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CROSS-SPECTRAL ANA! IS OF ACOUSTIC SIGNALS

Allan L. Gutjahr, mathematics department

Charles R. Holmes, physics department

New Mexico Institute of Mining and Technology

I. INTRODUCTION

The spectrum of thunder contains a considerable amount

of information about the thunder signal as well as information

about the lightning which is presumed to be the cause of the

thunder. Holmes, et al. (1971), McCrory (1969), and Few

(1968, 1969), among others, have analyzed the acoustic signal

generated by thunder. Although the shape of the spectrum is

not completely known, various aspects of the spectrum are

discussed in the papers mentioned above.

The main purposes of this paper are to discuss the use

of thunder for lightning location, to discuss estimation of

the quantities that occur in the digital analysis of signals

and to present the statistical analysis of the estimated

quantities.

Most of the procedures presented here are available in

the literature, but they are either described rather generally

or in great mathematical detail. In either case they are

often inaccessible to the practitioner who is not both a

statistician and electrical engineer. In addition, the

available discussions are scattered throughout the various

publications, so that the problems encountered by the user

are accentuated by differences in notation and terminology.
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Hence, this is also an attempt to give a consistent treat-

ment of all of the aspects mentioned above.

The following is an overview and table of contents of

the paper.

I. Introduction.

II. Review of past work. This section will include a

discussion of the physical models which form the

basis for the work cr.-ried out in lightning loca-

tion and spectral analysis. In addition, a

critique of the past work in lightning location

will be included.

III. Cross-spectral analysis and lightning location.

This section will contain an exposition of the

method of cross-spectral analysis and its use in

lightning location. The location procedures and

confidence intervals will also be discussed.

IV. Application of cross-spectral analysis to location

of prima-cord and c-4 shots.

V. Application of cross-spectral analysis to

lightning location.

The appendices will include more detailed explanations

of the procedures of sections II and III. In particular, they

will contain discussions of the various computer routines

used, and further explanations of the formulas and procedures.

The appendices are:

A. Spectral Analysis

S. Cross-spectral Analysis
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C. Variance and Covariance Calculations

D. Spherical Location Procedure

E. Plane Location Procedure

F. Additional Remarks on Spectra and Covariances

S |, .. .. . .... ...... ...

LU U L-- 2!L~

•/•-'.: . _[-
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I1. REVIEW OF PAST WORK AND THE PHYSICAL MODEL

The phenomenon of lightning and its relation to thunder

is discussed extensively in Uman (1969), Few (1968), and

tMcCrory (1969). We will present a brief review of the models

proposed by these authors, with particular emphasis on those

aspects that are relevant to our work in lightning location.

Thunder is associated with the lightning path. Various

theories have been offered as to how this association occurs.

One modern theory offers the explanation that thunder is due

to rapid heating in the lightning channel. This rapid heating

causes a shock wave which propagates radially outward. As the

shock wave moves out, the shock-front pressure decreases and

eventually the wave becomes a sound wave, which, after modifi-

cation by the environment, becomes the audible thunder.

The lightning channel from which the thunder emanates

is formed by a stepped-leader process. The name stepped-leader

is derived from the fact that as the lightning channel is

built from a cloud to the ground, say, it seems to move in

steps of varying length, with pauses between the steps. ThE

average step length is about 50 meters and the average duration

of each step is about 50 p-sec. Usually the resulting channel

is branched. After the channel reaches the ground a rapidly

moving return stroke occurs, moving from the ground to the

cloud and propagating along the branches. There may be

subsequent return strokes associated with dart-leaders. The

dart-leaders move from the cloud to the ground along the main

lightning channel and the ensuing return strokes also follow
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only the main chonnel. It is the return strokes which cause

the rapid heating, and consequently the thunder, in the model

described above. Becz.use the rEturn stroke moves very

rapidly, the source of the thunder occurs almost stmultaneoutsly

along the entire channel.

The description above is for the simplest discharge to

ground (called a discrete stroke - a discrete flash contains

several such discrete strokes). There are also strokes

(known as continuous strokes) where there is a continuing

current to ground immediately after a return stroke and corres-

ponding hybrid flashes, which consist of series of continuous

strokes.

Few (1969) puts forth a "string-of-pearls" model of

lightning, wherein the lightning channel supposedly behaves

as a string of cylindrical sources of acoustical energy. Each

cylindrical source will appear as a spherical source at large

distances, where the spherical source has a radius such that

it emits the same energy as the original cylindrical source.

From the theory for spherical shock waves one can then

obtain a relation between distance and the dominant frequency

(McCrory (1971)), and consequently one can predict where the

peaks in the spectral density of thunder should occur.

Various studies of the power spectra of thunder have

been carried out by Few (1968), Few, et al. (1967), McCrory (1971)

and Holmes, et al. (1971). The earlier studies of Few, et al.

(1967), indicated a peak in the spectrum at about 200 HZ,

but more accurate estimates of the spectrum by McCrory (1971)
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and Holmes, et al. (1971) show that the peaks are lower than

this -- for ground flashes they measured peaks (after correc-

tion for wind-noise) in the 40 to 80 HZ range. Some attenua-

tion occurs due to propagation through the medium, with the

higher frequency portions of thunder suffering the greatest

attenuation.

Accounting for the attenuation and the non-stationary

nature of the spectruim of thunder, (i.e. its time dependence)

Holmes, et al. (1971) and McCrory (1971), found that the power

spectrum had peaks at low frequencies and that these peaks

were inconsistent with the theory that thunder was caused

totally by the acoustic mechanism described above. As a

possible explanation, these investigators put forth the theory

that a second mechanism was in operation -- this mechanism

was proposed originally by Wilson (1920) and studied further

by Colgate (1967) and Colgate and McKee (1969). This accounts

for low frequencies by proposing an electrostatic reaction

due to the collapse of the region of charge storage within

the cloud at the time of lightning discharge. This indeed

would account for the low frequency content of the spectrum

and also is in accord with the fact that low frequencies were

observed in the later part of the thunder signal.

The lightning channel is quite tortuous, even on a

small scale. This tortuosity can introduce additional

ripples on the spectrum as proposed by McCrory (1971). In

addition, the fact that the received signal is the sum of

several signals from different portions of the channel can
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also introduce ripples on the spectrum. McCrory estimates

this latter filtering effect, which he calls phase noise, and

concludes that the tortuosity of the channel is more important

than the time structure in explaining the hash or ripples

that appear on the spectrum.

The exact nature of a lightning channel is still not

known. Some authors have claimed that the horizontal portion

of the channel which is within the cloud can be quite large

in comparison to the vertical portion that is observed (Uman

(1969)). Few has attempted to reconstruct the channel by

recording thunder sign3ls at different locations and then

tracing back to the source by using co-variance analysis on

the signals. Since our objective is to do a similar recon-

struction and since the method relies rather heavily on Fews

work we next give an extensive review of his procedure.

By considering the hydrodynamical conditions right

after a lightning discharge, Few obtained the equations

(ht + v -V)P + P(V • ) (1)
at-

(I- + v • v)• + g7 + p VP = 0 (2)

(2- + v * V)P + yP(V • v) = 0. (3)

p is the density, P the pressure, v the velocity vector of

the sound wave, z is a unit vector in the z (vertical) direc-

tion, g the force of gravity and y is the ratio of the specific

heat of the gas at constant pressure to the specific heat at

constant volume. The equations (1), (2), and (3) correspond

I



8

respectively, to conservation of mass, momentum and energy.

If the quantities v, p and P are written as a steady

state term plus a perturbed term we have, after renormaliz-

ing,

v(r',t) = vO(r) + c v1 (r,t) (4)

p(r,t) = pO(r)[l + pl(rt)] (5)

P(rt) = Po(r)[l + Pl(r,t)]. (6)

If (4) through (6) are substituted into the previous

equations and if the perturbed terms are set equal to 0,

one obtains

{ v " V)oI - (c/H}(vI • ") + c V v, = 0 (7)

+ v0  V)vI + (g/c)pI z + (c/y)v P1

C(yHA) 1 P1 = 0 (8)

J •+ v0 - V)P1- (c/H)vI - 0
atP 0 1 1 + (c/Y)~7 = (9)

c is the -;iabatic s~ecd of sound and H is the scale 1,eight

of the atmosphere. These results are obtained by first

solving the steady state equations.

Finally expanding pl' P1 and v, in wave-number soace

we have

pl(r,t) = II! plo(k)ei[kr-vOt) - wt] dk dk 2 dk 3  (10)

Pl(r,t) fMf (k)ei[k'(r-vOt) - wt] dk dk 2 dk (11)f-00
vlrt)= ff vlo(k)ei~'rvt 0 t dkl1dk 2dk 3' (12)
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In equations (10) - '12) w is the angular frequency. If these

equations are substituted into equation (7) through (9), 4
homogeneous equations involving P 0, o10 and horizontal and

vertical components of rio are obtained. If this system is
to have a unique solution, the determinant of the coefficients

must be zero. The resulting determinant involves ,, k and

wg E (y - 1)g/(yH). If rg, which is quite small, is ignored,2 2
one obtaiihs the result that ) = c 2 k - k. Finally, ignoring

gravity terms, one has

V1 0  = k Ik|'1 P 10 (13)

Consequ,-ntly, P10 completely determines the solutions of

equations (7) through (9).

Plo(k), and in fact P1 0 (k,t), where time dependence is

permitted, could be estimated by using an array of microphones

to obtain the thunder signals at several locations simulta-

neously and then using a 4-dimensional Fast Fourier Transform

to calculate P1 0 (k,t). This might be of some use since P1 o(kt)

could be used to study the dependence of the spectrum on

distance.

In place of (10) through (12) one could also assume that

P1 9 PI, and vI are spatially and temporally statistically

homogeneous (Tatarski (1961)) and then obtain results similar

to those above by using a Fourier-Stieltjes representation.

In this case, P10 would be a function of k and t.

The additional assumption that the pressure wave is a

plane wave yields

v1 0 (r,t) = k hkj-I (Po(r)/pO(r)) Pl(r,t). (14)
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Then writing P1 0 (k) in three mutually perpendicular coordin-

ate4 where the coordinate system is oriented so that a unit

vector is along k,, the first :oordinate of k, we have

P1 0 (k) P1 1 (kl) 6(k 2 ) 6(k 3 ) (15)

and

Pl(r,t) I P 1 1 (kI)eik-(r-tvo) e-iwt dk (16)

Here 6 denotes the delta function (that is, the coordinate

system is oriented in the direction of the plane wave).

Few then assumes that the cross-covariance betwieen

PI(rls) and P 1 (r 2 ,t) only depends on the differences t-s

and r 2 -r,, which is an assumption of cross-stationarity.

This assumption is not explicitly stated by Few but indeed

it is the heart of the cross-covariance technique. If

Pl(r 2 ,t) = Pl(rl,t + -.),- (i.e. if the pressure wave at r2

lags the pressure wave of rI by T units) then one can estimate

T, which is assumed to be constant, by calculating the cross-

covariance between P](r 2 ,t) and PI(rl,t) and using the point

where the cross-covariance is maximum as the desired estimate

of the time lag.

The planarity of the wave and the geometry of the

situation lead to the following equation for a, the direc-

tion betweer r 2 - rI - v0 T and k:

cos a = Cr2 - 1r - t(7)

v0 is the wind velocity and usually is neglected.

If this method is applied to signals received at three
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microphones placed in a triangular array, and if lightning

follows the string-of-pearls model, then the wave can be

traced back to find the location of the source. An additional

measurement of the time of onset of the lightning is also

required -- this can be obtained optically or by field-change

measurements. Several segments of the signals are used to

get several points on the lightning channel.

The assumptions that the cross-covariance only depends

on the lag between the received signals and that the received

pressure wave is locally stationary can be used to give a

simpler formulatior, of this problem which doesn't require

the wave to be a plane wave.

Conceptually, the model includes the assumptior, that a

point source (one of the pearls on the string) generates a

spherical wave which is-received as P(r 1 1 t) at one location

and P(r 2 ,t) at another location. Then if the wind velocity,

V t ,is ignored, and P(r 2 ,t) = P(rl,t + T), once again one

can estimate the time lag 7 and use the time laq to find the

source, using either spherical waves or plane waves. This

procecure is discussed in greater detail in the next section.

There are several problems connected with this method.

The actual source is not spherical but rather cylindrical.

In addition the waves from different locations can interfere

with each other leading to some confusion in the estimated

time lag. In fact, if two points on the channel are equidistant

from the microphone then the signals from those two points are

received simultaneously. There may also be some problems wiith
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reflections or echos although one might be able to filter

the signal to remove such effects. Finally, as discussed

previously, it does not appear that the shock wave is the

only component of thunder.

One difficulty with the cross-covariance technique is

that the estimated time lags corresponding to peaks in the

covariance function are very difficult to study from a

statistical point of view. Not only are covariances difficult

to treat statistically, but in this method one is actually

interested in the time-lag where the covariance function is

maximum and this time-lag is difficult to treat statistically.

Few (1970) discusses the errors involved in the cross-

covariance procedure but he neglects the fundamental point

that the estimate of r, the time-lag, is a statistical

quantity with its own statistical behavior. He really treats

his estimate as if it were the true value of T and only

discusses errors due to discretization of the time scale which

really ionores 1art of the problem.

Teer (1973) also claims to treat the statistical problem

but he only finds the center of the flash and constructs an

elliptical region which will encompass the signal. The

validity of this procedure is questionable since once again

the statistical behavior of the estimates is not accounted for.

If we examine the simple model where P(r 2 , t + T)

P(r,,t) and where the signals are stationary, then we can

estimate T from the cross-spectral density of the two signals.

This cross-spectral density is the Fourier transform of the
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cross-covariance function. Then, T can be estimated by

examining the angle whose tangent is the ratio of the real

and imaginary parts of the cross-spectral density, As we

will see in the next section this arctangent, as a function

of the frequency, v, has the form T V, so standard regression

techniques can be used to estimate T. In addition, in the

frequency domain it is easier to study the statistical

properties than in the time domain. Consequently, one can

establish confidence limits for the estimate T, and, by using

propagation of error, confidence limits for the source loca-

tion. In addition the necessary filtering can often be

performed more readily in the frequency domain. For these

reasons we have selected the cross-spectral procedure and

this procedure will be discussed in the next section and in

the appendices.
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I11. CROSS-SPECTRAL ANALYSI! AND LIGHTNING LOCATION

The discussion in this section assumes that the thunder

signal is recorded at three locations, where the locations

of the recording microphones form a triangular array, (see

Figure 1). Microphone i is located at position P i = (Dil' Di2'

D U) and the signal received at microphone i is Xi(t).

Assuming that the signals are stationary, the cross-

covariance function between signal i and signal j is defined

as:

r.i (s) = cov[Xi(t),X (t + s)] (18.a)

= E[Xi(t)X.(t + s)] - E[Xi(t)] E[X.(t + s)]. (18.b)

Few's method proceeds by calculating the sample cross-variance

function and then letting T (the time lag between signals

Xi(t) and X.(t)) be that point where the covariance function

is maximum. The model used assumes that Xj(t + T) = Xi(t),

as discussed in the previous section of this paper.

If fi (u) is the cross-spectral density of signals

i and j then, as we see in Appendix B, we can es'imate

f ij(u) by taking the Fourier transforms of Xi(t) and X.(t)

and then multiplying the transforms. Specifically, let

F (u) = f exp{2ruti} Xj(t)dt. (19)

Then
f.i (u) = Fi(u) Fj(u), (20)

where the asterik denotes complex conjugation. In addition

if Xj(t + T) = Xi(t), a simple change of variables leads to3 . ..... ..
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FC(u) = exp{2Ruri} F(u), (21)

and consequently

f 1iju) = exp{21uTiu IFi(u)I2 (22)

We next break up fij(u) into its real and imaginary

parts:

fij(u) = [Cij(u) - iqij(u)]/2. (23)

ci--u) is called the co-spectrum and qij(u) is called the

quadrature spectrum. From eq. (22) it follows that 0ij(u),

the phase spectrum, is
Oij- (u) = arctan(- qij(u)/cij(u)) = 2rTu. (24)

Hence, the phase spectrum should be a straight line
through the origin with slope 2

7T if signal j lags signal i
by - units. The phase can be estimated by finding the value

h -2of - that minimizes Z roiCuk) ( 2TUk]2- Appendix B dis-
k=l k

cusses the cross-spectral calculations in greater detail.

The precision of the estimate of T can be ascertained by

using standard statistical procedures. The necessary calcula-

tions are all given in Appendix C.

The cross-spectral approach and the cross-covariance

procedure both proceed by partitioning the initial signals

into smaller subsignals. After the partitioning, each

segment is analyzed as above.

The spectral and cross-spectral estimates are all

smoothed in order to stabilize the variance of the estimates.
In addition,one can also estimate the cross-spectrum by

transforming the cross-covariance function instead of the
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original signals. Once again the details are given in

Appendices A and B.

a. Spherical location routine

Let S be the time from the initiation of the source

until its reception at microphone 1 and let T 12 and T 13 be

the time lags estimated between microphones I and 2, and

I and 3 respectively.

Then, if r' = (rj.rý,rý) is the location of the source

in a new system of coordinates where microphone 1 has

coordinate (0,0,0), microphone 2 is on the x-axis of the

primed system and the x-y plane of the primed syst3m con-

tains all 3 microphones, we can obtain the equations

6 2 = (rl) 2 + (rý) 2 + (rý) 2 (25.a)1

6 2 = (ri - xý) 2 + (rý) 2 + (rý) 2 (25.b)2

6 2 = (ri - xý) 2 + (r - Yý) + rý'. (25.03 2

2 2 2 2 2 2
Here 6 1 (CS) , 6 2 [C(S + T 12)] , 6 3 [C(S + T 13)]

c is the speed ot sound, and xt, y! are coordinates, in the

primed system of microphone i.

If equation (25.b) is subtracted from equation (25.a)

and similarily if equation (25.c) is subtracted from equation

(25.a) one can obtain ri, rý, and rý in terms Of S, T 12 and

'13'

Finally, these coordinates can be translated back to

the original frame of reference by noting that the primed

unit vectors can be expressed as linear combinations of the

unprimed unit vectors. The variance and covariance mr.itrix
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of the estimated source location can be obtained by using

propagation of error. The details of this procedure are

given in Appendix D.

If (l-a) x 100% confidence intervals are desired for the

source location, approximate limits can be obtained by using

[i + Evar(•i)] a/2  i = 1,2,3, where ^r is the ith

estimated coordinate value, z /6 is the upper ct/6 point of

the standard normal distribution and var(ri) is the estimated

variance of ri. More precise estimates can also be obtained

by using a chi-square distribution and the covariance matrix

of the r-values, but the resulting confidence region is an

ellipsoid rather than a box and is somewhat harder to visualize.

The above box-like regions are known as Bonferroni confidence

regions.

b. Plane wave location

If the received sound wave is a plane wave then one can

estimate the velocity vector of the wave by using the lags,

T.ii, and then once again trace back to the source.

Here the direction cosines of the angles between the

velocity of the wave front and the vectors connecting micro-

phones 2 and 3 to microphone 1 are obtained.

In particular if v is the unit velocity vector of the

plane wave, and if ai is the angle between v and the vector

connecting microphone i and j, then

cm. v V P.P

cos . = j I j,j 1,2,3.
i j

i~~~~ I j
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These 2 equations along with U•j = 1 can be used to find v.

(Here P.T. is the vector connecting microphone i and j.)

The location of the source in this case is cS•. Once

again covariances for the estimates are obtained by propaga-

tion of error, after linearizing the resulting expressions

in T,2 and T1 3 . Appendix E includes the covariance calcula-

tions and a discussion of the plane location procedure.
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IV. LOCATION FOR C-4 AND PRIMA-CORD SHOTS

The methods were tested by using experimental explosive

charges with point sources (C-4 shots) and line sources (Prima-

Cord explosives). The explosives were suspended from balloons

and the approximate positions obtained by Theodolite Survey

data. The tests were carried out near Langmuir Laboratory in

the Magdalena Mountains of New Mexico. The co-ordinates used

in this section and the next one are all related to the radar

tower at Langmuir Laboratory.

Several different micropnone networks were used in these

reconstructions. The three networks used are designated as

the Saddle, West Knoll, and Solar Tower networks, corresponding

to their locations in South Baldy near the laboratory. However,

the spacing between microphones is not the same for all recon-

structions as is noted bWlow.

A considerable amount of output is generated by the pro-

grams used to do the reconstruction and consequently only one

fairly complete set is shown below.

C-4 Shots, Summer 1977:

Two microphone networks were used for these reconstructions-

the Saddle and the West Knoll network. Each network consisted

of three microphone stations in a triangular array with approxi-

mately thirty meters between the stations.

Figures 2-a through 2-Z shuw the output for C-4 shot number

one for the Saddle network. Figure 2-a is a graph of three

recorded microphone signals for the Saddle network. Figure 2-b

summarizes some of the information about the signals and the
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estimation techniques used. Figure 2-c gives an approximation

to the source location using only the starting times of the

signals. Figure 2-d indicates the cross-correlation functions.

Note that even though (from Figure 2-a) we might guess that the

signals are highly correlated the peaks on the cross-correlation

functions are not very high. The log of the spectral density

at one of the three microphones is shown in Figure 2-e, along

with a 95% confidence interval for the estimated spectrum. The

flatness of the spectrum suggests that the disturbance is

approximately white noise. Figures 2-f through 2-h are

coherencies between the signals all of which peak at about 200

Hertz. These coherencies measure the correlation between the

various frequency components of the signals. The phase functions,

with confidence intervals and a regression line used to estimate

the time lags, are shown in Figures 2-i through 2-k. Figure

2-t shows the final output indicating the source location and

confidence intervals for the spherical location routine. (The

time window line is superfluous - originally one-half the width

of the length of record used was added to the times before

tracing and the uncertainty introduced by this was included in

the variance calculation. However, it appears more accurate

estimates are obtained by not including this increment.)

Variance estimates (or more precisely confidence intervals) are

only shown for the spherical wave solution. The locations are

summarized in Table 1 and the computed location contains the

surveyed location with its confidence region. The corrections

of the program do lead to considerable change in the predicted

locations from the initial guess of Figure 2-c which corresponds

to a "by eye" alignment.
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TABLE 1

1977 C-4 TEST SHOTS

Co-ordinates (Meters)

C-4 NO. 1 x y z

Survey -166.7 660.5 812.6

Saddle -171.3 ± 10.4 655.5 ± 12.1 811.7 ± 3.1

West Knoll -173.0 ± 16.2 681.9 ± 18.8 818.4 ± 21.4

C-4 NO. 2

Survey -213.5 744.0 568.0

Saddle -229.5 ± 5.4 726.3 ± 6.0 574.5 ± 3.6

West Knoll -218.6 ± 1l.5 726.1 ± 6.6 568.8 ± 6.42
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Figures 3-a through 3-g show some of the relevant data

for the same event using the West Knoll network. Here the

confidence intervals on the spectra and phase are narrower

but because of the greater distance from the source, wider on

the location. While the confidence region for the source doesn't

contain the survey values it just barely misses doing so in the

y - co-ordinate only.

The results are presented in Table 1 along with another

1977 C-4 test shot. The confidence regions for the second

experiment don't contain the surveyed location with the largest

discrepancy appearing in the y- co-ordinate. Since errors

also exist in the Theodolite measurements this lack of overlap

was not considered to be a serious problem.

Prima-Cord Event 1973:

Some calculations were also made with earlier C-4 and

Prima-Cord tests. Only a Prima-Cord test will be discussed

here since the C-4 results are similar to those presented above.

For this reconstruction again two networks were used. How-

ever, the Saddle network had microphone stations on a one hundred

meter spacing rather than a thirty meter spacing.

Some of the output is shown in Figures 4-a through 4-c and

the co-ordinate values are given in Table 2. Figure 5 shows two-

dimensional views of the reconstruction. The reconstructions

agree reasonably well with each other. There was a kink in

the cord which appears in ene reconstruction but not the other

indicating the effect of the aspect angl'? since this is indeed

a real kink. The maximum cross-correlations occur at the ends



36

-c'

M In C

w I,.- A

CD i-n

co UN

C w

U_) - -

CD 00- C.

""- I -?I)L•

Lt ix -i m -a Jr
_ JI h I

M (ni U(ADff., E
z ffOflLMM

U.-~ 7M C3 l I-z

.ILI.

JL
?-

c N C... (%c im r-R

UICS

I'eo -- - --

WE'- I I I
_-

a7 47

Irl <- IF- V4 -t LO

L.7 11 L: U) u U



37

bCD

\N
0

-CD

o o
OD

U.1U

U1 ": --1' to *.

C= LU ZiU

..JJ -J.

) m, 0 w
r-o : zN >-j

_'-I "-- - -

0 UJ

01

Im

toN
-- t • L •._ •,.• i LI _I '• •-- •"



38

ID

S50

_ _ _ __,- - °Y
ts*)J

X0

0

.0

OD

r--. ) &

r-.. cr G
0 CD

• , CW--

-~w -j

~ U

UIL!
I---

rQ

OL -NC-

I- I -b•U'

_ _ | I L.', Q•

IiI . I I •t,C 0 •C -.-

LD I--,.,.
u c m Dt. ,tw CrLJ LL. Z (:w 2

>k L:L

M Z W k



4

39

w

co
w

co
-D

o =[

oj

t I i"J '

o (0j"•'t

--- . e 0•

LUi
0-4 C

cr w 1 0

z z•.5

"I. -o I (.j ifW

(n w z-~
LAI

I Ult Cr

<E-T

01

CCCc
-. ~< >u :x



40

In)
Lii

C)
CD

0 G

1

o i

n o
SLu

:-J

c o 0D

x_ z L5I

CD U

w I-

D Z: -n 'J"I-.- "- ti

LJJ ~ -j ....

o %-o --

I-I

- II -T,

o , .' .. E--

=0 1", 1 1.• .

0 T,~Q

"" "• ~I *-II L 9 1_

•~~~ ~ (Ci: LL l4 a< l l l l l

z eJrctUt



41

UJ

(Si

u. I-

wCD

I uw

'-J
C *

-• LIJ I•

0 .4 eg 'I't

0u0 CDC

L I.- 1 "j

Lii, ( C . ,.- &•,• i

LL L U
I--

r�- .r. I
I .4I kk It

C a

C ~~ WF-VJr;

C%

-~:> .- U UJL
<1 41) LUJ a 40. -

0 z(fU)



42

00

x c an-. aNO 0y ci d4 N S

we., t

.. . . -( co

r- _ S ' .8

.a.

a 1(L3

ecu r _. w>

-j -j g w

g I

m=:L f O ý X = c



43

and at the kink. The smaller spaced retwork has signals that

do not decorrelate as fast as this larger spaced network.

The agreement with the surveyed location is not very good at

the bottom but the bottom survey was not very accurate so

the discrepancy isrn't toe alarming.
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FIGUJRE 5
PRIMA-CORD, DAY 226, 1973
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TABLE 2

1973 PRIMA-CORD SHOT

a. Saddle Network Co-ordinates (Meters) Maximum
-6. 

Cross-correlationXY 
z

-631.7 ± 1.5 376.0 ± 1.4 67.9 ± 1.1 .69
-588.0 ! 3.3 323.1 ± 4.1 135.6 ± .9 .49
-600.1 ± 6.2 331.1 ± 2.7 168.2 ± 1.6 .39
-610.8 ± 3.3 334.6 ± 3.4 200.7 ± .9 .31
-624.0 ± 4.9 342.9 ± 8.7 232.4 ± 1.4 .40
-630.3 12.0 354.4 ± 6.3 265.7 ±3.2 .21
-640.5 ± 35.0 357.2 ± 7.6 299.1 ± 9.6 .16
-641.0 ± .6 348.6 ± 1.0 379.6 ± .12 .90

b. West Knoll Network

-659.4 ± 4.3 380.7 ± 2.8 67.3 ± 14 .85-660.9 ± 7.6 344.1 ± 5.8 130.1 ± 17 .82
-663.9 t 8.4 332.3 ±6.9 208.8 t 13.4 .72
-661.6 ± 7.2 327.3 ± 3.o 269.0 ± 9.5 .86
-646.6 ± 3.7 331.8 ± 3.0 305.0 ± 4.7 .87
"-636.4 ± 2.2 324.2 ± 1.6 373.9 ± 2.4 .9

c. Double Theodolyte Survey

Top: -648 356 385
Bottom: -723 385 85
(Best guess)



49

V. LOCATION FOR SOME LIGHTNING EVENTS

This section includes a few reconstructions for lightning

events. The primary purpose is to show some reconstructions

and also to discuss procedures and problems associated with

reconstruction of lightning paths by the techniques discussed

in this report. Note that while the individual points are

connected these connections are to a large extent guesses and

are made to give some order to the data. The more tortorous

parts of the channels may indeed look a lot different than what

the figures below show. The examples will be presented first

with a few comments. The section closes with some more

detailed comments on methods and procedures.

Event I - Day 233, 1977

Figures 6-a through 6-f show some results from a lightning

event as recorded on the West Knoll network (30 meter spacings).

This event was tracked with both the West Knoll and Saddle

(30 meter spacings) networks and the results are shown in Table

3. The two-dimensional views of the reconstruction are shown in

Figure 7 and a possible channel is indicated. While it is diffi-

cult to completely reconstruct the lightning path, the general

region of the stroke is fairly clear with both networks agreeing

fairly well.

Event 2 - Day 209, 1975

This event was recorded on three networks: Saddle (100

meter spacing), West Knoll (30 meter spacing), and Solar Tower

(30 meter spacing).
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TABLE 3

CO-ORDINATES FOR EVENT I (Day 233, 1977)

Lightning at 14:23:59.166

a. Saddle Network

Start Time Co-ordinates (Meters)
x y z

14:24:07.124 -3245 ± 50 -51 ± 92 69 ± 770

14:24:07.409 -3276 ± 42 -330 ± 56 256 ± 295

14:24:07.703 -3L21 ± 96 -554 ± 125 726 ± 223

14:24:08.572 -3602 ± 34 -272 ± 172 752 ± 141

14:24:08.772 -3664 ± 82 -274 ± 205 786 ± 275

14:24:09.626 -3713 ± 35 -974 ± 57 981 ± 89

b. West Knoll Network

14:24:06.00 -"356 ± 28 -348 ± 20 290 ± 187

* 14:24:06.147 -3334 ± 31 -380 ± 21 570 ± 95

14:24:06.347 -3319 ± 31 -425 ± 36 785 ± 72

*Times indicate these two points are close to each other.
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FIGURE 7
-10 EVENT 1, DAY 233, 1977
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TABLE 4

CO-ORDINATES FOR EVENT (Day 209, 1975)

Lightning at 12:47:07.550

a. Saddle Network
Maximum

Co-ordinates (Meters) Cross-correlation

x y z

-1230 1645 226 .70

-1397 1598 993 .75

-706 1900 2351 .62

b. West Knoll Network

-1151 1705 19 .28

-1332 1721 385 n.a.

-1415 1801 1280 .76

-1489 1814 1500 n.a.

-1084 1762 2135 .74

-803 1775 2339 .54

-688 1858 2395 .71

c. Solar Tower Network

-1317 1660 111 .30

-1387 1622 1156 .78

-1545 1679 1532 .69

. -1587 1635 1744 .34

-882 1731 2438 .64

-344 1926 2570 .60

n.a. means not available.
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FIGURE 8

EVENT 2, DAY 209, 1975
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The reconstruction for this (and the following events)

was done with an earlier version of the computer program.

The earlier version added half the width of the signal to the

times of arrival, as indicated above, and also had in error

in the confidence interval calculations. Consequently the

results in Table 4 don't include any error limits. The

graphs for this event are in Figure 8. The three networks

give results that agree very well. This appears to be a very

clean cloud-to-ground stroke with little evidence of branching.

Event 3 - Day 213, 1976

Figures 9-a and b show a signal at the Solar Tower network

(30 meter spacing) for a more complex and long record. Figure

9-a shows one-second of the data and Figure 9-b shows .300

seconds. One can pick out corresponding features from the

three signals quite easi-ly and the cross-correlations between

various signal segments were quite high.

Figure 10 shows the two-dimensional views with a possible

path. In addition the relative maxima of the maximum correlation

values are shown along the signal path. Here it would appear

that cross-corrections are maximum at corner points or branch-

ing points.

Event 4 - Day 210, 1975

Table 5 and Figures 11-a, b, and c show a reconstruction

for what would appear to be a cloud-to-cloud stroke. Three

networks were used as the figures and table indicate. Again

this was done with the early version and consequently no
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'30 FIGURE 10 63
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CO-ORDINATES FOR EVENT 4 (Day 210, 1975)

Lightning at 11:29:12.760

a. Saddle Network 
Maximum

Co-ordinates (Meters) Cross-correlation

x y z
942 5529 3146 .72

-732 4180 2382 .29
1620 2755 3299 .81
2361 2199 4069 .71

816 5303 2723 .74
185 6011 2736 .74
680 2549 6435 .68

-302 4287 6890 .55
-4818 6899 4154 .84

b. West Knoll Network
1404 2247 2979 .63
1734 2841 3131 .72
2033 2672 2934 .73

1884 2067 4397 .60
1222 3309 5964 .54

-2532 5537 5267 .59
-2028 5267 5617 .60

-641 5258 6065 .32

c. Solar Tower Network
-761 2361 2809 .52
-453 3901 2785 .55
1457 3754 3185 .50
1685 2513 4360 .75

911 3540 5980 .67
-2508 5350 5447 .45
-5805 5521 3137 .62
-5055 7003 3933 .76
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EVENT 14. DAY 210, 1975
X : SADDLE

" : WEST KNOLL

o : SOLOR TOWER

(x- z VIEW)

70

60

50

"= 40F

30

20

10

x

-60 -50 -40 -30 -20 -10 0 10 20 30

HUNDREDS OF MIETERS



66

FIGURE 11-B
EVENT 4, DAY 210, 1975
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FIGURE 11-c

EVENT 4, DAY 210, 1975

X: SADDLE

* : WEST KNOLL
o : SOLAR TOWERS

(X- Y VIEW)

70

60

-- m-

, /50
LL

"w 40
g
z

30

-0 20

-60 -50 -40 -30 -20 -10 0 10 20 30

aUUNDREDS OF METERS



68

confidence intervals are given in the table. The three recon-

structions seem to agree fairly well and once again suggested

patterns for the stroke are sketched in the figures. Again

higher correlation values seem to be associated with turning
i• .•:points.

A Comments on Liqhtring Channel Reconstruction

The purpose of this report has been primarily to review

and presert the techniques of lightning channel reconstruction

from acoustic data. The following comments pertain to the use

of these techniques.

Reconstruction of lightning paths :jsing the acoustic

Lechnique is a rather time ccnsuming process. It requires con-

stant operator attention aid is rather dependent on a good

Sinitial guess regardino sYgnal alionment. A reasonably clean

signal (i.e., isolated from other noise sources) is needed in

order for the method to succe;.. The rc;ults presented here

and additional confirmatory results using independent radar

measurements by S.ymansKri 97-) do indicate that the technique

can, under proper conditions yield a reasonably accurate re-

construction of a channel.

Proble;'s involving the physics cf the process need more

investigation, however. For ex3mple a detiled study of tiie

iinterference expected between the acoustic signals from differ-

ent segments of the lightning path Thould be made to see what

effect such interference has on the reconstruction. Higher

correlations do appear to occur at branching or turning points

suggest such interference or interaction is miwimized at these
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points. An examination of the relation between tortuosity and

correlation is clearly a subject that needs more study. Finally

the effect of assuming a spherical rather than a cylindrical

wave may also introduce some bias into the reconstruction.

The confidence intervals given in the paper are predicated

on an accurate model and pertain primarily to estimation tech-

niques. The fact that for some of the test cases these inter-

vals did not contain the surveyed point does indicate that the

model may be biased although not to a very strong degree.
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APPENDIX A

Stochastic Analysis and Spectral Analysis

The general time series model deals with second order

stationary processes, which we define below.

Definition: X(t) is a second order stationary stochastic

process, if

(a) E(X(t)) = p

(b) COV(X(t)),X(t + s)) = r(s).

Thus, the process must have a constant mean and a covariance

function that only depends on the time difference. We use

E to denote expected value and COV for covariance.

COV(X(t),X(t + s)) = E[X(t) - X(t + s)] - E[X(t)] E[X(t + s)]

. . (A.l)

in case X(t) is a real process.

If Z and W are complex random variables and if W* is the

complex conjugate of W*, then

COV(Z,W) = E(ZW*) -E(Z) E(W*). (A.2)

Condition (a) in the definition above is not as stringent

as condition (b). In particular, if E(X(t)) = p(t), then

using X(t) - p(t) in place of X(t) will eliminate the depen-

dence on t. In addition E(X(t) - P(t)) = 0, and consequently

we often assume without loss of generality that E(X(t)) = 0.

For a second order stationary process,

VAR(X(t)) = r(O)

and, since VAR(X(t + s) - X(t)) , 0, r(O) ) r(s) for all s.
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In addition r(s) = F(-s). Hence, cos(s) is a valid covariance

function but sin(s) is not.

If a process is ;ot second-order stationary, very little
can be done. (See Haandn, p. 77). Most of the theory for

second-order stationary processes relies on the following

two representation theorems.

THEOREM I. If X(t) is a second-order stationary process then

there exists a complex random process, Z(,.,), such that

X(t) = f e-iVt Z(dv) (A.3)

where COV(Z(Av1), Z(A"v)) 0 if AvI and Av2 are two disjoint

intervals and Z(-Av) = Z*(Av). (Z(A) = Z(b) - Z(a) if A =

[b,a] is an interval on the v axis).

THEOREM !I. If r(s) is the covariance function of the second-

order stationary process X(t), then

r(s) = f e-1Vs F(dv) (A.4)

"where F(Av) > 0 and E(IZ(Ž,)1 2) = F(Av).

A proof of these theroems can be found in Rosenblatt,

Chapter VII (1963).

F(v) is called the spectral distribution function. If
F(v) is differentiable then f(v) = dF (v) is called the spectral

density for the process.

The v's correspond to frequencies while the Z(v)'s assign
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complex weights to frequency v. By Theorem I, a second-order

stationary process is a mixture of sines and cosines with

random amplitudes at each frequency. The condition that

Z(-Av) = Z*(Av) ensures a real value for X(t). The usefulness

of Theorem I is due to the uncorrelated nature of the random

amplitudes, Z(Av).

In Theorem II, the definition of F(Av) and the fact that

Z(-Av) = Z*(AV) imply F(Av) = F(-Av) and hence f(v) = f(-v)

if the spectral density exists. We will assume f(v) always

exists in the rest of this paper.

From the relationship between a Fourier transform and

its inverse, we can obtain Z(Av) and f(v) by taking the

appropriate transform of X(t) and ý(s). In order to make

these transform pairs more symmetric in appearance and also

to make the results consistent with conventional engineering

approaches and computer programs, let v = 2.u. Then

Z(Au) = f exp{- 2qruti} X(t)dt (A.5)

and

f(u) = f e 2rius r(s)ds. (A.6)

(In practica" calculation, only positive frequencies are

used and the resulting estimate is doubled.)

The results of Theorem I and II show that one can obtain

the spectral density in 2 different ways. One way, via

equation A.6, is to take the Fourier transform of the covar-

iance function. The other way is to use the fact that

I . ... .i . ... ] .. . I I.... . ...... . . . . . ... .. . " I":
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f(u) Au = F(Au) = E(IZ(Au)I2) and hence use equation A.5 to

obtain Z(Au) and then square the absolute value. Both

procedures have been used in theory and in practice and each

method leads to insight about the behavior of spectral

estimates.

In particular, we will use f(u)Au = E(IZ(Au)2 ) to see

why the chi-square distribution is used to set confidence

intervals on estimated spectra and also to see why smoothing

is desirable when one estimates spectra.

We will start by assuming that Z(u) is a complex

Gaussian process. This means (Re(Z(Aui)), Im(Z(Aui)))

i = 1,...n are jointly normal. This also implies X(t) is

a Gaussian process and, since E(X(t)) = 0, E(Z(u)) = 0. It

can be shown (Breiman, Chapter 9. or Hannan, Chapter 2) that

COV(Re(Z(Au)), Im(Z(Au))) = 0 (A.7.a)

VAR(Re(Z(Au))) = F(Au) (A.7.b)
2

and VAR(Im(Z(Au))) = F(tu) (A.7.c)2

Consequently the real and imaginary parts of Z(Au) are

statistically independent, normal random variables, each with

F(Au)
mean 0 and variance 2 Hence

21Z(Au~l -(A8F(Au)

has a chi-squared distribution with 2 degrees of freedom.

In addition, if Au and Au' are non-overlapping intervals

then
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2 x+ X(Au') 12
F F•Au' (A.9)

will have a chi-squared distribution with 4 degrees of

freedom since the 2 terms correspond to independent chi-

squared variables, each with 2 degrees of freedom.

If Z(u) is not a Gaussian process one can still obtain

an approximate chi-squared distribution as the argument

below shows.

"Suppose Au [a,b) is an interval in frequency space.

Break up the interval [a,b) into n non-overlapping intervals

n-i
[a,b) = L [a + i(b-a), a + (i+l)(b-a))

i=O n n

n-i
SU Ai

i=O

n-I
Z(Au) = V Z(Ai). (A.10)

i=0

If Z(Ai = Z(a + (i+l) b-a) - Z(i + i(b-a) and if
n n

F(AO 0 F(Al 1 F(A 2) . . F(A n), (A.11)

2where F(A.) = E(JZ(Ai) 2), then if the central limit theorem

applies, Z(Au) is approximately Gaussian and the previous

results apply with F(Au) = nF(A 0 ).

This approach also shows why the variance of the spectrum

doesn't decrease with increasing sample size. For example,

if 21Z(.u)I2/F(Au) has a X-2 distribution with 2 deqrees of
frea d.&,,,,
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VAR[2IZ(Au)j 2 /F(Au)] = 4 and

VAR(IZ(Au)l 2) = F (u),

independent of the sample size. If the spectrum is reasonably

flat, one can improve estimates for the spectral density by

averaging over several frequency bands and hence improve the

accuracy of the estimates without introducing any appreciable

bias.

If the covariance function is used in the spectral

estimation, a weighting function (called a lag window) W(t)

is used to smooth the spectratl estimate. W(t) is a function

such that:

W(o) = 1 (A.Ih.a)

W(t) = W(-t) (A.12.b)

and W(t) = 0 if Itl > L. (A.12.c)

The smoothed spectrum is

fw(u) = f W(t) ?(t)ei 2 rut dt. (A.13)

If w(u) is the Fourier transform of W(t) and f(u) is the

Fourier transform of r(t) then by the convolution property

of transforms,

fw(u) = f w(v) f(u-v)dv. (A.14)

w(u) is called the spectral window. Thus, one can smooth

either before or after transformation of the covariance

function.

A lag or spectral window can be used to reduce
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the variance of the estimate but it can also lead to biased

and correlated estimates. (See Jenkins and Watts, p. 247).

If uI < u < u2 ,

COV(fw(ui) fw(U 2 )) f2(u) W(ul-V) {W(u 2 +v) + W(u 2 -vf)dv

.. ..... (A.15)

so the 2 estimates are not independent. Neqlecting
Go

f W(v) W(v + 2v)dv which is small compared to the integral

of the square, VAR(fw(u)) f2(u) W2 (v)dv.

2T is the length of time over which the signal is

recorded. Let

T
I f f W (t)dt. (A.16)

-T

Then, VAR(fw(u)) = f 2 (u) I/T and so I/T is the proportional

reduction in the variance due to smoothing when the lan window

W(t) is used.

A concept occasionally used is that of band-width for a

spectral window. If

w(u) = I/b, -b/2 < u < b/2

is a rectangular window, it has a unique band-width, b, in the

frequency domain. The variance of an estimator that is smoothed

via this window is f 2 (u)/Tb.

For non-rectangular windows, the equivalent band-width

is defined as b = I/I and the standardized band-width is bT.

Note that the variance times band-width is constant and hence

large band-width implies small bias. Some common windows and

and their properties are discussed in Jenkins and Watts,

Chapter 6.
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"A commonly used window is the Tukey window:

W(t) = ½(1 + cos(,rt/L)) (tj < L. (A.17)

This lag window has the associated spectral window

w(u) = [L sin(2iruL)]/(27uL)(l - (2uL)A). (A.18)

For the Tukey window,

I = I w2(u) du = 3L/4 (A.19.a)

d.f. = 2T/I = 8T/3L (A.19.b)

band-width = 4/3L (A.19.c)

variance ratio = 3L/4T. (A.19.d)

For the truncat3d estimate the Tukey spectral window

corresponds to weighted averages, with weighting factors of

(1/4, 1/2, 1/4) for u - 2u, u and u + -Au respectively.

(A-i) Direct Spectral Estimates

Since most observations are digitized the integrals are

replaced by sums in the calculations. Suppose X(t) is

observed at discrete times kAt, k = - m, - m + 1, ..... m 1

(n = 2m observations), then

(m-l)At iut
f X(t)e dt

-mAt

m-1
' E X~k~t) (cos(27uk.!t) + i sin(2rku,•t)} At.

k=-m

If uk =k/nAt, Au = l/njt, k = -m, . , and if
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m-1

A(u) x E X(kAt) cos(21ukAt) (A.20.a)
k=-m

m-1
B(u) = £ X(kAt) sin(27ukAt), (A.20.b)

k=-m

then the sample spectrum at u k is

f(uk) k 2[A2 (uk) + B2 (Uk)] At/n (A.2l.a)

at k = ± 1, ± 2, .... ± (m-1).

At the end points, uk 0 and uk /(2At),

f(uk) = CA2(Uk) + B(uk)] At/n (A.21.b)

with a corresponding loss of I degree of freedom.

~(k)
Atf(uk) has a chi-squared distribution with 2 degrees of

freedom, for k = ± 1, t 2 ... , ± (m-i) and 1 degree of freedom

for k = 0 and k = m, for a total of 2(m-1) + 2 = 2m = n degrees

of freedom. (Note that, by the symmetry of the spectrum,

there are only (m-1) + 1 independent estimates rather than

2(m) independent estimates). These n degrees of freedom are

distributed over the various frequency bands. If the true

spectrum is reasonably constant over Z adjacent bands (say,

over u ± i A u, i 1, ... , Z12) and if

z/2
f(u) E [f(u + iAu) + f(u - iAu)]/"

Zf(u)
then itf- u has a chi-squared distribution with 2Z degrees of

freedom.

VAR[f(u)] = 4/ 2/ 4/z is now decreased. If successive
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bands are averaged without overlapping, n/2Z independent

estimates are obtained, each with 2L degrees of freedom. If

overlapping occurs, the estimates will not be statistically

independent.

In this direct procedure (known as the Cooley-Tukey

procedure) a "fader" or "taper" is usually applied to the

original series before transformation in order to reduce

bias. This is a function a(t) such that a(t) increases

from 0 to 1 in [0,SI), equals 1 on [S 1 S 2 ) and decreases

to 0 on [S 2,T.). Usually a(t + T/2) = a(T/ 2 - t).

A typical fader, with S= T/l0, is

I [I - cos(:t/S1 )] sin2 (7t/2 S1 ), 0 < t < S1

a(t) =Sl S t < T - S1

1[ - cos(7(T-t)/SI)] sin (-(T-t)/2 S T S < t <

(A. 22)

The signal X(t) is first multiplied by a(t), where noa.

we assume X(t) is observed on [0,T]. After multiplication,

a(t) X(t) is transformed and then averaged as above. To see

the effect of the "taper", let u(x) = a(t,/T) so that u(x)

is defined on [0,1]. If Z(u) is the transform of a(t) X(t)

then the direct estimate of the spectrum is Z(u) 2 (2-%t/n)

at frequency u (where nAt = T).

However,

2 n 2 2
ENVO) r (k11 f(u) [, .(.x.dxfu A,3)

k=l 0
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Hence, the true spectral estimate becomes

2AtlZ(u) I2/(n f u2 (x)dx). (A.24)

0

For the cosine taper above,
12 .l1 n

f u 2(x)dx = 2 f sin (7x/.2)dx + .8
0 0

= 2( T)( -) + .8 = .875.

The smoothed (averaged) estimates are weighted chi-squared

variables, after division by f(u). The distribution of these

estimates is approximated by a constant tines a chi-squared

variable, where the constant and degrees of freedom are

obtained b:, equating means and variances.

d = 2f 2 (u)/VAR(f(u)) (A.25.a)

C = E(f(u))/d (A.25.b)

If m + I final estimates are obtained the decrees of

freedom become

= 2n [ u2 (x)dx] 2/(m+l)[f u 4(x)dx]. (A.26.a)
0 0

For the cosine taper,
1 .8I J.

f (x)dx sin 8 (Lx-)dx .8055 (A.26.b)
0 0

The band width is d/2N.

The above is true for non-overlapping sands. If averaging

ccrurq in -verlapping bands, the degrees of freedom are

(2L + i)[f u2(x)dx]2/[1 1  u4 (x)dx] (A.26.c)
0 0
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where 2L + 1 is the number of elementary bands averaged.

In either case, the degrees of freedom at each end point Lre

half the figures given above.

The computer routine use, a fast lourier transf3rm

coded in a subroutine called NLOGN. if ZI), =1, ... , N

is a (compiex) input array, NLOGN, produces an output array

- N
ZkK) E S exp{2rri(K-l)(.]-l) Z(J) (A.27)

J=1

K = , N. Ttp number of entries in the input and

output array are equal.

X(k) X(ktj, k = 0,1, ... , r-I is the original

data array, k = 0, . -. . n-I and N = n.

ThL steps in the computer analysis are

1. Taper X(k) with the cosine taper by multiplying thC

tdper and the series. Load th2 result iato tiie Z array.

2. Fili out the Z array with zeroes in order to get

NN = 2M(2L + 1) - 1 points if M + 1 estimates are desired.

3. Call NLOGM tc get Z(1), 1=1, 2, .... mIN.

Tne elementar-y spectral estimates are

;•F(1) = 12'lj'2, '.t/.875 NN (A.28)

4. Avcra-e the el',mentary estimates,

L
(a) . F(I)/L is the estimate at frequency 0.

(2K+l)L+K
(t,) { • F(I))/2Li 1 is the estimate at frequency

(2L + l)K/2At.
M'•2L•,'-

(L) E F(I) ir the estimate at frequency l,2ýt.

1 2 - +
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More closely spaced estimates could be obtained by allowing

the bands to slide across the entire frequency band - in

this case the estimates would not be independent.

Thus, for example, the first non-zero frequency could

be (L + 2)/2Lt and could involve elementary estimates 2

through 2L + 3, the next frequency could be (L + 3)/2Ut, etc.

Confidence intervals for the estimates would be obtained

by using the chi-squared distribution and the appropriate

d.f. 1 2L + I for the center estimates, L for the end points).

(A-ii) Indirect Soectral Estimates

Suppose X(j) = X(jAt). j=O, ... s n is a zero-mean

process.
: l n-k-!

Let ?(k) = E k X(j) X(j+k) for k=D, ... , m (orij=o

r(k) r(k) n/(n-k)). Then

r i2•uk't
"f(u) = At Z P(k)e u -/2At < u < l/2st

k=-m

is another istimator of the true spectrum, based on a

covariance function with maximui.. lag m. As discussed previously

the £;timates must be smoothed with either a lag or spectral

"winduw. In addition, the spectrum is only computed for

positive frequencies so the estimates are doubled to obtain
A m-l

f(u) = 2At[r(u)+ 2 Z F(k)W(k) cos(2vrukt)] (A.29)
k= 1

for 0 c u < l/(2At). Here W(k) E W(kAt) and the maximum

lag is m.
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APPENDIX B

Cross-Spectral Analysis

When two or more time series are observed, one can

study their inter-relationship by using cross-spectral

analysis. Subscripts will be used to indicate the different

series and only the case of two series will be discussed.

Suppose X1 (s) and X2 (s) are two zero-mean time series

and let X(s) = (Xl(s), X2 (s)). X(s) is a second-order

stationary vector process if the covariance matrix, r12(u)

E(Xt(s) X(s+u)) only depends on u (the superscript t indicates

the vector transpose here). r 2 (u) is called the cross-

covariance function. Note that ? 2T(U) = r 1 2-u).

There are two representation theorems that correspond

to Theorems I and II of Appendix A, with scalers replaced

by vectors and matrices.

In particular, for a second-order stationary vector

process

X.(t) = f cos(vpt) aj(dv,) + f sin(vt) 3j(dv) (B.l)

where COV(j (dv) ak(d'.')) ý COV(2j(d-,) 3k(dv)) = c jk(d,)ki tombj

- COV(Žj(dv) Ck(dv)) COV( d%(dv,) ak(dd)) = qjk(d'-') and

all other covariances are 0.

F(t) = f eitV dF(v) = f cos(tv) c(dv) - J sin(tv) q(dv)

(B.2),

where F(v) is a matrix with Hermitian non-negative increments
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in v, c(v) is a real symmetric matrix with entries cjk(V)

and qjk(v) is a real, skew-symmetrix matric with entries

q ik(v), c(v) is called the co-spectral distribution and

q(v) is called the quadrature spectral distribution.

P2 M c 2 (v ) + q2 1[ Ic MPjk Cv) = [Cik ) k (v)/[ iv)kk

is the co-herence spectrum and

Sjk(,) = arctan(- qjk (v)/Cjk (v)) is the phase-spectrum.

We will again replace v by 27u and use capital letters

to denote the various entries, so that

F jk(u) -- ½(Cjk(u) - i Qjk(u))

ejk(u) = arctan[- Qjk(u)/Cjk(u)].

Once again one can either estimate the cross spectral

densities directly by transforming the original series or

by calculating cross-covariances and then transforming the

cross-covariances.

(B.i) Direct Estimation

The computer analysis for direct estimation is outlined

below.

1. Let X 1(k),k=O, ... , n-l and X2 (k), k=O, .... , n-l be the

2
2 original series. Taper each series with the sin taper.

2. Let Zi(k) = Xi(k-l), k=l, ... , n and fill out the Z-arrays

to get NN = 2M(2L + 1) - 1 > n points if M + I estimates

are desired (each based on 2L + I elementary estimates).

3. Transform each series to get Zi(k), i -- 1,2, k = 1 ... NN.

4. The elementary estimate of the cross spectrum is

F1 2 (T) = [2 Zi(I) ZB* I)]6t/(.875)NN

2
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5. Average the elementary estimates over 2L + 1 points

(except for the first and last estimates which are

obtained by averaging over L points) to get estimates

M + 1 estimates, with the middle estimates centered

at (2L + 1)K/2At, k=l, ... , M.

6. The real part of the above average is half of the

co-spectrum and the imaginary part is half of the

quadrature spectrum, (F 1 2 = (C1 2 - i Q1 2 )/2) omitting

the frequency argument.

7. The coherence spectrum is

2 2 2 + 2
P1 2  1 2  1 2 )/F 1  2

where F1 and F2 are the individual spectra and the

coherence spectrum is calculated after averaging (else

it will be identically one).

The phase spectrum is " 12 4 arctan (- Q1 2 /C 1 2 ) which

can be made continuous by "guessing" so that the tru:

arctanaent rather than the principal value is obtained.

(B.ii) Indirect Soectral Estimates

If T1 2(k) is the estimated covariance with M lags

(k=O, t 1, ± 2, ... , M) then the indirect approach is

outlined below.

1. Let reck) = 2-[P 1 2 (k) + 712(-k)]

ro(k) = •[l r (k) - (-k)].

2. Form

Zl(k) = re(k-l) W(k-l) k=l ... , L + 1

Z2 (k) = r 0 (k-l) W(k-l) k=l ... , L + 1

where W(k) is the lag window, (L < M).
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3. If the cross spectrum is desired at frequency spacing

I/(N 2 At) from 0 to l/2At where N2 > N, add zeroes to

the arrays to get N2 entries. Once again, if N2 = 2.,

estimates are obtained at frequencies i/2L~t,

i=O, 1, ... , L.

4. Fourier transform, via FOURT, the Z arrays to get

Zi(k). The smoothed estimates of the co- and quadrature

spectrum are

C1 2 (k) = [2 Re(Zl(k)) - le(o)]2At

and Q1 2(k) = 4At Ira(Z2k)) at frequencies {k-l)/(2Lnt),

k=l, ... , L + 1.

(B.iii) Other comments on Cross-Spectra

If both series are subjected to the same linear filters

the coherence and phase spectra are unaffected. If a trend

is suspected one can difference the 2 series and improve the

final estimates (see Jenkins and Watts, Sec. 8.4.5).

Ore can also re-align the 2 series to get better estimn3tes

of the coherence. The raw estimates of the cross-spectram

can be obtained without recalculation by multiplying the

original cross-spectrum by exp{- i2Tuý where - is the timr

shift. For the estimates based on the cross-covariance, new

even and odd estimates are needed (see Jenkir.s znd Watts,

Sec. 9,3.4).
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APPENDIX C

Variance and Covariance Calculations

Throughout this appendix, we assume we have N observa-

tions, M estimates and d degrees of freedom. The variance

and-covariance calculations are based on the treatment in

Hannan, Chapter V. Carats will be used to denote estimates

and frequency will be measured ir radians. The proofs of

the main theorems can be carried out by using multivariate

analysis (including complex multivariate analysis). Jenkins

and Watts, Chapter 9, pp. 372-373 and appendix A.9.1 present

an alternative approach.

The following theorem is the key theorem for practical

covariance calculation.

THEOREM I. (Hannan, Theorem 9, p. 280). Under suitable

conditions on the moments of X(t),

N M COV[f (VI )k2 2 + TP/M)] = 0, (C.l.a)

for v 7/2(mod2T).

lim N C2VN (v),f(v)] - 2N fi (v), (C.l.b)
N-~ M HV' ki.d -,i

for v t 0, 21T.

aim N COV[f ii 1)-k (v,)]

(2N/dM)[fik(vl) fN (v 2 ) + fi (vI) fkj(v 2 )](C.-c)

.Qor vI = t 2 = 0, 2T.
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Since most other estimates in cross-spectral analysis

are functions of fi and fkZ' one can derive the desired

covariances quite readily.

For example, for N/M large (omitting the dependence

on v) we have (for N large)

(NIM) VAR(CiE) = (N/M) VAR(fij + f.i) 31i

[N/M][VAR(fij) + VAR(fji) + 2 COV(f j,fj)]

- [2N/Md][f 1 f + 2f .Jf. + f. f .. ]

2 c2

[4N/tld]L[fi f.. (1 - P..) + C2 12]

.......................(C.21,

Note that fii = 2 Cii is the spectrum of Xi(t), and recall

that COV(ZW) = E(ZW*), assuming E(Z) = E(W) = 0.

Similarly ,since Ckt = + ) and 6kz = f -k ftk1

we have

1COV(C kijCk) = COV[(fij + fji (fkt +f

E(f.f +f f f +f
13 fkk + ji 'kt ij Zk ji fLk)

= 2[fik ftj + fjk fti + fit fkj + fji fki]/d

- [Cik C - Qik Qj + C Qi QkC]/d

(C.3)

VAR(Q ij) = VAR (fij fij)

E~2 -2-. 2 W

S4{fifP . ] + 2 Qi }/d (C.4)

'Assume, without loss of genernlity, that E(f ) ? 0 for the

following calculations.
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COV1QijQkt = - COV (fij fji)(fk.. f-d)

A AA AAA A

- - Efij fkL " fij fzk - fji f k + f i fik]

[Cik C j - Qik Qtj - CitCkj + Q4Z Qkj]/d

m (C.5)

COV(Qij,Cij) = 2Cij Qij/d (C.6)

mcovC1 ij,Qkt COV{(f ij + f.ji i(f U - f k)l

iE{fii fk - fi f ff - f f)
ii i i t~ + ji cR. ii tkc

- [Qzj Cik + Qik C %j + Q ti CJji + Qjk Cti]/d

(C.7.a)

COV(Q1WC3ij =-iCOV((fkZ f fk)(fij + fji))-i: f A - " A AfAk

"= iE lfk i fii f k fi + f 'ji - f k fji}

= COV(Cij Qkt) (C.7.b)

The covariance of the a's and p's can be approximated by

using propagation of error - namely by expanding in a Taylor

series and dropping higher order terms.

Thus, for a = arctan(- Q.i /Ci) we ;lave

B arctanhlij/C.] = DC (Ci. - C.j) + 3 [Qij - Qij.i jC i j :;Q i j

S{Qi?^2
i j + Qij )}{Ci - C ijI

_ic I/(c2 +2 )Mo -Q •
Sj + -i j i Q j

S. .. (c.e)
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VAR(8ij) Q .i/(Cc. + Q2 )2 VAR(2
1 3 13 1i 1A3ij

+ (C. /(C2 + Q2 )}2 AR(Q

2(CiJ Qij/(C2 2 Q .)2  ) 23

(1 - Pj)/d2 j (C.9)

Similarily,

VAR(P) =(1 . .ij) /d (C.lO)

Covariances can also be obtained by multiplying the

appropriate expansions and then taking expected values. In

particular COV( ijakl) will be required for confidence

interval construction in the location routines.

:' [Q Qij (C O CkC Q

Q C COV(C.. .
a a2 2 2 2.

13 3 k9]6(. Q^ .)("Ci Ck + Q k.
+ iC i C k k C O ( Q k. "l j U

The time lags estimated are linear combinations of the

'.is, if the estimates are least squares estimates. Thus,1j

N N 2T.;' = ~ S Oj (p) p (-,:) /p IZ' p2 ],)2

N 2 2 N 2 2
VAR(:..) = Z p () VAR(. i(p))/( p (V)I

1 p=l p=l

N N A N
COV(ij• E) pq COV( j p (kZ•(q))( 2)p

= ZCo( () (p))~f(jV)2/ • 2 ('V 212

p=l2 2 N 2 2 2
C p2 c~(. 0(p)t e p)(,v)IV E p (Av)

N N 22 2
E . p 2 COV(0i(p)k(p))/( E p2)2 (AV)

p=1 kp=l
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For spherical location.

61 = (CS).

62 = C(S + T 1 2 ) and

63 = C(S + T13)

are used.

Assuming S and Ti are independent, and using propagation

of error, we have

VAR(6 1 ) = C2 VAR(S)

VAR(6 2 ) = C2 [VAR(S) + VAR(T 1 2 )]

VAR(6 3 ) = C2 [VAR(S) + VAR(T 1 3 )]

COV(6 1 3, 2 ) = C2 VAR(S)

CQV(6 11 3,) = C2 VAR(S)

COV(5 2 ,5 3 ) = C2 [VAR(S) + COV( 1 2 ,- 1 3 )].

This covariance matrix is required in Appendix 0.

For plane location, the required covariance matri.c is

given in Appendix E.
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APPENDIX 0

Spherical Location

The equations used for spherical location are (c.f.

eqns. 25 - primes are dropped for typographical convenience).

2 r2 + r 2 + r2 (D.1)

62 (r-x) 2 + 2+r2(D)
62 = 2 ?2 3(.2

2•,= r - Y3r2 + r 2 (D.3)
63 tr x3) ( 2 -y 3) 3

In these equations,

1 ý2 [c(S
2i (cS) , [c(S + I212 3 1 c S+ 3)]

(ii) c is the speed of sound,

(iii) S is the time from initiation at t11he source to its

reception at microphone 1.

(iv) zlj (j = 1,2) are time lags between receotion at

microphone I and j.

(v) rl, r 2 , r 3 are co-ordinates of the source in a

co-ordinate system with origin it microphone 1,

and x-y plane in the plane of the three microphones.

(vi) microphone I is at location (0,0,0),

microphone 2 is at location (x 2 1 0,O) and

microphone 3 is at location (x 3 1Y3 ,0).

Subtracting D.2 from D.1 and 0.3 from 0.1, we obtain

62 &2 = Ir -2 (0.4)
1 2 2I 2

S62_62 = 2xr + 2Y3 r2 - x2 - 2 (0.5)
1 3 32x 3 y3.
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Hence,

"r1  2 2 2(0.6)

r 2  2(6 2 5 2 + 2 + Y2 2x 3 r )/(2y3 ) (D.7)
(& 5 3 X 3  3 (0.7)3

r 3  (6 1 r 1 r 2) /2(0.8)11

These locations have to be converted back to coordinates

in the original frame of reference. Suppose the microphones

are at Pl, P2 and P3' respectively, in the original frame

of reference.

Let 0D = P2 - PI (D.9)

and 02 P 3- P V (D.10)

(D2 • DI)DI/(D0 • DI) is the projection of D2 onto Dl*

The un-normalized co-ordinate vectors in the new frame of

reference (the one containing the microphones in the x-y plane)

are

•I =0D1 (0.11)

a2 = 2 - (D12 DI) Dl DI) (D.12)

a3 D I x D 2 . (D.13)

The corresponding unit vectors are den•otes the

length of s)

U • (0. 11 .I )

U2  . 12]P2• (D.12.a)

u 3 c•,3 1 •3j (D .13.a)
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Microphone I is at (0,0,0), microphone 2 is at (GDl! ,0,O)

(x 2 = DI Y2 : ,'z2 = 0) and microphone 3 is at

(2,• ( 2 ) 2 D 2 1/2D " D D ' ( D2 - D " D1 I ) ,.0),

(x 3 = ( ' Y3 D 2 - (02 ]1)21DI•2)l/2 z3 3 0

Ignoring the translation by P1 t the new co-ordinate

vectors can be expressed as a linear combination of the old

co-ordinate vectors, e1 ,e 2 ,e 3

3Ui S gi e. (D. 14)
UI j=l iJ j

In matrix notation,

U = Ge. (D.14.a)

3
The source is at Z riU and hence in the old co-ordinate,i I

system the source is located at

3
r. g., j = 1,2,3, (D.15)

or, in matrix notation at

Gr (r r5

where Gt is the transpose of G.

Element (i,j) of G is the jtk" elee-ent of vector UV

so that

U1

and Gt (UIU 2 ,u 3 ). (D. 16.e)

L I I I I I I I I I
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is located at

r* = p + Gt r. 
(0.17)

We next obtain approximate confidence limits for the
predicted Position by linearizing D.6, 0.7, and 0.8 with
respect to 61, 52, and a53.

3 a. [E(r. k~ -2. E(6)

k=- a [ E(601 
(0.18.a)

for j 1,2,3, where

al 1  -61

ar_

12 a6 62/xl
2

arI

3

Dar2 ara2 1  (6I/y 3 ) - (x 3 /y 3 ) (X 3/y 3 ( )a
Dr 2 ar1a ( . /Y 2 L = ( X /3 Y 3)a

a r 2

a23 3 (631 3a 3r3

"37 r a -I - 2 a 2 )/r3

a 'r3a 3 2 =.2 - (r a 12 + r2a22)/r3

a3 3 2 r 2 a2 3 /r 3 .
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In vector-matrix notation

[r - E(r)] = A[6 - E(6)], (D.18.b)

where A is a matrix with elements aij.

The covariance matrix for r is

tt

COV(r,r) = E{[r - E(r)][r - E(r)JtI

= A COV(6c,) At. (D.19)

The covariance matrix for r*, the cc-ordinates of the

source in the original frame of reference, is

S= COV(;r r* = G COV(r,r) Gt

Hence, an approximate (1 - a) x 100,% confidence region

for tf~e source r* is given by

(r* '*) - (r* - r*) < X3 (/2)

A simpler procedure is to use a Bonferroni confidence

region of the Form
A ±* [VAR&*)I/2'?

i ± a/z

Since this gives a confidence box rather than an ellipsoid.
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APPENDIX E

Plane Wave Location

Here we will use the definitions given in Appendix D.

1 = P 2 - Pl' D2 = P3 - P1.

12 gocos a C2 - 12 (E.l)

Cos a1  13 (E.2)1 " iD2 Il

v - 1. (E.3)

v -is the unit velocity vector of the plane wave and the

-r's are time lags.

If D. = (dil, d d ) then
? ll 12' is

3
E vk d.ik C c,2 (E.4)

k=l

3
L vk d 2 k c- 1 3  (E.5)

k=l
-•3 2

k= vk2 (E.6)
k:k

These equations must be solved to obtain (vlV 2,v3.

v1  d11  + v 2  d 1 2  = CT1 2 - v3  d. 1 3  (E.7)

V 1v d 2 1 + v2 d 2 2 v "13 - V3 d23' (E.8)
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Hence,

vI [(CT 1 2 - v 3 d 1 3 )d 2 2 - (CT1 3 - v 3 d2 3 )d 1 2 ]/[d11 d 2 2 - d 1 2 d2 1)

v 2 - [(cT 1 3 - v 3 d 2 3 )dll - (CT1 2 - v 3 d 1 3 )d 2 1 1/Edld 2 2 - d1 2 d2 1 ]

or

= I b 11 + b 1 2 v3  (E.9.a)

v2 b21 + b22 v3 (E.9.b)

where

b1  - [cr 1 2d2 2 - cT 1 3 d 1 2 ]/[d11 d2 2 - d1 2 d2 1J (E.lO.a)

b12= [d 1 2 d 2 3 - d1 3 d 2 2 ]/[dlid 2 2 - d 1 2d 2 l] (E.1O.b)

b21 [CT13d I- cT 1 2 d2 1 ]/[dld 2 2 - d1 2 d2 1 ] (E.lO.c)

b22 [d 2 3 d1l - d1 3 d 2 1],C61 ld 2 2 - d1 2 d 2 1]. (E.lO.d)

v + v2 + V2 1 implies
1 2 3

2 + b2 v2 + (2b b1  + 2b b )v3 + (b2 + b - 1) =01b 2 12 + )3 1 12 21 22 3 11

or

A v2 + 2B v + C 0.

Hence,

- D2a - Y7B2- V4 AC2
v3 = .2 A4 -- B - AC (E.l1)2A A

where A = b 2 + b 2 + 1, B b 1 1 b12 + b2 1 b2 2 and C bl 1 b 1.

12 4221 2 2 2 2

To resolve the sign ambiyuity, note v 3 must be negative -

the solution with the plus sign on the radical appears because

the observed time lags theoretically could arise from a wave

traveling orthogonal to the true wave. Hence,
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v= (- B - AC -A)/A 
(E.12)

where A = 2 b2  2 + , = B b + b2 1 b2 2 and C = b2  + b
12 221 2 12 11

-LB_= + { - - A _C _ IAa1 2  a 12  12B 12 A-- B12 12 B -ACwhere ae [b cd2 Cdl2'/(d, d d dwhTer 2 Er1 2  - b2 2  12  1dd22 - 1 2d 2 1

C = [2b 1  cd22 -2b. cd 21 ]/(d 1 d22  d )aT 1 2 1  -d2 2 d 2 1

av 3  asB + f2B B A 3C ] A
aT13 1Tl3 D-13 DT 3  /2

1 B AC

"= (- cdI b1 + cd b )/(d d - d12d21 )
1~32 12 Ib22 1ld22 12 21

13
DC = (cd b2 -d db )/(dI d dl d;1 13 11 21 12 1 1 22 12 21)"

The covariance matrix for (v 1 ,v 2 ,v3 isb•2~ ~ b1b2 31
2
b12  b 12 b22  b 12

VAR(v) b b b 2  b3 12 22 22 22

bb1b12 22Y3 v-2DY3)

and VAR(v 3 ) VA+ 13 VAR(r 1 3 )3 3T 12  VRT 2) +(;~-[ 131

+ 2 C AY' ' avv3  av3+ 2 OV• 12, 13) T •

The source, is located at - (v ,v 2 ,v3)cS where S is the
time from initiation of the source until its reception at

i A
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microphone 1. The approximate covariance matrix for the

source is

2
v2 v v v vv 1  1V2 1v3

VAR(T)c 2  v v v2  v v + (cS) 2 COV(v,v),
2 2 23

VlV3 v2v v2

where COV(v,v) is the covariance matrix of the v s,

(assuming S is independent of Tl2 and T13).

Once again one can construct either more exact ellipsoidal

confidence regions or box-like Bonferroni confidence regions.
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APPENDIX F

Additional Remarks on Spectra and Covariances

One can also estimate auto and cross covariances ty

transforming twice - this can actually save computer time

if the covariance functions are required. (See Enochson

and Ottnes, pp, 247-248).

The procedure to obtain the auto-covariance is as follows:

1. Augment the original series X(l) ...,X(n) with n zeroes-

2. Obtain the Fr'T of the 2n-length sequence, Z(k),

k=l, ... ,2n.

3. Compute ihe raw spectrum

Z(k) = (At/N) IZ(k)l 2, k=l, ..., 2-.

4. Obtain the inverse FFT of Z(k).

5. Discard the last n points of the inverse transform

and multiply the r1h term by (n/n-r) to get the

covariance function.

For cross-covariances the following procedure can be used:

I. Augment X i (k), k=l,...,n, with n zeroes.

2. Obtain the FFT of both sequences, Z W and Z 2kfk).

3. Multiply the 2 sequences term by term, to get

Z 3 (k) = Z 1 (k) Z 2 (k) (At/N).

4. Compute the inverse transform of Z 3 (k). Then the

first n points will he COV(X I x 2 ) in reverse order

and the last n points will be COV(X 2 x 1 ) in reverse

order, after multiplication by (n/n-r).
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