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A graph, G, consists of vertices V(G) and edges E(G); paths are sequences

of vertices connected by edges, and path length is defined by the number of

edges along the path. For x,y £ V(G) we use d~(x ,y) to denote the length of a

minflnaJ. length path between x and y, if such a path exists. ~n n x n array,

Gn~ 
consists of vertices V(Gn) = {Xij}i,j<n and edges which, except at the

obvious extremal conditions, are linked as follows:

* The work of both authors was supported in part by the U.S. P~rmy Research

Office, Grant No. DAA G29—76—G—0338.
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(x i j  Xj~1j ) c E(G~ ), and

4
p1

(x i j~ xi J+~ 
c E(Gn )

~

Such graphs are also called rook—connected. A binary tree is as defined

in [1,2 1; that is , a binary tree I-I is a connected acyclic graph with a

desi~-iated root and ancestor — descendent relation defined so that each

x c V(H) has at nest two irrut~diate descendents.

Let us write G < when there is a one-one mapping (called an em-

bedding of G into H 4~’ : V(G) -
~~ 

V(H), such that for all (x ,y) £

dH(
~ (x) ,  ~~y) )  < T .

As described in [1], it follows fran simple volumetric arguments that for

all T > 0, there exists a binary tree H such that H 
~ T

Gn, for all n > 1.

The corresponding intuition for Gn < TH does not hold. It would now seem

that since in

{x £ V(G ): dGn
(XIY) < k} I = 0(k2) (1)

while in a complete binary tree H

I (x £ V(H) : dH (x ,y)} I 2k-l (2)

that G < ~H would now be possible for some bounded T. It is therefore

sanewhat surprising that Gn < TH only if

• T > logn-1.5

(See [1], for details).
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It is still obvious fran inspection that neighborhoods in trees can be

much more densely growing than neighborhoods in arrays, and therefore by

• choosing a suitably global measure of loss of proximity, this difference

should be distinguishable. In [2] we considered such a measure :

G < 
edge G* if for sane embedding ~ : V(G) + V(G*)

~~~dG*(~ (x), 
~

(y)) < A  I E(G) I .
(x ,y) £ E(G)

It follows (2] that for b = 8.5

G < ~~~~ H
b

for some binary tree H. This upper bound can be improved to b = 7 —

The relation < ~~~~ may be thought of as averaging — with relative

frequencies uniformly distributed to the edges E(G) — over the edges of G.

We now make a more global definition which finally may be used to recover

our original , although imprecise , intuitions about path lengths in bit ~ary

trees . We will essentially average over shortest paths :

G < G* if one is an embedding c~ : V(G) ÷ V(G*) such that

• r < A • L ~n —  n

where

rn =
~~~~~~ 

dG* (~ (A ,~ (y ) )

1~ L. Snyder , private conia~nication .

~~L. 
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- and

~n =
~~~~~ 

dG
(x,y).

x,y

We then have the following theorem.

Theorem. For each n >  0, let An be the least real number such that

< 
pathsGn _ A  H,

- for a binary tree H. Then

lim A = lim r /t~ =0.n n -i-~ °~~ 
n

Proof we first show

Let us choose B1, B2 c V(G~ ) so that

• B1 {x1~ : l < i , j < n / t U

B2 
= {Xij : < i~j  < fl}

• 4

• so that f B1 X B2 1 = [n 2 / l6]2 . Now clearly , for any (x ,y) £ x B2

d
G

(X,y) > n / 2 ,

i

•

, 
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and hence by definition

~ 
> n5 / 512 = ~ (n5)

We now obtain the following upper bound for rn

r = 0(n4 log n) .

As in [2] let Au c V ( G ) , 1 < i , j  < 2 , I A1~! = n2 / ~4 ,

Denote the n / 2 x n / 2 decomposition of Gn and notice that

r( n) < L~ r + ~~
- n~ log n.

• 

. 
Thus r(n) < Qfl~I log n + ~~~ from which the theorem follows directly.
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