ***TIME PLOT FOR INDIVIDUAL BLOCKS***
D0 2970 I=1,KPTR
NBLK=ISTACK(I)
D0 2960 J=1,ISIZE
Y(J)=FLOAT(IARY(NBLK-1)*ISIZE+J)
X(J)=((NBLK-1)*ISIZE+J-1)/SF
CCNTINUE
XGRID=ISIZE/10
IF(MOD(ISIZE,10).NE.0) XGRID=XGRIC+1
CALL PLOTDV(X,Y,ISIZE,XGRID,3,NBLK)
CONTINUE
  2950
  2960
2970
CCCCCCCC
                         ******
                         PERFORM CORRECTIONS
  3000 DC 3010 I=1,N2
    FREQ=(I-1)*SF/ISIZE
    PI=3.14159
    G=((4.*PI*SIGMA*FREQ/C)*COS(THETA))**2
    FINAL(I)=FLOAT(IARY(I))
    ITEMP=I-ISF+1
    ITEMP2=I-IBM+1
    IF(I.GE.ISF) FINAL(I)=FINAL(I)+EXP(-G/2.)*D*DS*
    &FINAL(ITEMP)
    IF(I.GE.IBM) FINAL(I)=FINAL(I)-RCCEFF*D*DB*
    &FINAL(ITEMP2)
3010 CONTINUE
  3010 CONTINUE
                       ***********
                       PRINT TIME PLOT AFTER CORRECTIONS
             IF(IZ4.NE.YES) GOTO 3400
```

```
IF(125.NE.YES) GOTO 3350
 ***TIME PLOT FOR ENTIRE SIGNAL***

IF(INUM2.GT.1000) GOTO 3310

NUM=INUM2

KPLOTS=1

GOTO 3320

3310 KPLOTS=INUM2/1000+1

NUM=1000

3320 DC 3340 I=1,KPLOTS

IF((I.EQ.KPLOTS).AND.(I.NE.1)) NUM=INUM2-(KPLCTS-1)*

Elogo
 $1000

DD 3330 J=1,NUM

Y(J)=FINAL((I-1)*1000+J)

X(J)=((I-1)*1000+J-1)/SF

3330 CONTINUE

XGRID=NUM/10

IF(MOD(NUM,10).NE.0) XGRID=XGRID+1

NB) K=-I
  CALL PLOTDV(X,Y,NUM,XGRID,2,NBLK)
3340 CONTINUE
GCTO 3400
 ***TIME PLOT FOR INDIVIDUAL BLOCKS***

3350 DD 3370 I=1,KPTR

NELK=ISTACK(I)

DD 3360 J=1,ISIZE

Y(J)=FINAL((NBLK-1)*ISIZE+J)

X(J)=((NBLK-1)*ISIZE+J-1)/SF

3360 CONTINUE

XGRID=ISIZE/10

IF(MODISIZE,10).NE.0) XGRID=XGRIC+1

CALL PLCTDV(X,Y,ISIZE,XGRID,2,NELK)

3370 CONTINUE
  3370 CONTINUE
CCCCCC
                           *******
                           PRINT FREQUENCY PLOTS
                           *****
  3400 IF(IZ3.NE.YES) GOTO 3450
              ***FREQUENCY PLOT BEFORE CORRECTIONS***
              DO 3430 I=1, KPTR

NBLK=ISTACK(I)

DC 3410 J=1, ISIZE

A(J)=FLOAT(IARY((NBLK-1)*ISIZE+J))
 ***FREQUENCY PLOT AFTER CORRECTIONS***
IF(IZ2.NE.YES) GOTO 3500
DO 3480 I=1,KPTR
NBLK=ISTACK(I)
DC 3460 J=1,ISIZE
A(J)=FINAL((NBLK-1)*ISIZE+J)
B(J)=0.0
CONTINUE
CALL CFFT2(A,B,ISIZE,ISIZE,ISIZE,-1)
ITEMP=ISIZE/2
DO 3470 J=1,ITEMP
  3450
```

*

War do The

```
Y(J)=A(J)**2+B(J)**2
Y(J)=10.*ALCG10(Y(J))
X(J)=(J-1)*SF/ISIZE

3470 CCNTINUE
XGRID=ITEMP/10
IF(MOD(ITEMP,10).NE.0) XGRID=XGRIC+1
CALL PLOTDV(X,Y,ITEMP,XGRID,4,NBLK)
     CALL PLO
348
CC
CC
CC
3510
                                                         *****
                                                        CONCLUSION
                           PRINT 3510
FORMAT('', 'ARE YOU FINISHED? (Y/N)--')
READ 540, IZ6
IF(IZ6.EQ.YES) STOP
IREAD=1
GCTO 672
DEBUG SUBCHK
                             END
000000
                                                                                                            ****PLOT SUBROUTINE***
                            SUBROUTINE PLOTDV(X,Y,N,XGRID,M,NE)
INTEGER D,XGRID,YGRID,AXIS
DIMENSION Y(1000),C7(101),O(6),X(1000),KAXIS(51)
DATA IDASH/1H-/,ISTAR/1H*/,IDOT/1H-/
DATA IBAR/1HI/,IPLUS/1H+/,IBLANK/1H/,IX/1HX/
                             AXIS=51
YGRID=6
XGRID=XGRID+1
                         AXIS=51
YGRID=6
XGRID=XGRID+1
N!=N-1
Y6=Y(1)
Y1=Y(1)
D0 2200 I=1,N
IF(Y6-Y(I).GE.O.O) GOTO 2180
Y6=Y(1)
IF(Y1-Y(I).LE.O.O) GOTO 2200
Y1=Y(I)
CONTINUE
S=Y1*(AXIS-1)/(Y6-Y1)
X10=X(N)
O(1)=Y1
O(6)=Y6
IIX=XGRID-1
DC 2410 I=1 IIX
C7(I)=X((I-1)*10+1)
CONTINUE
C7(XGRID)=C7(XGRID-1)+10*(X(2)-X(1))
IF(N.EQ.(XGRID-1)*10) C7(XGRID)=X(N)
IIY=YGRID-1
DO 2440 I=2,IIY
O(I)=(FLOAT(I-1)*(Y6-Y1)/FLOAT(YGRID-1))+Y1
CONTINUE
WRITE(5,2460)
FORMAT(///,'')
IF(NB.GT.O) GOTO 2466
NB=-NB
PRINT 2465, NB
FORMAT(///,'')
IF(NB.GT.O) GOTO 2466
NP=-NB
PRINT 2465, NB
FORMAT('0', 32X,'PLOT',1X,I2)
GOTO 2485
PRINT 2470,NB
FORMAT('0', 32X,'BLOCK',1X,I2)
IF(M.EQ.1) PRINT 2486
FORMAT('', 17X,'DB''S VS. FREQUENCY (BEFORE CORRECTION IF(M.EQ.2) PRINT 2488
FORMAT('', 20X,'VCLTAGE VS. TIME (AFTER CORRECTIONS)')
 2120
 2180
 2200
 2410
 2440
 2460
     2465
 2466
2470
2485
2486
 2488
```

```
IF(M.EQ.3) PRINT 2487

PARMAT(' ', 20X, 'VOLTAGE VS. TIME (BEFORE CORRECTIONS)')

IF(M.EQ.4) PRINT 2489

2489 FCRMAT(' ', 17X, 'DB''S VS. FREQUENCY (AFTER ',

&'CORRECTIONS)')

WRITE(6,2500) (D(I), I=1, YGRID)

FORMAT(9X,11(1PE10.2))

SI=(X10-X1)/10.0*(XGRID-1)

D=1
2487
2500
  D=1
L1=1
L=1
IZ=IFIX(-S+1.5)
ITEMP=(XGRID-1)*10+1
D0 2900 I1=1,ITEMP
IF(N.LT.I1) GOTO 2510
YTEMP=(Y(I1)*FLOAT(YGRID-1)*10.0/(Y6-Y1))-S

2510 IF(L1.GT.L) GOTO 2760
D0 2650 IP=1,AXIS
CONTINUE
DC 2680 I=1,AXIS,10
KAXIS(I)=IPLUS

2680 CONTINUE
IF(N.LT.I1) GOTO 2720
IF((Y1.LE.O.O).AND.(O.O.LE.Y6)) KAXIS(IZ)=ICOT
KAXIS(IY)=ISTAR
2720 WRITE(6,2725) C7(D),(KAXIS(J),J=1,AXIS)
2725 FGRMAT(IPE13.2,2X,115A1)
L1=L1+10
D=D+1
GCTD 2370
2760 D0 2780 IP=1,AXIS
CONTINUE
DC 2810 I=1,AXIS,10
KAXIS(I)=IBLANK
C780 CONTINUE
IF(N.LT.I1) GOTO 2860
IF((Y1.LE.O.O).AND.(O.O.LE.Y6)) KAXIS(IZ)=ICOT
KAXIS(IY)=ISTAR
2810 CONTINUE
IF(N.LT.I1) GOTO 2860
IF((Y1.LE.O.O).AND.(O.O.LE.Y6)) KAXIS(IZ)=ICOT
KAXIS(IY)=ISTAR
2810 CONTINUE
IF(N.LT.I1) GOTO 2860
IF((Y1.LE.O.O).AND.(O.O.LE.Y6)) KAXIS(IZ)=ICOT
KAXIS(IY)=ISTAR
2810 CONTINUE
IF(N.LT.II) GOTO 2860
IF((Y1.LE.O.O).AND.(O.O.LE.Y6)) KAXIS(IZ)=ICOT
KAXIS(IY)=ISTAR
2850 WRITE(6,2865) (KAXIS(J),J=1,AXIS)
286C WRITE(6,2865) (KAXIS(J),J=1,AXIS)
2870 L=L+1
IF(L.GT.(XGRID-1)*10+2) GOTO 2910
                                  L1=1
 2650
 2680
2720
2725
2760
 2780
 2810
286C
2865
2870
                                IF(L.GT.(XGRID-1)*10+2) GOTO 2910
CONTINUE
RETURN
CEBUG SUBCHK
 2900
2910
0000
                                                                                                                    ***FOURIER TRANSFORM SUBROUTINE***
                                  SUBROUTINE CFFT2(A,B,NTOT,N,NSPAN,ISN)
```

LIST OF REFERENCES

- 1. Naval Undersea Warfare Center Technical Note 150,
 Requirements of a Method for Locating Underwater
 Bio-Acoustic Sources, pp. 3-8, by W. C. Cummings,
 July 1968,
- 2. Woods Hole Oceanographic Institution Report 71-60,
 Four Hydrophone Array for Acoustic Three-Dimensional
 Location, by W. A. Watkins and W. E. Schevill,
 pp. 5-8, October 1971.
- 3. Thomas, J. B., Statistical Communication Theory, pp. 85-92, John Wiley and Sons, Inc., New York, 1969.

The second of the second of the second

- Clay, C. S. and Medwin, H., <u>Acoustical Oceanography</u>, pp. 78-96, John Wiley and Sons, Inc., New York, 1977.
- 5. Clay, C. S., Medwin, H., and Wright, W. M., "Specularly Scattered Sound and the Probability Density Function of a Rough Surface," The Journal of the Acoustical Society of America, v. 53, n. 6, pp. 1677-1682, 1973.

INITIAL DISTRIBUTION LIST

Comment of the Commen

		No.	Copie
1.	Director of Defense Research and Engineering Office of the Secretary of Defense Washington, D.C. 20301 ATTN: Office, Assistant Director (Research)		1
2.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		2
3.	Office of Naval Research Arlington, Virginia 22217 ATTN: (Code 480) ATTN: (Code 460) ATTN: (Code 102-OS) ATTN: (Code 102IP)		3 1 1 6
4.	Commander Naval Oceanographic Office Washington, D.C. 20390 ATTN: (Code 1640) ATTN: (Code 70)		1 1
	NODC/NOAA Rockville, Maryland 20882		1
5,	Director Naval Research Laboratory Washington, D.C. 20375 ATTN: Library, Code 2620		6
6.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940		2
7.	Department Chairman, Code 61 Department of Physics and Chemistry Naval Postgraduate School Monterey, California 93940		2
8.	Professor H. Medwin, Code 61Md Department of Physics and Chemistry Naval Postgraduate School Monterey, California 93940		7

		No. Copies
9.	Professor O, B, Wilson, Code 61W1 Department of Physics and Chemistry Naval Postgraduate School Monterey, California 93940	1
.0.	LCDR Richard M. Bostian, USN 455 San Bernabe Drive Monterey, California 93940	1

The second of th