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A graph, G, consists of vertices V(G) and edges E(G); paths are sequences
of vertices connected by edges, and path length is defined by the number of
edges along the path. For x,y € V(G) we use dG(x,y) to denote the length of a
minimal length path between x and y, if such a path exists. An n X n array,

Gn’ consists of vertices V(Gn) = {xij} and edges which, except at the

i,j<n
obvious extremal conditions, are linked as follows:

# The work of both authors was supported in part by the U.S. Army Research

Office, Grant No. DAAG29-76-G-0338.
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(xi,J’ x1+1,,j) € E(Gn), and

(xi,J’ x1,3+1) € E(Gn).

Such graphs are also called rook-comnected. A binary tree is as defined

in [1,2]; that 1s, a binary tree H is a comnected acyclic graph with a
designated root and ancestor - descendent relation defined so that each
x € V(H) has at most two immediate descendents.

Let us write G < ,IJ-{ when there is a one-one mapping (called an em—
bedding of G into H ¢ : V(G) > V(H), such that for all (x,y) € E(G),

a(e(x), o(y)) < .

As described in [1], it follows from simple volumetric arguments that for

all T > 0, there exists a binary tree H such that H *_ G, for alln > 1.

The corresponding intuition for Grl < rI,H does not hold. It would now seem

that since in Grl

| tx e V(G): d; (k) <k} | = 0(°) (1)
n
while in a complete binary tree H

| {x e V(H): dy (x,3)} e =l (2)

that G b TH would now be possible for some bounded T. It is therefore
somewhat surprising that Gn < TH only if

T>logn-=-1.5

(See [1], for details).




It is still obvious from inspection that neighborhoods in trees can be

N much more densely growing than neighborhoods in arrays, and therefore by
choosing a suitably global measure of loss of proximity, this difference
should be distinguishable. In [2] we considered such a measure:
G < %% g* if for same embedding ¢ : V(G) > V(G*)

sz*“’(")’ o(y)) <A | B@) |.
(x,y) € E(G)

It follows [2] that for b = 8.5

| g < 2988 g
k. . n —
b | b
%)
[ | for some binary tree H. This upper bound can be improved to b = 7 = o(l)Jr
§ | The relation < eige may be thought of as averaging - with relative
l frequencies uniformly distributed to the edges E(G) - over the edges of G.
l ;,’ We now make a more global definition which finally may be used to recover
3 our original, although imprecise, intuitions about path lengths in biiary
trees. We will essentially average over shortest paths:
@ G < P2S G# 1 one 1s an embedding ¢ : V(G) > V(G*) such that
I‘n < e An
: where

Ty = G (PA,8)

¢(x),9(y)

+ L. Snyder, private communication.
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and
B, =2 dg(x,y).
X,y

We then have the following theorem.

-ﬁ ’
".j: Theorem. For each n > 0, let A Dbe the least real number such that
2 ‘ a < paths H,
4
1
-i-; for a binary tree H. Then

: lim A =lmT_ /A =0.
.‘ . n > o« n+oon n

Proof we first show
A, = )

Let us choose By, By ¢ V(G,) so that

J B1={xiJ:l§i,Jg_n/ll}
. . S
= B2 % {xi,j % Ay s )
' Yy
so that IB1 x B2| = [n2 i~ 16]2. Now clearly, for any (x,y) € Bj x B,

d; (x,¥) 2n/ 2,
n
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and hence by definition

A >n° /512 = 9(n)

We now obtain the following upper bound for I‘n

I‘n = O(nu log n).

As in [2] 1et Ay < V(G), 1< 1, § <2, (Al = a

Denote the n / 2 x n / 2 decomposition of Gn and notice that

y

I'(n) < 4T + n Jog n.

NS
el

Thus T(n) < cmu log n + Bnu from which the theorem follows directly.
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