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I. Nature of the Research Program

A. Background: The School of Industrial and Systems Engineering
of the Georgia Institute of Technology began to offer Operations Research/
Systems Analysis courses at the graduate level in the mid-1950's. A
small number of officers and civilians from the Department of Defense
who were pursuing graduate degrees in established areas enrolled in
these courses. In 1969 the U.S. Army developed a core curriculum for a
formal graduate program in OR/SA, and selected Georgia Tech as one of
the two civilian institutions for concentrated use in meeting Army gradu-
ate educational needs in this area. In 1972 the School was authorized
to award a graduate degree in operations research, MSOR. A number of
joint reviews have been made in order to improve the Army OR/SA program
requirement. The latest was in November 1976. Sixteen Army personnel entered
the program in 1969, and by 1973, the program had peaked with 35 students
in residence with approximately 20 graduating each year. Since the mid-50's
over one hundred officers have received graduate degrees with heavy
emphasis on OR/SA methodologies. At present 15 are in residence with a

forecasted level of 30 in residence and an output of 15 a year.

B. The Theses Problem

At the academic instructional level, methodological course work is
inextricably interwoven with application and research activities. For
most Master's degree candidates, the identification and definition ¢f a
thesis topic of interest both to the student and to his research advisor
requires a disproportionate amount of time when compared with the course

requirements or actual thesis research. One of the important objectives
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to be realized in this program is the development of readily available
research topics relevant to Army needs and objectives and potentially

interesting to Army personnel, and to competent, involved research

advisors. These availabilities are critical if the Army personnel are
to complete an acceptable thesis within the time constraint of their

tenure in the program. !
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During the 1960's and early 1970's a number of informal contacts were

made between students, faculty and Army agencies to generate relevant
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i

theses research areas and reliable data sources. A host of agency ''shop-

S

L= ping lists" for proposed theses were made available to Army students.

These efforts proved largely unsuccessful, and less than one-tenth of the
i theses completed by Army officers prior to 1974 were related to Army needs
E: and problems. This situation was summarized in an October 1973 letter from
Dr. Wilbur Payne, then Deputy Under Secretary of the Army, to Georgia Tech
approving the revised curriculum programs when he stated:

by "1 was very interested in the comments you received from
E the officer students in response to your Proposal Review
E memorandum. Of particular interest were their remarks con-
cerning the lack of adequate communication between the Army
and students, and the resulting scarcity of appropriate mili-
E: tary related thesis topics. This has for some time also been
a concern of mine. I believe that something can be done to
improve this situation, and would be delighted to work with
the Institute toward that goal."

C. Contract Support For Army Theses

The first Army sponsored research which supported Army graduate

students at Georgia Tech was provided under a contract from the Army

Research Office from Jan. 1970 to 31 March 1972. Under the title of "A

Research Program in Operations Research and Management Sciences," the

scope of work under this contract called for a general research program




with emphasis on research, development and engineering administration,
and mathematical programming theory and applications. Specific tasks
required that Georgia Tech:

1. Construct, and find procedures for the solution of operations
research models in areas important to the Army;

2. Identify potential thesis topics and provide experience in
model building and analysis to participants in the Army
Operations Research Program;

3. Study the application of the models and procedures of mili-
tary oriented OR models to civilian life.

This contract was funded at a level of $40,000 from the Army Materiel
Command, and supported five Army theses. Three of these theses were
oriented towards theoretical extensions, and only two were directed at
the application of theory to solve Army problems. Consequently there
was still a need for a better means to bring together students, faculty
and Army agencies.

During the Fall of 1973 and Spring of 1974 a number of conferences
and seminars were held between Georgia Tech faculty, students and Army
representatives to improve the relevancy of thesis research. In June
1974 the Army Materiel Systems Analysis Agency contracted to support
three officers during the year ending in the Fall of 1975. The contract
was renewed and supported three more officers during 1976. These AMSAA
contracts supported the officer students by providing special office
space, leased computer terminals, and other logistic support at Tech,
TDY travel funds, and data sources within the sponsoring agency. In

addition the contracts also covered approximately 1/4 time salaries,
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overhead and limited travel for faculty members for efforts beyond what
would otherwise be required for their faculty duties. Actual thesis
topics were developed between the individual student, the faculty and the
sponsor to assure relevance and academic quality and are listed below:
"An Application of Multivariate Statistical Methods in Develop-
ing Operational Usage Patterns for U.S. Army Vehicles," by
Randall B. Medlock, Captain, Infantry
"An Analysis of Computer Algorithms for Use in Design of
Helicopter Control Panel Layouts,'" by Sam D. Wyman, Captain,
Armour
"An Application of Multivariate Statistical Techniques to the
Analysis of the Operational Effectives of a Military Force,"
by James T. Baird, Captain, Infantry
"An Application of Time-Step Simulation to Estimate Air
Defense Site Survivability,”" by James M. Rowan III, Captain,

Air Defense

*""A Mathematical Predictive Model of Arm Strength," by
Robert S. Lower, Infantry

"Optimum Assignment and Scheduling of Artillery Units to
Targets," by Everett D. Lucas, Captain, Artillery

*Partially supported by Human Engineering Labs thru AMSAA

Shortly after award of the AMSAA contract in June 1974 negotiations
began with the U.S. Army Operational Test and Evaluation Agency to direct
the research efforts of Army officer theses research into the general
area of Decision/Risk Analysis applied to Operational Tests and Evalua-
tion with initial emphasis on complex command and control systems. Two
separate contracts were awarded in the Fall of 1974 in the following

subject areas:
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1. "Study to Evaluate the Results of Operational Tests and
Evaluation of Complex Command and Control Systems"
DA39-75-C-0095

2. "Application of Decision/Risk Analysis in Operational
Tests and Evaluation" DA39-75-C-0097

Literature search and problem definition in the two areas began in
the Summer of 1974 even though the contracts were not awarded until
Dec. 1974. They were conducted on a parallel basis with strong interac-
tion between three faculty members and seven graduate students supported
under each contract. Frequent seminars and conferences were held through-
out the period until individual thesis topics were developed in January
1975. After the Phase I briefing for OTEA at Georgia Tech in February
1975, the individual officers worked independently with their own thesis
advisor and committee until graduation in June 1975. A final summary
report was made by the faculty at OTEA headquarters in September 1975.
This report in both written and oral form discussed the problem, approach,
and results of the individual theses and presented results and recommen-
dations in a more general manner than that presented in individual theses
which are cited below:

"A Comparison of the Applicability and Effectiveness of ANOVA

with MANOVA for Use in the Operational Evaluation of Command

and Control Systems,'" by Thomas N. Burnette, Jr., Capt.,

Infantry

"An Application of Fault Tree Analysis to Operational Testing,"
by Gordon Lee Rankin, Capt., Signal Corps

"A Methodology to Establish the Criticality of Attributes in
Operational Tests," by Gary S. Williams, Capt., Armor

"An Application of Multivariate Discriminant Analysis and
Classification Procedures to Risk Assessment in Operational
Testing," by Edward D. Simms, Jr., Capt., Infantry

"An Application of Simulation Networking Techniques in Opera-
tional Test Design and Evaluation,'" by E. L. Brown, Major,
Ordnance

SET o




"An Application of Bayesian Analysis in Determining Appropriate
Sample Sizes for Use in U.S. Army Operational Tests,'" by
Robert L. Cordova, Capt., Ordnance

"Finding a Minimum Risk Path Through a Network Using Resource
Allocation Techniques," by Lawrence G. 0'Toole, Capt., Armor

At the conclusion of the first year OTEA contract in 1975 it became
apparent that it was impossible to clearly delineate work under two
separate contracts from the perspective of literature searches, metho-
dological bases and scudent or faculty efforts. Consequently the cur-
rent contract was negotiated for 1975-1976 under the broader scope of
"Studies in Support of the Application of Statistical Theory to Design
and Evaluation of Operational Tests'" with four independently developed

tasks. The second chapter discusses how each of these tasks were developed,

and the final chapter the results of the research in each task area.
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I1I. Development of OTEA Research Area

This research effort has a dual objective. The first objective is
to conduct studies in the application of statistical methodology to
designing operational tests and to evaluating the data generated from
such tests. The second objective is to enhance the relevance of gradu-
ate thesis research undertaken by military officers, so that a higher
correlation between their academic studies and the requirements of the
Army will be obtained.
The research problem area was approached by first conducting a
survey of the relevant technical literature. Both the current open
scientific literature and reference material available through DDC and
OTEA were evaluated. A series of group and individual meetings between
project faculty and the officer-students involved in the program were
conducted. The purpose of these meetings was to acquaint the officer-
students with the general problem area, to discuss previous research
effort both in related fields and conducted specifically for the DOD,
and to develop specific proposals for current research related to the
general project objectives. The officer-student research proposals
must have three features:
1. They must be directed towards a problem area of interest
to OTEA, as outlined in the project task statement.

2. They must describe a project that constitutes a reasonable
contribution to the profession, so that the requirements
of a Georgia Tech Master's thesis are satisfied.

3. They must be within the general area of interest of

available faculty and other resources currently available.



Subject to these guidelines, the individual research proposals were
then developed by the four officer-students involved in the project.
They were approved by the project faculty, and by the Associate Director

for Graduate Studies of the School of Industrial and Systems Engineering.

These officer~student research proposals were also sent to OTEA for
evaluation and feedback.

The general project objectives were realized through the creation

- of four specific tasks. Each task was investigated by one officer-

student. Task I was to apply the principles of small sample size sta-

tistics to the design and analysis of operational tests characterized
by limited sample size. This task was investigated by Captain S. W.
Russ, who developed an economic model for sample size allocation in a |
class of factorial designs. The procedure allows direct incorporation
of total sample size constraints on the problem, so that total test
resource limitations will not be exceeded. This methodology would be
useful in test designs where all treatment combinations are not of
equal interest to the test designer and a cost of experimentation can
be allocated to each cell in the test design.

Task II was to apply the principles of multivariate statistical
analysis, decision theory, and risk analysis in specifying risk levels
associated with the design of operational tests and the evaluation of

operational test results. This task was studied by Captain N. R. Eyrich.

He investigated the power of analysis of variance type tests in the

multivariate case, demonstrating a relationship between power of the

test and associated risk. He considered the case where successive

observation vectors were autocorrelated, as would often be the case
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when operational test data are of a time series character.

Task III was to apply the principles of numerical analysis, train-
ing evaluation, regression analysis, and systems analysis to the cur-
rently subjective assessment of unit training levels during operational
testing. This general problem area was studied by Captain V. M.
Bettencourt, Jr. He described a general methodology whereby training
effects in operational testing could be evaluated and optimized through
computer simulation. He also discusses the general role of computer
simulation in operational testing. The methodology is demonstrated by
applying it to a hypothetical operational test of a new main battle
tank.

Task IV was to apply the principles of Bayesian and classical sta-
tistics to determine optimal sample size over an entire operational
test. This problem was investigated by Captain Robert M. Baker. He
developed a method of selecting sample sizes in operational testing
through Bayesian statistical analysis. His procedure incorporates the
use of prior information at each stage to reduce the required sample
size at that stage. The prior information can either be of a subjective
or an objective nature.

There is a strong continuity to the overall research effort. Two

of the tasks, II and IV, are direct extensions of research conducted

during the FY 1975 contract. y




III. Review of Theses

"An Application of Multiple Response Surface Optimization to the
Analysis of Training Effects in Operational Test and Evaluation,"
by Vernon M. Bettencourt, Jr., Captain, Artillery

The Problem

The relationship between systems effectiveness and crew/unit train-
ing has recently begun to receive increased emphasis in the Department
of the Army. There are a variety of reasons for this increased interest.
Establishment of the U.S. Army Training aﬁd Doctrine Command (TRADOC)
has institutionalized the importance of training and doctrine by fixing
responsibility at a high level of the Army command. Without the troop
and equipment demands of a belligerent theater, the main mission of
the Army transforms to training for the next belligerency. The increas-
ing cost of systems combined with a federal budget squeeze necessitates
increased combat effectiveness from fewer weapons. The result of these
factors is increased interest in training.

TRADOC is the major proponent of training in the Army. Within
the last year, operations research analysts at TRADOC have been examin-
ing training and weapons system effectiveness. A general model of sys-

tems effectiveness has been derived;
E = f(w,p,t)

where E is combat effectiveness expressed as a function of w the per-
formance capability of the system, p the proficiency of the crew/unit
manning the system, and t the tactic or technique of employment. Develop-

ment Test (DT) results can often be utilized to measure and quantify w.




Results of Operational Tests (OT) conducted by OTEA, can also be uti-
lized in determining w.

Some inconsistencies arise in the consideration of p in the above
equation. A Department of Defense directive states that Operational
Test and Evaluation will be accomplished by operational and support per-
sonnel of the type and qualification of those expected to use and main-
tain the system when deployed. Most OT's are conducted with troops/
units selected to satisfy this directive and then trained either by the
unit or Equipment Training Team in accordance with a training package
prepared by OTEA and/or TRADOC. Training is accomplished at home»sta—
tion, at the test site, and at Military Occupational Specialty (MOS)
producing schools if required. Having undergone such well supervised
and concentrated training, it is not unreasonable to assume that the
test personnel are atypical of Army users in proficiency on the system.

Another inconsistency in the above equation is the effect of the
learning-forgetting curve on proficiency. That is, the influence of a
training season or a period of concentrated training in a specific area,
on proficiency followed by a forgetting slump. The training cycles of
most tactical units approximate such a curve.

The weapons system effectiveness utilized by the ASARC and DSARC is
that obtained from the DT and OT. The above equation states that varia-
tion in actual user proficiency will cause variation in systems effec-
tiveness. That is, there is a Performance Gap between AMSAA data (ED)
and actual performance in the hands of tactical troops (EA) as predicted
by the model above. This predicted Performance Gap has been verified in

actual weapons test. In May 1974, the U.S. Army Infantry Board (USAIB)

n—wNnHﬂMlME5!'"!-R'-@"lMHEUl!l'-!H'WHF'U'!ll-l--l-lﬂ'..l‘!
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test fired the M72A2 Light Antitank Weapon (LAW) against moving targets
at varying ranges. A significant Performance Gap was uncovered by this
test. The major problem encountered by the troops was a lack of proper

training on the graduated lead sight for a moving target.

The implications of these variations in combat effectiveness for
the national defense posture are profound. It is imperative that OTEA,
functioning as a major source of data on weapons systems effectiveness

to high level decision bodies, account for training levels in their OT

o “‘r':v;'.)'*‘f"_";é"z:i T

"‘

reports and analysis.

Approach and Methodology

The objective of this research was to develop an improved methodology

TOTPRNNIRERITpv

for optimizing a set of operational test and evaluation performance mea-
sures which are functions of training. The research consisted of
analysis and adaptation of response surface methodology, multiple res-
ponse surface optimization, and multiple objective optimization to the
problem. The Geoffrion-Dyer Interactive Vector Maximal algorithm was
reviewed in detail and adapted to the multiple response problem. The f
adapted algorithm was applied to previously optimized multiple response
surfaces to demonstrate its utility.

Multiple response surfaces and the adapted optimization algorithm
are related to OTEA by use of a Tank Duel Model computer simulation.
The military application will consider:

1. The extension of an OT through computer simulation.

2. The effect of training on tested system effectiveness.

3. The optimization of pre-test and tactical unit training pro-
E grams concerning the tested system when confronted with

multiple objectives or criteria.




4. The role of the military decision maker in the interactive

optimization process.

Computer Simulation in Operational Testing

T

Computer simulation is finding wide application as a predictive and
investigative tool. Most major defense systems undergo a computer simu-~
lation in a tactical environment both before and after the issuance of
the required operational capability (ROC) report. Simulation can provide

useful pre-test and post~test information for each OT. An important

consideration is that computer simulations and OT's are mutually supporting.

(T's provide verified data inputs for the simulation. In return the

simulation provides predictions of input data for OT's or further investi-

gates OT output data.

Pre-test computer simulation can enhance the OT in three basic areas:

1. Examine the identified critical operational issues to assess
their significance.
2. Develop or discover critical operational issues that have
been overlooked.
3. Provided a sensitivity analysis to indicate the accuracy
required of each measurement.
This information will be obtained at relatively little cost and with the
utilization of no test troops or equipment. The OT will be initialized
with useful information and critical operational issues will be verified
or identified. Data requirements in the test plan wiil be refined.
Post~test computer simulation can contribute to the success of an

OT in the following four areas:




1. Constraining the scope of operational field tests to manage-
able proportions by providing analytical means for test
extension.

2. Extending the OT into areas which are currently infeasible
(such as two-sided combat).

3. Corroborating the impact of the OT res:lts.

4. Supplying much needed operational performance inputs to other
agencies utilizing simulation.

OT results can be combined with simulation results to fulfill the strin-
gent requirements of statistical design of experiment methodology

analysis.

Summary of Methodology

Response surface methodology is a branch of experimental design
which is useful in the analysis of experiments where system optimization
is the goal. Suppose that x1 and X, are the independent variables in

an experiment. The observed dependent variable or response y is a func-

tion of the levels of 3 and X,, say

y = f(xl,xz) + €
where € is a random error component. Usually the response y is the key

measure of systems effectiveness. If we denote the expected response by

E(y), then the surface represented by E(y) = f(xl,xz) is called a res-

ponse surface.
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We rayv repreoscat the two-variable case graphically by drawing the

x, and x, axes in the plane of the paper. Then plotting contours of

1 2
constant response yields the response surface shown in Figure 1. In
the typical application of response surface methodology, search or

"hill-climbing" techniques are used to move from an initial (usually

poor) estimate of the optimal X0 X, to a more precise final estimate of {4

the optimal X1s Xpe

E(y)=50
E(y)=60
E(y)=70

E(y)=

Figure 1. A Typical Response Surface

The true response surface is usually unknown. Therefore, the ex-
perimenter must find a suitable approximation for this unknown response

surface. Graduating polynomials are the most widely used class of ap-

proximating function. These polynomials are fit to output data

generated from the simulator. At the initial stages of a response

surface study, when we are likely to be far from the optimum, first-
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order (linear) polynomials are usually employed. The method of steepest
ascent is then applied, which allows the experimenter to move to a region
more likely to contain the optimum. As we approach the optimum, a
second-order (quadratic) polynomial is usually required to provide a
satisfactory approximation to the true response surface. Optimization
methods derived from the calculus are then used to obtain a more precise
estimate of the optimal levels of the independent variables. For a
detailed description of this methodology, see references [40] and [41]

of the original thesis.

In most operational tests, the analyst is interested in several
responses or measures of effectiveness. These problems can be struc-
tured as multiple objective or multiple response problems. This research
surveys the literature on multiple response problems, classifying it
into three general areas:

1. Graphical superposition methods

2. Adaptations of single-response mathematical programming

methods

3. Interactive goal programming methods.

This latter approach is very new. An approach to the problem based

extensively on the Geoffrion-Dyer Interactive Vector Maximal algorithm

is given.

Description of the Methodology

Let fl(g), fz(g),...,fn(ﬁ) be distinct response functions that
represent the measures of effectiveness of interest in the operational
test, and X is a vector of independent variables that are controllable

by the test designer. The elements of x could include training

variables or factors. The methodology maximizes
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U= alfl(i) + azfz(x) ol as i unfn(g) (1)
U is viewed as a utility function formed by combining the individual
response factions and {ai} are a set of constants. If the {ai} were
known, any convenient nonlinear programming algorithm could be used
to maximize U. However, the {ui} are in general unknown.

The Geoffrion-Dyer algorithm is an interactive procedure whereby

the test designer is presented a series of ordinal comparisons relative

to the several measures of effectiveness in his particular problem.
By his choice of prefered outcomes from this series of comparisons,
the weights {ai} are determined. The details of the ordinal
comparison procedure are given in Bettencourt's thesis, and will
be illustrated in the example to follow. He has also provided a
computer program that performs the weight determination and

optimization process.

It is important to realize that the test designer views the
entire problem in objective faction space rather than in the more
confusing decision variable space. He is making tradeoffs of objectives
with no distractions from the decision variables. He is also seeing
a multitude of alternate solutions as he progresses through the procedure
This is an educational process for the decision maker in the implications
of his tradeoffs among objectives. There is no requirement for the

decision maker to be familiar with mathematical programming. Also, the

algorithm converges to an optimal solution. The decision maker may sub-
jectively terminate the algorithm once he feels further iterations would
yield minimal improvement. The thesis also describes some modifica-

tions to the basic algorithm that make it suitable for the response sur-

face environment.
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Demonstration of the Methodology

The above methodology was demonstrated by applying it to a
hypothetical operational test problem. Subsequent to the cancellation
of the Main Battle Tank 1970 (MBT70) acquisition program, the Army began
development of the less costly MBT76. As one means of cost reduction,
all factors of system effectiveness were considered rather than exclu-
sive consideration of the MBT76 technological capabilities. The Project
Manager (PM) felt that crew training could be of utmost importance in
overall MBT76 combat effectiveness. Prior to OT II, he directed an
analysis of the effects of crew training utilizing a computer simulation
of a combat situation indicative of the European environment. The laser
ranging and optical tracking of the MBT76 were sophisticated enough to
negate any effect of training on weapon accuracy. Consequently the
PM directed that mean time to fire the first round, mean time between
rounds, and probability of sensing be studied as system factors affected
by crew training. In this initial stage, he also directed that one
scenario, an engagement between two tanks in the open at a range of 1000
meters, be analyzed to establish feasibility of the methodology. This
scenario was representative of tank combat in the European theater.

This hypothetical study utilizes a modified version of the tank
duel simulation program developed by the U.S. Army Materiel Systems
Analysis Agency. This is a small-scale, two-sided model used to simulate
brief fire engagements between two armored vehicles. The model utilizes
a stationary defending vehicle (blue) that fires first at a fully-exposed
attacker vehicle (red). The engagement ends when a kill occurs or when
a predetermined time limit expires. The deterministic and stochastic

input variables to the model are shown in Tables 1 and 2, respectively.

The time of flight was based on the use of high explosive anti-tank
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rounds with a muzzle velocity of 3800 feet per second for the Blue tank
and 2800 feet per second for the Red tank. The fixed time to fire
accounts for the mechanical actions between rounds such as recoil and
breech operation. Thus the firing times analyzed are human actions such
as issuing a fire order, loading the round, and tracking the target. A

complete listing of the FORTRAN program of this model is in Bettencourtsg

thesis.

Table 1. Input Variables

Input Variable Value
Engagement Time (sec) 120.%6
Blue Time of Flight (sec) 7.0
Blue Fixed Time to Fire (sec) 1000.0
Range (meters) .85
Blue Rd Reliability 1.17
Red Time of Flight (sec) 7.0
Red Fixed Time to Fire (sec) .825

Red Rd Reliability

LY




Table 2 Stochastic Input Variables (Normal Distributions)

BLUE RED

Input Variable Mean Variance Mean Variance

P(Hit 1st Rd) .75 .0025 .60 0025
“ P(Rehit) .85 .0011 .75 .0011

o P(Hit|Sensing lst Rd Miss) .80 .0011 ol .0011

A P(Hit |Loss of 1lst Rd Miss) .775 .0017 .625 .0017
f P(Kill|lst Rd Hit) oD .0011 45 .0011

i P(Kill |Renit) .85 .0003 .8 .0003

; P(Kill |HitNSensing lst Rd Miss) .5 .0011 .45 .0011

P(Kill |[HitMNLoss of 1lst Rd Miss) -5 .0011 .45 .0011

X P(Sensing) .525 .0006

9 Time to Fire lst Rd (sec) 8.5 .6944

' Time to Fire Subsequent Rd (sec) ~10.5 .6944

The objective of the experiment is to study the effect of Blue crew

training on combat effectiveness. Three independent variables were

chosen; mean time to fire the first round (xl), mean time between rounds
(x2), and the probability of sensing a round (xa). Based on crew per-
formance experience, realistic ranges were chogen for the independent
variables. Mean time to fire the first round, human action component,
ranged between 30 and 8 seconds. Mean time between rounds, human com-
ponent, ranged between 30 and 5 seconds. Probability of sensing ranged
between .0 and .6. The Red probability of sensing is somewhat higher
since the Red round has a lower muzzle velocity and, consequently, is

easier to sense. The dependent or response variables initially chosen

were the probability of Blue victory (yl) and the expected number of

Blue rounds fired (yz). One scenario, an engagement between Blue and
Red at 1000 meters with both tanks in the open was analyzed. This i

scenario is representative of tank combat in the European theater.
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Initial experiments with the model were in the region 20< x1 < 30,

< .2. This produced observed probabilities of

20 < x, < 30, and 0 %,

2z
Blue victory of .3 :~yl < .45 and expected number of Blue rounds fired

of .6 E.Yz < 8. This region is obviously‘one of low combat effectiveness.
The method of steepest ascent was used to move to a region of the factor
space where higher combat effectiveness measures would be observed.

During this phase of the study, it was noted from statistical analysis

of the coefficients in the fitted first-order regression model that the
probability of sensing, X35 had no effect on the two responses. There-

fore, x, was eliminated from further analysis and set at the mean of its

3

ptactical range (i.e., xy = .3). Apparently, at the specified range

and with the given probabilities of hit and kill, the ability to sense

a round is not critical. The engagement seems to be won on the speed

of firing the first round and a second round if required. Given another

scenario, it is not unreasonable to expect that x3 would be significant.
The method of deepest ascent indicated that the true optimum is

in the vicinity of the point X = 12 sec. and x2=10 sec. To improve this

estimate of the optimum, a second order reaponse surface analysis was

conducted. A rotatable central composite design, shown in Table 3, was

used to fit the second-order surfaces. The second~order response sur-

faces are, for the probability of Blue victory

~

3 _ e 3 _ 2
Y, 0.629 + 0.014x1 0.006212 0.00121 0.00024x2 + O.OOOlelx2 (2)

and for the expected number of Blue rounds fired,

= 2 2
Y, 1.esét.+o.o:zlsxl 0.0234x, - 0.0002625x; - 0.00124x, +0.00135x x, (3)

A canonical analysie indicated that both of these surfaces contain maxi-

muns which lie outside the experimental region.




Table 3. Central Composite Design

" *2 Y1 Y2

8 5 .669 1.635
16 5 .581 1.315

8 15 .538 1.235
16 15 .460 1.021
12 10 .577 1.337
12 10 .585 1.380
12 10 .581 1.366
12 10 .573 1.332
12 10 .609 1.426

6.344 10 .591 1.408
17.656 10 .518 1.148
12 2.93 617 1.504
12 17.07 .533 1.092

Response surface equations relating the design variables to training

were developed from interviews with experienced armored officers. The

approximating relationship between xl, x2

firing) training (y3), in the region of experimentation for Equations

and hours of dry (no live

(2) and (3) was found to be

> TR 87.2009 —2.5556::1 -2.1667x (4)

2 -
The approximating equation for live training rounds fired (yl.), in the
region of experimentation for Equations (2) and (3 ) was found to be

~

Ty = 107.30015 -2.611x1 -2.9167x2 . (5)

The cost of training (ys), in the region of experimentation for Equations
(2) and (3), based mainly on cost of rounds and of petroleum, oil,
and lubricants, was computed to be approximately

y = 9667.5135~234.999x,~262.503x, (6)

The objective now is to maximize combat effectivenhess (yl'yz) while

simultaneously minimizing crew training parameters (ys.yb.ys).

22
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We note that regardless of the values of x) and X,, the expected number
of Blue rounds fired is between one and two. This response is of
minimal interest in comparison to the probability of Blue victory and the
traininé para-ogers, and was eli‘inntcd from furthet analysis. The four
remaining response surfaces are illustrated in Figure 3.

The Interactive Vector Maximal algorithm was applied to this problem.
At the outset of the optimization phase, it was determined that no more
than 50 hours dry training per ctew, no more than 55 training rounds per
crew, and no more than $5500.00 training cost per c¢rew could be expcnds:l.
Figure 4 illustrates the four iterations of the algorithm which results
in an optimum point of X, = 10.7 secs and x, = 8.2 secs. Typical outnut
from the interactive optimization program is shown in Figure 5. The
results of the optimization algorithm predicted that training to this nro-
ficiency would result in a probability of Blue victory of .6099. The
predicted training effort to arrive at this level was 41.9 hours of dry
training per crew, 55.2 live rounds fired per crew, and a cost of
$4982.62 per crew. To confirm these results, the tank duel simulation
was run at these levels and 12 replicates obtained. A 90% confidence
interval on the mean probability of Blue victory is

5377 _<_E(y1) < .6547,

which is supportive of the conclusions drawn from the multiple response

surface analysis.
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LEGEND FOR FIGURES 3 AND 4
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yl = probability of victory

-

yy * training hodts

Iy = training rounds

-

Yo = training cost in dollars




.l

I
?
!
2 .5

S(YICTOTY)
Z(¢(BTL PD%5)
TRI5 TS
TE1g ©°ns
TG COST
*'1C:l TC YOU PTEFEI".
21

BEST"AVAILABLE COPY

ST PERTURBATION OF FC(1), 13

N~UT PEPTUR3ATION OF FC 2), 14 FAVDRAEZLE DIRECTIIN

A
« 54585
l' SQLZ'::‘
55.9225%2
76. 25202
63723. 62B0C

FTAYD"AHZZ DIRECTLIO

10
- 78357
1. 29425
55.2226%
750 25C20
5373. 5230

" ee e————————— e

1F7 vYOU ARE IIDIFFzPadT TYPE [-

I'I°U'T PEFTVRRATICH OF FC 3), ty FAavOoraiL: CIFECTIUN

2 ~5.

T(YICTORY)
ECATL 2D%)
TG H2S
TRIG RDS
TPNG COST

21
? =5

BEVICTORY)
E(27L PDS)
T™G HPS
TRIG VDS
TRIG COST
""HICH DO YQOU PREFER.
2 1

INTUT PERTECSBATIOY OF F(

? =539

P(VI.CTORY) -
EC3TL RLCS)
TZIG HPS
TG DS
T=IG COST

"SICH DO V0!l PPEFER.

)

A
tal

. 6455C
1. 59 200
55.922672
76. 25422
6373. 02000

wHICH DO YOU PRIFER. IF YOU ARE IWDIFFEREIT TYPE i;

I']PIT PEPTUPBATION OF FC 4)J 1.1 FAVORARLEZ CIRECTION

& >y
«5452C

1. 59400
55.9226%
76. 25C03
6373. 6083¢

17 vol! ARL IJLIFFEREST TYPE 1.

A
s 6456C3
1. 59432
55.922672
76. 253722
6373. 20GC2

17 YOU ATE IUZIFFEREIT TYDZ 1.

5), 1if FAUYORABLE DIPECTIO

12 o
. 74507
1. 59428
67.92262 i
76+ 25620 :
6373. 63933

U
« THBET
1. 592439
$5.92239
81. 25520
6373. Z3C122

5 !

e 746335

le 52 4CC
55.92282
176. 25020

7373.3¢¢48

Figure 5. Example of Interactive Optimization Computer Program.

27




BEST AVAILABLE COPY

11™T nsnvhwaATxou OF F(1), 13 FAVI"AAL Z DIRECTION |
. l !
33 Batte § n:ﬁrnqaqTxo: OF FC 2), 14 FAWTAESL: DIPECTION |

-~

? 5 ' ' . f
A L ;
S(vYIcTORY) . « 54603 . 74657
Z(BTL PDS) 1. 57 423 ) 1. 294873
T™IG TS 55.9224¢ 55.2226¢
TC15 ©NS 76. 25202 76. 258G
TG COST 6373. 00872 5373 2CHGC
“'ICH TC YOU PriFEP. IF vol! ARE LIODIFF:PEIT TYPE 1.
21
I'I°UT PETTUPRATIC] OF F¢ 3), tJd FAVOFARL:Z CISZCTION
? ~5.
A i
"(UICTORY) . 6453 « 74508
E(3TL 2DS) 1. 59 280 1« 594283
TO)NG HRS " 55.92267 63.92262
TRIG 7DS . 76. 252973 76. 2562¢C
TONG COST 6373. 00000 6373. 2¢332
1141 C:{ DO YOU nnzrzn I7 YOU ARE x«nxrraqast 1YPE I.
2 1
1'1°UT PEPTUPBATION OF F(¢ 4)3 11 rAVO’AELZ nxazcrro«
2 -5,
7 i
n(VICTOTY) « 64600 . 745€2
EC(27L PDS) 1. 59 40¢ 1. 524393
TONG HPS 55.9226%2 $5.92259
TRIG RDS 76. 25€N0 81.25¢20
TG COST 6373. 0003¢ 6373. 320722
"4I1C4 DO YOU PREFER. xr vol! AREL IULCIFFENEIT TYPE 1.
21
"INTUT PERTVOBATON OF FC S)» i FAVORABLE DITECTIOI
72 -890,

; e o 1}
n(VI-CTORY) . « 646G - . 74633 3
EC(3TL RWCS) 1. 59432 1. 59463

T™?1G HPS 55.92262 - 585,9£26%0

TG PDS 76. 299827 76. 25C2¢

TTIG COST 6373 286¢ 2 7373.2221¢C
1"31C4 DO VO'l ®EFER. !7 vOU ATEk IALIFFEREIT TP 1.
3 ‘

Figure 5. Example of Interactive Optimization Computet Program.




unm-H!--'U!-u--!-!ﬂ!-l!I!-lI.'l.lll--'l-’.::--..‘

BEST AVAILABLE “Copy

12T "M EED QF POINTS TO SEE IN STEP SIZE

o .6457 1.5924¢ 55.9226 76.252¢  6873.23C¢C

<5279 1. 5239 43,9048 65.-2844  57245.4792

5095 1. 4536 41.8853 55.6339  5217.9939

_ .5353 - 1.363¢C 34.8667 45,3333 429G.37¢
E  .ssen 1.2722 ~  27.3481 35.2277 ,3162-9968;
«5232 1. 1662 28.8294 24.7222  2235.495C

<2368 _ 1.9538 13.3198 144186 1387.994C

"UT NIYBL® OF PPEFFEPED POINT : =

I

? .

1F Ve el TO TETMINATE TYPE T.  OTHERVISE, TVPE C.
? - -

91‘"

TIMAL ¥ _ -
10.58667 $.3333
.756 CP FLCOILS EXECUTION TIME

Figure 5. Continued

|




Discussion of Methodology

The methodology developed in this thesis is a very general set
of techniques useful in the analysis and/or optimization of complex
systems. While applied to a simulation model, the methodology is
applicable to full-scale systems or processes as well. In general,
experiments or tests are performed with one of two objectives; either
(1) to learn how the factors of interest (independent variables)
affect the output, or (2) to find the levels of the factors that
optimize the output or response. This latter category of problems
is addressed here.

The methodology would require that a simulation model of the
system to be studied be available, and that the effect of training
variables could be incorporated directly into this model. Alterna-
tively, it could be applied to a live test, providing that resources
to conduct training and optimize the test relative to the training
variables were available. A limitation of the test is that it is
difficult to deal with more than 5 or 6 independent variables. How-
ever, the problem of multiple measures of effectiveness is directly
incorporated into the methodology-

There are a number of extensions and applications of this research
that could be of interest in the operational testing environment. One
possibility now currently under study is the use of nonlinear goal

programming methods for the optimization or solution of problems

involving multiple measures of effectiveness.
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"A Cost Optimal Approach to Selection of Experimental Designs for
Operational Testing Under Conditions of Constrained Sample Size,"
by Sam W. Russ, Jr., Major, Signal Corps

The Problem

The problem was that of selecting the specific design structure
for an operational test under conditions of constrained sample size.
The work was limited to univariate, quantitative, continuous, linear
response models. The approach was to develop a mathematical model
which has as its objective function, expected additional system
cost (EASC). The EASC is defined as the sum of four cost elements.
These are:

(a) Fixed cost of testing

(b) Sampling cost

(c) Expected cost due to a type I error

(d) Expected cost due to a type II error

Two classes of designs were considered, however the
model would be applicable to any designs for which the above cost ele-
ments could be determined. The two classes of designs considered in
this research were:

(a) Crossed, fixed factorial (including fractional factorial) |

designs

(b) Analysis of covariance designs.

Motivation of Research

The research was motivated by a problem of OTEA, stated by them

and reported in the thesis as, "OTEA is continuously required to design

and analyze the results of operational tests based upon small sizes
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whether the sample concerns numbers of prototypes, personnel, or trials.
The effect (of a research project) would be directed at developing a
methodology for designing, planning, and evaluating operational tests
of limited sample size."

This problem motivated the researcher to develop a methodology for
selecting the design of an OT based on a criterion of minimum expected
additional system cost due to the entire testing procedure. The
research thus addresses directly only the first part of the problem
stated above. However, once the design is selected there is no particu-
lar difficulty in selecting the method of analysis. For the designs
considered by this research, the method of analysis is well defined and

well known.

Development of the Cost Model

The cost model developed is generally stated by the following

equation

N
+ ) C,+Cca+cC
. 1 ol
i=1

EASC = C B

0 B

where EASC = Expected cost of additional testing
C, = Fixed cost of testing

N = Number of observations

Ci = Cost of sampling for observation i
Ca = Penalty cost of a type I error
C8 = Penalty cost of a type II error

o = Probability of a type I error

f = Probability of a type II error
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The research considered the EASC necessary to make a decision regarding

main effects only. That is the decision was of the type needed to

T

determine the advisability of adopting a proposed device over a standard

device or equipment. Thus the hypotheses tested were of the form: |

LT

i.j — =

o HO. “l “2 0 |
- Hl: “1 5 u2 =d >0

i Here the null hypothesis, HO, states that the proposed device is not

significantly better than the standard for comparison (SFC). The alter-
native hypothesis states that the proposed device is better than the
SFC by an amount d, the performance margin required for adoption of the
proposed device. The required performance margin, d, must of course be
stipulated in order to compute the probability of making a type II error,
i.e. accepting the null hypothesis when the proposed device is better.
Figure 1 illustrates the errors and penalty costs in operational
tests required for evaluation of the last two terms in the cost model.
The other terms are self explanatory and would likely be well known for

any specific test situation.

The cost model developed for a factorial design is given in the

following equation,

Co + CBB(a,A,vt,ve)
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where
K = number of factors,
Li = number of levels of the ith factor, Xi’
Ei = eth level of the ith factor,
: ’ th
n. = number of observations in the ¢ ,...c cell,
t_l...t,K 1 K
C = cost of an observation in the ¢ ...Eth cell,
t,l...tK 1 K

a = significance level,
A = noncentrality parameter
v, = degrees of freedom between treatments,

Vv = degrees of freedom for error.

The form of A and LA will be determined by the specific type of
factors involved and the pattern in which they are combined.

Parameter Estimates Needed. The following parameter estimates are

needed prior to the design of OT-I, the first stage operational test.
Their values would usually come from developmental tests conducted on
the devices or from similar operational tests conducted previously.

They may also be obtained from a series of pre-tests if this is feasible.

1. All cost coefficients
2. Error variance for the response variable in a completely
random design

3. Correlation coefficients between the response variable and

each covariate as well as all control factors

4. The ratio of the average variation of each factor about its
fixed level to its population variance.

The estimates for subsequent test phases (OT-1I, etc.) would be

obtained from the first phase (OT-I).




The Optimization Problem. A g completely crossed factorial design

with all factors fixed and with a single covariate, Z, was used for
illustration purposes. The cost optimization problem would thus be for-
mulated specifically as the problem of selecting a design structure for
operational tests with limited sample size. It was formulated as a
constrained nonlinear optimization problem with EASC as the objective

function and with sample size restrictions as the constraints.

The EASC Algorithm

An algorithm based on the derivation described in detail in the
thesis was developed and is discussed in the thesis. This algorithm was
programmed in FORTRAN IV for the Georgia Institute of Technology's
CDC CYBER 70 computer. A complete listing of this program and description
of the output options is contained in the Appendices of the thesis.

The algorithm was used to generate data for a 23 completely crossed
design with one covariate based on hypothetical values of the cost
coefficients and the primary parameters in order to test the program
and empirically investigate the functional relationships between the

N, and a. With

objective function and the decision variables. ;1’ n

2°
the exception of Figure 3, all remaining illustrations in this section
are based on these data.

Figure 2 illustrates, for two different values of a, the probability
of a type II error, B, plotted as a function of the noncentrality
parameter, A, and the error degress of freedom.

Figure 3 shows several cost factors and rates of change of cost

factors plotted as functions of (Tl' Tzla,N), the individual treatment

sample sizes when the total sample size and a are fixed. Since T1
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is bounded (due to sample size restrictions), only a portion of Figure
3 will actually occur. Also, since Tl takes on only integer values,
only discrete points within that segment can occur. Figure 4 illustrates
these segments of the EASC curve which are obtained from the simulated
data for several different values of N, the total sample size. It
should be noted that increasing the value of N shifts the segment of the
EASC curve from right to left with respect to Figure 3.

Figure 5 illustrates the effect of increasing the significance level,
. The figure shows that as a increases all of the curves in Figure 3
are compressed to the left. This is because as a increases, for fixed

N, the rate of change of B with respect to Tl increases.

EASC as a Function of N for Optimal (ﬁl, ﬁzla, N)

Selecting for each value of N the optimal allocation of observa-
tions, (El, 52), results in the EASC values shown in Figure 7. Note
that as the significance level increases, the optimal number of obser-

vations initially increases, then decreases. This is the result of the

variations in the rate of change of B with respect to N for given values
of & and N, Where this rate is high enough to off-set the increase in
sampling cost, increasing N will reduce EASC. Once this rate decreases

to the point where

DB . BSC

| e AN © AN

then increasing N will increase EASC.

Summary of Procedure

The basic procedure for the design of an OT developed by this

research is summarized by the following 14 steps.
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1. Determine minimum number and type of factors (o
be considered and how they are to be combincd to determirne |

the conditions under which observations will be taken. The

minimum number of factors will generally be dictated by the

A ¢ g R e b L T e
e s | Sl i

test issues.

st

2. Determine response variable to he measured (MOE).

5

-

iy

This must be a continuous variable.

:

3. Formulate the appropriate response model based on

-r'-!\’ Ll

Steps 1 and 2.

P

4. Select the set of exact hypotheses to be used as
the basis for optimizatation. Normally, this will be the
null hypothesis of no treatment effect versus an exact form
of the alternate hypothesis: the tested system exceeds the

SFC by the required performance margin.

5. Determine the cost model to include estimates of
all cost coefficients and primary parameters.

6. Formulate the optimization problem to include all
constraints.

7. Apply the EASC algorithm to determine the number
of observations to be taken in each row and their distribu-
tion, the level of significance, and the power of the test.

8. Use a random process to assign observations to
specific cells and to determine the sequence in which obser-
vations are to be taken.

9. Vary the control limits on the levels of factors

to dctermine the optimum control required if control is an-
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to become a problem.

Repeat Steps 5, 6, and 7 for any alternatives
be of interest to the experimenter such as addi-
blocking factor or covariate; an increase in the
observations, if the previous optimal solution oc-

the upper limit of this constraint for one or both

treatments; or fractional replication.

1
12

13.

Select the optimal feasible alternative.
Begin experimentation.

Correct estimates of input parameters as test data

becomes available.

14.
determine

estimates

Repeat Step 7 and other steps as neccssary to

the effect, if any, of the corrected parameter

on the optimal solution.
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Demonstration of the Algorithm

The algorithm was demonstrated by a hypothetical example in which

operational tests were to be designed to evaluate the overall military

S

worth of a new ground-to-air tactical missile system, TAAMS, which is
under development as a replacement for the HAWK missile system. The

specific illustration concerns tests for the guidance system.

=

The critical issue for evaluation is the accuracy of the guidance

T s ———

system. Ambient temperature, altitude of target, and speed of the tar-

get are the most likely factors to have a significant effect on the

accuracy. The maximum numbers of TAAMS and HAWK missiles that may be
fired in each phase of the OT to evaluate the guidance system are 12
and 20 respectively. The measure of effectiveness (MOE) is stated as
the mean miss distance from the target.

A 23 completely crossed factorial design was selected with ambient
temperature, Z, treated as the covariate. The two independent variables

were altitude of the target, X2, and speed of the target, X These two

3
variables are treated as control variables while ambient temperature was
considered a covariate since it could not be controlled. Factor X1 is
the missile type.

The test designer then uses the :roposed procedure to determine

the number of firings to be used for each missle type and their

distribution among the 23 cells of the design. Estimates of cost

coefficients and variability estimates required for use of the procedure
are first obtained. These are shown in Table 1.

Figure 7 shows the results of the use of the EASC program with the
input values listed in Table 1. The optimal values shown in Figure 8

were found to be, a = 0.29, N = 16, Tl = 8, T2 = 8 and B = 0.2207. This

resulted in an EASC of $8.907 M.




li
I

Table 1. 1Initial Input Data for OT I

Cost Coefficients
(million dollars)

Primary Parameters

C, = 1.000
Cu = 10.000
CB = 10.000
cy = .250
Sy ¥ .100

2
g

Y

4.000

.200

.500

.500

.500

2.000

2.000

20.000

10.000
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OPTIMAL SOLUTION

a= .29
N= /6 (7_/=T2=8)
B=.2207
EASC=88.907 M
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Fiqure 7. Optimal (EASC/a) for Initial OT I Design.
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During a planning meeting a new control unit costing $7,000 was
proposed for the target drones. This control unit would reduce altitude
variations by 50%. The new value of the control variance for altitude,
Giz, was then inputed to the EASC program. All other parameters were
left the same. This gave a new optimal solution of $8.897 M, a reduc-
tion of $10,000. This was used to justify the purchase of the new con-
trol unit and the first test phase was conducted.

The results of the first phase are used to revise the parameter
estimates for subsequent phases. The input data for OT II are shown in
Table 2 and Figure 8 illustrates the results of this run of the EASC
program. It is to be noted that the error costs, Ca and CB, are changed
for the OT II tests. Following the evaluation shown in Figure 8, the
performance margin, d, was reduced from 0.200 to 0.150. This necessi-

tated a new program run and resulted in a new set of values. The new

values were:

o= 0.21
B = 0.2583
N = 18
Tl =8
T2 = 10
EASC = $12.074 M

For OT III, new estimates of the input data were determined. These
included significant increases in Ca and CB since an error would now
become critical. Results of OT III will be used to decide whether to

put the TAAMS missile into production. The new data are shown in Table

3 and the output is graphed in Figure 9.
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Table 2. Initial Input Data for OT II

Cost Coefficients Primary Parameters
(million dollars)

¢ = 1.000 g% = 2,800
£ O Y
43
¢, = 20.000 d = .200
: c, = 15.000 o5 T
2
c. =  .250 TR
1 XY
3
c. = .100 62 = 650
2 7Y
‘i = .800
2
Ei = 1.400
3
: oi = 20.000
2
2 = 10.000
X3
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OPTIMAL SOLUTION

o=./7
N=20(T7:=8,T,=12)
B=.2466
EASC=§11.299 M

O

Figure 3 .

09 J7 .25 .33 .41 .49 .§7 .65 .73 .8/ .89

SIGNIFICANCE LEVEL (X)

Optimal (EASC/a) for Initial OT II Data.




Table 3.

Initial Input Data for OT III

Cost Coefficients

(million dollars)

Primary Parameters

C
o

il

Il

1.000 02
500.000 d =
2
150.000 Bkl
2
.350 pz
X_Y
3
2
.100 pZY
52
=2
‘62
=3
2
o
X
2
2
(o]
=

1

2.500

.150

.600

.600

.550

.800

1.400

20.000

10.000
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Figure 9. Optimal (EASC/a) for Initial OT III Data.
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Prior to testing, a new speed control device is introduced on the

Fw target drones which reduces the variance in speed, 5; s by 28.5%. This
L 3
“h new value is then used for the program and a new optimal solution is
\:%
é;f obtained. This is:
15
¥ a = 0.05
3 )'-_ !
33 B = 0.5527 |
- N = 32
T = 12
s :
T2 = 20
EASC = $115.107 M

This reduced the expected cost by $582,000. The cost of the 32 new
drones is $320,000 and therefore the new drones were justified.

The results above indicate using the maximum number of firings for
both missile systems. Because of this result the program was run again
to determine the effect on EASC of increasing the allowable number of

HAWK missiles to 21. The results were observed to be:

& = 0.05
B = 0.5502
N = 33
Tl =32
T2 = 21
EASC = $114.831 M

This reduction of $276,000 in EASC could be obtained by an expenditure

of $100,000 for the additional missile and thus the additional HAWK

could be justified.




_Evaluation of the Research

Use of the algorithm requires reasonably accurate estimates of the
many required input parameters. This could be viewed as a disadvantage
of the procedure. However some knowledge of these parameters must be
obtained prior to the design of the test procedures by any method. Use
of the EASC procedure would perhaps force the test designer to be more
careful in his estimation procedure. In fact, by using the model with
slight variations in these parameter estimates, he can evaluate the sensi-
tivity of these initial estimates.

Extensions of this work should include a thorough study of the
sensitivity of the parameter estimates. It might also include the intro-
duction of multiple measures of effectiveness into the model. Also the
use of discrete or qualitative MOE might be studied. The possibility
of a more accurate objective function using a nonlinear model might also
be studied.

However, without all of these extensions it is still recommended

that OTEA adopt the EASC approach on a trial basis to evaluate their

test design procedures.
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"An Application of Bayesian Statistical Methods in the Determination of
Sample Size for Operational Testing in the U.S. Army," by Robert M.
Baker, Captain, Infantry
The Problem

The impetus for this study was provided by the interest of the
U.S. Army Operational Test and Evaluation Agency (OTEA) in investigating
the possible application of Bayesian statistical analysis and decision
theory to sample size determination for operational testing. In the
OTEA environment, the sample size problem becomes one of determining the

minimum number of replicates required for each set of experimental con-

ditions in order to produce sufficient sample information upon which to

base statistically valid inferences concerning two competing systems.
This problem can become quite complex since a single operational test
may involve as many as a hundred measures of effectiveness (MOE).

] In reviewing OTEA procedures, two areas of possible modification
were identified. The first is concerned with making efficient use of
all available data. The operational testing program is sequential in
nature and, many times, the same measure of effectiveness may be examined
in more than one test. When this occurs, the data from the previous
test is sometimes used in the design of the subsequent test in that it
serves as a basis for the formulation of hypotheses and as a source of
variance estimates for sample size calculations. This data is not, how-

ever, being combined with the data obtained during later tests in the

final statistical analysis. By not doing this, it is felt that valuable
information is being wasted. It is believed that, if this information
were used to its fullest extent, a reduction in the required sample size

would be possible. One method of combining prior information with




sample results is provided by Bayes' theorem.
The second area identified for possible improvement is concerned
with the economics involved in experimentation. Presently the costs

associated with proposed experiments are not directly considered in

sample size calculations. Additionally, there is no evidence of a quan-

titative assessment of the expected value of the sample information to

be obtained from a particular experiment. Considering this, it is doubt-

ful that the money available for testing is being allocated to the vari-

ous experiments in an optimal fashion.

Objectives

(1) To determine the sample size required to satisfactorily esti-
mate the difference between the means of a measure of effec-
tiveness for two competing systems when Bayesian analysis is
used.

(2) To develop a procedure for the optimal allocation of resources

to various experiments in the investigation of a system.

Methodology

The research associated with the first objective involved identify-
ing the distribution of the difference between the means, u, of a MOE
for two competing systems. It is assumed that the MOE follows a normal
distribution with unknown mean and variance, and that the prior informa-
tion concerning the difference of the means is in the form of a normal-
gamma &istribution. In this situation the combined information about
the difference in the means is described by the Student-t distribution.

The criteria used to specify the acceptability of an estimate were
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a) That the variability of | be sufficiently small. This vari-
ability, 1", was expressed as a fraction, s, of the variance
of the prior distribution, I'.
b) That (1 - @)% of the probability distribution of ;i fall within
an interval of expected length, d", which is centered at the
expected value of [i.
These criteria are equivalent but are both discussed as there may be

differences in the conceptual attractiveness of each in the OTEA environ-

ment. Using criterion (a) and Stirling's first approximation the required

sample size was found to be
n= [—— - 1] n' ' (1)

where n' is a parameter of the normal-gamma prior distribution. This

parameter value can be interpreted as the equivalent sample size of a
previous experiment which generated the information contained in the
prior gistribution.

Using Stirling's second approximation a somewhat more complex rela-
tionship between n and s was developed; however an iterative procedure
for solution was required. The percent difference in the solutions
using the first and second approximations was investigated for various
values of V' = n' - 1 and n. Results indicate that there is little dif-
ference when v' is 35 or greater.

When criteria (b) is used the required sample size is found to be

20608 2 | ot - g @

=]
I
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where t(a/2, V") is the percentage point of the Student-t distribution

with V'" degrees of freedom such that P(t > t(a/2, V"'))= /2. This solu-

tion makes use of Stirling's first approximation. It also requires an

% iterative solution.

Criterion (a) and (b) are equivalent in that specifying a desired

o g

posterior variance is equivalent to specifying a length which contains

4 (1 - a)% of the distribution.

% Sample Size Illustrations

i The procedures developed were applied to OT II for the Lightweight
Company Mortar System (LWCMS). The purpose of the test was to provide
comparative data on the two types of mortars for assessing the relative
operational performance and military utility of the LWCMS, Ope of
the MOE under consideration in this test was the time required for an
individual to complete the gunner's examination.

This MOE was previously examined during OT I. In that test, 14
individuals were given the gunner's exam using the 8lmm mortar. They
were then presented with two weeks of instruction on the LWCMS, after
which they once more took the gunner's exam, this time using the LWCMS.
The results of this test were available. The format for the experiment
in OT II is the same. The sample size problem is to determine the num-
ber of individuals to be used in that experiment. The first solution
procedure to be illustrated will use criterion (a).

The initial step in the procedure is to determine the value of the

prior standard deviation of J. For notational purposes, the sample data
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relevant to the 8lmm mortar will be denoted by X 1 = 2 ey 14

e

and that associated with the LWCMS by X i=1, 2, ..., 14. To com-

2i’
pute the value of /ET it is necessary to know n', v', and V', the parame-
ters of the prior distribution. Since this MOE was examined previously,
the prior distribution for OT II may be equated to the posterior dis-
tribution of OT I. However, prior to OT I there was no internally
generated data available; therefore, a diffuse prior distribution was
appropriate. Thus, the posterior distributions associated with OT I are

based solely on sample information. Considering this, the posterior

parameters relative to OT I are computed using the OT I data as

ZiD.
m" =m = L =17.6 sec.
n
Z(D.—m)2
v'=v = -n-nll—— = 2040.5 sec.
nn =n = 14

where

The above values may now be used as the parameters of the prior distri-
bution relative to OT II.
The next step, then, is to calculate the value of the prior vari-

ance of .

vy =_V_.. v

L n' v' -2
_(2040.5)( 13)
B 14 13-2

I

172.25 sec2 "
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This produces a prior standard deviation of

Vit = 13.12 sec ,

The fact that this MOE is again being considered in OT II implies the
above standard deviation is too large to formulate meaningful conclusions
regarding j. What specific value of the posterior standard deviation
would be acceptable is something which must be determined by the OTEA
test designers. To assist in this decision, Table 1 depicts the sample
sizes required to produce various expected values for the posterior

standard deviation.

Table 1. Required Sample Sizes for Values of the Expected
Posterior Standard Deviation (in seconds)

N
(@]
-
o

E(Vi") | 12.0 |11.0 |10.0 |9.0 |8.0 |7.0 |6.0 |5.0 [4.0 |3.0

n 3 6 1631 16 {24 |36 |53 {83 |137 |254 ;589 |2396

The values of n were found by using equation (1) with

13.12

All that remains is for the analyst to select the desirable value for the
expected posterior standard deviation and obtain the required sample size
from Table 1.

Now consider the solution procedure which uses criterion (b), a

AR

RO
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Bayesian interval on the posterior distribution. Based on the prior
distribution, the length of an interval, centered on the mean, contain-

ing 90% of the probability is given by

dl

Il

v i
Zta/zvvn\/u

2(1.761) (13.12)

= 46.21 sec .
Suppose that it is desired to have the expected width of the Bayesian
interval, with respect to the posterior distribution, be equal to
E@") = 20.00 sec ,
then
E(d")2 = 400.00 sec2 .
Using equation (2)

2
(25 55w (172.25)

n = %200 (14) - 14 .

To obtain a first approximation for n, is substituted for t "

Z.05 .05,v

where Z follows the standard normal distribution. This gives

_ 4(1.645)%(172.25)
400

(14) - 14

n = 51.26 .

Rounding this up to the next greatest integer gives an initial value for
n of 52. VUsing this sample size, n" would equal 66, with the correspond-

ing value of t 05.65 being 1.6686. Using these values and solving for n
* ’

gives

2
_ 4(1.6686)“(172.25) ..
n = %00 (14) - 14

= 53.14 .
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From this result it appears that thc ~otimal n will lie somewhere between

52 and 54. Setting n equal to 53 and using the appropriate value for

t ives
0/2,\)" g

2
_ 4(1.6683)“(172.25)
n = 50 (14) - 14

53.12 .

il

n
Therefore, a sample of size 54 would reduce the expected width of a 90%

Bayesian prediction interval to 20.

Economic Considerations

In an environment where cost constraints become active it is neces-
sary to make decisions as to where to allocate resources. For.any par-
ticular MOE it is desirable to increase the sample size to the point
where the incremental value of the last data point is equal to the cost
of obtaining that data point. This implies that it is possible to
define the value or utility, say U(-), of having a posterior distribu-
tion on } with certain characteristics. The characteristic chosen for
use in this study was s, the ratio of the prior variance to the posterior
variance. It was also assumed that the cost of sampling, Ks, can be

represented by a fixed portion, K_., and a variable portion, Kr’ so that

)
K =K. 4+ K n
s f )

where n is the sample size. The utility of the cost of sampling is then

U(Ks) = —Ks

The utility of any experiment, say e > is given by




U(en) = U(s) - KS

where U(s) is the utility of achieving a given value of s.

Two different forms for U(s) were investigated. When s and utility

are related linearly, we have
U(s) = as + b .

Using the relationship found between n and s in the previous section in
U(s), differentiating with respect to n, and setting the result equal

to zero yields

o [af g

where a is negative.

Alternatively suppose that U(s) is of the form
@
U(s) = (1 - s) Kt

where Kt is some maximum allowable dollar amount for this MOE. Then

U(e ) = (1 - s)CK - K

n t s
Substituting for s and KS and differentiating with respect to n gives

Ke L@ 1/2 “1/2 =1 3/2
3k [1 - (n")

e (n' + n) 17 (" + n)” =K, (4)

Search methods are necessary for funding the optimal value of n in this

case.

pRe T
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Economic Examples

The solution procedure is illustrated using both types of utility
functions described above. The same experiment used previously will be
used for this illustration. In order to do this, however, several addi-
tional inputs are necessary, specifically, the budget constraint, Kt’

the sampling costs, K. and Kr’ and the utility function, U(s).

f

To think of a budget constraint and a cost of sampling associated
with a single MOE may be somewhat unrealistic. In practice, a single
experiment will produce data on many different MOE. Most of the time,
the only budget and cost figures associated with the test are aggregate
amounts in the form depicted in Table 2. Therefore, rather than attempt-
ing to determine the sampling cost for a specific MOE and the total money
available for testing that MOE, it may be much more realistic to allccate
to each MOE some proportion of the aggregate budget and estimated costs.
This is not currently being done, so it was necessary to approximate
these values.

It is suggested that the proportion of the aggregate budget to be
assigned to a specific MOE be commensurate with that MOE's relative
importance. The OTEA already assesses the relative importance of MOE in
qualitative terms, All that is required then is to quantify this
assessment, perhaps through a scries of weighting functions. It is not
anticipated that this requirement would represent a major problem to OTEA
test design personnel who have detailed information on the relationship
between the data requirements and the operational issues being cxamined.

Since this type of information is not presently available, a very

simplistic approach was taken to the allocation problem. Each of the MOE




Table 2. Total Cost Estimates (Direct Costs) [14]

Elements of Cost Estimated Cost
(In Thousands
of Dollars)

1. Test Directorate Operating Costs 19,11
2. Player Participants 22.1
3. Test Facilities 30.0
4, Items to Be Tested .5
5. Data Collection, Processing and Analysis 6.4
6. Ammunition 145.4
7. Pre-Test Training 2ol
8. Photographic Support 1510
9. Other Costs 4.5

Total 245.1

was weighted equally in determining the individual budget constraint.
ﬁased on an imposed test budget constraint of $250,000.00, the individual
budget constraint for each MOE, Kt’ was derived to be $1,724.00.

The derivation of values for the fixed and variable costs was ac-
complished in a slightly different manner. The aggregate estimated fixed
cost was defined to be the sum of all those costs in Table 2 except the
costs of player participants and ammunition. This resulted in a total
figure of $77,600.00. This figure was then divided by the length of the
test in weeks to yield a fixed cost per week of $5,969.00. Using this

weekly cost estimate, each phase of the test was assigned a fraction of

the total estimated fixed cost based on the time required to conduct that

1
)
i
{
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particular phase. The fixed cost associated with each phase was then dis-
tributed equally among the MOE being examined in that phase. Table 3 pre-
sents the results of this process.

The variable costs are of two types, those associated with a sample
size requirement for a certain number of different individuals and those
associated with the requirement for the expenditure of a specified number
of rounds of ammunition. Both of these variable costs were approximated
by dividing the appropriate total estimated cost figures presented in
Table 3 by the total estimated requirements for that resource. This
resulted in a variable cost for personnel of $57.C0 per week per man and

a cost of ammunition of $13.00 per round.

Table 3. Allocation of Estimated Fixed Costs

Phase Length of Fixed Cost No. MOE Fixed Cost

Phase for Phase Examined  per MOE

(weeks) (%) ($
1. Training 2 11,938 28 426
2. Ppilot Test 5 5,969 0 0
3. Field Exercise 3 17,908 73 245 :

)
4. Live Fire 6 35,815 36 995 |
5. Parachute Delivery 1 5,969 8 746 i
Demonstration

The MOE of interest in this illustration is to be examined during
the training phase so the fixed cost, Kf, is $426.00. The test design

calls for using the same number of individuals throughout the training

phase. Therefore, the variable cost, Kr, was derived by multiplying the




cost per man per week by the number of weeks required to complete the

training phase and then dividing the result by the number of MOE examined
during this phase. This process resulted in a value of $4.00 for Kr'

The above methods for approximating budget constraints and sampling
costs are not necessarily being advocated for use by OTEA; they were used
here to provide a starting point for the demonstration. This being accom-
plished, it remains to select an appropriate function for U(s).

The first case to be considered is that of a linear utility func-

tion. The form of this function is

a

1A
o

U(s) = as + b
0<s

1A
-

Consider Figure 1 below, by varying the values of the parameters a and b,
it is possible to represent U(s) by any negatively sloped straight line
which intersects the s-axis between zero and one. This provides the deci-
sion maker with a rich family of linear functions from which to choose.

The one chosen for this illustration is the one depicted in Figure 1.

U(s)

y

Kt-

Figure 1. Linear Utility Function




The equation for this function is

83 = -
b U(s) = - Kos + E = Kt(l-s)
N

Using this utility function and the budget constraint and sampling

cost previously derived, the objective function becomes

0ge) = K [1-00) 2y M2 Lk - kn

The optimal value of n is found from

_
2 =12 | =2/3
oo [s ERT ]

a

-

2 ~1/2 | -2/3
o (600 (2 5

88.55 - 14

74.5

This same analysis will now be conducted using two power function

utilities. The first will be defined by

U(s) = (1-5)1/2 Kt 0<s=1

Using this utility, the objective function is

T ) o B o e
U(en) = (1-s) Kt Kf Kr“ 0D<ssl




This function was entered into a computer program which performed a

golden section search giving the results shown in Table 4. As seen from
this table, the economically optimal sample size is 52. This is a
smaller sample size than obtained by using the linear utility function.

This result is to be expected since this power function gives more

e e

W e

weight to larger values of s.

Table 4. Computer Analysis Using Power Function with ¢ = 1/2

LY
k. 34

Lower Upper N1 N2 U(N1) U(N2)
Limit Limit
E 0.00 324.50 123,93 200.54 .501 .259
0.00 200.54 76.61 123.93 .611 .501
0.00 123.93 47.33 76.61 .631 .611
0.00 76.61 29.28 47.33 .589 .631
29.28 76.61 47.33 58.56 .631 .631
47.33 76.61 58.56 65.38 .631 .625
47.33 65.38 54.15 58.56 .632 .631
47.33 58.56 51.74 54.15 .632 .632
47.33 54.15 49,73 51.74 .632 .632
49.73 54.15 51.74 52.14 .632 .632
51.74 54.15 52.14 53.74 .632 .632
51.74 53.74 52.14 53.34 .632 .632
51.74 53.34 52.14 52.94 .632 <632
51.74 52.94 - 52.14 52.54 .632 .632
‘ The second power function utility to be considered has the parame-
ter ¢ equal to 1.5. Since this particular function is not guaranteed to

be unimodal over all n, the method of subdividing the interval of |




uncertainty into a number of smaller intervals was employed. The inter-
val of uncertainty, based on the budget constraint, is (0.00, 324.50).
This interval was searched using subintervals of length 20. The results
are shown in Table 5. As can be seen from this table, the optimal sam-
ple size is 83. Note that the utility of the experiment steadily
increases until the optimal sample size is reached and then steadily
declines over the remaining values of n. Thus, it is reasonably certain

that a sample of size 83 is, in fact, a global optimal.

Table 5. Results of Computer Analysis Using Power
Function Utility with ¢ = 1.5

Subinterval Optimal Sample Utility of
Size for Experiment
Subinterval
0 - 20 20 -.144
20 - 40 40 .004
40 - 60 60 .065
60 - 80 80 .083
80 - 100 83 .084
100 - 120 100 .076
120 - 140 120 <053
140 - 160 140 .019
160 - 180 160 .022
180 - 200 180 -.069
200 - 220 200 -.121
220 - 240 220 -.176
240 - 260 240 -.234
260 - 280 260 -.356
300 - 320 300 -.420
Summary

The greatest limitation to the methodology developed in this study

is that it is applicable only to the case of sizing an experiment for a
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single MOE. The logical extension of this is to the case of multiple

MOE. There are at least two approaches to analyzing this case. Ore would
be to apply multivariate Bayesian statistical theory combined with multi-
b dimensional nonlinear programming algorithms. A second approach would be
‘ig to view the money required to perform each of the experiments involved in
Sl an operational test as a capital investment and the utility of each of
the experiments as the return on that investment. Formulated in this
manner the problem might be solved utilizing capital budgeting techniques.
If it is possible to extend the methodology to include multiple MOE, then
it may be possible to use it in multifactor experimental design problems.
Aside from extending the methodology, several other areas warrant
further investigation. First, is the assumption that the normal process
may be used as a reasonable model for a large number of operational test-
ing problems. Closely associated with this would be an investigation of

the variation in results when the sampling process is not normal.

The economic analysis assumes that certain costs relative to the

F conduct of OTEA's data collection and analysis can be determined. OTEA
personnel must judge whether this information can be collected at a
reasonable cost or whether adequate estimates can be made where actual
data is not available so that the results of this methodology will provide

additional information for the test planners.

As a final recommendation, it is suggested that the procedures out-
lined in this study be utilized in designing a number of operational

g tests and that these results be compared to the results obtained using

the presently employed methods.
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"A Methodology for Determining the Power of MANOVA When the Observations
are Serially Correlated," by Norviel R. Eyrich, Captain, Artillery
The Problem

In recent years the U.S. Army has expended a great deal of money
and time to develop and deploy sophisticated tactical command and con-
trol systems. Measures of effectiveness employed in the evaluation of
command and control systems vary; however, the measures of effectiveness
are rarely independent. For instance, the fraction of available time
passed to subordinate echelons and time required to prepare staff
actions, two possible measures of effectiveness, are highly correlated.

Both analysis of variance (ANOVA) and multivariate analysis of
variance (MANOVA) appear to be appropriate statistical methods to be
used for analysis of command and control experimental data. Recent
research has developed a methodology for determining which statistical

method, or combination of methods, is most appropriate for a particular

system. This past research has not, however, considered that in addition

to the various measures being correlated, that in the case of computer
assisted systems they may also constitute a multivariate time series.

A promising area of research appeared to exist in developing a metho-
dology for identifying, analyzing, and incorporating this additional
information into the methodology developed by Burnette for determining
the appropriateness and effectiveness of ANOVA and MANOVA in the analy-

sis of command and control systems.

Objective

(1) To investigate the effects of a multivariate time series on

the multivariate analysis of variance power function.
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ai: (2) To develop a methodology for incorporating time series infor- ;
';; mation into the MANOVA power generator previously developed !
? by Burnette. This will enable test designers to determine ]
‘§§ the sample size required to achieve a given power when fests ;
.} of competing systems yield multivariate time series data.
Methodology
5 Previous research on the MANOVA power function on data that was not
? serially correlated indicated the following:
1. Power is a decreasing function of the dimension of the
multiresponse. ;
2. Power is an increasing function of the size departure from :
the null hypothesis.
3. Power is an increasing function of sample size.
4. Power is an increasing function of the probability of Type I
error.
5. Power is an increasing function of -log lg], where P is the
correlation matrix of the multiresponse.
It was decided that an appropriate method to simultaneously inves-
tigate the above effects along with the serial correlation effect would
be to use a factorial design and analyze the results by ANOVA. Prior |

to selecting the design, either a 2k or a 3k, it was necessary to deter- i
mine if the main effects were linear or of some higher order. Thus,

six individual experiments were conducted to determine the nature of

the main effects. In each experiment the effect under investigation was
varied over the range of interest while the other effects were held con-

stant. In each case there appeared to be a linear trend in the main

|




effect, with the exception of the response dimension, and thus, it was

felt that a 2k experimental design would be appropriate.

The effect of the dimension of the response was investigated by the
procedure described above. It was found that the dimension of the res-
ponse could not be separated from the other factors and thus could not
be included as a factor. It was then decided to run two full 25 factor-
ial experiments with the dimension of the response, p, set at 2 in the
first and 3 in the second. Appropriate high and low levels of each of

the other factors were selected (these are reported in the thesis).

Data for each of the experimental combinations was generated by
the computer routines to simulate the power function which was developed
by Burnette. These routines were modified to generate serially corre-
lated multivariate data. The experiments were not replicated since the
number of replications of the MANOVA power generator (500 replications)
results in little or no variation in the responses. The effects in each
experiment were plotted on normal probability paper, and the fourth
and fifth order interactions fall along that portion of the plot where
the effects may be represented by a straight line. Thus the error
sums of squares was estimated using the fourth and fifth order inter-—

actions and a complete ANOVA was run.

The analysis of both experimental designs verify that all main
effects are highly sugnificant. The results indicate a number of second
order interactions are significant. However, if the percentage of total

variation explained by the main effects, their mean square, and the amount

of total variation explained by the second order interactions is
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examined, we may infer that some of the second order interactions are not
significant. The A x |p|, D2 % ||, X % D2 and the A x n interactions
appear significant in this perspective, where A is the auto correlation

coefficient, [Pl is the euclidian norm, D, is the departure, and n is

2

the sample size.

Additional information on the second order interactions was acquired
through their graphical representation. The graphical results confirmed
the interaction of the autocorrelation coefficient with the other fac-
tors and also indicated that the autocorrelation coefficient had its
greatest effect on the other factors when they were at their low levels.
This result is not surprising since we would expect the greatest increase
in the MANOVA power to occur when the MANOVA power is low; that is, when
the other factors are at their low levels.

Several general statements concerning the factors which influence
the MANOVA power function were made. They are:

1. All five factors considered in the experimental design sig-

nificantly affect the MANOVA power function.

2. The numerous second order interactions make an interpretation

of the effects of the factors on the MANOVA power function
extremely difficult.

3. The autocorrelation coefficient, A, the determinant of the

correlation matrix, lg], and the departure, D2, appear to
have a very significant effect on the MANOVA power function

through second order interactions.
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4. The power of the MANOVA test statistic decreases with the

dimension of the response.

5. The autocorrelation coefficient, A, has a greater effect on

the MANOVA power function when the other factors are at their
low levels.

It is noted that power was an increasing function of the autocorrelation
structure of the response vector. That is, power increases as the sig-
nificance of the multivariate time series increases. It was also noted
that the large number of significant second order interactions make an
interpretation of the response difficult; however if subjective esti-
mates are to be made for either A or |P| great care must be exercised due

to their impact on the MANOVA power function.

An Application to Operational Testing

The methodology developed above was applied to an operational test-
ing problem. The hypothetical command and control system used by
Burnette was used so that the results could be compared. The hypotheti-
cal command and control sysgem, known as the Brigade Anti-armor Command
and Control System (BACCS), will be described now. Two competing forms
of BACCS were under consideration for acquisition and are designated
BACCS-1 and BACCS-II.

For OT II, the commander, U.S. Army Operational Test and Evaluation
Agency (OTEA), had approved a comparative operational test of the two
systems consisting of three scenarios. The commander had also approved
seven measures of effectiveness designated MOE-1 through MOE-7. 1In

addition, the commander had approved a completely crossed two-~factor

experiment with equal numbers of observations per cell. He desired to
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b determine for which MOE MANOVA would be most effective, powerwise, than
: ANOVA.

:lx

] 5! An objective estimate of the correlation structure of the MOE cor-
A relation matrix was:

% 1 ’ 3 i 6
: 1 1.0 0 06 12 ) ?
‘\ 2 o0 1.8 W5 MRS .01 - .04 .76
. 3 - .06 .01 1.0 58~ 4% .56 .07
; 4 SR | SIS | .68 1.0 ~ 23 72 - 0d
0O
7 .16 .16 07 - .04 el - .08 1.0

OT I test results indicated that each response vector was related to
the previous response vector. However, insufficient information was
available to obtain an objective estimate; therefore, a subjective
estimate of the autocorrelation coefficient, X = 0.3, was made by the
BACCS project manager and the U.S. Army Training and Doctrine Command.
Based upon a knowledge of BACCS, it was felt that MOE-1 was inde-
pendent of all other MOE. We test this hypothesis. The hypothesis
that MOE-1 is independent of the other MOE is not rejected. MOE-1 is
assigned to the set of mutually independent measures, I.
Knowledge of BACCS indicates that MOE-2 and MOE-7 were correlated,
b but independent of the other MOE. It was also felt that MOE-3, MOE-4,
MOE-5, and MOE-6 were correlated but independent of the other MOE.

Thus MOE-2 and MOE-7 were assigned to correlated set Cl' And MOE-3,

MOE-4, MOE-5, and MOE-6 were assigned to correlated set C2. Thus, the
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correlation matrix for the set C, was the 2 x 2 matrix

L
2 L0 .76
Vi 70 3

and the correlation matrix for set C2 was the 4 x 4 matrix

5 1.0 .68 - .49 <ol
4 .68 1) = L2 2
O 56 72 26 1

It was desired to test the hypothesis that set C1 and set C2 were

mutually independent using the appropriate test statistic with a = 0.05.

The test statistic is

Xa = 4.1630

and the critical value of the test

2 B
X 05,8 = 15.5072

The test statistic is less than the critical value of the test; hence,
the hypothesis of independence was not rejected and it was concluded that

Cl and C2 were independent. It was necessary to determine if the MOE

within the mutually independent sets C1 and Czwere independent.

Set Cl had only two MOE and thus has a bivariate normal distribu-

tion. The Fisher Z-transformation was used to test the hypothesis

H = 0

10" Pay
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against

This gave
Z = tanh * (.76) = 0.638
and the test statistic was
|z] /W =3 =0.638 /62 - 3 = 3.984 .

The critical value of the test with a = .05 is Z 05 = 1.96. The test

statistic exceeded the critical value of the test; hence, H was

10
rejected and it was concluded that MOE-2 and MOE-7 were correlated.

To test the following hypothesis

gt Een = 1

against

H21: fcz #1

to determine if MOE-3, MOE-4, MOE-5, and MOE-6 were correlated, the test

statistic
2 Z s
Xg = -[N - k= ——g——‘] Log |R|
= _[42 e .2___'._2_4_'__._5..] Log |§l
= 6581137

was used. With o = .05 the critical value of the test is




= 12.59120 .

2
X.05,6

The test statistic exceeded the critical value of the test; hence, we
concluded the members of C2 were correlated.
The above procedures separated the MOE into three mutually

independent sets:

MOE-1
MOE-2, MOE-7

MOE-3, MOE-4, MOE-5, MOE-6 .

ANOVA was appropriate for MOE-1, the sole member offset I; therefore,
MOE-1 was not used for a comparison of the effectiveness of MANOVA
with ANOVA.
The Commander of OTEA had specified the following probability
levels be used for BACCS OT-II:
Probability of Type I error, -.05
Power of the test (1 - B) -.75.
These parameters were applied to both ANOVA and MANOVA. In addition, the
maximum sample size, Bt and the departure to be detected, D,
were specified for each MOE. These parameters are shown in Table 5.
Using the information in Table 1 the minimum sample size, nANOVA’
for each MOE required to achieve the desired power was computed. This

was accomplished by using the results from Burnette's work. The

results are shown in Table 2.
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Table 1. MOE Maximum Sample Sizes and Departures

S
§] Maximum Departure |
‘i MOE Sample Size to Detect |
z noax D §
1 6 1.5
2 6 1.5
<. 3 4 2
¢
‘ 4 6 1%
5 6 1.5
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For the two sets of correlated measures, Cl and C2’

to determine for which members of these sets MANOVA was more effective

it was necessary

than ANOVA from the standpoint of power. The Commander of OTEA had
approved a ratio R = 2 for use in setting the random levels of the MOE
in the sets other than those under consideration.

For set C, = {MOE-2, MOE-7} it was found that nmin = min {n

1 ANOVA 2’

0, NOVA 7} = 5. The two-factor MANOVA computer program was used with

levels of factor A = 2, levels of factor B = 3, D = 1.5, sample size =

nmin =5, A = .3, R =2, Monte Carlo iterations = 500, and correlation

matrix PC . The results are tabulated in Table 3 with the results of
ol
Burnette's research for ease of comparison.

Table 3. MOE Power 1

MANOVA Departure Power Power
MOE Sample Size to Detect Achieved by Achieved by
Burnette this Research

"manova u
2 5 j ) <7162 . 866
7 5 R S .824 1.000

The MANOVA power was greater than the ANOVA power with sample size

;3 thus, MANOVA wasmore effective than ANOVA for members of set C,.

n 1

min

For set C, = {MOE-3, MOE-4, MOE-5, MOE-6} the same two factor

MANOVA power program wasused. The results are shown in Table 4 for

this research and Burnette's for ease of comparison of results.
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Table 4. MOE MANOVA Power 2

WEAHONA . Devarture Pnyer Power

3 1 28 .614 2850
4 4 Tees .482 .824
5 4 L5 .496 . 176
6 4 1.0 .452 .994

It was noted that again the MANOVA power exceeded the power of the
ANOVA for all components, therefore, MANOVA was more effective than ANOVA
for all members of the set CZ' It was shown that MANOVA was superior to
= {MOE~-3, MOE~4, MOE-5,

ANOVA for both set C., = {MOE-2, MOE-7} and set C

1 2
MOE-6}. This information would be used to aid in the design of BACCS
O X,

Although the example presented was hypothetical the methodology as
demonstrated may be applied to any syétem so long as an estimate of the
structure of the response is available. Note that the introduction of
autocorrelated vectors greatly influence the MANOVA power function.
Burnette was ahle to achieve joint inference on only two MOE in set C2
at the specified power. This analysis, using the systems information,

achieved joint inference on all four MOE of set C, at the specified

2

power level greatly enhancing the analysis of the test results.
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Summary

It was found that the incorporation of the time series into the
MANOVA power function significantly increased the MANOVA power for a
given sample size. It was also noted that a reduction in sample size,
for a given power, could be achieved when the time series information is
incorporated in the MANOVA power function.

This research has been limited by the initial assumptions of two-
factor, fixed-effects, crossed models, equal sample sizes per cell, and
no effects due to operators. In addition, it was assumed that an esti-
mate of the correlation structure of the measure of effectiveness and
the autocorrelation coefficient or all the parameters of a multi-variate
time series are available.

One recommendation for further research is to develop an exact sta-
tistical test for a multiresponse system when the responses are time
dependent. An experiment could then be designed using the exact test
and the current procedure to determine if MANOVA is robust to indepen-

dence of observations. Another recommendation is to extend the MANOVA

power program so that it may handle nested, multi-factor designs.
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