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and the Electronics Research Laboratory
University of California, Berkeley, California 94720

Abstract

< {l'he robustness of stability conditions for linear

time~invariant feedback systems is examined
assuming three different types of representations:
state-space representation, coprime matrix
fraction representation, and transfer‘ggqgg}ggh
representation. We-s¢txesg the importance,of
certain details of the representation used and,
even more, the importance of making sure that

the allowed perturbations be relevant to the
physical situation under study.

N\,

I. Introduction

Engineers design for production: therefore it
is required that their nominal design as well as
a very high portion of the systems produced —
which suffer from element deviations and manu-
facturing tolerances — meet the specifications.
Furthermore, the systems produced must meet the
specifications not only as they leave the
production line but also in the field — where
they suffer from temperature effects, aging,
weathering etc.— . Hence the interest in
sensitivity and robustness. It is for these
reasons that this subject has an extensive
literature [e.g. 1,2].

In this paper, we consider the robustness of the
stability conditions for a continuous-time,
linear, time-invariant, lumped, multi-input
multi-output feedback system. (See Fig. 1) If
the feedback system is made of an interconnection
of stable subsystems, it seems intuitively clear
that under some reasonable conditions and under
reasonable allowed perturbations the stability
conditions are robust. But what if the subsystems
are unstable? Might it not happen that due to
perturbation some kind of pole-zero cancellation
is destroyed? The purpose of this paper is to
examine the conditions which, under several
representations, guarantee robustness of the
stability conditions. We will find that the
nature of the representation and the nature of
the allowed perturbations play a crucial role.
This will also lead us to make some remarks on the
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relevance of some parameter perturbations.

In order to avoid repetitions, we start by defining
some terms and some notations.

II. Preliminary Definitions

R, €, R(s) and R [s] denote, respectively, the
fields of real numbers, of complex numbers, of
rational functions with real coefficients and
the commutative ring of polynomials with real
coefficients. The superscripts "n" and "nxm"
(as in R, ) denote the corresponding

R (s)"
ordered n-tuples and nxm arrays.

€,: = {s € C[Re s > 0} denotes the closed right-
half-plane. €_: = {s € C[Re s < 0} denotes

the open left-half-plane. Given any scalar
rational function, we assume once and for all that
it is written as n(s)/d(s) where the polynomials

n and d are coprime and d is monic.

A continuous-time, linear, time-invariant, lumped,
multi-input multi-output system is said to be
exponentially stable (abbr. exp. stable) iff its
transfer function G(s) € IR (s)P¥M is proper

(i.e. bounded at infinity) and G(s) has no
C4~poles. For example, for the system shown on
Fig. 1, this means that G: (ul,uz)»—ﬁ(el,ez) has
these properties.

III. System Description

We consider the input~output stability problem of

the continuous-time, linear, time-invariant, lumped,

multi~input multi-output feedback system

S: (u, ju,)»—3(e,,e,) described in frequency domain
1252 |

by (see Fig. 1)

uy = el + Gze2 u, = ez - Glel (1)
where G;, G € R (s)™", the “i's are the inputs

and the e;'s are the "errors". The transfer function
of § is Gt (uj,uy)—(ey»e ).t Throughout this

this paper, we make the %ol owing assumption:

Assumption:

The transfer functions G ,62 are proper
(i.e. bounded at infinity) and

1

*We only need to consider (ul,uz)h—%(el,ez) because
the map (u ,uzh——*(yl,yz) is exp. stable if and
only if the map (u],u Jr—s(e .ez) is exp. stable
(10]. : .
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det[l+G2(m) cl(w)] # 0. (2)

This assumption implies that the transfer function
G of S exists and is proper. Note that a transfer
function must be proper in order to have a
state-space representation.

We investigate the following question: given that
G),G, are described in a specified way and given
some set of allowed perturbations, are the
input-output stability conditions for the system
S robust under the allowed perturbations in
G1,G2? By this we mean: if the feedback system
S is exp. stable for the nominal values of

G},Gy, does it imply that it will remain exp.
stable for all sufficiently small perturbations
in G 'GZ' selected from the allowed set? It will
turn out that the answer depends very much on

the representation of Gl’ GZ and the set of
allowed perturbations.

IV. A Preliminary Lemma

All the argumentation below hinges on a lemma that
essentially says "small perturbations in the
coefficients of an algebraic equation cause

small perturbations in its zeros.'" More precisely
we state a well-known lemma.

Lemma [3, Thm 9.17.4]. Let D(zi;e) denotes the
open disc in € centered on zj and with radius €.
Consider the polynomial p defined by

p(s) = aosn + alsn—l B ek a s + a, (3)
where a, € R, ¥i, and without loss of generality,
a; > 0. Let the polynomial p have q pairwise
distinct zeros: 2)52p500452 with respective
multiplicities my , (hence Zmi = n). Then for
all € > 0, there is an n(e) > 0 such that for
all Sai satisfying

[sa;| <n 1=0,1,...,n (4)

the perturbed polynomial

n
(ao+6a0)s P e (an_l+éan_l)s + (an+63n)

(5)

still has m, zeros in D(zi;e) for 1 = 1,2,...,9.

Comments: (i) If all zeros of p were simple,
this lemma would be a direct consequence of

the implicit function theorem; the point is that
the continuous dependence of the zeros is still
valid in the case of multiple zeros. (ii) It is
crucial to observe that the degree of p was not
affected by the perturbations: indeed suppose
that instead of (5) we had

n+

1 n
+ (a0+éa 8 ® s ¥ (an+6an)

(6)

p(s) = Sa_;s o

as the perturbed polynomial; then, for n > 0
sufficiently small, if |éa;| < n for
i=-1,0,1,...,n, p would ﬁave n+l zeros, n of

them in the discs D(z,3¢) and one approximately
equal to -(a. +Sa )/6a_1. (This approximate zero
is the leading term of a sequence of successive
approximation which converges for n small).

This additional zero is very large: its sign is
positive or negative according to éa_; < 0 or
63_1 > 0, respectively. Similarly, if there had
been several additional terms of degrees larger
than n, there would have been several such zeros
with very large magnitude and whose location in
the s-plane depends on the magnitudes and signs

of the 6a_;'s. Note that when the perturbed
problem is of the form (6), we are essentially
dealing with a singular perturbation problem;
see e.g. [4,5].

V. Robustness Results

Case 1: The transfer functionsGy; and Gy are

specified by minimal state-space
representations

It is well known that if [A,B,C,D] is a minimal

state-space representation of the proper transfer &
function G, then G is exp. stable if and only 1
if det(sI-A) has all its zeros in E_. For ¥
i=1,2, let [Ai’Bi'Civbil be a minimal state- F
space representation of the proper transfer
function G; with the state x; € R™M, Let i

[A,B,C,D] be the state-space representation of the
feedback system S: (ul,uz)»—a(el,ez) with the 3
state (xl,xz). We know that [6] (i) [A,B,.,D] is
a minimal state-space representation of S, (ii)

-1 -1
A)=B, (I+D,D ) "D,C -B, (1+D,0)) 7 C,

1= et 1
A =1 L
B2(I+D1D2) C1 A2-B2(I+D1D2) DlCZ §'
(7) s s
g
and (iii)
det(sI-A) = det(sI-Al)-det(sI—Az)-det(1+6261)(s) ps i p
(8) .
t -

Now the feedback system S is exp. stable if and
only if det(sI-A) has all its zeros in E_;
furthermore for any perturbation [8Aj,6Bj,8Ci,6D;]
in the constant matrices [Aj,Bj,Cij,Dj], i = 1,2,
the degree of det(sI-A) remains equal to nj;+nj.

In view of (7), we obtain from the lemma above

a well-known result:

Robustness Result I.1l.

small perturbation [6Aj,6Bj,6C4,6Di], i = 1,2,

Remark I.1l: In many applications, neither measure-

Remark I.2: Note that for sufficiently small
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If the given feedback system S is exp. stable at
the nominal data point, then for any sufficiently

the resulting perturbed system is still exp. stable.
"

ments nor system-component element values directly
specify the [Aj,B4,Cy,Dj]; therefore, engineers
should ask whether the perturbations [éAi,éBi,dci.ébil
of this analysis cover all the possible perturbations
expected in the contemplated physical environment.

allowed perturbations, [Ai+6A1,Bi+GBi,Ci+6Ci,
Dj+6Dy] will also be a minimal state-space




representation. However Robustness Result I.1
still holds even if [Ai+6A1,Bi+BBi,C1+6ci,Di+6Di]
is not minimal.

Case II: The transfer functionsGl and G2 are

specified by coprime matrix fractions
representations

Let Gl, G2 be specified by their coprime
factorizations:
-1 ol
Gy = Ny Py | Gy =By
N. , D, , D, N € R[s]™ and the
whexe e’ Y22 Y22

1x’
pairs (Nlr’Dlr)’ (NZQ’DZE) are right-coprime and
left-coprime respectively [7,8,9]. Let the
allowed parameter perturbations be perturbations
in the coefficients of each scalar polynomial
entry in the four polynomial matrices Nlr’ Dlr’

without increasing the degree of any

D N
28 28 s
scalar polynomial. We know that [10,11] the
feedback system S: (ul,u )k—q(el,ez) is exp.
stable if and only if its characteristic
polynomial

A: = det[D

28%1r + NgMir] £

has all its zeros in &_. We can also write

e
dek Doy 9cE By 20M2¢81 01 r ]

= det D22°det Dlr-det[l + GZGl] (10)

(=3
I

*det[I + D
r

By assumption (2), Gl' G2 are proper and, for
large s, det{I + GZGI](S) = det[I + Gz(m)Gl(w)]

+ 0(1l/s). Hence degree of A = degree of
det D22 + degree of det Dlr' In view of (10) it

follows from the lemma:

Robustness Result Il.1l.

If the given feedback system S is exp. stable at
the nominal data point, then for any sufficiently
small allowed perturbation (éNlr’énlr’GDZE’éNZQ)

which does not increase the degree of det DZQ
det Dlr’ the resulting perturbed system is still
exp. stable.

and

o

Remark II.1: Note that for sufficiently small
allowed perturbations, (N1r+6N1r’Dlr+6D}r) will
be right-coprime and (N22+6N21,D2£+6D22 will be

left-coprime. However Robustness Result II.1
still holds even if they are not coprime.

Let LN (resp. Ci) be the highest power of s in the
ith row (resp. column) of an nxn polynomial matrix

H-Viewing the matrix entries as polynomials, note
that the zero polynomial has degree -~ and a non-
zero constant polynomial has degree 0. Thus the
allowed perturbations will not cause a zero in
any of the four polynomial matrices to become

nonzero.
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e e

n n
D(s). Then degree of det D < min {igl £ §1 cibe
n

If the equality holds with 2: L then D is said
i=1

to be row-proper and if the equality holds with
n

2: ¢y then D is said to be column-proper [7,8].
i=1

Thus if D is either row-proper, or column-proper,
then it is easy to see that the degree of det D
will never be increased by any allowed perturbation
éD. It is well-known that [7,8] for any nxn
polynomial matrix D(s) with det D(s) # 0, there
exist unimodular matrices Ur(s), Uc(s) such that

D(s) Uc(s) is column-proper and Ur(s) D(s) is row-

proper. Therefore given a rational matrix, there
exist a left-coprime factorization (NE'D’) such
x

that D2 is row-proper and a right-coprime
factorization (Nr’Dr) such that Dr is column-proper.
Summarizing the facts above, we have

Robustness Result II.2.

Suppose that D is row-proper and D is column-
proper; if the given feedback system S is exp.
stable at the nominal data point, then for any
sufficiently small allowed perturbation (6Nlr,6D
6D22,6N2£) the resulting perturbed system is sti
exp. stable.

i’
11

2% 1r
resp. row-proper and column-proper is very

important, for otherwise the degree of the
characteristic polynomial may increase as a result
of an arbitrarily small allowed perturbation.

This is shown in the following example.

|
Remark II.2: The requirement that D,  and D, be

|

|

Example: Let Dy, = NZE = N. =1 and

1r
Dlr = | st2 s+l
s+l s+3
Hence A(s) = detlD21D1r+N21Nlrl(s) = 5s+11. Now
Dlr is not column-proper: consider a small

perturbation say, a in tne coefficient of s in one
of the diagonal elements of Dlr' For example, |

when the (1,1) element becomes (l+a)s + 2 we obtain {
A(s) + 8A(s) = asz + (5+4a)s + 11

which has a zero with positive real part whenever

<
a 0. 5

Case III: The transfer functions G1 and G, are
“
specified by the 2n? scalar rational
functions which are the elements of G
and G,.

Let the allowed parameter perturbations be the
perturbations in the coefficients of the numerator-
and denominator-polynomials of each scalar
rational function entry in the matrices Gl' G
subject to the condition that they
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do not increase the degree of any scalar
polynomial.

3t 20 1

Single-input single-output subsystems

Consider the case where i ni/di’ 1w 1,2,

d, are coprime scalar polynomials, i.e.,

; ahels |
they are coprime elements of R [s]. Clearly the
characteristic polynomial of the feedback system

S is @1d2+n1n2). Since dl’ d2 are scalar

polynomials, they are both row-proper and column-
proper. Thus by Robustness Result II1.2, if the
given feedback system is exp. stable at the nominal
data point, for any sufficiently small allowed
perturbation (for Case III), the resulting
perturbed system is still exp. stable.

where n

III.2: Multi-input multi-output subsystems

Recall the notations introduced in Case I and

det(sI-A) = det(sI-Al)-det(sI-AZ)-det(I+GZGl)(s)
(8)
Let

o
.
[}

o’ number of ¢+-zeros of det(sI-Al)

-det(sI—AZ), counting multiplicities.
(11)

Then recall the Graphical Stability Conditions:
{12,13] the feedback system S: (ul,uz)h—n(el,ez)
is exp. stable if and only if the Nyquist
diagram of sr—det[I + Gz(s)Gl(s)] — for the
contour C which is duly indented to the left at
all jw-axis poles of det[I + Gz(s)Gl(s)] — does
not go through the origin and does encircle the
origin Pot times in the counterclockwise sense.

Now suppose that for the nominal parameter values
in Gl and G2 the Nyquist diagram satisfies the
stability conditions above. Consider the effect
on the Nyquist diagram of small allowed parameter
perturbations in G1 and GZ. Now, (a) for each

s € €, except at poles, det[I + GZ(S)Gl(S)] is a
continuous function of all the numerator- and
denominator-coefficients of G1 and GZ; (b) the
Nyquist diagram of the contour C is a compact
curve in €, therefore for any sufficiently small
allowed parameter perturbation, the Nyquist
diagram will still avoid the origin and encircle
it po+ times; (c) for sufficiently small allowed
perturbations and for a fixed contour C (indented
to the left), any jw-axis pole of G, and/or G
that is perturbed will still remain in C;, the
open set in € enclosed by the indented contour C.

Recall that the order of zero, A, of det(sI-Ai)
is equal to the McMillan degree of G, at its
pole A — which we denote by A(Gi;A) [14,15].

Thus
=X X e

p
LAl T e
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where the sums are taken over all the ¢+-poles

A of G1 and Gz, or equivalently, over all the

poles A in C1 of C1 and 02. With this in mind we

see that some sufficiently small allowed perturbation
may change the required number of encirclements in
only one way: namely to have

Pt 2 X AGHG,3N)
of " =2 % - *

where the sums are taken over all the poles A in
C, of perturbed transfer functions G, + &G

+ 8G 3 :
and G2 2°

For example, consider

4 [2 1] . [ml lJ
G,(s) = == y G,(s) + 8G,(8) = —
1 s-13 1.5 1 1 s~1 3 1.5
1

then A(Gl;l) = rank[2 =1, [15,p.115]. bpr,
for any a # 0, A(Gl+661;1) C

Therefore we must formulate our result as follows:

Robustness Result III.1.

If the given feedback system S is exp. stable at
the nominal data point, then for any sufficiently
small allowed perturbations 6Gl, 662 which satisfy

Y Yo = L X a6,+856,30)
i=1,2 2 i=1.,2 A
where the sums are taken over all the poles X in

Ci of the corresponding transfer functions, the
resulting perturbed system is still exp. stable.
o

In particular, robustness of stability conditions
for the feedback system S follows if G1 and G2 are
both exp. stable.

In the following discussion, we restrict ourselves
to simple C+-poles of G1 and G2 because there

always exists some allowed perturbation which
splits a multiple pole of Gi (i=1 and/or 2) in
many ways. To see this suppose that the (1,1)
element of G, has a third-order pole at s= -1, thus
its denominator, dll,has the form

d) () = (s41)° P y(s)  with p, (1) # 0

This triple pole can be split into three simple
poles, for example

3 3
dll(s) + 6d11(s) = [(s+l)” + ¢ ]pll(s)
or into a double pole and a simple pole
2
dll(s) + Gdll(S) = (s+1)“[(s+l) + e]pll(s),

etc. More generally, dll has multiple zero(s) if
and only if its discriminant All =0 [16]).

Since All is a polynominal in the coefficients of
d,,, it is clear that multiple zeros are not
generic [2].




Consider now the effect of an arbitrary small
allowed perturbation on the McMillan degree of
Gl at A, , where A\ is a simple pole with

Re A, > 0. UsualEy only some of the n? elements
of Gl have a pole at xk and for any sufficiently
small allowed perturbation, if the (i,k) element
of Cl has no pole at xk, then the (i,k) element
of Gl+6Gl will still have no pole in a small
neighborhood of Ak' Consequently, only the

nonzero elements in the residue matrix of

G, at Xk are affected by the allowed perturbations.

Thus Rko is a structured matrix in the sense of

Shields and Pearson [17,18] i.e., it has a fixed
pattern of zero elements. Let vy be the number

of coefficients which specify Gl' The generic

rank [17,18] of the structured matrix is
defined to be the maximal rank that achieves
as a function of these v, parameters. o does

not achieve its generic rank only for parameter
values in some proper, closed, nowhere-dense
variety V C RVLl, Consequently, if the rank of
the nominal Rko is less than its generic rank,
then, for some arbitrarily small allowed
perturbation, the rank of Rko will jump to its
generic rank. Thus we have the

Robustness Result III.2.

Suppose that all ¢+-poles of G1 and of G2 are

simple and that for each of these poles the
nominal residue matrix has a rank equal to its
generic rank; if the given feedback system is
exp. stable at the nominal data point, then for
any sufficiently small allowed perturbation, the
resulting perturbed system is still exp. stable.

Furthermore, if the nominal residue matrix of some
¢+-pole of either G, or G,, has a rank less than
its generic rank, and if the nominal system S is
exp. stable, then for some arbitrarily small
allowed perturbation, the resulting perturbed
system is unstable. -

Remark III.1l: The allowed perturbations considered
in Case III appear quite reasonable. However, we
should be on guard that they might include
perturbations that have no physical meaning for the
case at hand. For example, this could occur if

Gl’ instead of being specified by a collection

of n? rational functions — the entries of the
matrix G, — were specified by a block diagram
delineating the interconnections between the
subsystems constituting G,. In that case the
appropriate perturbations to consider are not
arbitrary perturbations in all the coefficients in
the n2 rational function specifying G, but rather
perturbations in the parameters speciéying the
subsystems constituting Gl' This is illustrated
by the following example.

Example. Suppose that GJ consists of a collection
of subsystems in series and in parallel (no
feedback!) and that only one subsystem has an
unstable pole, say at p, with Re p > 0. The
contribution of that subsystem to Gy is exhibited

A N L A NS M e 6

on Fig. 2: the ith scalar input of G, can only
affect the scalar input v of the unstable sub-
system through the gain Bt; similarly the unstable
subsystem output z is also scalar and is fanned out
to the ith output of G, through gain Yy Clearly
the residue of G, at p is the dyad (i.e. a rank~

one matrix!) R = YBT where y = (yl,yz,...,yn)T

gT = (81,82,...,8n). Now any small perturbation

in the physical parameters (y,,8.,), i =1,2,...,n
and p will not change the rank of R because the
dyadic structure of R is dictated by the nature of
the interconnection of the subsystems constituting
Ql’ and not by the numerical value of the parameters.
Another way of viewing this fact is to say: the
only meaningful physical parameters which determine
R are the 2n scalars Yo Yz,...,y

0’ 81,82,....Bn.
To take the abstract mathematical point of view
that R _is an array of n‘ real numbers, and there-
fore n“ independent perturbations of its parameters
are appropriate is mathematical fiction, and not

an analysis of the physical system under consider~-

ation. I

The lesson of this remark is that before consider-
ing robustness, one should go back to the physical
model of the system under consideration and trace
out the effect of perturbations of the physical
parameters of the model on the coefficients of the
mathematical representation. Only in this way,
the engineer will assure himself that the allowed
perturbations he worries about pertain to physical
reality and not to mathematical fiction.

Remark III.2: There is another case where
perturbations are more restricted than those
considered in Case III: in many models Newton's
law dictates a second order pole at the origin —
say in the transfer function from the external
forces and the center of mass — . Clearly this
second order pole is not subject to perturbations
due to measurement or manufacturing errors!

Example: Consider the planar mechanical system
described by

Wiy = Wy =y
ny, = u,.
where (ul,u ) is the applied force, (yl,yz) is the
position of the particle of mass m and the
physical parameters are m > 0 and k > 0. Here
m-2ks-4 us_z Bs-a
G(s) = =

0 m—]’s_2 0 as_z

=1 =2
m s

where we put a = m"l, B = m=2k. Clearly, in this
example the second order pole of G and the fourth
order pole of G are not subject to perturbations
when the physical parameters a, B are perturbed.
In the present case, the McMillan degree at the
unstable pole (s=0) is insensitive to small
perturbations in the physical parameters. To

check this write G(s) = z: Rksk_4; then A(G;0) is
k=0
given by the rank of the Hankel matrix [15]
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Ry, B, B}y Ry
it R, R, R 0
[} R1 s 00
R 00
o

0 B8 a 0
where R0 =lo 0] - R2 [0 a] and the others

are zero. It is easily checked that for all
allowed physical values (namely, a« > 0, B > 0)
A(G;0) = 4 and also that the generic rank of Ho

is 4, [17, p. 211]. Thus if this transfer function
G were the forward gain of a closed-loop system
with an exponentially stable feedback gain

K(s) = diag(kl(s),k (s)) then Py the number of
required counterclockwise encirclements, would be

4 and it would be robust under any perturbation of
the physical parameters o and B. "

Relation between the effect of parameter
perturbations in the three cases above.

Consider a given transfer function G(s), one of
its minimal state-space realization [A,B,C,D] and
one of its right~coprime factorizations (Nr’Dr)'

Offhand we might think that if some allowed
parameter perturbation in Case I leads to the
transfer function G+8G, then there exists some
allowed parameter perturbation in Case II which
leads to the same transfer function G+8G, and

so on. In other words, we might think that the
parameter perturbations in the three cases are,
in some sense, equivalent. This is not the case:
indeed Remark II.1 shows that for some coprime
factorization (Nr‘Dr) there is some aribtrarily

samll allowed parameter perturbation (of Case II)
which will increase the degree of the characteristic
polynomial, this, however, is impossible under

any allowed parameter perturbation in Case I.

Similarly the example below shows that for some
G(s) there is some arbitrarily small allowed
parameter perturbation of Case I which leads to
some transfer function G+8G unattainable by any
allowed parameter perturbation of Case III.

Example: Consider a transfer function G(s) with
the minimal state-space representation [A,B,C,D]
where

1000 O
0L 1.0 =1

A= -1 000 0|,B=C=1I,. D=0,
0 0 00 0

-1 0 0 0 O
Thus, G(s) = (sI-A)'1
The (1,2) position minor of (sI-A) is given by

0 <1 0 1
1 8 O 0O
det 0 o s 0l* 0, for all s.

2 @ 0 8

Therefore the numerator polynomial of the (2,1)
element of G(s) has a degree of -». Let 8A be a
5%5 matrix which has only one nonzero element a

at (3,1) position. Clearly [6A,0,0,0] is an
allowed parameter perturbation in Case 1. The
(1,2) position minor of (sI-A-5A) is given by

0 -1 01
det laa g g g = -asz. Also
1 6 0 .8

det[sI~(A#64)] = 8°(a-1)>.

Therefore the numerator polynomial of (2,1) element
of G+6G has degree zero. (Note the cancellation!)
Due to the increase in degree of the numerator
polynomial of (2,1) element, G+86G is unattainable
from G by any allowed parameter perturbation of
Case III.

VI. Conclusion

In this paper we studied the robustness of the
exponential stability of continuous-time, linear,
time-invariant, lumped, multi-input multi-oucput
feedback systems. We presented robustness results
for three types of system representations with
corresponding sets of allowed parameter
perturbations.

The robustness results above were obtained assuming
that the two subsystems G, and G, have the same
number of inputs and outputs, all the results can
be extended, after simple modifications, to the
case where the number of inputs and outputs of each
subsystems are different.

Also since all the arguments used are purely
algebraic and are based on simple properties of
rational functions and polynomials, all the
results above apply equally well to the discrete-
time case except that in Robustness Result III.1,
C should be interpreted as the unit circle with
inward indentation to avoid the poles of G, and G
lying on the unit circle, and C, should be
interpreted as the "outside" of C (more precisely
the unbounded connected component of ¢~C).
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