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CHAPTER I

INTRODUCTION

During the past fifteen years, there has been considerable
effort expended to apply engineering knowledge and techniques
to investigate the functions of biological systems and specifically
those of the human body. This work spans the spectrum from
attempts to improve atheletic performance to the development
of highly sophisticated medical technology. The work described
in this paper is an attempt to apply an engineering approach
to the investigation of the dynamic response of the cervical-
thoracic transregional joint of the human spine.

The spinal column has received significant attention in
the biomechanical area due to the seriousness and high incidence
of injuries resulting from athletic, automobile and military
operational accidents and from aircraft ejections by military
pilots. Efforts have been made to measure mechanical response
during tests using both cadavers and human volunteers such
as the work by Clarke et al. (1971), Mertz and Patrick (1971),
Gadd, Culver and Naham (1971), Clemens and Burow (1972), Lange
(1971), and Bhalla and Simmons (1969) Other work has been
conducted to develop mechanical necks for test simulation such
as reported by Melvin, McElboney and Roberts (1972) and
Calver, Neathery and Mertz (1972). Still other investigators
such as Nachemson (1960, 1963), Kazarian (1972), Kazarian,

Boyd, and Von Gierke (1971), Farfan (1969, 1971), Nachemson

and Evans (1968), Tkaczuk (1967), and Markolf and Morris (1974)




have attempted to describe and explain the functions of the various
spinal components. In addition to the above experimental efforts,
the spine has been modeled with varying degrees of sophistication
starting with simple mass-spring models, continuous elastic
and viscoelastic beam models, lumped-parameter models such
as that developed by Toth (1967) using a series of springs
and dashpots, and finally the discrete parameter model developed
by Orne and Liu (1971). This last model represented the spine
with a series of rigid bodies representing the vertebrae separated
by viscoelastic discs. A later lumped parameter model was
developed by Hopkins (1971), and there have been more sophisticated
continuous models developed by Li, Advoni and Lee (1971), Krause
and Shirazi (1971), Shirazi (1971), and Rybicki and Hopper
(1971). Soechting and Pasley (1973) also used a continuous
model but incorporated muscular loads using a viscoelastic
model for the muscles, and in another effort to consider muscle
loads, Thurston and Fay (1974) used a constant torque in the
rotating joints to represent these influences. In this last
effort, a mechanical neck was also developed, which included
members fabricated from shock cord to simulate muscles.

These models are adequate, in varying degrees, to predict
the gross response of the spinal column or neck, and to answer
the questions for which the models were designed. However,
if one wishes to investigate local response of spinal column
components, and to predict failures and failure modes, the
above models are inadequate because they do not include local

geometry and material properties. Because of a specific interest




on the part of the Aerospace Medical Research Laboratorv, Wright-
Patterson Air TForce Base, Ohio, the following attempt w2s made
to develop a micro-model of the human spine.

The approach is to take a single joint consisting of two
vertebrae and the intervening intervertebral disc, incorporate
the local geometry and constraints into a kinematic model, and
solve the governing equations of motion. Forces are derived
from constitutive equations for the disc and ligaments. The
vertebrae are treated as rigid bodies since the deformation of
the bony material was assumed to be insignificant with respect
to that of the viscoelastic disc and ligament material, and motion
is restricted to the sagital plane, therefore keeping the model
two dimensional. The latter assumption is not dictated by the
approach and the model could be three dimensional with additional
effort.

The most difficult part of this approach is to establish
constitutive equations for the disc and ligament materials. The
complexities of this problem are discussed by Fung (1972)
and Kazarian (1972), but there is only a limited amount of material
property data published in the literature. There has been considerable
effort to describe the function and response of the intervertebral
disc and work continues in this area. Data reported by Markolf
and Morris (1974) and Yomada and Evans (1970) are used to derive
a constitutive equation for use in the present effort. However,
material property data (stress-strain, load-deflection, creep
or relaxation) on the spinal ligaments is extremely limited,

and the data that are available have been generated from specimens
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taken only from the lumbar region of the spine. Hence, the experimen~-

tal program discussed in Chapter III was conducted to produce a2 minimum
amount of load-deflection data from which to develop constitutive
equations for the anterior and posterior longitudinal ligaments.
I'n the following discussions, the model is applied to the
lower neck where the spine transitions from the cervical to the
| thoraecic region. This is speculated to be a region of high
incidence of Air Force operational injuries (Kazarian, 1974),
and there is also a radical change in geometry as described
by Gray (1973). In Chapter V, the model is used to investigate
the effect of articulate geometry on the joint motion and the
distribution of loads between the anterior and posterior column.
Limitations of the modeling technique as well as areas of expanded

develepment and application are discussed in Chapter VI,




CHAPTER II

JOINT MODEL

2.1 Anatomical Considerations.

The spinal column consists of 24 articulated vertebrae separated
by intervertebral discs, and constitutes the primary load~-carrying
structure of the human body. The motion of the vertebral column,
as well as that between individual vertebrae, is a function of
external loads, the vertebrae geometry, the load transmitted by
the discs, and the loads exerted on the column by ligaments and
muscles. Of particular interest here are the vertebrae geometry,
the disc and major ligaments associated with the joint between
the seventh cervical (C7) and the first thoracic (T1l) vertebrae.

The vertebra is composed of a cancellous bone material and
its geometry changes with the spinal level. Fig 2.1 shows a typical
vertebra from the C7-Tl region. The vertebra is made up of a bedy
and the posterior arch which is joined to the body on either side
by a pedicle. At the junction of the arch and the pedicles are
the superior and inferior articulating facets, which when mated
respectively with the inferior and superior facets of adjacent
vertebrae, form synovial joints. In the cervical spine, the
articulating facets of a given vertebra are joined by well defined
columns which also form the junction between the pedicles and
the posterior arch. The respective orientations of the superior
and inferior facets are cranial and caudal. As the spine transitions

to the thoracic region, the facets change to a posterior - anterior

orientation, and the column between the two tends te flatten out and




becomes less well defined. Projecting dorsally from the centerline
of the arch is the spinous process, and there are two transverse
processes which project laterally from the vertebral body. These
later processes affect lateral motion and are not given further
consideration here since the motion of the model will be restricted
to the sagital plane.

The vertebral bodies are bound together by the intervertebral
disc, and the anterior and posterior longitudinal ligaments.
The discs are not unique in the different levels of the spine,
as are the vertebrae, except for their size. Four elements make
up each disc: the annulus fibrosus, the nucleus pulposus, and
two cartiloginous end plates. The annulus fibrosus is a series
of fibrocartiloginous bands, which run circumferentially around
the disc and encloses the soft nucleus. The bands of the annulus
attach top and bottom to the cartiloginous end plates, which
in turn attach to the inferior and superior surfaces of adjacent
vertebrae bodies. This arrangement constitutes a load carrying
element, the rheology of which is still a subject of much discussion.

The anterior and posterior longitudinal ligaments are long
bands of fibrous tissue which extend along the length of the
spine and are attached to the respective surfaces of the vertebral
bodies. 1In addition to the longitudinal ligaments, other ligaments
tie together the posterior arches and spinous processes of adjacent
vertebrae. For a more detailed discription of the spinal column
anatomy as well as the functions of the various elements see

Gray (1973), Kazarian (1972) and Inglemark (1959).
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FIGURE 2.1 - SEVENTH CERVICAL VERTEBRA




In formulating the model, an attempt was made to incorporate
the anatomy discussed above. The first assumption made was that
the articulating facets constitute a kinematic constraint. In
the model, the facets are expressed as curved surfaces which
remain in contact; however, both sliding and rolling motion is
permitted. This constraint is discussed further in 2.2 below.

The vertebrae are considered to be rigid bodies since it
is assumed that their deflections will be small compared to those
of the soft tissue of the disc and ligaments. This assumption
is supported by data of Yamada and Evans (1970) that show
the stiffness of vertebrae to be an order of magnitude greater
than the stiffness of the intervertebral disc. Therefore, the
model of the C7-T1 joint consists of two rigid bodies, each with
a curved surface representing the articulating facets, and the
motion of the rigid bodies is constrained by the requirement
that the articulating surfaces remain in contact. The disc and

ligament material are considered to be viscoelastic, and the

loads they apply to the rigid vertebra are represented by a function

of the deflections and deflection velocities. Fquation 2.1 is
the function used to represent both the disc and the ligament

material with different sets of constants used for the different

Force = Al + A2 x + A3 x2-+AAx3 + A5x X (2.1)
Ay = constants
x = deflection of the element, i.e., disc or ligament
x = deflection velocity of the element

<2




elements. The choice of this function and the selection of the
constants is discussed in Chapter IV.

One further assumption was made in formulating the model.
The mass of the joint itself was considered to be small compared
to that of the head and neck above the C7 level. Liu et al.
(1971) report the mass of a slice taken through the neck at
the C7-T1 level to be 0.00348 lb-sec?/in, and the mass of the
neck above that level to be 0.00833 lb-sec?/in. The mass of
the C7-T1 slice includes that of all the soft tissue of the neck
as well as that of vertebral column segment, and the author reports
distortion of the cadaver which would cause the results of the
C7-T1 slice to be high. In addition, Clauser et al. (1969) reports
head masses to range from 0.0214 to 0.0305 1lb-sec’/in. These
figures support the above assumption, and hence, the mass of
the joint is neglected in the model. The inertial effects of
the head and neck are included, however, when inputting forces
and moments into the rigid body representing the C7 vertebra.
Therefore, the model is static at any point in time, but the
response at that time is dependent on the inertial effects included
in the model inputs, and on the response history prior to that
time. The dependence on the prior response history is a result
of the viscoelastic nature of the intervertebral disc and the
various ligaments.

The following sections of this chapter show the derivation
of the kinematic constraint associated with the articulating
facets, and the governing equations for the model. The resulting

equations are nonlinear due to the geometry and material responses,
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so Newton's method is used to generate a series of linear equations

which can be solved in an iterative process.

2.2 Kinematic Constraint.
Since the curves representing the articulating facts must remain
in contact, the outward normals to the curves are expressed by the

functions F (")‘. ) Aa|) and ‘f (’)‘&) "d 1) ; the outward

normals can be determined by taking the gradient of the functions as

discussed by Wylie (1966). The constraint can then be expressed as:

—

Y3 .9
vh| = 't

(2.2)

K

<
b

where K is constant. Referring to Figure 2.2, the curves are now

expressed as polynomials.

N T
ﬁ ('X,) "&n) =/.2=:I (al,i ,)‘l( .))

I
i
1}
o}

2":4 (4= l)) y? . 0
fura, 472 (4 % T2

The gradients of £y and f2 are:

@‘ = (#.(x‘-t)a‘i ocf"-‘o)::‘ - 4%,

V—?,_ o (£ (A-1) &y; ’xé;-z));"— 1:‘:‘-

A=/
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FIGURE 2.2 - KINEMATIC CONSTRAINT
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The gradients are in two different coordinate systems, thus it

becomes necessary to transform one gradient to the other system,

. ey -“~ o=
i.e., transform v'pa.(«.‘h‘a:)to the (4‘ ,%b coordinate system using

equation 2.3.

CYEE DENCII c.u M]\

(2.3)

—

The gradient of f2 then becomes:

ﬁz =[(§u-') a, 7‘.(; ZA) G ¥ + Sinn K‘] 7

+[(Z (A-1) A, : /)(_(A I\MY—MY];‘H

If the gradients are now substituted into equation 2.2, the vector

equation yields two algebraic equations.
K (f (i-na, x.‘ ») = ()ZG-M; x5 ) tak
|V

QoL X

M P R
= (T G-Naa; x5 D) San X = Coa 0
A=l

[
. A ™,
Multiplying the second equation above by ( ﬁ (L—-l) a‘ll 7 S,
A=
adding the two equations and dividing by Cos Y yields the constraint

equation 2.4, which relates the variables X »%), and ‘r ¢
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(2.4)

N -
TMYS(Z{A'“DCLM'K?‘ z\""f’(&"") aa:‘ 7‘;_4-2))
A= 4=

N " s
1+ 2 E (."‘")("k") . a_,,&/x,(‘ ")oc_,“ 2

A=/ Tﬁl

2.3 Kinematic Model.

Fig 2.3 shows the free body diagrams for the rigid bodies
representing the C7 and Tl vertebrae. The (04;3’/313) and the
(4931)1}31) coordinates are fixed to the Tl and C7 vertebrae,
respectively, and the curves representing the articulating facets

are expressed in these coordinate systems. The angle ]’, defined

in section 2.2, is the angle of rotation between these two systems.
The (4€1faz) coordinate system is the inertial system in which 1
Tl is fixed, and the G’E3{a3) system translates with C7 but does
not rotate. The input moment as well as the input transverse

and longitudinal loads are expressed in the (993'?}3) system.

The loading of the vertebrae by the disc is simplified and

represented by two point loads, F3 and F4. The anterior and
posterior longitudinal ligaments are represented by F5 and F6’
and the ligament loads on the posterior arch are represented I

by a single force F,, Fg is the contact load normal to the articulating

facet. (Since the facets form a synovial joint, which is well

lubricated under healthy conditions, the transverse load between
the facets is assumed to be small, and hence is ignored.)
The vertebra geometry is incorporated in the model by establishing

the coordinates of the load application points, and of the origins
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F(1,3)

-F(2,3)

FIGURE 2.3 - FREE BODY DIAGRAM




of the coordinate systems in which the articulating facets are
described. For Tl, the load point coordinates and the origin

of the ('y-a“%ls) system are established in the (“2-)?;) system,
and for C7, the load points coordinates are established in the
(g, “432) system.

If the model were to be expanded to three or more bodies
representing two or more vertebral joints, the top and bottom
vertebrae would be identical to Fig 2.3. Any intervening vertebrae
would have two coordinate systems, fixed to the body, in which
the articulating facet curves would be established. The load
application points, as well as the origin of the superior coordinate
system,would be defined in the inferior system.

The remaining kinematics required are the vector transformation
between coordinate systems and the expression for the vector
between points of adjacent bodies. The vector transformation
is the same as equation 2.3, with appropriate subscripts and
angle 8'. The expression for the vector between points on adjacent
bodies is shown in equation 2.5. Terms of the form x(i,j) and y (i,j)

(2.5)
—R‘IL

”™m

=['4—(£,m)+¢(i,z) + 2y Coe ot
.-‘8," S ¢ +‘('0L(Jk,4\) ""f&l') Coa (QL'+-K)
"(‘1'(11,«) —“a’bl) Sin (e +Y\];€2+E~a(2,m)+»&(2‘1)

+¢1L Seén « +"a-lh Coane + (/Y.(,‘z,»\) ")Lﬁl) S‘,,\(Ot*t)
P Uy = gy ) Coe (o)) ]

L5
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where: 1 - inferior body
k - superior body
m - point on inferior body
n - point on superior body
& - angle between coordinate systems fixed to the
inferior body
‘K - angle between coordinate systems fixed to

adjacent articulating facets.

are the x and y coordinate, respectively, of point "j" on body

)

The Xj; and yij terms are the coordinates of the contact
point in the appropriate ccordinates fixed to the body. The

derivation of equation 2.5 is shown in Appendix A.

2.4 Governing Equationms.

Since the mass of the vertebrae is being neglected, the governing
equations can be derived from the vectors equations in which the
sum of the forces and moments equal zero. These vector equations
result in six algebraic equations shown as equations 2.6 through 2.11.

The first subscript on the force terms designates the x or y component

Fis+Fiy-F¢-F,~F-Fg+F(L2)=0 (2.6)
a3~ Fay+tFag + g + Fa7 —Fag +F(2,2) =0 (2:8)

Faz+ Fay ~Fag ~Fae - Fa; +Fag +F(2,3) =0 @5
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(2.10)

7
M +4,§3Y'*U»O Fai = 40,0 F ;1 +(%0,2) + %45 Coax
= s 5‘;"“"()':1% - OQ‘ Cha) # %,y Suco + ¢ L5 C«z‘*)\'—‘w
=0

(2. 11)

L
M, 4—53[(“; Coa( +¥) = VY, S (o eX)) Fp o = (X% Sen(w+d)
*+ YY (e +¥)) Fy; ] + (xxg Coa (24 ¥) = VY Soeke+ ) Ry

-(XXBS;,\ (e + %) 4.»/%0“(«“()) Fig. = @

WHeRe § XX, = 2 (2,{) - x(2,2)
Y¥: = Aa(-?,i3~—ﬂa(z,z)
XXS = «33 “'X‘(‘Z,Z)

7Yg = '“3-31__ 43'(?"2')
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of the force in the inertial coordinate system. A "1" subscript

designates the x-component and a '"2'" subscript designates the
y-components. The notation convention for the other terms is
the same as used above.

Two more relationships can be derived based on the fact

that the direction of the contact force (F8) is normal to the

—
articulating facet curve; i.e. F8 =F V'?l

(vl

equation yields the two algebraic equations shown as equations

The vector

2.12 and 2.13 after they have been transformed to the inertial

coordinate system.

(2.12)

N o
Fig = FBBEI (i~-Da,; fx‘__;(-; z)) Coa X + S,.;w\(x]

[(gu—:)a,‘- 7(:4—1))2. i \/2
A=/

(2.13)

N b
Fae= T8 [(/g’(iu)a.,; x 2(3 ﬂ) Sc o = Coa m]

I(ﬁ(x'-—l') @, . ,)(_z(;‘-ﬂ)z. 4 ] s

/=]
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Equations 2.6 through 2.13 along with the constraint equation

2.4, the two functions defining the articulating facet curves
(f1 and f,), ten component force equations (using equation 2.1)
and ten component displacement equations (using equation 2.5)
constitute a series of thirty-one simultaneous, nonlinear, algebraic
equations. There are also thirty-one variables, which are listed
in Table 2.1; therefore, the above set of equations is sufficient
to determine the response of the joint model at a given point
in time.
Table 2.1

List of Variables

*23s T3

¥320 Y32
F(1,2), F(2,2)

Fg
dij i = 1,23 j= 3, 4, S 7 )%

Fij (i=1:2;j‘3’4:5:6’ 7, 8)

*dij's are the displacement using equation 2.5.

2.5 Linearization and Solution of Equations.
The set of equations derived above is not only large, but

also nonlinear and therefore difficult to solve. The first simplifi-




cation comes from the assumption that Y is small, and hence, 20

the small angle approximation can be used; i.e., Sin ¥ = ¥ ,

Cos ¥ =1and Tan ¥ =Y¥ . This assumption is supported

by data reported by Bhalla and Simmons (1969), in which they

show the maximum rotation, in the sagital plane, of the C7 and

Tl vertebrae to be less than 10 degrees. The small angle approximation

eliminates the nonlinearity resulting from the trigometric functions.
Following this simplification, Newton's method is applied

to the equations. Each variable is replaced by an initial guess

of the variable value plus an error; for example, x93 is replaced

by oyt Ax23. If the assumption is made that A X543 is small,

and all the other A variables are small, then all second and

higher order delta terms can be neglected. The equations can

then be rewritten to solve for the delta variablesr The force

equations can be written:

(2.14)
. 4 e .

- Ea, o b,% e ( b‘a% = bsa" (o(,‘a_)) 44"&.

bag () b (43

where: i = 1,2

J o= 3,4, 5y 6, 7
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The functions defining the curves representing the articulating
facets become:
(2.15)
z =2 =
(g(‘&—\) a;. %% ’)A»x —A‘a_ =
; !-%
"
N .
— A ( —l‘) &
(3 a;;, x4 ;'
T
where: x = X23 or X35 and
¥ = ¥a3 or V93 respectively
s BF 3 I8
The constraint equation becomes:
(2.16)

(1+s1)ax + ¥ (s2) -(S3-5%4) =
"X(i""Si) Z(A‘/)d )(L f=2) +Z(& l)a‘)a‘_ 7(3(3'-2')

e S1 = flif/(ﬂ ’)(& ')4 z& 'ng" L) 3(1_1‘—1_)

$2 = Z Z G (gD a,, 4. ((3-1) -73(}‘12)13

4:/1./

A=1)
+ (A - 2)’)‘2(, lA«'SL)
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S8 = Z («-0)(i-2) a, . A/xL3
=/
S(f =fl ('a:‘/)(&.‘z) 5L4' A ’)(32_
4:/ Y
The resulting x-displacements are shown by equation 2.17, and the
resulting y-displacements are equation 2.18.
(2:17)

dd,; = (Coads)A%,5 + (Sine) g,y + Q) A%,
=8l Ay, L (xean ~ X3, ) Sieex +

(42,4 =% 32) tra x| 8Y = (Coex) x5

- (S ) 0 e (s, - 21 ) @ ()

i (Hsl-ﬁa(a,;))am —x (,4)+x(1,2)
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(2.18)

A4 ; = (Sens)A%x,5 = (Gax)Angas +QUW) A%y,
QU2 Y3, +£(x(z.4') X5, ) Gax f(fa(z.i) —4&,1) S‘—L3<’]AK=
(8o ) %5 #(Ceax) 25 = (K3, = %(2,4)) G (4)

- (5 r 2O RE) = 4 (L4 3 (1,2)

=T =& -

where: d;i = x displacement

dy; = y displacement
Q(1) = Sin o¢ + Y cos X
Q(2) = Cos X - X Sinol
4wk S 62

The equations for the x and y components of normal contact force

on the facets are equations 2.19 and 2.20 respectively.
(2.19)

[F‘\;‘ (ss)- F:KL(<55—)QM7'°( +2 ($7) Caax S.;.qx)‘_\
+ A Fg ((S)+1)AFg - 2 Fg ((56) coa?x +
2(38) Gax S + 5% ) AFg = £ ((sc)eh)

+F8.'z((56)¢«."n< +2(SE)Clraox S1 X + 51;.,301>
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(2.20)

[ By (s8) = Fpt ((58) s:lX = 2 (57) e Sienex
+2R(5e)+1) AF, ¢ — 2 Fg ((s6) seur~ —

2 (SB) Coeax St + Codtox ) AFg =

~ By ((s6+1) + FiZ" ((5¢) 53,2 —

2 (58)Cw x St x + Co_glog)

WHERE ¢

5¢s) :ﬁ f (a=)(j-0) &, F (a-2)(4-2)

A=) 4=l

: N N : i
S(O)=2 3 (i-NG-0 @y 2y it

~A=/ +=/

, N (i-3)
S(2) = & (a<p) a,; (,;—2.)4423 4%,
A=

S(8) = 2?// Loty By _%34-1)
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The remaining 6 equations are those derived from the sum of the

forces and moments on each body. Equations 2.21, 22, and 23 relate

to body 2 and equations 2.24, 25, and 26 relate to body 3.

(2.21)

AV(L2Y+ AF 4+ AF 4 -aF ¢ -AF, -4F,, —4F,¢ =
'- I: Fh2)+ Fo3 t Ly = Fls '-/;6 ~F 7 = f?gvi]

(2.22)
AdF(2,2)-8F ARy +4F ¢+t 4K +4F , -aF =

_[F{Z,?-) ~Fa3 - Fay vhAg F Ay +Fy - Fzs—]

» 3 -(2.23)
;és(AF'* U FARL x(,) —%s(m.'} 100
&

AFL-& fxcn.}‘)) 54 (?(\,L) $Xyy SX + g Con ) AFiyg
4"(’)‘(l,?—) + X, 3 CaaX — '8,,_3 S‘Mcx) AF,.y
yy
=AM, = ‘é (/:/'}- 46(/,?‘)+6} 4((/,3'))
g LT G L)+ By 2 (3)) *+ (30,2) 495 S

+ ‘313 CM'X) Fig —(7:'(1,1»)*’)(;3 G“‘XQQMS‘;‘“"OFZQ




— - 2.24
AR —AF, +AFs AR +aF; +aF g = @

= F(|,3)‘“[°‘ Fis—-Fi4 +Fs +Fq +F5 +F“]

(2.25)
AFzs"'AFz#-AF?-S-AFL(Q"AF2.7+AF =

TF(2,3) - LR+ Ry - Fas ~ R - Fay +Fag]

m 7 (2.26)
I (S‘i AR +SIAF, ) Z_f ¢AE&+S'° A,
=3 5

= (xx, QU + Yyg @ (2)) AF\3 + (xxg Q) -Yvg QD) AF,,

QD Fag - @UDF D A %5, - (@) Fag +Q(2) Fe)A s,

“[Z Sy i S i

+(xxg Coase —Yyy Sewx) Fig | AY =

=™, +>:‘. (StogFap +SU R ) -3 ¥ (sio; F,;

154 F4) + (xx, @(2) -YYy Q1)) Fag -

(xxg Q) +Yyg @(2Y) Fig

26
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Where: SC’} = (C‘l} ¥ KC! )

S{O%‘ (C|1-XC1}~3

TP SR S Sy

2} Jl‘,

C,%- (XX'&C,,«N—\/Y‘& S«‘MN)

m

o (xxz-y S R Camoe)

XX',(') = X (-z,\f.') — e, )

e e e

xxe o ’7(.5)_ —/)‘(7—11)

\"y8 Sz = ?(2,?—)

Q1) = Sl X + ¥ (eux

Q(2) T Coex = F SE X

If the 31 equations generated from equations 2.14 through 2.25
are put into matrix format, Gaussian elimination with pivotal
condensation and back substitution can be used to solve for the
delta variable values. The initial guess at the variable is ad justed

by the delta value and the process is iterated until the delta
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value becomes small. When the series of iterations is completed,

the input values are incremented for the next time interval
and the whole process is repeated for as many time intervals as
desired. The initial guess can be obtained by solving the static
problem at time equal to zero, and the solution for the last
time interval is used as the initial guess for the following
iterationms.

A listing of the computer program to carry out the iterative

solution is included at the end of this dissertatiom.
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CHAPTER III

EXPERIMENTAL CHARACTERIZATION OF LIGAMENT MATERIAL PROPERTIES

3.1 Background.

As stated in Chapter I, there are very limited data published
which describe the mechanical response of the human spinal ligaments,
and the data that are available deal only with the lumbar regions
of the spine. Akerblom (1948) ran some experiments in which
he removed the posterior arches from a series of lumbar vertebrae
such that the arches and spinious processes were attached only
by the interspinal and supraspinal ligaments. The series of
arches was then suspended and loaded with a series of weight
up to 40 kg and the resultant deflections recorded. He concluded
that the ligaments are nonlinearly elastic up to 20 kg of load;
however there is no time information recorded, so in essence,
what is reported are the end points for a series of creep tests.
In addition, no dimensional information on the test specimens
is reported and therefore this data was of no use in the present
effort. Nachemson and Evans (1968) conducted experiments again
using the ligaments of the posterior column between the third
and fourth lumbar vertebrae. They report a nominal stress vs.
strain plot which is of similar shape to the data I generated.

Two problems exist with these data: the lack of any dimensional
data on the test specimens and the ambiguity in the strain

rate used, which is reported to be "+0.33 min." and "0.33/min."
Either the authors neglected to report units or the 0.33 min.

was the time period during which the load cycle was applied in
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which case the claim of a constant strain rate is erroneous.

The best data found in the literature were reported by Tkaczuk (1968)
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concerning his investigation of the tensile properties of the anterior

and posterior longitudinal ligaments of the human lumbar spine.
He conducted tensile tests with both intact ligaments and identical
test specimens cut from the whole ligament with a cross sectional
area of 1 mm?. He reports test specimen dimensions, yield and
failure loads, as well as load vs deflection data for tests run
at a constant loading rate in which the specimen was cycled from
0 to 500 gm in 35 sec. His curves are similar in shape to my
results and a comparison will be made later in this chapter.
3.2 Experimental Approach.
Because of the very limited data on spinal ligament response

properties, an experimental effort was conducted to generate
some experimental results on test specimens taken from the Cé6-
C7-T1 region of the spine. Only the anterior longitudinal ligament
(A.L.L.) and the posterior longitudinal ligament (P.L.L.) were
tested.

The initial approach was to conduct relaxation tests with
the hope that a relaxation modulus could be established. With
these data, linear viscoelasticity theory such as presented by
Flugge (1967) could be used to characterize the ligament dynamic
response. Three specimens (C6-C7 A.L.L.; C6-C7 P.L.L.; C7-T1
A.L.L.) were used in a series of nine relaxation tests; the results

of which were totally confusing. The load vs. time plots were

typical for a viscoelastic material, however there was no correlation

in the data for a given specimen tested at different magnitudes
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of deflection or for different specimens tested identically.

At the time, the reasons for the confusing results were not obvious,
and it appeared that to continue with this approach, a much more
extensive test series requiring a large number of test specimens
would be necessary. The required number of test specimens was
not available and it was decided that such an extensive character-
ization of ligament material properties was beyond the scope
of this effort. Hence an alternative approach was taken.
Since most neck injuries occur during accidents where the
loading is applied over a time interval lasting only 100 to
200 millisec., it was decided to conduct tensile tests using
relatively high loading rates. In doing so, the resulting data
are restricted to this loading regime, and any model in which
it is used is likewise restricted. With this approach, it was
hoped that the response of the ligament, both during loading
and unloading, could be characterized, and that the effect of
the loading rate, if any, on the response could be determined.
From X-rays of the author's neck, the deformation of the
anterior and posterior longitudinal ligaments during normal motion
was determined to range up to 0.1 in. From this fact, and using
the 100 to 200 millisec. time interval, which was determined
from a perusal of reports dealing with human volunteer tests,

the loading rates were chosen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>