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CROSS-SPECTRAL ANA! _IS OF ACOUSTIC SIGNALS
Allan L. Gutjahr, mathematics department
Charles R. Holmes, physics department

New Mexico Institute of Mining and Technb]ogy

I. INTRODUCTIGN

The spectrum of thunder contains a considerable amount
of information about the thunder signal as well as information
about the 1ightning whkich is presumed to be the cause of the
thunder. Holmes, et al. (1971), McCrory (1969), and Few
(1968, 1969), among others, have analyzed the acoustic signal
generated by thunder. Aithough the shape of the spectrum is
not completely known, various aspects of the spectrum are
discussed in the papers mentioned above.

The main purposes of this paper are to discuss the use
of thunder for lighining location, to discuss estimation of
the quantities that occur in the digital analysis of signals
and to present the statistical analysis of the estimated
quantities.

Most of the procedures presented here are available in
the literature, but they are either described rather generally
or in great mathematical detail. 1In either case they are
often inaccessible to the practitioner who is not both a
statistician and electrical engineer. In addition, the
available discussions are scattered throughout the various

publications, so that the probiems encountered by the user

are accentuated by differences in notation and terminology.




Hence, this is also an attempt to give a consistent treat-
ment of all of the aspects mentioned above.
The following is an overview and table of contents of
the paper.
I. Introduction.

II. Review of past work. This section will include a
discussion of the physical models which form the
basis for the work ci-ried out in lightning loca-
tion and spectral analysis. In addition, a
critique of the past work in lightning location
will be included,.

IIT. Cross-spectral analysis and lightning location.
This section will contain an exposition of the
method of cross-spectral analysis and its use in
lightning location. The location procedures and
confidence intervals will also be discussed.

IV. Application of cross-spectral analysis to location
of prima-cord and ¢-4 shots.

V. Application of cross-spectral analysis to
lightning location.
The appendices will include more detailed explanations
of the procedures of sections Il and IIl. 1In particular, they
N will contain discussions of the various computer routines
used, and further explanations of the formulas and procedures.
The appendices are:

A. Spectral Analysis

B. Cross-spectral Analysis




C. Variance and Covariance Calculations
D. Spherical Location Procedure
E. Plane Location Procedure

F. Additional Remarks on Spectra and Covariances
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II. REVIEW OF PAST WORK AND THE PHYSICAL MODEL

The phenomenon of lightning and its relation to thunder
is discussed extensively in Uman (1969), Few (1968), and
McCrory (1969). We will present a brief review of the models
proposed by these authors, with particular emphasis on those
aspects that are relevant to our work in lightning location.

Thunder is associated with the lightning path. Various
theories have been offered as to how this association occurs.
One modern theory offers the explanation that thunder is due
to rapid heating in the Tightning channel. This rapid heating
causes a shock wave which propagates radially outward. As the
shock wave moves out, the shock-front pressure decreases and
eventually the wave becomes a sound wave, which, after modifi-
cation by the environment, becomes the audible thunder.

The 1ightning channel from which the thunder emanates
is formed by a stepped-leader process. The name stepped-leader
is derived from the fact that as the Tightning channel is
built from a cloud to the ground, say, it seems to move in
steps of varying length, with pauses between the steps. Tne
average step length is about 50 meters and the average duration
of each step is about 50 p-sec. Usually the resulting channel
is branched. After the channel reaches the ground a rapidly
moving return stroke occurs, moving from the ground to the
cloud and propagating alnng the branches. There may be
subsequent return strokes assgciated with dart-leaders. The

dart-leaders move from the cloud to the ground along the main

lightning channel and the ensuing return strokes also follow




only the main chonnel. It is the return strokes which cause
the rapid heating, and consequently the thunder, in the model
described above. Bec.use the return stroke moves very

rapidly, the source of the thunder occurs almost simultaneously
along the entire channel.

The description above is for the simplest discharge to
ground (called a discrete stroke - a discrete flash contains
several such discrete strokes). There are also strokes
(known as continuous strokes) where there js a continuing
current to grovnd immediately after a return stroke and corres-
pording hybrid flashes, which consist of series of continuous
strokes.

Few (1969) puts forth a “string-of-pearls" model of
lightning, wherein the lightning channel supposedly behaves
as a string of cylindrical sources of acoustical energy. Each
cylindrical source will appear as a spherical source at large
distances, where the sphericel source has a radius such that
it emits the same energy as the original cylindrical source.

From the theory for spherical shock waves one can then
obtain a relation between distance and the dominant frequency
(McCrory (1971)), and consequently one can predict where the
peaks in the spectral density of thunder should occur.

Various studies of the power spectra of thunder have
been carried out by Few (1968), Few, et al. (1967), McCrory (1971)

and Hoimes, et al. (1971). The earlier studies of Few, et al.

(1967), indicated a peak in the spectrum at about 200 HZ,

but more accurate estimates of the spectrum by McCrory (1971)




and Holmes, et al. (1971} show that the peaks are lower than
this -- for ground flashes they measured peaks (after correc-
tion for wind-noise) in the 40 to 80 HZ range. Some attenua-
tion occurs due to propagation through the medium, with the
higher frequency portions of thunder suffering the greatest
attenuation.

Accounting for the attenuation and the non-stationary
nature of the spectruin of thunder, (i.e. its time dependence)
Holmes, et al. (1971) and McCrory (1971), found that the power
spectrum had peaks at low frequencies and that these peaks
were inconsistent with the theory that thunder was caused
totally by the acoustic mechanism described above. As a
possible explanation, these investigators put forth the theory
that a second mechanism was in operation -- this mechanism
was proposed originally by Wilson (1920) and studied further
by Colgate (1967) and Colgate and McKee (1969). This accounts
for low frequencies by proposing an electrostatic reaction
due to the collapse of the region of charge storage within
the cloud at the time of lightning discharge. This indeed
would account for the low frequency content of the spectrum
and also is in accord with the fact that low frequencies were
observed in the later part of the thunder signal.

The lightning channel is quite tortuous, even on a
small scale. This tortuosity «can introduce additional
ripples on the spectrum as proposed by McCrory (1971). In

addition, tne fact that the received signal is the sum of

several signals fraom different portions of the channel can




also introduce ripples on the spectrum. McCrory estimates
this latter filtering effect, which he calls phase noise, and
concludes that the tortuosity of the channel {s more important
than the time structure in explaining the hash or ripples
that appear on the spectrum.

The exact nature of a lightning channel is still not
known. Some authors have claimed that the horizontal portion
of the channel which is within the cloud can be quite large
in comparison to the vertical portion that is observed_(Uman
(1969)). Few has attempted to reconstruct the channel by
recording thunder signils at different locations and then
tracing back to the source by using co-variance analysis on
the signals. Since our objective is to do a similar recon-
struction and since the method relies rather heavily on Fews
work we next give an extensive review of his procedure.

By considering the hydrodynamica] conditicns right

after a lightning discharge, Few obtained the equations

|

(3 +v-Wp+o(7-u) =0 (1)
] - -1 _

(5€ + v « V)o+gz+p VP =20 (2)
(%+v-vW+yHV-H=O. (3)

p is the density, P the pressure, v the velocity vector of
the sound wave, z is a unit vector in the z (vertical) direc-
tion, g the force of gravity and v is the ratio of the specific

heat of the gas at constant pressure to the specific heat at

fu

constant volume. The equations (1), (2), and (3) correspond
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respectively, to conservation of mass, momentum and energy.
[f the quantities v, p and P are written as a steady

state term plus a perturbed term we have, after rencrmaltiz-

ing,
viir,t) = vo(r) + ¢ vl(r,t) (8)
plrat) = og(r)[1 + p,(r.t)] {5)
P(r,t) = Po(r)[1 + P (r,t)]. (6)

If (4) through (6) are substituted into the previous
equations and if the perturbed terms are set equal to 0,

one obtains

(%{ t Vg Visy - (c/H)(v] «2) +cvV - v, = 0 (7)
(%f tovg ¢ Vlvy + (g/c)ey 7+ (c/y)v - P\

- ey Py = 0 (8)
(%I + VO . V)P] - (C/H)V] . ; + (C/Y)'\" . v] = 0. (9)

c is the cdiabatic speed of 30und and H is the scale heiqght
of the atmosphere. These results are obtained by first
solving the steady state egquations.

Finally expanding G P] and v in wave-number sopace

;i we have

% pylr.t) = IZI prglketLhr{rovot) - wtl dk,dk,dkg (10)

| Py(r,t) = {Zf polk)et Lhrlr=vot) —wtl gy g di, (1)
vi(r.t) = {Z[ viglkretthelrovold - ot gy ai ax,. (12)

. - T e P e e oy P o e e i e e ST v (LY Pty = T TR B XAt T PO N M X TV E L S P A N L o e R oy AR 2 %5 < AT o = .. " gl
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In equations (10) - 12) w is the angular frequency. If these

equations are substituted into equation (7) through (9), 4
homogeneous equations involving p]O’ %10 and horizontal and
vertical components of Vig 2re obtained. If this system is

to have a unique solution, the determinant of the coefficients
must be zero. The resulting determinan*t involves =, k and

wg = (y - 1)g/(yH). If wg, which is quite small, is ignored,

one obtains the result that JZ = cz k » k. Finally, ignoring
gravity terms, one has
Vip = K uq'" Py v ! (13)
10 A 10 *

Consequ+ntly, P]0 completaely determines the solutions of
equations {7) through (9).

P10(k), and in fact P]O(k’t)’ where time dependence is
permitted, could be estimated by using an array of microphones
to obtain the thunder signals at several locations simulta-
neously and then using a 4-dimensional Fast Fourier Transforn
to calculate P10(k,t). This mightbe of some use since Plo{k,t)
could be used to study the dependence of the spectrum on
distance.

In place of (10) through (12) one could also assume that
P], Py and vy are spatially and tempcrally statistically
homogeneous (Tatarski (1961)) and then obtain resulis similar
to those above by using a Fourier-Stieltjes representation.

In this case, P]0 would be a furction of k and t.
The additional assumption that the pressure wave 1is a

plane wave yields

vip(rst) = k BT (p(r)zog(r)) Py(r,t). (12)
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Then writing Plﬁ(k) in three mutually perpendicular coordin-
ate, where the coordinate system is oriented so that a unit

vector is along k]. the first -oordinate of k, we have

Plo(k) = P'”(k]) ‘5(k2) ’5(k3) (15)
and

Pilr,t) = [ Pll(k])eik'(r'tvo) ot tut gy (16)

1
Here & denotes the delta function (that is, the coordinate
system is oriented in the direction of the plane wave}.

Few then assumes that the cross-covariance betueen
P](r],s) and P](rz,t) only depends on the differences t-s
and P which is an assumption of cross-stationarity.
This assumption is not explicitly stated by Few but indeed
it is the heart of the cross-covariance technique. If
P](rz.t) = P](r],t + 1), (i.e. if the pressure wave at rs
lags the pressure wave of ry by 7 units) then one can estimate
T, which is assumed o be constant, by calculating the cross-
covariance between P]{rz,t) and P](r],t) and using the point
where the cross-covariance is maximum as the desired estimate
of the time lag.

The planarity of the wave and the geometry of the
situation lead to the following egquation for a, the direc-
tion betweer ro - ry - ¥q T and k:

cos a = LA } (17)

tra - "y - Yo 1

Vo is the wind velocity and usually is neglected.

If this method is applied to sigrals received at three
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microphones placed in a triangular array, and if lightning
follows the string-of-pearlis model, then the wave can be
traced back to find the locaticn of the source. An additional
measurement of the time of onset of the lighktning is also
required -- this can be obtained optically or by field-change
measurements. Several segments of the signals are used to
get several points on the lightning channel.

The assumptions that the cross-covariance only depends
on the lag between the received signals and that the received
pressure wave is locally stationary can be used to give a
simpler formulatiorn of this problem which doesn't require
the wave to be a plane wave.

Conceptually, the model includes the assumption that a
point source {one of the pearls on the string) generates a
spherical wave which is received as P(r],t) at one location
and P(rz,t) at another location. Then if the wind velocity,
Vge is ignored, and P(rz,t) = P(r],t + 1)}, onrce agzin one
can estimate the time lag t and use the time lag to find the
source, using either spherical waves or plane waves. This
procecure is discussed in greater detail in the nex* section.

There are several problems connected with this method.
The actual source is not spherical but rather cylirdrical.

In addition the waves trom different locations can interfere
with each other leading to some confusion in the estimated
time lag. In fact, if twopoints on the channel are equidistant

from the microphone then the signals from those twn poin

(g

< areg

received simultaneously. There may also be some problems with
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reflections or echos although one might be able to filter
the signal to remove such effects. Finally, as discussed
previously, it does not appear that the shock wave is the
only caomponent of thunder.

One difficulty with the cross-covariance technique is
that the estimated time lags corresponding to peaks in the
covariance function are very difficult to study from a
statistical point of view. WNot only are covariances difficult
to treat statistically, but in this method one is actually
interested in the time-lag where the covariance function is
maximum and this time-lag is difficult to treat statistically.

Few (1970) discusses the errors involved in the cracss-
covariance procedure but he neglects the fundamental point
that the estimate of t, the time-lag, is a statistical
quantity with its own stgtistica] behavior. He really treats
his estimate as 'f it were the true value of T and only
discusses errors due to discretization of the time scale which
really igﬁores yart of the problem.

Teer (1973) also claims to treat the statistical problem
but he only finds the center of the flash and constructs an
elliptical region which will encompass the signal. The
validity of this procedure is questionable since once again
the statistical behavior of the ectimates is not accounted for,

If we examine the simple model where P(rz, t + 1) =
P(rl,t) and where the signals are stationary, then we can

estimate t from the cross-spectral density of the two signals.

This cross-spectral density is the Fourier transform of the




cross-covariance function. Then, T can be estimated by
examining the angle whose tangent is the ratio of the real
and imaginary parts of the cross-spectral density, As we
will see in the next section this arctangent, as a function
of the frequency, v, has the form t v, so standard regression
techniques can be used to estimate t. In addition, in the
frequency domain it is easier to study the statistical
properties than in the time domain. Consequently, one can
establish confidence limits for the estimate T, and, by using
propagation of error, confidence limits for the source loca-
tion. In addition the necessary filtering can often be
performed more readily in the frequency domain. For these
reasons we have selected the cross-spectral procedure and

this procedure will be discussed in the next section and in

the appendices.

13
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IT]. CROSS-SPECTRAL ANALYSIST AND LIGHTNING LOCATION

The discussion in this section assumes that the thunder
signal is recorded at three locations, where the locations
of the recording microphones form a triangular array, (see
Figure 1). Microphone i is located at position Pi = (011’012’
Di3) and the signal received at microphone i 1is Xi(t).

Assuming that the signals are stationary, the cross-
covariance function between signal i and signal j is defined
as:

r..(s)

cov[X;(t), X (t + 5)] | (18.a)

E[Xi(t)xj(t +s5)] - E[Xi(t)] E[Xj(t +s))]. (18.b)

Few's method proceeds by calculating the sample cross-variance
function and then letting T (the time lag between signals
Xi(t) and Xj(t)) be that point where the covariance function
is maximum. The model used assumes that Xj(t + 1) = Xi(t),
as discussed in the previous section of this paper.

If fij(u) is the cross-spectral density of signals
i and j then, as we see in Appendix B, we can es*imate
fij(u) by taking the Fourier transforms of Xi(t) and Xj(t)

and then multiplying the transforms. Specifically, let

[- -}

Fj(u) = [ exp{2nuti} Xj(t)dt. (19)

Then
fij(U) = F:(U) Fj(u)’ (20)

where the asterik denotes complex conjugation. 1In addition

if xj(t + 1) = xi(t). a simple change of variables leads to

o o S S AR S S S T T P T
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Figure 1
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Fj(u) = exp{2muti} Fi(u). (21)

and consequently
fij(u) = exp{2muti} IFi(u)Iz. (22)

We next break up fij(”) into its real and imaginary

parts:
f‘ij(u) = [cij(u) - iqij(u)]/Z- (23)

cij(u) is called the co-spectrum and qij(u) is called the
quadrature spectrum. From eq. (22) it follows that eij(u)’

the phase spectrum, is
Oij(u) = arctan(- qij(u)/cij(u)) = 27TU. (24)

Hence, the phase spectrum should be a straight line
through the origin with slope 277 if signal j lags signal i

by t units. The phase can be estimated by finding the value
h |

of t that minimizes I [9..
k=1 M

cusses the cross-spectral calculations in greater detail.

-

(u, ) - 277y J2. Appendix B dis-
k k

The precision of the estimate of T can be ascertained by
using standard statistical procedures. The necessary calcula-
tions are all given in Appendix C.

The cross-spectral approach and the cross-covariance
procedure both proceed by partitioning the initial signals
into smaller subsignals. After the partitioning, each
segment is analyzed as above.

The spectral and cross-spectral estimates are ali
smeothed in order to stabilize the variance of the estimates,

In addition, one can also estimate the cross-spectrum by

transforming the cross-covariance function instead of the
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original signals. Once again the details are given in
Appendices A and B.

a. Spherical location routine

Let S be the time from the initiation of the source
until its reception at microphone 1 and let T2 and T3 be
the time lags estimated between microphones 1 and 2, and
1 and 3 respectively.

Then, if r' = (ri,ré,ré) is the location of the source
in a new system of coordinates where microphone 1 has
coordinate (0,0,0), microphone 2 is on the x-axis of the

primed system and the x-y plane of the primed systoem con-

tains all 3 micrecphones, we can obtain the equations

5 = (e 4 (rp)? + (r))? (25.a)

62 = (r1 - xp)2 ¢ (rp)? 4 ()P (25.b)

5§ = (ry - xg)2 v (ry -y o+ (25.c)
Here 67 = (c5)%, 65 = [c(s + 7)1, &5 = [c(s + 1,015,

¢ is the speed ot sound, and x%, y% are coordinates, in the
primed system of microphone 1.

If equation (25.b) is subtracted from equation (25.a)
and similarily if equation (25.c) is subtracted from equation

(25.a) one can obtain ris T and ré in terms of S, T2 and
T3

Finally, these coordinates can be translated back to
the original frane of reference by noting that the primed
unit vectors can be expressed as linear combinations of the

unprimed unit vectors. The variance and covariance matrix

et i eom s oo e e g W ey e AR S RS X ks demegh
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of the estimated source location can be obtained by using
propagation of error. The details of this procedure are
given in Appendix D.

If (1-a) x 100% confidence intervals are desired for the
source location, approximate limits can be obtained by using
;i + [var(?i)]”2 Z,76* 1 = 1,253, where ?i is the ith
estimated coordinate value, Za/6 is the upper /6 pgint of
the standard normal distribution and var(;i) is the estimated
variance of ;i' More precise estimates can also be obtained
by using a chi-square distribution and the covariance matrix
of the r-values, but the resulting confidence region is an
ellipsoid rather than a box and is somewhat harder to visualize.
The above box-like regions are known as Bonferroni confidence

regions.

b. Plane wave location

If the received sound wave is a plane wave then one can
estimate the velocity vector of the wave by using the lags,
Tij° and then once again trace back to the source.

Here the direction cosines of the angles between the
velocity of the wave front and the vectors connecting micro-
phones 2 and 3 to microphone 1 are obtained.

In particular if v is the unit velocity vector of the
plane wave, and if a,, is the angle between v and the vector

1]
connecting microphone i and j, then

CT. . v « P.P,
cos .., = —H = 12

i,j =1,2,3.

1] —_— —_—
Pip;  PiP; Ml
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These 2 equations along with [v}] = 1 can be used to find v.

(Here 5;3; is the vector connecting microphone i and j.)
The location of the source in this case is cSV. Once
. &gain covariances for the estimates are obtained by propaga-
tion of error, after linearizing the resulting expressions

in Ty2 and T13° Appendix E includes the covariance calcula-

tions and a discussion of the plane location procedure.
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IV. LOCATION FOR C-4 AND PRIMA-CORD SHOTS

The methods were tested by using experimental explosive
charges with point sources {C-4 shots) and line sources (Frima-
Cord explosives). The explosives were suspended from balloons
and the approximate positions obtained by Theodolite Survey
data. The tests were carried out near Langmuir Laboratory in
the Magdalena Mountains of New Mexico. The co-ordinates used
in this section and the next one are all related to the radar
tower at Langmuir Laboratory.

Several different micropnone networks were used in these
reconstructions. The three networks used are designated as
the Saddle, West Knoll, and Solar Tower networks, corresponding
to their locaticns in South Baldy near the laboratory. However,
the spacing between microphones is not the same for all recon-
structions as is noted below.

A considerable amount of output is generated by the pro-
grams used to do the reconstruction and consequently only one

fairly complete set is shown below.

C-4 Shots, Summer 1977:

Two microphone networks were used for these reconstructions -
the Saddle and the West Knoll network. Each network consisted
of three microphone stations in a triangular array with approxi-
mately thirty meters between the stations.

Figures 2-a through 2-1 show the output for C-4 shot number
one for the Saddle network. Figure Z-a is a graph of three

recorded microphone signals for the Saddle network. Figure 2-t

summarizes some of the information about the signals and the
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estimction techniques used. Figure 2-¢ gives an approximation
to the source location using only the starting times of the
signals., Figure 2-d indicates the cross-correlation functions.
Note that even though (from Figure 2-a) we might guess that the
signals are highly correlated the peaks on the cross-correlation
functions are not very high. The log of the spectral density
at one of the three microphones is shown in Figure 2-e, along
with a 95% confidence interval for the estimated spectrum. The
flatness of the spectrum suggests that the disturbance is
approximately white noise. Figures 2-f through 2-h are
coherencies between the signals all of which peak at about 200
Hertz. These coherencies measure the correlation between the
various frequency components of the signals. The phase functions,
with confidence intervals and a regression line used to estimate
the time lags, are shown in Figures 2-i through 2-k. Figure
2-2 shows the final output indicating the source location and
confidence intervals for the spherical location routine. (The
time window line is superfluous - originally one-half the width
of the length of record used was added to the times before
tracing and the uncertainty introduced by this was included in
the variance calculation. However, it appears more accurate
estimates are obtained by not including this increment.)
Variance estimates (or more precisely confidence intervals) are
only shown for the spherical wave solution. The locations are
summarized in Table 1 and the computed location contains the
surveyed location with its confidence region. The corrections
of tke program do lead to considerable change in the predicted
locations from the initial guess of Figure 2-c which corresponds

to a "by eye" alignment.
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TABLE 1
1977 C-4 TEST SHOTS

Co-ordinates (Meters)

C-4 NO. 1 X y z

Survey -166.7 660.5 812.6

Saddle -171.3 + 10.4 655.5 + 12.1 811.7 + 3.1
West Knoll -173.0 £ 16.2 681.9 + 18.8 818.4 = 21.4
C-4 NO. 2

Survey -213.5 744.0 568.0

Saddle -229.5 + 5.4 726.3 * 6.0 574.5 *+ 3.6

West Knoll -218.6 + 11.5 726.1 £ 6.6 568.8 + 6.42
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Figures 3-a through 3-g show some of the relevant data
for the same event using the West Knoll network. Here the
confidence intervals on the spectra and phase are narrower
but because of the greater distance from the source, wider on
the location, While the confidence region for the source doesn't
contain the survey values it just barely misses doing so in the
Yy - co-ordinate only.

The results are presented in Table 1 alang with another
1977 C-4 test shot. The confidence regions for the second
experiment don't contain the surveyed location with the largest
discrepancy appearing 1in the y - co-ordinate. Since errors
also exist in the Theodolite measurements this lack of overlap

was not considered to be a serious problem.

Prima-Cord Event 1973:

Some calculationc were also made with earlier (-4 and
Prima-Cord tests. Only a Prima-Cord test will be discussed
here since the (-4 results are similar to those presented above,.

For this reconstruction again two networks were used. How-
ever, the Saddle network had microphone stations on a one hundred
meter spacing rather than a thirty meter spacing.

Some of the output is shown in Figures 4-a through 4-c and
the co-ordinate values are given in Table 2. Figure 5 shows two-
dimensional views of the reconstruction. The reconstructions
agree reasonably well with each other, There was a kink in
the cord which appears in cne reconstruction but not the other

indicating the effect of the aspect angl~ since this is indeed

a real kink. The maximum cross-correlations occur at the ends
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and at the kink. The smaller spaced retwork has signals that
do not decorrelate as fast as this larger spaced network.
The agreement with the surveyed location is not very good at

the bottom but the bottom survey was not very accurate so

the discrepancy isn't toc alarming.
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- FIGURE 5
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TABLE 2
1973 PRIMA-CORD SHOT
2. Saddle Network Co-ordinates (Meters) Maximum
Cross-correlation
X y z
=631.7 ¢+ 1.5 376.0 + 1.4 67.9 + 1.1 .69
-588.0 + 3.3 323.1 + 4.1 135.6 + .9 .49
-600.1 + 6.2 331.1 + 2.7 168.2 + 1.6 .39
-610.8 + 3.3 334.6 + 3.4 200.7 + .9 .31
-624.0 + 4.9 342.9 + 8.7 232.4 + 1.4 .40
-630.3 - 1Zz.0 354.4 + 6.3 265.7 + 3.2 .21
-640.5 + 35,0 357.2 + 7.6 299.1 + 5. ¢ .16
-641.0 : .6 348.6 + 1.0 379.6 + .12 .90
b. West Knoll Network
-659.4 + 4.3 380.7 + 2.8 67.3 + |4 .85
-660.9 + 7.6 <44.1 + 5.8 120.1 = 37 .82
-663.9 + 8.4 332.3 + 6.9 208.8 = 13.4 .72
-661.6 + 7.2 327.3 + 3.0 269.0 + 9.5 .86
-646.6 = 3.7 331.8 * 3.0 305.0 + 4.7 .87
-636.4 + 2.2 324.2 + 1.6 373.9 = 2.4 .39
C. Double Theodolyte Survey
Top: -648 356 385
Bottom: -723 385 85

(Best guess)
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V. LOCATION FOR SOME LIGHTHING EVENTS

This section includes a few reconstructions for lightning
events. The primary purpose is to show some reconstructions
and also to discuss procedures and problems associated with
reconstruction of lightning paths by the techniques discussed
in this report. Note that while the individual points are
connected these connections are to a large extent guesses and
are made to give some order to the data. The more tortorous
parts of the channels may indeed lo0ok a lot different than what
the figures below show. The examples will be presented first
with a few comments. The section closes with some more

detailed comments on methods and praocedures.

Event 1 - Day 233, 1977

Figures 6-a through 6-f show some results from a lightning
event as recorded on the West Knoll network (30 meter spacings).
This event was tracked with both the West Knoll and Saddle
(30 meter spacings) networks and the results are shown in Table
3. The two-dimensional views of the reconstruction are shown in
Figure 7 and a possible channel is indicated. While it is diffi-
cult to completely reconstruct the lightning path, the general
region of the stroke is fairly clear with both networks agreeing

fairly well.

Event 2 - Day 209, 1975

This event was recorded on three networks: Saddle (100

meter spacing), West Knoll (30 meter spacing), and Solar Tower

(30 meter spacing).
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TABLE 3
CO-ORDINATES FOR EVENT 1 (Day 233, 1977)
Lightning at 14:23:59.166
a. Saddle Network

Start Time Co-ordinates (Meters)
X

14:24:07.124 -3245 + 50 -51 i 92 69 * 770

14:24:07.409 -3276 + 42 -330 £ 656 256 + 295
* 14:24:07.703 -3221 * 96 -554 + 125 726 + 223

14:24:08.572 -3602 + 34 272 *+ 172 752 + 141

14:24:08.772 -3664 + 82 -274 *+ 205 786 + 275

14:24:09.626 -3713 + 35 -974 & §7 981 + 89
b. West Knoll Network

14:24:06.00 -2356 + 28 -348 + 20 290 + 187
* 14:24:06.147 -3?34 + 31 -380 + 21 570 + 95

14:24:06.347 -3319 + 31 -425 + 36 785 + 72

*Times indicate these two points are close to each other.
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TABLE 4
CO-ORDINATES FOR EVENT

Lightning at 12:47:07.550

a. Saddle Network

Co-ordinates (Meters

X y
-1230 1645
-1397 1598

-706 1900

b. Nest Knoll Network

-1151 1705
-1332 1721
-1415 1801
-1489 1814
-1084 1762

-803 1775

-688 1858

¢c. Solar Tower Network

-1317 1660
-1387 1622
-1545 1679
-1587 1635
-882 1731
-344 1926

n.a. means not available.
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(Day 209, 1975)

)

226
993
2351

19
385
1280
1500
2135
2339
2395

111
1156
1532
1744
2438
2570

Maximum
Cross-correlation

.70
.75
.62

.30
.78
.69
.34
.64
.60
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FIGURE 8
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The reconstruction for this (and the following events)
was done with an earlier version of the computer program.
The earlier version added half the width of the signal to the
times of arrival, as indicated above, and also had in error
in the confidence interval calculations. Consequently the
resuits in Table 4 don't include any error limits. The
graphs for this event are in Figure 8, The three networks
give results that agree very well. This appears to be.a very

clean cloud-to-ground stroke with little evidence of branching.

Event 3 - Day 213, 1976

Figures 9-a and b show a signal at the Solar Tower network
(30 meter spacing) for a more complex and long record. Figure
9-a shows one-second of the data and Figure 9-b shows .300
seconds. One can pick out corresponding features from the
three signals quite easily and the cross-correlations between
various signal seaments were quite high.

Figure 10 shows the two-dimensional views with a possible
path, In addition the relative maxima of the maximum correlation
values are shown along the signal path. Here it would appear
that cross-corrections are maximum at corner points or branch-

ing points.

Event 4 - Day 210, 1975

Table 5 and Figures 11-a, b, and ¢ show a reconstruction
for what would appear to be a cloud-to-cloud stroke. Three
networks were used as the figures and table indicate. Again

this was done with the early version and consequently no

.~
I ecniart.- AL AL TRy O O A ey
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Event 3, Day 213, 1976
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TABLE 5

CO-ORDINATES FOR EVENT 4 (Day 210, 1975)

Lightning at 11:29:12.760

a. Saddle Network
Co-ordinates (Meters)

X Y
942 5529
-732 4180
1620 2755
2361 2199
Bl16 5303
185 6011
680 2549
-302 4287
-4818 6899
b. West Knoll Hetwork
1404 2247
1734 2841
2033 2672
1884 2067
1222 3309
-2532 5637
-2028 5267
-641 5258
¢. Sclar Tower Network

-761 2361
-453 3901
1457 3754
1685 2513
911 3540
-2508 5350
-5805 5521
-5055 7003

Zz
3146
2382
3299
4069
2773
2736
6435
68290
4154

2979
3131
2934
4397
5964
52¢7
5617
6065

2809
2785
3185
4360
5880
5447
3137
3933

Maximum
Cross-correlation

.72
.29
.81
.71
.74
.74
.68
.55
.84

.63
.72
.73
.60
.54
.59
.60
.32

.52
.55
.50
.75
.67
.45
.62
.76

64
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FIGURE 11-8 '
Event 4, Dav 210, 1975
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FIGURE 11l-c
Event 4, Day 210, 1975
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confidence intervals are given in the table. The three recon-
structions seem to agree fairly well and once again suggested
Fatterns for the stroke are sketched in the figures. Again
higher correlation values seem to be associated with turning

points.

Comments on Lightring Channel Reconstruction

The purpose of this report has been primarily to review
and present the tecnniques of lightning charnel recenstruction
from acoustic data. The following comments pertain to the use
of thesa techniques.

Reconstruction of ligktning puths using the acoustic

68

technique is & rather time consuming process. It requires con-

stant operator attention aid is rather dependent on a good
initial gues: regardino s‘gnal alignmeat. A rezsonably clean
signal (i.e., isolated from other noise snurces) ¢s needed in
order for the method to succezu. The results presented here
and additional confirmatory results using independent radar
measurements by Szymansxi (1977) do indicate that the technique
can?, under proper conditions yield a rezsonably accurate re-
construction o7 a channel.

Problems involving the physics c¢f the process need mo;e
investigation, however. For example a detiiled study of tne
interference expected between the acoustic signals from differ-
ent segments of the lightning path .hould be made to see what

effect such interference has on the reconstruction. Higher

correlations do appear to cccur at branching or turning points

suggest such interference or irteraction is mivimized at these
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points. An examination of the relation between tortuosity and
correlation is clearly a subject that needs more study. Finally
the effect of assuming a spherical rather than a cylindrical
wave may also introduce some bias into the reconstruction.

The confidence intervals given in the paper are predicated
on an accurate model and pertain primarily to estimation tech-
niques. The fact that for some of the test cases these inter-

vals did not contain the surveyed point does indicate that the

model may be biased although not to a very strong degree.
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APPENDIX A

Stochastic Analysis and Spectral Analysis

The general time series model deals with second order
stationary processes, which we define below.

Definition: X(t) is a second order stationary stochastic

process, if
(a) E(X(t)) =u
(b) cov(Xx(t)),x(t + s)) = I'(s).
Thus, the prccess must have a constant mean and a covariance
function that only depends on the time difference. We use
E to denote expected value and COV for covariance.

cov(x(t),Xx(t + s)) = €[Xx(t) = X(t + s)] - E[x(t)) E[X(t + s)]

in case X(t) is a real process.
I1f Z and W are complex random variables and if W* is the

complex conjugate of W*, then
COV(Z,W) = E(ZW*) -E(Z2) E(W*). (A.2)

Condition (a) in the definition above is not as stringent
as condition (b). In particular, if E(X(t)) = u(t), then
using X(t) - u(t) in place of X(t) will eliminate the depen-
dence on t. In addition E(X(t) - wu(t)) = 0, and consequently
we often assume without loss of generality that E{(X(t)) = 0.

For a second order stationary process,

VAR(X(t)) = T(0)

and, since VAR(X(t + s) - X(t)) > 0, T{(0) » r(s) for all s.
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In addition I'(s) = I'(-s). Hence, cos(s) is a valid covariance
function but sin(s) is not.
If a process is ot second-order stationary, very little
can be done. (See Haanan, p. 77). Most of the theory for
second-order stationary processes relies on the following

two representation theorems.

THEOREM 1. If X(t) is a second-order stationary process then

there exists a complex random process, Z{(-), such that
X(t) = [ e ™V 72(4v) (A.3)

where COV(Z(Av]), Z(sz)) = 0 if Av, and Av, are two disjoint

] 2
intervals and Z(-av) = Z*(av). {(Z(A) = Z(b) - Z(a) if A =

[b,a] is an interval on the v axis).

THEQREM II. If r(s) is the covariance function of the second-~

order stationary process X{t), then

©

I(s) = [ e ™V F(dv) (A.4)

-0

where F(av) > 0 and E([Z(av)]%) = F(av).

A proof of these theroems can be found in Rosenblatt,
Chapter VII (1963).

F(v) is called the spectral distribution function. If
F(v) is differentiable then f(v) = %5 (v) is called the spectral

density for the process.

The v's correspand to frequencies while the Z{v)'s assign
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complex weights to frequency v. By Theorem I, a second-order
stationary process is a mixture of sines and cosines with
random amplitudes at each frequency. The condition that
Z(-Av) = Z*(Av) ensures a real value for X(t). The usefulness
of Theorem I is due to the uncorrelated nature of the random
amplitudes, Z2(av).

In Theorem II, the definition of F(Av) and the fact that
Z(-Av) = Z*(Av) imply F(Av) = F(-Av) and hence f{v) = f(-v)
if the spectral density exists. We will assume f{v) always
exists in the rest of this paper.

From the relationship between a Fourier transform and
its inverse, we can obtain Z(Av) and f(v) by taking the
appropriate transform of X(t) and ©(s). In order to make
these transform pairs more symmetric in appearance and also
to make the results cansistent with conventional engineering

approaches and computer programs, let v = 2nu. Then

o

Z(au) = [ exp{- 2wauti} X(t)dt (A.5)
and
flu) = [ g 2mius r{s)ds. (A.6)

(In practica” calculation, only positive frequencies are
used and the resulting estimate is doubled.)

The results of Theorem [ and Il show that one can obtain
the spectral density in 2 different ways. One way, via

equation A.6, is to take the Fourier transform of the covar-

iance function. The other way is to use the fact that
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f(u) au = F(au) = E(IZ(Au)[z) and hence use equation A.5 to
obtain Z{Au) and then square the absolute value. Both
procedures have been used in theory and in practice and each
method leads to insight about the behavior of spectral
estimates.

In particular, we will use f(u)Au = E(lZ(Au)lz) to see
why the chi-square distribution is used to set confidence
intervals on estimated spectra and also to see why smoothing
is desirable when cone estimates spectra.

We will start by assuming that Z(u) is a complex
Gaussian process. This means (Re(Z(Aui)), Im(Z(Aui)))
i=1,...n are jointly normal. This also implies X(t) is
a Gaussian process and, since E{(X(t)) = 0, E{Z(u)) = 0. It

can be shown (Breiman, Chapter 9, or Hannan, Chapter 2) that

COV(Re(Z(au)), Im(Z(Au))) = O (A.7.a)
VAR(Re(Z(au})) = FLLul (A.7.b)
and  VAR(Im(Z(u))) = 258l (A.7.c)

Consequently the real and imaginary parts of Z(Au) are

statistically independent, normal random variables, each with

mean 0 and variance 51%51 . Hence
2
2lz (o (h.0)

has a chi-squared distribution with 2 degrees of freedom.

In addition, if Au and Au' are non-overlapping intervals

then
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2{z(au)]? , 2]x(au')[? (A.9)
F(Au F(Au' :

will have a chi-squared distribution with 4 degrees of
freedom since the 2 terms correspond to independent chi-
squared variables, each with 2 degrees of freedom.

If Z(u) is not a Gaussian process one can still obtain
an approximate chi-squared distribution as the argument
below shows.

Suppose Au = [a,b) is an interval in frequency space.

Break up the interval [a,b) into n non-overlapping intervals

-1
[a,b) = b [a + i(b-a), a + (i+1)(b_-a_))
i=0 n n
n-1
= A.
i=0 !
n-1
Z(Au) = ¢ Z(Ai)' (A.10)
i=0

If Z(Ai) = Z{a + (i+1) b-a) - Z(i + i{b-a) and if
n “n

F(AO) = F(A]) = F(Az) Ve = F(An), (A.11)

where F(A.) = E([Z(A;)]%), then if the central limit theorem
applies, Z(adu) is approximately Gaussian and the previous
results apply with F(au) = nF(Ao).

This approach also shows why the variance of the spectrum

doesn't decrease with increasing sample size. For example,

if 2{Z(su)|%/F(su) has a x-° distribution with 2 deqrees of
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VAR[2|Z(au)|2/F(au)] = 4 and
VAR(|Z(au)}2) = F2(su),

indeperdent of the sample size. If the spectrum is reasonably
flat, one can improve estimates for the spectral density by
averaging over several frequency bands and hence improve the
accuracy of the estimates without introducing any appreciable
bias.

If the covariance function is used in the spectral
estimation, a weighting function (called a lag window) W(t)

is used to smooth the spectral estimate. W(t) is a function

such that:
W({o) =1 (A.12.a)
W(t) = W(-t) (A.12.b)
and W(t) = 0 if |t] > L. (A.12.¢)

The smoothed spectrum is

folu) = [ W(E) T{t)e 12Ut gy (A.13)

If w(u) is the Fourier transform of W(t) and f(u) is the
Fourier transform of T'(t) then by the convolution property

of transforms,

fw(u) = fm w(v) f{u-v)dv. {A.14)

w(u) is called the spectral window. Thus, one can smooth

either before or after transformation of the covariance

function.

A lag or spectral window can be used to reduce
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the variance of the estimate but it can also lead to biased

and correlated estimates. (See Jenkins and Watts, p. 247).

a

2
COV(f, (uy) f,(uy)) = i_§£l {m M{uy-v) (Huy*v) + Wluy-v)ldy
eeves (A.15)

so the 2 estimates are not independent. Neglecting
fm W(v) W(v + 2v)dv which is small compared to the integral
;? the square, VAR(fN(u)) = igégl fm wz(v)dv.

2T is the length of time over-:hich the signal is
recorded. Let
%

T
I = jT WE(t)dt. (A.16)

Then, VAR(fH(u)) = fz(u) 1/T and so I/T is the preportional
reduction in the variance due to smoothing when the leo window
W(t) is used.

A concept occasionally used is that of band-width for a
spectral window. If

w(u) = 1/b, -b/2 < u < b/2
is a rectangular window, it has a unique band-width, b, in the
frequency domain. The variance of an estimator that is smoothed
via this window is fz(u)/Tb.

For non-rectangular windows, the equivalent band-width
is defined as b = 1/I and the standardized band-width is bT.
Note that the variance times band-width is constant and hence
large band-width implies small bias. Some common windows and
and their properties are discussed in Jenkins and Watts,

Chapter 6.

S e s e 5
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A commonly used window is the Tukey window:
W(t) = 301 + cos(nt/L))  [t] < L. (A.17)

This lag window has the associated spoectral window

wiu) = [L sin(2mul)]/(2nul) (0 - (2uL)?). (A.18)
For the Tukey window,

1= w?(u) du = 3174 (A.19.a)

d.f. = 2T7/1 = 8T/3L (A.16.b)

band-width = 4/3L (A.19.¢)

variance ratio = 3L/4T. (A.19.d)

For the truncatzd estimate the Tukoy spectral window
corresponds to weighted averages, with weighting factors of

(1/4, 1/2, 1/4) for u - Au, u and u + Ju respectively.

(A-i) Direct Spectral Estimates

Since most observations are digitized the integrals are
replaced by sums in the calculations. Suppose X(t) is
observed at discrete times kit, k = = m, - m+ 1, .... m -1

(n = 2m observations), then

(m-1)at .

~mAt

1

kz X{(kAt) {cos(2wukit) + i sin(2nkuat)} At.
=-m

m

If u, = k/nat, du = 1/n3t, k = -m, ..., m, and if




79

m-1 '
, A(u) = I X(kat) cos(2mukat) (A.20.a)
k=-m
m-1
B(u) = ¢ X(kat) sin(2nukat), (A.20.b)
k=-m

then the sample spectrum at Uy is

?(uk) - 2[A2(uk) + Bz(uk)] At/n C(A.21.a)

at k =21, =2, ..., ¢ (m-1).

4 At the end points, ug = 0 and u, = 1/(2at),

Flug) = [A%(u,) + 82(u, )] at/n (A.21.b)
with a corresponding loss of 1 degree of freedom.

f(uy)
Kf?rafy has a chi-squared distribution with 2 degrees of

freedom, for k = =+ 1, = 2, ..., + (m-1) and 1 degree of freedom
for k = 0 and k = m, for a total of 2(m-1) + 2 = 2m = n degrees
of freedom. (ilote that, by the symmetry of the spectrum,

there are only (m-1) + 1 independent estimates rather than

2(m) independent estimates). These n degrees of freedom are
distributed over the various frequency bands. If the true

spectrum is reasonably constant over 2 adjacent bands (say,

: over u * 1 Aw, i =1, ..., &/2) and if
5 = £/2 . R
i flu) = & [f(u+ iau) + F(u - iau)]/s
i=1
Q%(u)

then ZY?TET'has a chi-squared distribution with 23 degrees of

freedom.

VAR[?(u)] = 41/12 = 4/2 is now decreased. If successive
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bands are averaged without overlapping, n/2% independent
estimates are obtained, each with 2% degrees of freedom. If
overlapping occurs, the estimates will not be statistically
independent.

In this direct procedure (known as the Cooley-Tukey
procedure) a "fader" or "taper" is usually applied to the
original serias before transformation in order to reduce
bias. This is a function a(t) such that a(t) increases
from 0 to 1 in [O,S]), equals 1 on [SI’SZ) and decreases
to 0 on [SZ,TJ. Usually a(t + T/2) = a(T/Z - t).

A typical fader, with S] = T/10, is

T - cos(st/5)] = sin®(st/2 5,), 0 < t < S,

a(t) =41 S; <t T -5y
%[1 - cos(7(T-t)/S;)] = sinz("(T-t)/2 S]), T-8, 2¢t<]
(A.22)
The signal X(t) is first multiplied by a(t), where now
we assume X(t) is observed on [0,T]. After multiplication,
a(t) x(t) is transformed and then averaged as above. To see
the effect of the "taper", let u(x) = a(t/T) so that u(x)
is defined on [0,1]. If Z{u) is the transform of a{t) X{t)
. then the direct estimate of the spectrum is !Z(u);2 (22t/na)
é at frequency u (where nat = T).
- However,
E(lZ(U)!Z) = [kgl aZ(k)) flu) = [f] W0x)dx) flu). (A 23)
= 0
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Hence, the true spectral estimate becomes

2 LI |
2At]7(u) |/ (n é u®(x)dr). (A.24)

For the cosine taper above,

1 .

/ u?(x}dx = 2 / sin(7x/.2)dx + .8
0

<

The smoothed (averaged) estimates are weighted chi-squared
variables, after division by f{u). The distribution of these
estimates is approximated by a constant times a chi-squared
variable, where the constant and degrees of freedom are

obtained b» equating means and variances.

d = 2f2(u)/VAR(Z (u)) (A.25.a)

[}

E(F(u))/¢ (A.25.b)

O
I

If m+ 1 final estimates are obtained the degre=s of

freedom becaome

- [I} 2 2 Ly ,
= u(x)dx1/(me1)[[ u {x)dx]. (A.26.a)
0 0

fFor the cosine taper,

1 1

[ ufoadx = 8w 2f sin®(IE)ax = L8035 (A.26.b)
0 0 :

The band width is d/2N.
The above is true for non-overlapping bands. [f averaging

cccurs in ~verlapping bands, the degrees of freedom are

LI’ 2.,V 4
(2L + 1)[£ u®(x)dx] /[é u (x)dx]) (A.26.c)
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;iéng where 2L + 1 is the number of elementary oands averaged.

:;Zkﬂ In either cas2, the degrees of freedom at each end point ure
,LL -4 half the figqures given above.

;;@J\ The computer routine uses a fast lourier transform

;:*f;} coded in a subroutine called NLOGHN. {f Z{1}), I=1, .+ N
j%‘{: is a (compiex) input array, NLOGN, produces an outputi array
L] 2K) = 3 expl2mi{K-1}(3-1)1 Z(3) (A.27)
- LT J=1

s 9

. K=1, ..., N. Tre nunber of entries in the input and

'“%';: output array are equatl.
“?‘”ff X{k) = X{katj, ¥ = 0,1, ..., r~1 is the original
‘%{;ﬂf data array, k = 0, ..., n-1 and N = n.
:'jtii The steps in the computar analysis are

gf;_f 1. Taper X(k); with the cosine taper by multiplying the

taper and the series. Load tho result iato the Z array.
2. Fiit out the Z array with zeroes in order to get

NN = 2M{(2L + 1) - 1 points if M + 1 estimates are desired.
3. Call WLOGN tc get Z{I), I=1, 2, ..., NN.

Tne elementavy spectral estimeces are

F(1) = 2|Z(;)12 [*/.875 NN (A.28)
4. AHAverage the elementary estimates,
L
(a) : F(I)/L is the estimate at frequency 0.

1:.
(2K+1)L+K
{= F(I)3/2L+ 1 is the estimate at frequency
I={2v-1)jL+K
(2L + 1)K/2at.

MizZL+3 -0 }
(¢) F(I) is the estimate at frequeacy 1/24At.
[=(2z-1)L+H
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More closely spaced estimates could be obtained by allowing
the bands ts slide acrecss the entire frequency band - in
this case the estimates would not be independent.

Thus, for example, the first non-zero frequency could
be (L + 2)/24t and could involve elementary estimates 2
through 2L + 3, the next frequency could be (L + 3)/2it, etc.
Confidence intervals for the estimates would be obtained
by using the chi-squared distribution and the appropriate

d.f. (2L + 1 for the center estimates, L for the end points).

(A-1i) Indirect Spectral Estimates

Surpose X{j) = X(jat). j=0, ..., n is a zero-mean
process.
. 1 n-k-1
Let T{k) = Y z X{(j) X(j+k) for k=0, ..., m {(or
Jj=0

~1

r(k) = T(k) n/{n-k}). Then

o e-iZﬁukit

flu) = 4t £ (k) . - 1/2at < u < 1/2xt

is another :zstimator of the true spectrum, based on a

covariance functicn with maximui. lag m. As discussed previously
the e timates must be smoothed with either a lag or spectral
window. In addition, the spectrum is only computed for

positive frequencies so the estimates are doubled to obtain

m-1

2At[5(0) + 2 F(k)W(k) cos(27ukAt)] (A.29)

- >

—~
=

——
H

et

for & < u < 1/(2at). Here W(k) = W(kat) and the maximum

lag is m.
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APPENDIX B

Cross-Spectral Analysis

When two or more time series are observed, one can
study their inter-relationship by using cross-spectral
analysis. Subscripts will be used to indicate the different
series and only the case of two series will be discussed.

Suppose X](s) and X2(s) are two zero-mean time series
and let X(s) = (X](s), XZ(S))' X(s) is a second-order
stationary vector prccess if the covariance matrix, F]Z(u) =
E(Xt(s) X(s+u)) only depends on u (the superscript t indicates
the vector transpose here). F]Z(u) is called the cross-
covariance function. Note that FZI(U) = F12(-u).

There are two representation theorems that correspond
to Theorems I and Il of Appendix A, with scalers replaced

by vectors and matrices.

In particular, for a second-order stationary vector
process

Xj(t) = [ cos{vt) aj(dv) + [ sin(vt) Sj(dv) (2.1)

n

where COV(aJidV) ak(dv)) COV(Sj(dv) sk(GV)) = cjk(dv)

i
[]

COV(s.(dv) a

A
J k\d"))

{d-) and

CUCCRIENERE ik

" g all other covariances are 0.
r(t) = f e1tu dF(v) = [ cos(tv) c(dv) - ] sin(tv) q(dv)
(B.2),

where F(v) is a matrix with Hermitian non-negative increments
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in v, ¢{v) is a real symmetric matrix with entries cjk(v)
and qjk(v) is a real, skew-symmetrix matric with entries
qjk(“)' c{v) is called the co-spectral distribution and

g{v) is called the quadrature spectral distribution.

ob () = el () + @b (V1/Ley;500) ¢ ()]

j(
is the co-herence spectrum and
ejk(v) = arctan(- 95k (v)/cjk (v)) is the phase-spectrum.
We will again replace v by 27u and use capital letters

to denote the various entries, so that

ij(u) = %(Cjk(u) - i ij(u))

ejk(u) arctan[- ij(u)/cjk(u)].
Once again one can either estimate the cross spectral
densities directly by transforming the original series or

by calculating cross-covariances and then transforming the

cross-covariances.

(B.i) Direct Estimation

The computer analysis for direct estimation is outlined
below.
1. Let X](k),k=0, ..., n-1 and Xz(k), k=0, ..., n-1 be the

2 original series. Taper e:ich series with the s1'n2 taper.

2. Let Zi(k)

Xi(k—l). k=1, ..., n and fill out the Z-arrays
to get NN

2U(2L + 1) = 1 > n points if M + 1 estimates
are desired (each based on 2L + 1 =2lementary estimates).

3. Transform each series to get ii(k), i = 1,2, k =1, ..., NK.

4. The elementary estimate of the cross spectrum is

Fio(1) = [2 Z,(1) Z;(1))at/(.875)NN
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5. Average the elementary estimates over 2L + 1 points
(except for the first and last estimates which are
obtained by averaging over L points) to get estimates
M+ 1 estimates, with the middle estimates centered
at (2L + 1)K/2at, k=1, ..., M.

6. The real part of the abeve average is half of the
co-spectrum and the imaginary part is half of the
gquadrature spectrum, (F]2 = (C]2 -1 012)/2) omitting
the frequency argument.

7. The coherence spectrum is

o3y = (€], + 0], 1/Fy R,

where F1 and F2 are the individual spectra and the

coherence spectrum is calculated after averaging (else

it will be identically one).

The phase spectrum is 3, = arctan (- le/c}z) which
can be made continuous by "quessing" so that the tru:z

arctangent rather than the principal value is obtaired.

(B.ii) Indirect Spectral Estimates

If T]Z(k) is the estimated covariance with M lags
(k=0, =+ 1, + 2, ..., = M) then the indirect approach is
cutlined below.

1. Let r®(k)

1 -
_2-[F]2(k) + 112("()3

(k) = Jlry,(k) - oy, (-K)1.

2.  Form
Z,(k) = r€(k-1) W(k-1) k=1, ..., L + 1
Z,0k) = t%(k-1) W(k-1) k=T, ..., L +1

where W(k) is the lag window, (L < M},

st e gt e 0 st s P42 Mt AN o [ L BT 172 ey G
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3. If the cross spectrum is desired at frequency spacing
1/(N2 At) from O to 1/2At where K, > N, add zerges to

the arrays to get N2 entries. Once again, if N, = 2L,

p
estimates are obtained at freguencies i/2L4t,
i=0, 1, ..., L.

4, Fourier transform, via FOURT, the Z arrays to get
Ei(k). The smoothed estimates of the co~- and quadrature

spectrum are

Ciplk) = [2 Re(Zy(k)) - r®(0)12at

and le(k) = 4At Im(iz(k)) at frequencies {k-1)/{2Lat),
k=1, ..., L + 1.

(B.iii) Other comments on Cross-Spectra

If both series are subjected to the same linear filters
the coherence and phase spectra are unaffected. If a trend
is suspected one can difference the 2 series and improve the
final estimates (see Jenkins and Watts, Sec. 8.4.5).

Ore can also re-align the 2 series to get* better ectimates
of the coherence. The raw estimates of the cross-cpactrum
can be obtained without recalculation by multiplying the
original cross-spectrum by exp{- i2s7ul whare 7 is the timre
shift. For the estimates based on the cross-covariance, new

even and odd estimates are needed (see Jenkins end Watts,

Sec. 9.3.4).
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APPENDIX C
Variance and Covariance Calculations
Throughout this appendix, we assume we have N cbserva-
tions, M estimates and d degrees of freedom. The variance
and-cnvariance calculations are based on the treatment in
Hannan, Chapter V. Carats will be used to denote estimates
and frequency will be measured ir radians. The proofs of
] the main theorems can be carried out by using multivariate
f analysis (including complex multivariate analysis). Jenkins
;7 and Watts, Chapter 9, pp. 372-373 and appendix A.9.1 present
!} an alternative approach.
f; The following theorem is the key theorem for practical
3 covariance calculation.
THEQREM 1. (Hannan, Theorem 9, p. 280). UYnder suitable
conditions on the moments of X(t},
Vim Mooyt (v )F, (v, + TP/M)] = 0 (C.1.a)
3 N+x M ijrioiketr2 * v
5 for v # n/2(mod27).
2N (C.1.b)

lim N 2 p - 2N . /

for « ¢ 0, 2m.

iim N 7 : P
Now B COVIF50vq0F, (vp)]

LA

(ZN/dM)[fik(v]) flj(vz) + fig(V]) fkj(vz)],(C.T.c)
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Since most other estimates in cross-spectral analysis

are functions of fij and sz, one can derive the desired
covariances quite readily.
For example, for N/M large (omitting the dependence

on v) we have (for N large)

1}

(N/M) VAR(Cij) (N/M) VAR(fij + fji)

~

[N/M][VAR(fij) + VAR(fji) + 2 COV(fij,fji)]

W

= [ZN/Md][fiifjj + Zfijfji + fjjfii]
B} . 2 2
= [4N/Ld][fiifjj (1 pij) + cij/zl

Note that foy = 2 0y is the spectrum of Xi(t), and recall
that COV(ZW) = E(ZW*), assuming E(Z) = E(Y) = 0.

~

Similarly ,since Ckl = (fkl + fik) and Qki = i[fkg - flk]

we have
COVIC, j.Cyp) = COVE(R 5+ . 0(Fy, + £,
= By fe t fy Tkt Ty fae Ty T
= 20fy foy * fo fog * Ty Ty * Ty Fi3/d
= D05, Coy = Qyp Qg * Cyg Sy~ Q4 Oy 1/d
..... (C.3)
: VAR(Qy4) = VAR (f 5 - £,))
i _ o S a2
4 = E(Ff-2Fg f o 100
= alf, . f..[1 - 2.1+ 1 a%.1/4 (c.q)
. ii°33 i) 2 ij

+Assume, withocut loss of generality, that E(? ) = 0 for the

following calculations.
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COV(aij,aki) cov (?ij . ;Jj)(fkg - Fu
= - E[;iJ fra ;13 ;lk B ;ji ¥k£ ;Jl ;2k]
= [0y CzJ Qg Uy Cinliy * Uiy QkJ]/d
..... (C.5)
COV(aij,Eij) = 20, Q45/d (C.6)
COV(Eij.akn) - COV{(?ij S TPRNE ICA )
= - iE{;ij fen - ?ij fox * ;ji fro - ;ji i)
= - DQgy Gy * Oy Coy * Oy C55 + Qyy G170
..... (C.7.a)
COV(QygnCyg) == TCOVC(Ty, = F ) (Fyy % £430)
= -HEf, %ij - fo ;ij * iy %ji - fa ;ji}
. COV(Eij Q) (C.7.b)

The covariance of the 68's and p's can be approximated by
3 using propagation of error - namely by expanding in a Taylor

series and dropping higher order terms.

Thus, for éij = arctan(- Q ) we nave

i5/C4;

" oA 36, . N 38 . . -
- = 1] - s 11 - 0..
eij arctan[eij/cij] acij (cij cij) = > [Qij Q1J]
i = ¢ 02 -
; {Qij/(cij + Qij)}{cij cij}
f 2 2 -
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2 2 -

VAR(S ) = (a;;/(cE, + af )% var(c, )
+ ey 70¢h + 0P var(ey )
- 20ey5 0y /e, + Qf % coviey Qg
= (1 - 0§ )/det (c.9)
Similarily,
VAR(p3 ) = (1 - 02,0270 (c.10)

Covariances can also be obtained by multiplying the
appropriate expansions and then taking expected values. In
particular Cov(aij’akz) will ke required for confidence

interval construction in the location routines.

~ ~ ~

CUV(eij,eki)

~

[Q;5 Qpy COVIC; 5 € ) - €5 Q. COV(C, , Qyy)

"

~

- Q45 Cpy COV(C,, Q)

1]
AN 2\, .2 2 1.
+ Cij cki COV(Qij Qki)J/L(cij + Qij)(cki + Qki)'
..... (C.11)

The time lags estimated are linear combinations of the

8..'s, if the estimates are least squares estimates. Thus,

ij
' N
Ty s S 8(p) P/ I pPian)?
iJ p='| J p=]
N R N
VAR(z, ) = & pPlaw)? VARG (p))/( = P ()PP
17 p:] ] p=]
yol 5 " L 2.2
=1 q= J 2 =
p"] q_] p=
N ) A . -
o518 cov(d, ()2, () (/T T p¥(a)]
J L p=1
Ve N2 2
= I pTcov(o,lp).o,(p))/( 2 p7) (av)©.
p=] J p:]
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For spherical lg¢cation,

6, = (cs),
5, = c(s + 112) and
63 = C(S + T-‘3)

are used.

Assuming S and Tij are independent, and using propagation

of error, we have

2

VAR(sl) C° VAR(S)

VAR(s,) = CZLVAR(S) + VAR(z;,)]

VAR(s3) = CPLVAR(S) + VAR(t,)]

2

COV(dl,ﬁ C™ VAR(S)

2)

2

COV(61,53) C° VAR(S)

COV(s,,55) = C2IVAR(S) + cOV(

3) f20713)]

This covariance matrix is required in Appendix D.

For plane location, the required covariance matrix is

given in Appendix E.
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APPENDIX D

Spherical Location

The equations used for spherical location are (c.f.
egns. 25 - primes are dropped for typooraphical convenience).

2 2 2 2

61 =T tr, + r3 (D.1)
2 _ 2 2 2

&, = (r] - x2) tory torg (D.2)
2 _ 2 2 2

63 = (r] - x3) + (rz - y3) *r, (D.3)

In these equations,
: 2 - 2 .‘2 = - 12 2 = - 2
(1) 61 = (CS) k3 ‘-’2 [C(S + '-12).] ’ ~3 [C(S + -]3)] Y

(ii) ¢ is the speed of sound,
(i1i) S is the time from initiation at the sourcs to its
reception at microphone 1.
(iv) T1j (1 = 1,2) are time lags between receontion at
microphone 1 and j.
(v) ry» Fys Ty are co-ordinates of the source in a
co-ordinate system with origin 31t microphore 1,

and x-y plane in the plane of the three microphones.

(vi) microphone 1 is at location (0,0,0),
microphone 2 is at location (xZ.O,O) and
microphone 3 is at location (x3.y3,0).

Subtracting D.2 from D.1 and D.3 from D.1, we obtain

2 2 2

6y = 85 = x5 vy - x5 (D.4)
2 2 = - -

6] - 63 = 2x3 r. + 2y3 rs X3 Y3 (D.5)
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Hence,
ry = (6% - GS + xg)/(sz) (D.6)
r, = (5? - 5§ + xg + yg - 2xy r])/(2y3) (D.7)
ry = (o] - - el/2, (0.8)

These locations have to be converted back to coordinates
in the original frame of reference. Suppose the microphones
are at P], P2 and P3, respectively, in the original frame
of reference.

Let D‘ =P, - P (D.9)

1 and D, = Py - P,. (p.10)
(D2 . DY)Dlj(D} . D1) is the projection of 02 onto Dy.
The un-normalized co-ordinate vectors in the new frame of

reference (the one containing the microphones in thz x-y plane)

are
3, = Dy (D.11)
a, = D, - (D2 . D‘)D]/(D.I . 01) (.12}
ay = D.l X DZ' {P.13)

The corresponding unit vectors are (;: denctes the
length of 3)

Uy, = u]/;ulé (D.11.a)

U2 = ;213325 {(D.12.a)

U3 = a3/£33ﬁ (D.33.a)

s e b RS S R
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Microphone 1 is at (0,0,0), microphone 2 is at (% ]E,0,0)

(xz = "D]H’ Y, ® 0.z, = 0) and microphone 3 is at

2

((Dy + D)/ (D4f - (D, (o,

2
= . n g =

2 12,172
* D]) /agl' ) 90)7

-
»

. 012/ p.e2y1/2 -
(0, = 0)/i0, %) 77, 24

Ignoring the translatian by P]. the new co-ordinate

vectors can be expressed as a linear combinaticen of the old

co-ordinate vectors, el,ez,e3

3

(D.

The saurce is at = riUi and hence in the old co-ordinate

J=1
system the source is located at

3
I r. g.., J = 1,2,3,
or, in matrix notation at

Gt r

where Gt is the transpose of G,

—
LS

- - 3 -‘.V -
Element (i,i) of G is the jio element of vector v,

so that

(0.

14)

.14.a)

.15)

.15.a)

.16}

16.e)
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Finally, adding the translation P] back in, the source

is located at

re = P] + 6t r.

(D.17)

We next obtain approximate confidence limjts for the

Predicted position by linearizing D.6, D.7, and D.8 with

respect to 6], 62, and §

3
3 ar. -
- L) = — -
rj E(rJ) kfl = ) [dk E(ék)]

3 N
sk 08 - B,

for j = 1,2,3, where
r

— = 6]/x

k4
—
o

"
Qr
O

1

N2 %35, 7 - 6,/

i
Qs
3
-~
#
O

=4
—_
«
Qs
O
W

or

3
s>
3
nN

o
(%]
ed
[P
(4]

—

Qr
-~

"

[.1
~
nN

"
Qs
O

NN

2

o
-
™~

~N
w
QU
(=]
w

L
-3
w

(8) - ryap, - PLPIRE

w
—
U
On

.ff

—d

W
5
Gt

IR LIPIR LIS VIR

[7X)
M~
Q
O

{

333 % - ry a,/r,.

3
(- leyz) 35 C - (xa/y3)a

(D.18)

(0.18.a)

= |
= (61/y3) = (x3/Y3) 53? - (é]/yB) - (x3/y3)a]]

12
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In vector-matrix notation
[r - E(r)] = Als - E(8)], (D.18.b)
where A is a matrix with elements aij‘
The covariance matrix for r is
COV(r,r) = EC[r - E(r)I[r - E(r)]%}
= A COV(3,3) At. (D.19)

The covariance matrix for r*, the co-ordinates of the
source in the original frame of reference, is

T = COV(r* r*) = G COV(r,r) G'.

Hence, an approximate (1 - a) x 100% confidence region
for tte source r* is given by

-~ _] ~ [l
(r* « p*) T (r* - r*) < X; {(a/2).
A simpler procedure is to use a Bonferroni confidence

region of the form

~

. ~ova1/2
r? t 2 /6 [VAR(r?)] .

Since this gives a confidence box rather than an ellipsoid.
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APPENDIX E

Plane Wave Location

Here we will use the definitions given in Appendix D.

D.l = P2 - P], 02 = P3 - P].
cT
12
cos a = (E.1)
12§Dy
CcT
13
cos a = - (£.2)
13 nﬂzu
v = 1. (E.3)
v is the unit velocity vector of the plane wave and the
t's are time lags.
If D? = (di1’ diZ’ diS) then
: (E.4)
T vyod., =c¢T E.4
‘ ey Tk ik 12
: (E.5)
I v, d, cvy - £.5
cop Yk T2k 13
3
rovis. (E.6)
k=1
These equations must be solvec to obtain (Vl’VZ’Vs)'
vy Gyy F vy dyp T 0Tyt Vg dyy (E.7)
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Hence,
vi = [leryy - vady3ddy, - letyy - vydy3)dg,1/0d 4dy, - dypdy)
Vo = [letyg - vadpqddyy - (etq, - vadyg)dy  1/0dg1dy, - dypdyy]
ar
vy = b]] + buv3 (E.9.a)
v, = byy + byovs (E.9.b)
where
b1} = [CT]Zdzz - CT]3d]2]/(d]]d22 - d]2d21] (E.10.a)
byp = [dyp9p3 = dy3d550/0d11d5, - dyp921] (E.10.0)
. ; ; 1
bpy = [etyqdyy = emypdyy1/0dy dy, - dyyd,, ] (E.10.c)
bpp = [dp3dyy - dy3050170dqd,, - dypdyd. (E.10.d)
4 v% + vg + v§ = 1 implies
R (b?, + b2, + 1), + (2b + 2b vy v+ (b2, + b2 1) =0
. 12 ¥ By 11012 21022 1t
cr
| Avi+ 28y +C=0
E Hence,
V3 = - 28 - VABZ - 4AC - B + YBE _ AC (E ]])
} 7R A :
b
- B2 2 - 12 2
where A = b, + b2, + 1, B = byyb., + by by, and € = b5y« bS - 1.

To resolve the sign ambiguity, note vy must be negative -
the soiution with the [lus sign on the radical appears because

the observed time lays theoretically could arise from a wave

P

traveling orthogonal to the true wave. Hence,
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va = (- B - /B2 - AC )/A (E.12)
2 2 . . .2 2
where A = blz + b22 + i, B b”b]2 + b2,b22 and C = b]] + bZl 1.
3y
3 9B aR acC ]
| + {28 22 . 4 } 1/A
312 9712 ITy2 912 Y

= [b,, cd -
3112 12 22
at [
= [ 2b cd
3112 11 22
v
313 =-[BEB + (28
13 13
B _
aC
=—— = (cd b
9143 11 721

1 -
bap ©dypd/(dy1d,, - dyyd,))

" 2byy edpy1/(dyd,, - d,d,0)

12721
3B 3aC ]
= - A } 1/A
L E s

(- cdy, by, + cdyy bop)/ldyqdy, - dy,d,,)

T Cdyabyy)/(dyydy, - dyp957y-

The covariance matrix for (V]’VZ’VS) is

(2 bob.. b |
512 1222 by
VAR(v.) | b..b.. &2 b
37| Py2Pos b5, 22
by, by, 1
- .
Vs 2 Wa 2
and VAR(V3) = (‘B—T-]*-) VAR(le) + (ST]3) VAR(‘C.|3)
oy v
3 v
+ 2 COV(T s T ) T o,
IEAE L S S

The seource is lYocated at - (v]’VZ’VJ)CS where S is the

time from initiation of the source until its reception at



microphone 1.

source s

VAR(T)c?
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The approximate covariance matrix for the

L

V.|‘|l2

Vi¥s

Y1

~nN N

v

Y2

\I2 V]V

3

v

VoV
V2
3 3

v (e5)2 cov(v,v),

where COV(v,v) is the covariance matrix of the vi's,

(assuming § is independent of T

12

and Tt

]3)'

Once again one can construct either more exact ellipsoidal

confidence regions or box-like Bonferroni confidence regions.
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APPENDIX F

Additional Remarks on Spectra and Covariances

One can also estimate auto and cross covariances Ly
transforming twice - this can actually save computer time
if the covariance functions are required. (See Enochson
and Ottnes, pn., 247-248).
The procedure to obtain the auto-covariance is as follows:
1. Augment the original series X(1) ...,X{(n) with n zeroes.
2. O0Obtain the FFT of the 2n-length sequence, E(k),
k=1, ...,2n.
3. Compute .he raw spectrum
Z(k) = (at/n) |Z() 1%, k=1, ..., 2n.
4. Obtain the inverse FFT of Z(k).
5. Discard the last n points of the inverse transform
and multiply the rth term by {n/n-r) to get the
covariance function.
For cross-covariances the following procedure can be used:
1. Augment Xi(k)’ k=1,...,n, Wwith n zeroes.
2. Obtain the FFT of both sequences, i](k) and iz(k).
3. Multiply the 2 sequences term by term, to get
Z,(k) = 7,(k) Z,(k) (at/N).
4. Compute the inverse transform of 23(k). Then the

first n points will bhe CGV(X]XZ) in reverse order

and the last n points will be COV(XZX]) in reverse

crder, after multiplication by {n/n-r).
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