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SECTION 1

- INTRODUCTION
1.1 SUMMARY

The overall objective of this program has been the development of an analytical crack model-
ing and stress analysis capability, based on the boundary-integral equation method, of suffi-
cient accuracy and efficiency to favorably influence the low cycle fatigue life prediction pro-
cess for gas turbine engine structures. This report discusses progress toward this objective un-
der the present contract, with particular attention to the period since the publication of the

3 last Interim Scientific Report in May 1976.

The boundary-integral equation (BIE) method is known to be particularly well suited for the
calculation of the rapidly varying stress fields associated with both fracture mechanics and
stress concentration problems (Reference 1). During this program, the three-dimensional
: BIE method has been applied to a variety of fracture mechanics problems. The results of this
: work have been incorporated in the low cycle fatigue life prediction process. A new boun-
dary-integral equation was derived for use in three-dimensional crack problems, which should
significantly improve the ability to evaluate such finite geometry effects as the proximity of
free surfaces or a condition of high local surface curvature. Most recently, modified BIE crack
tip elements have been developed and applied to fracture mechanics problems.

The capabilities of the BIE method for stress analysis of uncracked gas turbine engine struc-
tures have been expanded by preliminary development of a technique for merging BIE and

finite element analyses, by extension of the BIE method to deal with anisotropic and inho-

mogeneous materials, and by incorporation of thermal stresses in the BIE formulation.

Section 1.2 of this report is a brief overview of the BIE method; Section 1.3 discusses the ap-
plication of the BIE method in the gas turbine engine environment. Section 2 is addressed
specifically to the question of elastic fracture mechanics modeling, and Section 3 discusses

B application of the BIE method to inhomogeneous materials.

In addition to its impact on Pratt & Whitney Aircraft structural analysis efforts, the research
carried out under this contract has been made widely available to the technical community

{ through contract reports (References 2, 3, and 4), presentations at technical meetings, and
publication in the open literature. References 5 through 9 discuss work fully or partially sup-
ported by this contract. In addition, the Appendix to this report has been accepted for pub-
lication in the International Journal for Numerical Methods in Engineering.

1.2 OVERVIEW OF THE BOUNDARY-INTEGRAL EQUATION METHOD

The BIE method for the solution of elastic stress analysis problems is based on classical re-
sults in mathematical analysis and continuum mechanics. It has become practical as a solu-
1 tion technique for problems with general geometry and loading because of the speed and

‘ storage capacity of present computers.
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The analytical basis of the BIE method is the replacement, employing Betti’s reciprocal work
theorem, of the governing partial differential equations by an integral identity for the elastic
displacements.

Ui(p) = /Tij (p,Q) uj (QdS + /Uij (r,Q) tj (Q)dS (@))
S S

In Eq. (1), u;(p) is the displacement vector at an interior point p(x); t.(Q) and ui(Q) are the
boundary values of traction and displacement. The kernel functions T;;(p,Q) and Ui-(p,Q)
are the tractions and displacements in the x; directions at Q(x) due to orthogonal unit loads
in the Xj directions at p(x).

Equation (1) contains the totality of boundary data; in general, a well-posed elasticity prob-
lem consists of specifying values of t; on part of the boundary, S; and u; on the remainder of
the boundary S,,. Allowing p(x) = P}x), a boundary point, Eq. (1) becomes a set of integral
constraint equations relating boundary displacements to boundary tractions; following Refer-
ences 10 and 11, the BIE is obtained.

w(P)/2 + / T;; (PQ) y(Q) dS = / U;(P.Q) (Q) dS @)
S S

After the boundary solution u;, t; has been obtained, interior displacements can be calculated
directly from Eq. (1). Interior stress can be evaluated by differentiation of Eq. (1) with
respect to p(x) and application of Hooke’s Law. A detailed presentation of the analytical
basis of the BIE method, including an extensive bibliography, was recently prepared (Refer-
ence 2) under support of this contract.

Solution of the analytical BIE, Eq. (2) is possible for only a few simple geometries and load-
ings. The practical application of the method is based on two approximations:

1.  The boundary S of the region to be analyzed is represented by a finite number of
surface patches, Sy. Examples are triangles in three dimensions and straight line
segments in two dimensions.

2. The boundary data (u;, t.) are taken to have a known form of variation on each

el o i il
Sy for example, linear variation over each individual Sk'

The first assumption allows the BIE to be rewritten as

N N
e s Z -
—é’ + Tij(P-Q) Uj(Q) ds =
k=1 Sk

b B f U;PQ) QS (3)

k=1 Sk
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Depending on the particular variation chosen for geometry variation and boundary data, the
integrals over the surface patches are carried out either numerically (Reference 12) or in
closed form (Reference 13) leading to a linear algebraic form of the BIE

W 4 = [1) fo +'[§2\?/2];u} @

Since the BIE in both its analytical and algebraic forms involves only boundary data, no in-
terior idealization is required. The coefficient matrices in Eq. (4) are thus of much smaller
order than those for a finite element analysis of the same problem, although they lack the
banded structure of finite element coefficient matrices.

1.3 APPLICATION OF BIE STRESS ANALYSIS IN THE GAS TURBINE ENGINE
ENVIRONMENT

BIE applications in the gas turbine engine environment fall into two major classes, fracture
mechanics analysis (discussed in detail in Section 2) and calculation of elastic stress fields
near notches and other structural details. This section is primarily addressed to the latter
class, although many of the comments made also apply to the fracture mechanics problem.

1.3.1 Geometrical Complexity

The outstanding feature of problems encountered in gas turbine engine applications is geome-
trical complexity, leading to very large problem size. For example, the modeling of turbine
disk rims involves such features as the load bearing teeth on the disk lug and the doubly
curved surface at the rim slot/cooling hole intersection (Figure 1a).

The ability to model parts using the BIE method is strongly influenced by the way in which
geometry and boundary data are allowed to vary over each surface patch. The BINTEQ pro-
gram, used in much of the work carried out under this contract, uses plane triangular surface
patches with linear boundary data variation (Reference 13). Modeling of a geometry such as
a disk rim slot with BINTEQ requires use of a very large number of elements to obtain ade-
quate definition (Figure 1b), leads to long computer run times, and makes the analysis un-
suited to routine use.

An alternative (References 12 and 14) is the use of isoparametric shape functions for the re-
presentation of both geometry and boundary data. The basis of the isoparametric method is
the mapping of a planar curve or a surface patch to a standard interval or square by means of
a fixed set of shape functions. A particular set of quadratic shape functions is shown in Fig-
ure 2. In this case a surface patch defined by eight nodes (x¥ ,a =1, ..., 8) is mapped to the
square (-1 < £l <],-1< 22 < 1) using the relation,

x; () = M* (§) x,* )

The variation of x;(£) is quadratic along the edges of the square, although cubic terms can
occur in the interior. Similar shape functions exist (Reference 14) for mapping of the tri-
angle-like surface patches required for efficient mesh size transition. The improved modeling
efficiency of the guadratic shape function approach (demonstrated for the rim slot/cooling

3
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hole intersection in Figure 1b) allows the same level of solution accuracy to be achieved
with a much less refined surface map. Other familities of shape functions (linear and cubic)
are discussed in Reference 12.

Boundary data can be modeled using the same representation as used for the geometry, the
approach of Reference 14, or different representations can be allowed (Reference 12). The
con bination of linear boundary data modeling with quadratic geometry representation is
particularly attractive since it permits a low-cost, preliminary analysis of a complex part
without sacrificing geometric definition. If the results of the preliminary analysis are satis-
factory, then a more refined analysis can be carried out by improving the boundary data re-
presentation without changing the geometric representation. A different approach to the
geometrical modeling problem is found in substructuring. Substructuring refers to the BIE
modeling of a part in two or more separate subregions which are then joined by enforcing
appropriate continuity conditions on the common elements which form the interfaces be-
tween subregions (Reference 12).

Pratt & Whitney Aircraft has acquired, for in-house use, a computer program (Reference 12),
using the shape function approach and incorporating substructuring capability, referred to as
BASQUE (Boundary Solution using Quadratic Elements).* This program has been used for
much of the work carried out in the current part of the contract effort. Experience with the
BASQUE code has shown that the increase in modeling efficiency due to the isoparametric
approach and the substructuring capability permits practical three-dimensional BIE analysis
of turbine disk rim and turbine blade attachment structures.

Finally. work has been carried out under this contract to explore the technique of hybridi-
zation, that is, the merging of BIE and finite element analysis. Some rather promising nume-
rical results were achieved in the context of two-dimensional analysis. These results tegether
with a discussion of more basic issues involved in coupling the BIE and finite element meth-
ods were reported in Reference 3 and §.

1.3.2 Loading Complexity

Gas turbine engine structures experience loads other than the surface mechanical loads ac-
counted for in Eq. (1). In particular, the structures are subjected to thermal, and often cen-
trifugal loads. In order to account for these effects, the BIE must be modified to include
the volume integrals of the body force terms for thermal and centrifugal loading. Since one
of the advantages of the BIE method is the absence of an interior idealization, the existence
of these volume integrals poses a difficult question.

During an earlier phase of this contract, a technique was developed for reducing the centrifu-
gal body force volume integral to a surface integral. An exact reduction of the thermoelastic
case to asurface integral was also obtained under the assumption of a steady state tempera-
ture field. Both analyses were incorporated in BINTEQ and verified numerically (Reference
4).

*This proprietary code was developed at the Centre Technique des Industries Méchaniques
(CETIM) under the direction of Dr. J. C. Lachat. Further information about the code is

available from M. Lange, Department Calcul des Structures, CETIM, BP 67, 60404 Senlis,
France.

bt
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The surface integral reduction of the thermal loading was also studied as an approximate tech-
nique in the case of time dependent temperature fields but was found to be unsuitable for even
small departures from steady state conditions. This is of considerable importance since, typi-
cally, engine structures must be analyzed at several points during an engine operating cycle,
and the temperature fields at most or all of these points result from nonsteady state condi-
tions. An alternative approach for BIE analysis of parts subjected to nonsteady state thermal
loads is discussed in Section 3.

1.3.3 Material Complexity

Two types ¢f complexity arise in the specification of elastic material properties for gas tur-
bine engine structures: anisotropy and inhomogeneity.

Anisotropy results from the search for new materials which will have longer service lives
under the increasingly demanding operating conditions found in advanced engines. It has
been found that the use of anisotropic materials (particularly directionally solidified and
single crystal materials in turbine airfoils) allows optimization of preferred material direc-
tions with respect to part loadings.

Anisotropy poses no problem in the formulation of Eq. (2), and integral representations for
the required three-dimensional point load functions were established in References 15 and
16; however, efficient numerical evaluation of these point load functions posed a consider-
able problem. During the present contract, a technique was developed for minimizing this
numerical problem. The technique was incorporated in the BASQUE code for verification
and study of computational efficiency. A detailed description of this work is contained in
the Appendix of this report.

Inhomogeneity of elastic material properties in gas turbine engine parts normally arises from
the combination of temperature-dependent material properties and the fact that parts are
subjected to nonuniform temperature fields. This problem is closely tied to the nonsteady
state thermal body force problem mentioned above. One aspect of the present contract ac-
tivity was the study of methods for dealing with these problems in the context of BIE
analysis. The results of this study are discussed in Section 3.
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SECTION 2
ELASTIC FRACTURE MECHANICS MODELING
2.1 INTRODUCTION

Gas turbine engine disk structures are often life limited due to the growth of fatigue cracks.
Such cracks have been found to fall into two classes: subsurface or buried cracks originating
from intrinsic defects and surface cracks initiated by fatigue loading of initially defect-free
structural notches. The techniques of stress analysis and fracture mechanics have allowed re-
liable and conservative fatigue life prediction for buried cracks, and, combined with appro-
priate process control and inspection methods, have allowed satisfactory low cycle fatigue
(LCF) lives to be achieved for structures with buried defects. The LCF life prediction prob-
lem for surface cracks is considerably more complex. Until recently, the complexity of

both the crack geometry and the stress field near structural details, such as rim slots and
bolt holes, has precluded the use of linear elastic fracture mechanics to predict propagation
life for surface cracks. As a result, the fatigue life of structural details with stress concen-
trations was conservatively estimated by predicting the number of cycles to initiate a surface
flaw of some specified size and ignoring the remaining propagation life.

The practical extension of elastic fracture mechanics techniques to the prediction of propa-
gation of surface (including corner) cracks is based on the use of the weight function tech-
nique originally developed for two-dimensional problems (Reference 17). Development of
an appropriate geometrical model for the surface crack has allowed extension of the weight
function technique to three-dimensional problems (Reference 18). The crack modeling stud-
ies and the basic improvements in three-dimensional crack modeling capability carried out
under the present contract have allowed the development at Pratt & Whitney Aircraft of an
extensive stress intensity factor data base, calibrated with surface crack growth data.

Further, the generally improved capability for calculation of stress concentrations in com-

- plex structural details using the boundary-integral equation (BIE) method, which has been
developed both under this contract and under Pratt & Whitney Aircraft in-house programs,
has a direct impact on both the initiation and propagation problems for surface flaws. The
system for the prediction of LCF cycles to surface flaw initiation is based in part on know-
ledge of the local concentrated stress. In addition, this local stress field in the uncracked
part is used in the weight function method for the calculation of propagation life.

2.2 PREDICTION OF PROPAGATION LIFE FOR SURFACE FLAWS

2.2.1 The Weight Function Method

It has been shown in Reference 17 that for a linear-elastic body in plane strain loaded sym-
metrically about a crack, the Mode 1 stress-intensity factor for any load system can be cal-
culated if the stress distribution in the uncracked body is known and the stress-intensity
factor and displacement field are known for a single load state. In particular, in the absence
of body forces
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(1)
K2) () = _L_. ﬁz)x du dr
KD @ ¢ ok

where K2) and t*2” are the stress-intensity factors and surface tractions of Load State 2 and
u'!) s the displacement field for Load State 1. H denotes an appropriate elastic modulus
for plane stress or plane strain, and € is the crack length.

©)

In the case mentioned previously, the crack is one dimensional, and its stress singularity 18
defined by a single stress-intensity factor. In the case of a crack in a three-dimensional
geometry, the stress-intensity factor is a function of position on the crack face. In princi-
ple, the stress-intensity factor for any load state can be determined in a manner analogous
to Eq. (6). In practice, the determination of the required information on variations of u‘!’
with crack geometry is too difficult.

In order to exploit the weight-function method in three-dimensional problems, it is nec-
essary to reduce the number of degrees of freedom defining the crack shape. Service and ex-
perimental experience (References 6, 7, and 19) have shown that surface and corner cracks
tend to have a part elliptical shape of rather moderate aspect ratio throughout their propa-
gation life. This makes plausible an approach in which two degrees of freedom (the semiaxes
a and b) are allowed to determine the ellipitcal crack shape. This approach (followed in
Reference 18) allows the definition of the averaged stress intensity factors K and K which
are weighted averages of the stress intensity factor distribution along the Lrack front K and
Kb are then related by the material crack growth model to independent growth of the two
axes of the elliptical crack. In the two degree of freedom model this procedure leads to a
coupled pair of ordinary differential equations for crack growth, since each K depends on
the current shape of the crack.

Practical dpplication of this two degree of freedom model requires an efficient method for
evaluating K and K for various load states and ellipse aspect ratios. Equations similar to
Eq. 6 allow wdluatlon of I\ and K for an arbitrary load state if aW/aAI

and aW/aAlb are known for a smglc reference load state. W is crack opening displacement
and A is crack area. Calculation of these quantities requires solution of three-dimensional
fracture mechanics problems and is too expensive for routine use. As an alternative, a data
base has been set up, using three dimensional BIE analysis, in which are stored the required
data for buried, surface and corner cracks in a bar of rectangular cross section for a variety
of ellipse aspect ratios and bar thicknesses. Interpolation using this data allows efficient
calculation of K_and K, for arbitrary aspect ratios and thicknesses.

2.2.2 Fracture Mechanics Calculations for Surface Cracks

s

Several different strategies have been explored in recent years for BIE modeling of cracked

three-dimensional structures. The more general approach is to model the exterior of the |
cracked body and the crack surface, but not the unbroken region ahead of the crack, in

which the traction distribution is singular. This mo-'eling technique is applicable without

symmetry restrictions on either geometry or loading. The first approach along this line was

ik o
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the idealization of the crack as an open notch. Useful results were obtained with this tech-
nique (Reference 20), but it poses a major dilemma. The accuracy of the results suffers if
the notch is too thick, that is if the (coincident) upper and lower surfaces of the mathemat-
ical crack are modeled too far apart. On the other hand, the equation system becomes
badly conditioned if the surfaces are too close to one another.

One way to avoid these modeling difficulties is the development of a new mathematical
formulation which allows modeling of both crack surfaces in the same plane without produc-
ing a singular BIE coefficient matrix. During the first phase of this contract, a new BIE was
developed for three-dimensional bodies containing a buried plane crack of arbitrary shape
(Reference 4). The displacement interpolation functions of the only three-dimensional BIE
code (BINTEQ) available at that time were not smooth enough to allow implementation of
the new BIE. The new BIE, in conjunction with the higher order BIE codes now available
(References 12 and 14) can provide the closest analogy in three-dimensions to the exact
two-dimensional mathematical crack modeling capability of the BIE/CRX code (Reference
21).

An alternative approach to three-dimensional fracture mechanics modeling proceeds from
the observation that, in gas turbine engine structures, fatigue cracks normally grow in mode
I, normal to an applied tension field. This observation suggests using the crack plane as a
modeled symmetry plane, avoiding both problems associated with the open notch model.
This modeling strategy was studied extensively during the first phase of the contract. Cal-
culations were carried out, using the BINTEQ code, for buried, surface, and corner cracks
modeled as ellipses or part-ellipses. The modeling strategy employed, data reduction pro-
cedures developed, and results obtained are discussed fully in References 4 and 7. The re-
sults obtained were also calibrated against experimentally derived mode I stress-intensity
factor data for a growing surface flaw (Reference 6). Finally, fracture mechanics data ob-
tained using this modeling approach has been used, in combination with the weight func-
tion method, to calibrate externally generated fatigue life data for corner cracks (References
6 and 19).

The work cited above has been shown to lead to satisfactory predictions of fatigue crack
growth for design system purposes. The remaining questions center in two areas:

1. Interaction of part geometry with crack growth. The improved modeling efficien-
cy of higher order BIE codes such as BASQUE will allow resolution of such effects.

2. Improved efficiency and absolute accuracy of BIE calculations in the near crack tip
region. This characteristic becomes of particular importance in the study of the
crack/free surface intersection. Work conducted as part of the current contract
has been devoted to the development and evaluation of modified BIE crack tip
elements. This work is discussed in Section 2.3.
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! 2.3 USE OF BIE SINGULARITY EMEMENTS
2.3.1 The Madified BIE Crack Tip Element

The use of the symmetrical crack modeling strategy for mode I loading requires the approxi-
mation of near crack tip displacements and tractions in terms of the BIE interpolation func-
tions. Considering a straight crack front, the variation of both displacement and traction is
linear in r (distance from the crack front) in BINTEQ. In the BASQUE code, if midpoint
nodes are placed at the geometrical midpoints of the element sides, the boundary data varia-
tion is quadratic in r. Since the near crack tip variation of the crack opening displacements
isy/ T and the normal traction variation ahead of the crack is 1A/ T , considerable model
refinement is necessary to achieve acceptable displacement accuracy. Since singularities are
completely absent in the interpolation functions, the tractions near the crack tip can never
correctly model physical behavior, even with mesh refinement.

It has been observed that proper placement of certain midpoint nodes in three-dimensional
isoparametric finite elements leads to special elements with the appropriate near crack tip
displacement and traction variation (Reference 22). A similar element has been developed
for the higher order BIE program. The midpoint nodes of the element sides normal to the
crack tip are repositioned at the quarter points of the element side, relative to the crack tip.
The relationship between the intrinsic coordinate, £, , and r, the physical distance from the
crack front, is then (where £ = length of element side)
)2
i (El D )
4 4

The displacements and tractions are quadratic in &,. Using the shape function definitions of
Figure 2, it is found that the variation of u;, t, in the physical variable is:

; u (r)
{ }=A1+A2\/T+A_3r (8)

t (r)

In particular, the crack opening displacement u, (r) is
uy(r) = A, /T + Ajr (9)

since uy (0) = 0. The modified BIE crack tip element, used on both sides of the crack, thus
allows appropriate variation of all displacement components throughout the crack tip region.
Since boundary displacements and tractions are independently approximated in the BIE
method, this element does not produce the 1 A/T traction singularity ahead of the crack.
This is in contrast to the finite element method in which the quarter point nodal location
automatically gives stresses with a 1A/t singularity, since they are derived by differentiation
of the displacement interpolation functions.

The modified crack tip element has been used for two studies; a part-circular surface crack
and a center cracked test specimen.
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Figure 3 shows the BASQUE map for the circular crack problem. One-eighth of the body
was modeled. The v-z plane was treated as an unmodeled symmetry plane: the x-z plane
was modeled to allow solution of the buried or surface crack problem by a change in boundary
conditions. Figure 4 compares the crack opening displacements for the buried crack for

the standard and modified crack tip elements using both linear and quadratic boundary data
variation. The use of the modified crack tip element is seen to give significant improvement
in absolute accuracy of displacements, and thus K values. for the same map. The use of the
modified element causes no increase in computer run time. Figure 5 shows the variation of
K, with crack front location for the surface crack which, as expected, confirms results re-
pomd carlier. The impact of the crack tip element is not a change in K, variation for the
surface crack. Rather. it is that the improved absolute accuracy allows dlrect K, calculation
without resorting to the rather elaborate scaling methods used to connect BINTEQ results
to a known analytical solution.

Discussion of the analysis of the center cracked test specimen is deferred until after the de-
scription of the traction singularity element.

2.3.2 The Traction Singularity Element

As noted above, the modified crack tip element does not aillow singular tractions at the crack
tip. It was found possible to modify the BASQUE code to produce the singularity in normal
traction on the first element ahead of the crack. The shape functions for traction on this
element were modified by multiplication by:

¢;(r)"\7;[l ——(l—\/TZ] (10)

Because of programming constraints. the modification was actually made in the routines
which evaluate the point load solutions. The function ¢ (r) is O (1A/ r) for small values of
r and is one at r =Q: thus the singularity is produced and traction continuity is guaranteed on
the element boundary atr= ¢

Use of Eq. (10) with a standard element gives

B,
M--—+B\/'F+B3r (11)

while its use with the modified crack tip element gives
+ B, +B, VT (12)

The higher order terms in the traction expression. Eq. (11), are the appropriate ones.
Unfortunately, at the present time one must either use a crack tip element ahead of the
crack and accept Eq. (12) or use a standard element and obtain Eq. (11). The former course

10
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i has been found to give better results and was used in the study of the center cracked test
i specimen. The work carried out to date has shown that the traction singularity element has
utility which justifies the programming effort required to remove this restriction cited above.

2.3.3 The Center Cracked Test Specimen

The second problem analyzed was that of the center cracked test specimen shown in Figure 3
6. One-eighth of the geometry was modeled, using two unmodeled symmetry planes but |
modeling the crack plane. The BIE (BASQUE) maps used in the analysis are shown in Figure :
7. Both two-dimensional (plane strain) and three-dimensional analyses were carred out by
changing boundary conditions on the plane y = t/2. Singularity finite element results are |
available for the three-dimensional problem (Reference 23). Attention was given to several
different issues, in particular:

1. The effect of the use of crack tip and traction singularity elements;
2. Evaluation of K| without extrapolation; and

3. Exploration of the region near the crack tip/free surface intersection in the three-
dimensional problem.

The specimen was first analyzed in plane strain using Map 1 and a variety of choices of ;
element type and boundary data variation. Figure 8 gives the stress component in the |
direction of the applied load for the various cases considered. Interior stresses (8 = 90°) |
were considered as it was found that they were more accurate than the traction values in '
the crack plane. This result is attributed to the averaging effect of the boundary integral

representation for interior stresses. Further, it was intended to use stress, rather than dis-

placement, as the basis for K, calculations, avoiding any plane stress or plane strain assump-

tions in the the three-dimensional problem.

Several comments can be made about the results of Figure 8:
1. The use of quadratic variation and crack tip elements gave the best results;
2. The divergence of the finite geometry plane strain (BIE/CRX) solution from the
| A/ T approximation sets an outer limit (in terms of r/a) to the data to be used

in calculating K ; and

3. The boundary layer effect of finite surface element size on the three-dimensional
BIE interior stress calculation sets an inner limit to r/a.

Based on these observations, it was decided to evaluate K; using the relationship

0

-1
0
K, =+/2mr ;COSE [l+sin-2- sini:);lf g, (r,0) (13)

~

with 8 = 90°,0.01 < r/a < 0.1. Either point estimates of K, or an average value of K|
over the interval (in r/a) can be used. In the present study point estimates at r/a = 0.025

11



ety T

PRATT & WHITNEY AIRCRAFT GROUP

and 0.05 were taken because a major objective in the three-dimensional problem was to
examine stress behavior as a function of r/a near the free surface.

It must be emphasized that K, values were not extrapolated back to r/a = 0. Such extrapola-
tion was felt to be inappropriate, at least in the BIE analysis, because of the risk of misinter-
preting the numerical boundary layer as a real variation of K; with r/a. In addition, an extra-
polation technique would be especially dangerous near the crack tip/free surface intersection
where the nature of the stress singularity is not known. Even ignoring numerical boundary
layer effects, the basic information needed to guide meaningful extrapolation does not yet
exist.

After the preliminary work done with the relatively crude Map 1, the specimen was analyzed
in plane strain using Map 2. Modified crack tip elements were used, both with and without
the traction singularity. Table I contains the crack opening displacements for both BASQUE
analyses at three different locations through the specimen thickness. The results from a con-
verged BIE/CRX analysis are included as well. There is significant improvement in results
near the crack tip due to inclusion of the traction singularity. Further, the results are uni-
form through the specimen thickness, indicating that the BIE map on the plane y = t/2 is
adequately refined.

TABLE 1

Ew/o a : CRACK OPENING DISPLACEMENTS
(PLANE STRAIN)

3D-Map 2 3D-Map 2
crack tip element crack tip element
Plane strain with traction singularity without traction singularity

I/a (BIE/CRX) y/t=0 y/t=0.25 y/t=05 y/t=0 y/t-0.25 y/t=0.5
k. 0.0125 0.399 0.398 - 0.398 0.381 - 0.380

0.05 0.795 0.791 0.792 0.790 0.784 0.785 0.785

0.125 1.243 1.238 - 1.236 1.234 — 1.233

0.2 1.552 1.547 1.547 1.545 1.543 1.544 1.54]

0.6 2.444 2.435 — 2.433 2.432 — 2.429

1.0 2.693 2.688 2.688 2.685 2.684 2.684 2.682




PRATT & WHITNEY AIRCRAFT GROUP

v T—————

The improvement in accuracy due to the traction singularity element carries over to the K
calculation as well. Table Il compares the K values obtained with and without the singularity
element at r/a = 0.05. The BIE/CRX result given is believed accurate to within 0.25 percent.

TABLE 11
KI/a\/?FE FOR CENTER CRACKED PANEL!
(PLANE STRAIN)

From Interior From Crack
Analysis Stress (6 = 90°) Opening Displacements
BIE/CRX 1.4212 1.4212

1 BASQUE — with 1.420 1.416

traction singularity
BASQUE — without 1.436 1.395

traction singularity

1 — evaluated at r/a = 0.05
2 — evaluated using path independent integral, Reference 21.

It is clear that the use of the traction singularity element improves both the accuracy and
the consistency between the stress and displacement fields.

Solution of the three-dimensional problem was carried out using Map 2; later, the more
refined Map 3 was also used with no significant change in results. Figure 9 gives nondimen-
sional crack opening displacements for the three-dimensional problem at both the center
and free surface of the specimen. Results are given for the BASQUE analysis, the singular
finite element analysis of Raju and Newman (Reference 23), and for comparison, for the
BIE/CRX solution. The results of the BASQUE analysis show displacements significantly
larger than the finite element results at both the center and free surface of the specimen.

K at the center of the specimen is within 1 percent of the plane strain value.

The effect of the free surface is shown in Figure 10. Stress is plotted as a function of posi-
tion through the specimen thickness. The BASQUE results are given at r/a = 0.025 and 0.0S.
The finite element results are based on extrapolation. The BIE and finite element results
agree qualitatively, showing an increase in stress, peaking at y/t & 0.42, followed by a rapid
drop off in a boundary layer near the free surface. The BASQUE stress data (at both r/a
locations) rise to a higher peak (+ 2.5 percent) closer to the free surface than the finite ele-
ment data. The BASQUE stresses then drop faster to lower values at the free surface, rela-
tive to the singular finite element data.

In addition, comparison of the BIE results at the two different r/a values indicates a possible
change in the nature of the stress singularity at the free surface. The behavior of stress near
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the peak stress location is consistent with a singularity of higher order than 14/7T. It is
reasonable to suppose, however, that behavior near the crack tip/free surface intersection
depends on position relative to both the crack and the free surface. It may well be inappro-
priate to interpret the data near the free surface simply in terms of distance from the crack

tip.

Finally, it is possible that the nature of behavior near a free surface/crack tip intersection can-
not be resolved by numerical modeling. In the work discussed here. it has been verified that
the behavior shown was not induced by the use of the traction singularity element. Never-
theless. both the BIE and finite element methods assume specific interpolation functions,

and these assumptions limit the solution behavior which can be exhibited without excessive
mesh refinement. Pending the analytical resolution of the nature of the singularity (if any)

at the crack tip/free surface intersection. the most promising approach is the implementa-
tion of the flat crack BIE. This approach would completely eliminate the traction modeling
problem and allow needed mesh refinement to be concentrated on the more accurate defini-
tion of displacements on the free surface and crack near their intersection.
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SECTION 3
BIE ANALYSIS FOR INHOMOGENEOUS MATERIALS
3.1 INTRODUCTION

In gas turbine engine applications, inhomogeneous elastic material properties are usually
encountered as a result of spatial temperature variation and temperature dependence of elas-
tic material properties. This situation is particularly acute in the combustor and turbine sec-
tions of an engine. In these sections, BIE analysis can profitably be applied to turbine blade
attachments and the turbine disk rim region using a three-dimensional code and to axisym-
metric analysis of a disk using a BIE code such as that described in Reference 24.

The analysis required is a mission analysis; that is, stress analysis of a part must be carried
out at several points of the engine operating cycle. The temperature distribution in the part
is neither uniform nor steady state at most operating points; thus, effective use of the BIE
method requires development of both strategy for efficiently handling the transient thermo-
elastic problem and a technique for treatment of material inhomogeneity. The remainder of
this section discusses possible techniques for the introduction of inhomogeneous elastic
material properties in BIE analyses and closes by proposing a strategy which fits the require-
ments of a mission analysis.

3.2 APPROXIMATE BIE ANALYSIS FOR INHOMOGENEOUS MATERIALS

Even if elastic material properties are assumed to vary in space, Eq. (1) and (2) can still be
formally derived. It is not, however, possible to derive an analytical expression for the point
load functions U;. (p, Q), T,-j(p‘ Q) for a general inhomogeneous material, even if it is assumed
to be isotropic. Ti\e absence of such an expression precludes the evaluation of the point load
functions by a numerical technique such as that described in the Appendix for homogen-

eous anisotropic materials. There remain three approaches: derivation of point load solu-
tions for special types of inhomogeneity, material property averaging, and iterative techniques.
These approaches are explored in the paragraphs below.

The first possibility, the construction of point load functions for special types of inhomogeneity
is attractive in some situations but not in the gas turbine engine environment. It is to be expected
that such special point load solutions could be derived only for very simple material pro-

perty variations, such as linear variation in the spatial variables. This means that, in the so-
lution of any particular problem, the actual material property variation must be approxim-

ated using those variations for which special point load functions exist. In gas turbine en-

gine parts the material property variation is not basically spatial, rather it is due to temper-
ature dependence of the elastic material properties and the existance of a highly nonuniform
temperature field. This environment leads to a complicated spatial variation of material pro-
perties and makes the required approximation difficult if not impossible. This approach is
therefore not appropriate for the structural analysis of gas turbine engine parts although it
could, at some time, prove useful in other applications.

A second approach is the approximation of the inhomogencous material by a homogeneous
material, using average elastic material properties for the part. The calculation of the average

15
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properties poses no problem, as the normal design process requires thermal analysis of the
part prior to stress analysis. The results of an in-house study carried out using an axisym-
metric finite element code are discussed below, and these results clearly demonstrate the
feasibility of the approach.

The problem studied was the stress analysis of a typical turbine disk under combined cen-
trifugal, thermal, and blade loads. The cross-section of the disk is shown in Figure 11 along
with isotherms from the thermal analysis of the disk. The analysis was carried out under two
different material property assumptions:

1. E and a (Young’s modulus and coefficient of thermal expansion) evaluated based
on temperature within each element (Table III).

)

E evaluated at the average disk temperature (567°F) and « at its local value in
each element.

Density and Poisson’s ratio were held constant, although that is not a necessary restriction.
The results of the two analyses are compared for the disk bore and disk rim in Tables IV
and V, respectively. The locations at which the comparisons were made are shown in Figure
11.

TABLE III

TEMPERATURE DEPENDENCE OF MATERIAL PROPERTIES

Temperature E o
°F) (psi) (in/in/°F)
0 31.25x100 6.76x10°
100 30.75 6.895
200 30.30 7.01
300 29.90 7.13
>
400 29.50 7.25
500 29.09 7.36
600 28.62 7.46
700 28.19 7.57
800 27.70 7.67
900 27.20 7.78
1000 26.70 7.88
1100 26.19 7.99
1200 25.60 8.11
1300 25.00 8.25
1400 24.40 8.40

1500 23.70 8.62
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TABLE IV

EFFECT OF MATERIAL PROPERTY AVERAGING AT DISK BORE

Radial Displacement (in) Hoop Stress (psi)
Location Analysis | Analysis 2 Analysis 1 Analysis 2
B, 0.01522 0.01526 56,694 58,465
B, 0.01675 0.01679 82,615 84,604
B, 0.01833 0.01838 101,069 103,142
B, 0.01922 0.01925 103,454 105,840
B, 0.01803 0.01804 84,735 86,663
By 0.01647 0.01647 49,759 51,560
TABLE V

EFFECT OF MATERIAL PROPERTY AVERAGING AT DISK RIM

Radial Displacement (in.) Radial Stress (psi) Hoop Stress (psi)
Location Analysis 1 Analysis 2 Analysis 1 Analysis2  Analysis ]  Analysis 2
R, 0.05583 0.05570 50,424 50,453 - =
R, 0.05624 0.05613 50,639 50,644 - =
R, 0.05639 0.05629 51,533 51,596 - —
R, 0.05636 0.05627 51,545 51,586 - —
R 0.05617 0.05607 50,629 50,618 — =
Rg 0.05573 0.05563 50,169 50,212 - —
R, - - - = —17,337 —-18,601
Ry —~ - - = —-1,818 —2,039
R, - - = = 31,687 32,578
Ry - - - = 26,297 27,155
Ry - - — = 14,480 15,023
R, - - — - —16,300 -17,022

The good agreement between the two analyses demonstrates the potential of the BIE method
in dealing with thermally induced material property inhomogeneity. It should be noted that
local evaluation of « is acceptable in the BIE method since it does not enter into the point
load functions.

Substructuring could also be used to enhance the accuracy of the material property averaging
technique. Reference to Figure 11 shows clearly that decomposition of the disk cross section
into two or three appropriately chosen subregions can substantially reduce the difference be-
tween extreme and average temperature, and should yield a corresponding increase in accuracy.

17
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Finally, an iterative technique for the inhomogeneous problem has been shown to converge in
two-dimensional analysis (Reference 25). To summarize the results, consider the equilibrium
i equation:

oji.i+XJ=O:i=l.3 (14)
In the problems considered here, the X, will normaily be the centrifugal and thermal body
forces; 0y is the stress tensor. In the inhomogeneous problem, the terms Oiiei involve non-
vanishing space derivatives of both strains (as in the homogeneous case) and material pro-
perties. Substituting in Eq. (14) in terms of displacements results in:

1 .
12k lli.ijfu).“'f';"xl‘f’[‘j:o (15)

where I depends on derivatives of u; and on the material properties (u, »). For a homogeneous
material, F. = 0, and Eq. (15) is Navier’s equation. The basic result of Reference 25, proved

by converting Eq. (15) to an integral equation, is that Eq. 15 can be solved by an iterative
technique whose lowest order solution is that for a homogeneous material. Thus, ufis the
solution of Eq. (15) with Fj°= 0. Then Fj1 is calculated using u}’ and ujl is determined as the
solution of:

RIS e e B (16)
T L T o j

Building on this result, a technique for extending the BIE method to inhomogeneous ma-
terials is to first solve the problem with homogencous (average) material properties and then
improve this result by calculating the term F. and applying it as an additional body force
term in a second BIE solution. The results cited for the averaging technique alone make it
unlikely that more than one or two iterations would be required to achieve acceptable ac-
curacy in practical problems.

3.3 A COMPUTATIONAL STRATEGY FOR TRANSIENT THERMAL ANALYSIS

As was mentioned in Section 1, the presence of body forces, f(q), requires the introduction
of a volume integral for each source point P (x),

‘/‘U,-j (P,q) f(q) dv (17)

A%

in the BIE, Eq. (2). The centrifugal load terms can be converted directly to a surface integral,
but, for a time dependent temperature field, the thermal loading term cannot be converted.
Since time dependent temperature fields are characteristic of mission analysis, an efficient {8
method will be required for the evaluation of Eq. (17). Preliminary studies indicate that
the evaluation can be accomplished without undue impact on BIE solution time.
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Heat transfer analysis for gas turbine engine parts is typically conducted by using methods
which subdivide the region into a finite number of two- or three- dimensional elements, Bk,
each of which has a single assigned value of temperatue, T, . Heat transfer analysis is norm-
ally carried out prior to stress analysis so that the geometrical subdivision of the part and the
time dependent temperatures are known to the stress analyst. The use of the explicit expres-
sion for the point load function U i allows Eq. (17) to be rewritten (see Reference 4) as:

fF(a, E,»)G(P,q) T (q) dv (18)
V

where « is the coefficient of thermal expansion, E is Young’s modulus, v is Poisson’s ratio,
T (q) is the temperature field and G (P,q) is a known function involving derivatives of the
point load function Uij, The expression can then be expanded as:

M

; / F (@, E, ) G(P,) T, (q) dv (19)
=1

By

Since temperature is constant within each element, Eq. (19) can be evaluated as:

ﬁ F(ak.Ek,vk)Tk/G(P,q) dv (20)
=] B

s k

o

The calculation of Eq. (20). using a numerical volume integration technique, is expensive ,but
it is required only once since the individual integrals do not involve temperature. Once the in-
tegrals are available, they can be used repeatedly to generate the thermal load vector for as
many time points as desired. Further. incorporation of temperature dependence in « is straight-
forward, since it occurs outside the integral sign in Eq. (20). The temperature dependence of E
can be handled using the averaging technique described in Section 3.2.

—————————
v

Preliminary estimates indicate that the overhead cost for including transient thermal analysis
should be 50 to 100 percent relative to the same problem under mechanical loads alone, but
that the added cost for each additional time point should be under 5 percent. This cost makes
the technique attractive relative to finite element methods.

|
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Figure 6  Center Cracked Test Specimen
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¢ SUMMARY

The boundary-integral equation method is particularly well suited for solution of stress
concentration and elastic fracture mechanics problems. The method was not previously
applicable to anisotropic three dimensional problems because no efficient technique existed
for calculation of the required point load solution for an infinite body. A technique has
been developed to evaluate numerically the anisotropic point foad solutions, and used to
generate data bases for various materials. An interpolation technique is used to evaluate
the point load solutions efficiently within a higher order boundary-integral equation code.
The effectiveness of the technique is verified by solution of problems involving both uni-

axial stress states and stress concentrations.




INTRODUCTION

Increasing structural use is being made of materials with anisotropic elastic material pro-

perties. Composites have been used with substantial weight advantage in various airframe
structures. Eutectic and directionally solidified alloys are finding increasing use in advanced

gas turbine engines to provide increased strength without weight and performance penalties.

The elastic stress analysis required for such anisotropic materials falls generally into one of
two classes, the general analysis of an entire structure (for example, a disk or turbine vane)
or the detailed analysis of a critical subsection. The general stress analysis of a structure
does not usually require a precise definition of high stress gradients and can be effectively
carried out (in both two and three dimensions) using generally-available stress analysis com-

puter codes.

A detailed and accurate calculation of stresses in regions of rapid stress variation is often
required, both for general design purposes and as input for fatigue life calculations." Three-
dimensional analysis is often needed to account properly for the effects of part geometry
and loading. The boundary-integral equation method is particularly well suited to problems
requiring the resolution of high stress gradients.” In two dimensions, it already provides a

numerical technique applicable to either isotropic or anisotropic materials.” This paper de-
scribes the extension of the technique to anisotropic three-dimensional elasticity. A method

for the numerical calculation of the anisotropic point load solutions is presented and results

of boundary-integral equation analyses for several anisotropic materials are discussed.
ANALYTICAL FORMULATION

The Boundary-Integral Equation Method

This paper does not attempt a detailed review of the boundary-integral equation method.
For this the reader is referred to Cruse® or Lachat and Watson.® We simply recall that the

method is based on knowledge of the point load solution Uii(g, y) for an infinite body,
which gives the displacements at the field point y due to a point force applied at the source

point x. Use of the reciprocal work theorem and appropriate limit operations give the

boundary-integral equation




'!

i(x)
i = 4 /Tii""l’“j‘x)ds‘!) . /[Jij(z.y)tj(!)ds(l)

S S

where Tij is the traction point load solution derived from Uij and u;, t; are the boundary
data on the region S. Appropriate numerical modeling of uj, tj and S then reduces (Mtoa
set of linear algebraic equations. One of the major advantages of the method, apparent from
(1), is that no interior idealization of the body is required. Stresses and displacements at
selected interior points can be evaluated by surface integration after the boundary solution

is completed.
Anisotropic Point Load Solutions

For three-dimensional isotropic elasticity the point load function Uij(’-"l) is the well known

Kelvin solution.

B 1 (3-4v) 1 (x-y;) (Xj'yj)
o Uijix y) A lxy! i a0 i T 4(10)  Ixyl Ixyl

For a general anisotropic material the point load solution can be represented® ¢ as

R i 1
(2b) Uij(l"i’) 5 87r2|x-y| :¢ K'”' (£)ds.
&l =1

The line integral is taken on the unit circle in the plane normal to (x-y) and passing through

x. The function K;! is
@ ke =[c .
i € = | Cijkméiém

where the Cijkm are the elastic constants of the material. Representations for the traction
point load solution Tij can be derived from (2a) or (2b). The representation (2b) of Uij' and the
associated Tij' are not directly computable. The extension of the boundary-integral equation
method as an effective numerical technique for three-dimensional anisotropic problems re-

quires an accurate and efficient means for calculating the anisotropic point load solutions.
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EVALUATION OF ANISOTROPIC POINT LOAD SOLUTIONS

Reduction of Point Load Solutions to Computable Form

The representation (2b) cannot generally be evaluated in closed form. For an isotropic

material it reduces analytically to the weli-known Kelvin form.” The only other case for
which a closed-form solution is available is that of a transversely isotropic material %19

A second approach involves series expansions of (2b) and its associated traction solution. A
uniformly convergent expansion has been obtained'!, but is not suitable for extensive

computation.

The remaining alternative is a direct numerical evaluation of the functions, Uij and Tij'
One approach to this problem is indicated by Vogel and Rizzo”, but the method discussed
is quite complex, especially for the function Tij and would be too time consuming for rou-

tine numerical use.

The present approach to the calculation of Uij and Tij is based on defining the modulation

function,

(4) G” (U-‘, U2) = ¢K|l1 (¢£)ds

1= 1
where v1, v, define the orientation of the vector x-y. Then

1
5) U. = ——— G..
( i) 81!’2[5-!( 1)
As was observed in” all the singular behavior of Ui] occurs in the first factor; further Gij is
independent of |x-y|. The evaluation of Tij (the traction point load solution) using Hooke's
Law requires the calculation of the displacement gradients Uij k- They can be expressed as

'(Xk'yk)
@ Vi i ¥ gr2xvl O, ava, k
v 81r2|>_<-Y|3 I 8n4|xyl j, @,




The known [x-y| 2 singularity occurs in easily evaluated closed form expressions, including
the derivatives vy - The derivatives Gij' o areall non-singular, with the exception of possi-
ble removable singularities induced by the choice of the vq, vy coordinate system. The

higher order derivatives needed for interior stress calculations can be similarly expressed.

The modulation function Gij can be calculated by a straightforward numerical evaluation
of the line integral(3). The integrand can be expressed, in closed form, as a rational func-

tion of degree -2. The key to the evaluation of the derivatives G is that the integra! in

ijr
(3) can be transformed so that the integration path is independent of the orientation of
Xx-y; as a result the integrand will then depend explicitly on v4 and vy. The required deriva-

tives can then be calculated as

a i
(M G o %K i adS,

151 =1
by differentiation through the integral sign. Transformation of the material constants

Cijkl is not required, rather an explicit substitution £, = f; (nq, np) is carried out. Further

since

implicit differentiation gives

o mey ~ 1
Kijra = Kik Keira Kj

and the only explicit differentiation required is that of the quadratic forms (in n1. 172) which

are the elements of Kii" Any type of numerical differentiation is completely avoided.
Numerical Evaluation of the Modulation Function
The calculations described have been carried out for a variety of materials. The line inte-

grals were evaluated using Simpson’s rule. Table 1 shows the convergence of the modula-

tion function as the integration is refined.

A-6
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TABLE 1

Convergence of Modulation Function*

Points on Contour G1q Gqy3
8 3.462192 x 1077 3.959000 x 108
16 3.664519 x 10”7 2.933159 x 108
32 3.508752 x 1077 2.959600 x 108
64 3.600230 x 1077 2.958070 x 10°8
128 3.600341 x 107/ 2.958069 x 108

*$=vy=225,0=-vy= 67.5°; face centered cubic material

In order to test the algorithm for calculating Ti the tractions for a face centered cubic ma-

jr
terial were integrated over the surface of a sphere containing the source point. The results,
shown in Table 2, demonstrate the recovery of the applied load.

TABLE 2

Resultant Load on Spherical Surface*

Applied Load Resultant Load Direction

Direction X Y2 z
X .999897 .000048 .000099
Y .000030 .999808 —.000147
Z —.000004 .000004 .999706

*Unit sphere centered at (.1, .2, .3); load point at (0, 0, 0). Face centered cubic

material. Numerical integrations: 32 points for line integrals.
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The technique outlined above was incorporated in a higher order three-dimensional boundary
intecral equation code.® A few very simple problems were solved to verify the method, but
relative computing times were so large that the method was unsuitable for any realistic prob-
lem. A further development of the numerical technique to achieve practical computing times

is described below.

Application to Large Scale Stress Analysis

The analytical development and numerical results discussed above show clearly that the
anisotropic point load solutions can be computed with essentially arbitrary accuracy. The
fact that a face centered cubic material was chosen for the initial investigation implies no
restriction. The present effort also treats transversely isotropic and orthotropic materials;
further, the extension to full anisotropy requires only the algebra to calculate the explicit
forms of the integrands in (3) and (6).

The crucial issue in determining the applicability of the boundary-integral equation method

to anisotropic problems of engineering interest is that of efficiency. The lack of closed form
expressions for the anisotropic kernel functions requires that the kernel function - boundary
data integrals in (1) be evaluated numerically. These integrations are typically the most time

consuming part of a boundary-integral equation analysis. Using the closed form isotropic

kernels, the numerical integrations in the boundary-integral equation code used require an
average of .0015 cpu sec. for each integration point, of which only .0001 cpu sec. is required
for the actual kernel function calculation. By contrast, a single calculation of U“. and T, ; for
an anisotropic material by direct integration (using 64 integration points) requires .025 cpu
sec. This implies an increase in overall computing times by a factor of 12 to 16, and is

clearly unacceptable for any practical problem. i

The solution to this problem is the substitution of an interpolation technique for direct
numerical integration in the evaluation of U‘.I and T”. The technique is suggested by the
fact that GIi and its derivatives are all smooth functions of the variables v , v,. The method

has been implemented and tested for a variety of materials.

G, , and its derivatives were expressed as functions of ¢ and 6 (the two angles in spherical

coordinates) in order that interpolation could be carried out in a rectangular table




W N = WN = N

(0<¢<m,0<0 < ). Table entries were calculated by direct numerical integration using
64 integration points for the line integral evaluations. Interpolation in the tables was carried
out using quadratic or cubic Lagrange interpolation.

To verify the interpolation technique, the tractions were again numerically integrated over

a sphere. The recovery of the applied unit loads is shown in Table 3. For these tests a 17 x 33
table was used for Gi‘_. The accuracy obtained using the interpolated point load solution is
essentially the same as that obtained using the closed form isotropic kernels. In addition,

the load recovery for the anisotropic (transversely isotropic) material is equivalent to that

for an isotropic material. The overall level of accuracy is slightly less than shown in Table 2

because a coarser integration mesh was used on the sphere.
TABLE 3

Resultant Load on Spherical Surface

Transversely-

Isotropic - Isotropic - {sotropic
Applied Isotropic - Quadratic Cubic Quadratic
Load Exact Tii Interpolation Interpolation interpolation
1.0 .99860 .99794 .99845 .99874
0 .00007 —.00007 .00005 —.00017
0 —.00017 —.00007 —.00017 —.00002
0 .00007 —.00014 —.00005 —.00015
1.0 .99870 .99818 .99837 .99917
0 —.00034 —.00014 —.00034 —.00037
0 —.00020 —.00010 —.00020 —.00009
0 —.00040 —.00020 —.00040 —.00019
1.0 1.00069 1.00150 1.00101 1.00102

Modulation function data bases were generated for a variety of materials and stored on mag-
netic tape for use by a suitably modified version of the boundary-integral equation program.
The table size used was 33 x 65. The time required for the data base generation was 15 cpu
min. for each material, including the calculation of all the derivatives Gijr op which would be

required for interior stress calculations. The material constants used are shown in Table 4.
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TABLE 4

' Material Constants for Data Base Generation

1 - Isotropic 2 - Isotropic

E=18.07x 106 psi E = 18 x 106 psi 3-Transversely Isotropic
Constant?® v =.38931 v=.3 CobaltB

: c1n 36 x 106 24.23 x 106 44,52 x 106
C22 =C1 =11 =Cn
€33 =C11 =Cn 51.94 x 106
C12 23 x 106 10.39 x 106 23.93 x 106
C13 =C12 =C12 14.94 x 106
C23 =C12 =C12 =C13
Ca4 6.5 x 106 = 6.92 x 106 10.92 x 106
% (C11-C12)

Cs5 =Cas =Caq =Cqq
Ces = C44 =Ca4 10.30 x 106 =

% (C11-C12)

4 - Transversely Isotropic 5 - Transversely

ZincB Isotropic 6 - Orthotropic
C11 23.35 x 106 49.4 x 106 34.05 x 106 ¢
C22 =C11 =C11 22.24 x 106 '
C33 8.85 x 106 38.1x 106 21.75 x 106
C12 4,96 x 106 34,6 x 106 7.05 x 106
C13 7.27 x 106 9.7 x 106 5.76 x 106
C23 =C13 =C13 5.21 x 106
C44 5.55 x 106 14.2 x 106 1.00 x 106
t Css =Cas =Ca4 5.00 x 106
Ce6 9.20 x 106 = 7.4 x 106 = 8.40 x 106
% (C11-C12) % (C11-C12) :

Note: A — i = Cijej' Cij given in psi

B — Reference 12, p. 278.
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Timing studies of the interpolation show that a complete kernel function evaluation requires
.0015 cpu sec. using cubic interpolation. Of this time, .0009 sec. is used for the interpolation
of the modulation function and .0006 sec. to calculate U, and T ; from the interpolated data.
The computer time required for an arbitrary anisotropic analysis should be about twice that

required for an isotropic analysis of the same geometry.
VERIFICATION OF THE ANISOTROPIC BOUNDARY-INTEGRAL EQUATION ANALYSIS

In order to provide final verification of the formulation and numerical treatment of the aniso-
tropic three-dimensional boundary-integral equation stress analysis, the higher order program*
was modified to use the interpolation technique for evaluating the point load solutions. Two
sets of problems were run; the first for uniaxial stress states and the second for stress con-

centration problems.
Unixial States of Stress

Exact solutions exist for an anisotropic rectangular parallelepiped subjected to simple tension
or pure shear.' This allows the comparison of anisotropic boundary-integral eguation re-
sults with exact solutions. A single boundary-integral equation map, shown in Figure 1, was
used for all of these test cases. The map was rotated to allow loading to be applied in dif-

ferent directions. The results of these tests are shown in Tables 5 through 8.

InTable 5 it can be seen that, for an isotropic material, the boundary-integral equation method
gives completely equivalent results whether closed form or interpolated kernels are used.
Further, both sets of results essentially reproduce the exact solution to the problem of simple
tension. Tables 6 and 7 show excellent agreement between exact and boundary-integral
equation solutions for a transversely isotropic and an orthotropic material. Finally, Table 8
gives results for the case of pure shear (r6 #0,7,=0,i=1,5). The maximum error for the

pure shear cases is less than .05%.

For the problems involving uniaxial stress states solutions using interpolated point load solu-
tions required 1.7 times as long as those using exact paint load solutions. All the cases dis-
cussed used linear variation of boundary data and the same precision of numerical integration

in the generation of the equation system.




TABLE 5

Cube in Uniform Tension - (Isotropic-Material #2)

Exact BIE BIE Load
Solution Numerical Kernels Exact Kernels Direction
Uz/Uze* 1.00000 1.00017 1.00020 4
Ux/U,e —.38983 —.38983 —.38983
Uy/U,q —.38983 —.38983 —.38983
ux/uxe 1.00000 1.00018 1.00020 X
Uv/uxe —.38983 —.38981 —.38983
Uz/Uxe —.38983 —.38981 -.38983
uy/ye 1.00000 1.00018 1.00020 Y
Ux/uye —.38983 —.38981 —.38983
Uz/Uye —.38983 —.38983 —.38983

*All displacements are normalized by the exact extension for the applied loading in Tables 5, 6 and 7.




U/,
Ux/Ugze
Uy/Uze

Uy/Uye
Uy/Uye
Uy/Uye

Uy/Uye

Uy/Uye
Up/Uye

TABLE 6

Cube in Uniform Tension - (Transversely Isotropic-Material #5)

Exact BIE
Solution Numerical Kernels Load Direction
1.00000 1.00018 Z
—.11547 —.11554
—.11547 —.115563
1.00000 1.00016 X
—.68464 —.68460
—.08028 —.08016
1.00000 1.00015 Y
—.68464 —.68462
—.08028 —.08016




UZ/Uze
Ux/Uze
Uy/Uze

UX/UXE
Uy/uxe
U,/Uy e

Uy/Uye

Ux/Uye
U,/Uye

Cube in Uniform Tension - (Orthotropic-Material #6)

Exact BIE

Solution Numerical Kernels Load Direction
1.00000 .99998 V4
—.12903 —.12921
—.19355 —.19365

1.00000 99924 X
—.27000 —.26968

—.20000 —.19996

1.00000 1.00014 Y
—. 17419 —. 17428
—.19355 —.19357




TABLE 8

Cube in Pure Shear (X-Y)

Material u,/u
ateria Y'Y exact

Isotropic-numerical .99984

(Material #2)

Isotropic- -exact kernels .99993
(Material #2)

Transversely- - Isotropic
(Material #5)

Orthotropic
(Material #6)




Stress concentration problems

A second set of cases was chosen to test the applicability of the anisotropic analysis to stress
concentration problems, since it is in such problems that the boundary-integral equation
method finds its engineering application. In addition, these problems exercise the quadratic

variation in geometry and boundary data allowed by the computer program used.

The first problem is that of spherical cavity in a cylindrical rod. The geometry and boundary-
integral equation map used are shown in Figure 2. Two different comparisons were made

for this problem. First the boundary-integral equation code was used to evaluate the stress
concentration for an isotropic material over a range of a/w, using both closed form and
interpolated point load solutions. The stress concentration (in terms of mean net section
stress) is compared to the values of Reference 14 in Figure 3. Both integral equation analyses
show excellent agreement with Reference 14. Of particular interest is the fact that the in-

tegral equation solution using interpolated point load solutions shows no more sensitivity
to changing a/w than that using closed form solutions. This indicates that mapping require-

ments for anisotropic analysis shouid be no more severe than for isotropic analysis. It
should be noted that, for this problem, more precise integration in the equation generation
was required when using interpolated point load solutions than when using closed form solu-
tions. This was also true in the notch problem discussed below. The computer time ratio

of 1.7 for the uniaxial problems increased to the range of 2 to 2.5 for these problems. Some

further comments on this question will be made in the last section of this paper.

-0 &

The problem of the spherical cavity was also solved (for a/w = .05 =~ 0) for two transversely

isotropic materials, cobalt and zinc. The results are compared, in Table 9, to closed form

results derived '® for the limiting case a/w = 0.
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TABLE 9

Stress Concentration for a Spherical Cavity

in a Transversely Isotropic Cylindrical Rod

Krn KTn
Material Ref. 2 BIE- - Numerical Kernels
Zinc 1.63 1.47
Isotropic (v = .3) 2.05 2.03
Cobalt 2.31 2.29

Note- - a/w = .05 (= 0) for all cases.

As a last test problem the stress concentration was calculated for a deep hyperboloidal notch
under tension. A closed form solution to this problem exists '® for a transversely isotropic
material. The geometry and boundary-integral equation map for the problem are shown in
Figure 4. The results of the analysis, for one isotropic and three transversely isotropic ma-
terials are shown in Table 10. As in previous cases, the boundary-integral equation solutions
using closed form and interpolated point load solutions have equivalent accuracy. Further,
the level of accuracy is the same for both isotropic and anisotropic materials. Finally, it
should be pointed out that the modeling problem in the notch is extremely complex. With
the relatively coarse model used the results are sensitive to the precise location of the mid-
point nodes indicated in Figure 4, a question which is independent of material anisotropy.
More prezisely, correct location of these nodes is required to maintain nearly circular cross
sections in constant z planes and to ensure that the BIE model of the notch possesses a ver-

tical tangent at the z = 0 section.




TABLE 10

Stress Concentration in a Hyperboloidal Notch

Ky KTN KTN
Material Ref. 3 BIE- - Numerical Kernels BIE- - Exact Kernels
Zinc 2.30 2.42
Nickle Base Alloy 3.32 3.46
Isotropic (v = .3) 3.34 3.45 3.22
Cobalt 4.02 4.16

Note- - Ky = maximum axial stress divided by average stress at minimum cross section.

Diameter at minimum section = 1.0, notch radius of curvature = .1.

It should be noted that the results for zinc are less accurate than those for the other materials
in both stress concentration problems. It is known'® that certain mathematical properties of
the point load solution for zinc differ from those of the other materials used in this study. It
is believed that the effect of this difference in the present formulation is to require more
accurate numerical integration of (4) for zinc to achieve the same accuracy in the stress con-
centration factors.




CONCLUSIONS

It has been shown that anisotropic point load solutions can be numerically evaluated with es-
sentially arbitrary accuracy. Further, accurate boundary-integral equation stress analysis can
be carried out using these solutions. Use of an appropriate interpolation technique makes the

anisotropic analysis feasible for use in engineering applications.

Future work could profitably be directed at further increases in computing efficiency.

In particular:

1. It was noted in solving the stress concentration problems that more accurate integration
was required when using interpolated point load solutions. [t is likely that this is re-
lated to slight oscillations in the modulation function induced by the interpolation

scheme. Further investigation should allow at least partial resolution of the problem,
with the possibility of a significant saving in solution time.

2.  There may well exist a better means of reading the modulation function data base.
The presently used Lagrange interpolation is a standard technique which incorporates

no knowledge of the physics of the problem.

3. Aclosed form point load solution exists for transversely isotropic materials'®. For

this material class use of the closed form solution may lead to significant time savings.
Finally, more work remains to be done in extending the anisotropic boundary-integral equa-

tion analysis to include thermal and rotational body forces, both of substantial importance

in engineering applications.
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