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I. INTRODUCTION

A set of partial differential equations is formulated to describe
the shaped charge jet behavior. Somewhat similar equations are given in
the various hydrocodes but these codes employ various assumptions re-
garding the modeling of the stress tensor and use mixed Eulerian-
Lagrangian systems. However, hydrocode znalyses include compressibility
effects using semi-empirical equations of state relating the density,
pressure, and internal energy.

In this report, incompressible flow is assumed at the onset, since
one-dimensional hydrodynamic analyses indicate that compressibility
effects are not dominant during the jet development or jet penetration
process (see for example Allison-Vitali!, DiPersio-Simon-Merendino?,
Eichelberger3, and Chou-Carleone-Tanzio-Cicarelli*). The major influence
of compressibility is in the liner collapse process as modeled by Chou-
Carleone-Karpp™® especially in regard to a jet - no jet criterion.
However, once it has been established that a given liner geometry and
liner material will form a coherent jet, the collapse process can be
satisfactorily modeled as an incompressible fiow as done by Pugh-
Eichelberger-Rostoker’,

In this report, the one-dimensional hydrodynamic equations are
extended to an axisymmetric hydrodynamic theory using a Newtonian fluid
model for the stress tensor. Also, the material strength effects are

1F. E. Allison and R. Vitali, "A New Method of Computing Penetration

Vﬁzﬁi%%%% s_ggr Shaped-Charge Jete,' BRI Report No. 1184, Jaruary 1963.
. DiPersio, J. S5imon, A. Merendino, "Penetration of Shaped-Charge Jets

Into Metallie Targete,' BRL Report No. 1296, September 1965. (AL #476717)

3gichelberger, R. J., "Re-examination of the Theories of Jet Formation
and Target Penetration by Lined Cavity Charges," Carnegie Institute of
Technology, CEL Report No. 1, June 1554.

“p. C. Chou, J. Carleone, C. A. Tanzio, and R. D. Cicarelli, "Shaped
Charge Jet Breakup Studies Using Radiograph Measurement and Surface
Instability Caleulations," BRL CR 337, prepared by Dyna East
Corporation, April 1977. (AD #A040444)

5p.C. Chou, J. Carleone, and R. Karpp, "The Effect of Compressibility
on the Formation of Shaped Charge Jets,' Proceedings of the First
International Symposium on Ballistics, Orlando, Fla., Nov. 13-15, 1974,
sponsored by the ADPA.

5p. C. Chou, J. Carleone, and R. Karpp, "Criteria for Jet Formation
from Impinging Shelles and Plates," J. of Applied Physics, Vol. 47,
No. 7, July 1876.

"E. M. Pugh, R. J. Eichelberger, and N. Rostoker, "Theory of Jet
Formation by Charges with Lined Conical Cavities," J. of Applied Physice,
Vol. 23, No. 5, May 1952.
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included directly for the stress tensor modeled as a visco-plastic
material. In this sense, the incompressible Newtonian fluid or visco-
plastic model represents an extension of the incompressible one-
dimensional theories of Allison-Vitalil, or DiPersio-Simon-Merendino?.
Alternately, this model represents a relaxation of the hydrocodes to an
incompressible, but viscous, flow representation.

The Newtonian fluid model is assumed since for low strain rates, the
viscosity of some metals depends weakly on the strain rate, approxi-
mately justifying a Newtonian fluid model®. The Russians, notably
Godunov-Deribas-Mali® and Mali-Pai-Skovpin® consider the viscous proper-
ties of the jet metal to be important.

Once the governing equations have been established, they will be
non-dimensionalized and an order of magnitude analysis will be performed
to further simplify the final set of equations. This simplified set of
equations may admit approximate analytical solutions. However,
determination of the appropriate boundary conditions pose the major
difficulty in obtaining an approximate solution or an accurate numerical
solution.

The same basic equations may be applied to the jet-target intex-
action where the system of equations apply independently to both the
free jet and the target and are coupled by appropriate boundary condi-
tiuns at the jet-target interface. In this case, a function of the
ratio of the jet and target densities is important, but incompressible
flow may still be assumed!»2, The viscous terms are also important in
the jet-target interaction.

The remainder of this report deals with the development of the free
jet. Specification of the jet parameters, in analytical form, prior to
impact with the target will provide the first step in analyzing the
target penetration. The jet formation will be coupled to the liner
collapse process through initial conditions and boundary conditions.

In turn, the free jet solution will provide initial and boundary con-
ditions for the target penetration problem. Thus, the overall problem
of the collapse, development, and penetration of the jet may be con-
sidered as three distinct regions: liner collapse; jet development and
growth; and jet penetration.

85. K. Godunov, A. A. Deribas and V. I. Mali, "Influence of Material
Viscosity on the Jet Formation Procese During Collision of Metal
Plates," Novoaibirsk. Translated from Fizika Goreniya i Vsryva,
Vol. 11, No. 1, Jan - Feb 19765.

SV. I. Mali, V. V. Pai and A. I. Skovpin, "Investigation of the Breakdown
of Flat Jets," Novosibirgk. Translated from Fizika Goreniya i Varyva,
Vol. 10, No. 5, Sept - Oct 1974.
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The following sections illustrate that the Newtonian fluid and
visco-plastic stress tensor models are functionally identical for small
values of the yjeld stress in pure shear (i.e., the visco-plastic model
relaxes to a Newtonian fluid type model for small yield stresses). Also,
ordering analyses are applicable to shaped charge jet studies and
pertinent non-dimensional terms can be introduced. In addition, an
incompressible formulation of the governing equations is presented.

II. BASIC EQUATIONS - NEWTONIAN FLUID
The Newtonian fluid model is considered first.

The basic equations governing the behavior of an axisymmetric jet
are given below. These equations are: the continuity equation; Navier-
Stokes equations; and the energy equation. These equations are formu-
lated for an axisymmetric, incompressible, isotropic Newtonian fluid
without body forces. An Eulerian coordinate system is employed with
the origin located at the position where the free jet is assumed to
begin its formation, i.e., beyond the region of influence of the liner
collapse process.

The basic equations are:

1. Continuity:

13 .
s an+ePao, ¢}
2. Radial Momentum:
2 2
v v Vy_ ap vV . lav vV 37V)
"(at VE‘?*“KZ)“T"“(_Z"rar z* 2)’ 2
ar by 9z
3. Axial Momentum:
2 2
du du 3u p, f3u _13u_ 23u), (3)
p(—+V—+u-—)--- < +-—-~+—->
ot or 0z 9z arf T 9r az2
4. Energy:

Neglecting radiation heat flux, allowing for internal heat
generation, and where

oo (@7 (O ) e ]

2
3V Vv Ju ,
+A[ar+?+a—i]
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the energy equation becomes

2 2
De _ o, 29, (3%, Lot a%m
pnt“”"at*k(ar2+rar*azz)' (4)

The nomenclature is standard. Basically V represents the radial
velocity, u the axial velocity, and r, z are the radial and axial co-
ordinates, respectively. The internal heat generation per unit volume
is denoted by Q, u is the dynamic viscosity of the media encompassing
the jet, i.e., the air in the case of a free jet, or the target in the ‘
case of jet-target interactions (i.e., penetration). Alternately, this

viscosity could be interpreted to represent the viscosity of the metallic

jet resulting from the velocity gradient within the jet., This inter-

pretation follows from the analysis of the viscous forces acting along

the free surface of the metallic jeta. Also, A = - %-u by Stokes

hypothesis, p is the density, T is the temperature, “p is the pressure,
e is the internal energy and k is the thermal conductivity. The energy
equation contains temperature dependent terms since energy dissipation
due to heat conduction was included in the general energy equation (4).

Finally, two state equations are required to interrelate the four
thermodynamic variables e, P, p and T, e.g.,

e=¢e(p, T) (5)

and P

P(p, T). (6)

The system of six equations invoives six unknowns namely, V, u, P,
p, e and T. For incompressible flow, with p a known constant, one state
equation can be eliminated. Also, if the heat conduction terms are
ignored in the energy equation, one state equation may be eliminated.
In fact, for incompressible flow as assumed in Equations (1) through
(4), the energy equation and both state equations are decoupled from the
continuity and momentum equations. In this case, the continuity equa-
tion and the two momentum equations may be solved for the three unknowns 3
V, u, and P, for a known p.

IIT. NORMALIZED EQUATIONS - NEWTONIAN FLUID

Next, the basic equations will be normalized and an order of
magnitude analysis will be performed. The characteristic dimensions
will be:

L = characteristic length = length of continuous jet, prior ‘3,
to breakup, for application to 4
shaped charge jets.




E . umax = characteristic velocity = u, = jet tip velocity for
E application to shaped charge
jets.

t. = characteristic time = L/“max'
: ! Now, R_is taken to be the maximum radial dimension, for example, the
. jet raaius {or the maximum hole radius when shaped charge jet penetra-

-1 : tion into a target is considered). The equations derived by the order
; of magnitude analysis are applicable to the free jet region, exclusive
of the liner collapse process.

It is assumed that:

R

.%.<< 1, or the maximum radial dimension is much less than the

continuous jet length;
r T .-
t-<< 1or T = r 1s assumed small, or for ordering purposes,

. RET<<1andT=0(R), i.e., R ic the "ordering symbol" and is assumed
i to be small;

%=E=ouh
and define
.YV —_u _ P - . :
.. ~ Ve, u=zs-~— P= , and t = t/t _, where u_ is the jet
L u u 2 c o
3 . o o Py,

tip (or maximum) velocity.

Using these characteristic dimensions, the continuity, momentum, and
energy equations in nondimensional form become:

lianHao, N
r 3r 32
W V. —aV_ 3P 1 (oW 1 V . 3 1
—rV—ru s - Tl m o T ) (8)
at ar 3z ar €\ar rdr T 9z .
3
MW, =AU . —du s 1 (5% 1.4 %
3 3%-+ V-%é + u-%é = - _:% == ":%’ , (9) :
1 T 27 5z " \ar¢ T or 9z
p L uo

where Re = = Reynolds number,
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u? ot
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vhere, e = e/uo ,
qQ=Q/p = EJ%T = internal heat generation per unit
mass,
€ = specif.c heat at constant pressure,
_T-T,
8= =%t
’I‘i = initial jet temperature,

and AT = T, - T;, where T  is the total temperature of the jet, and AT
2
may be taken to be 7%" analogous to Schlichtingl!?,

The following nondimensional groups can be identified:

u 1 _ .
5L - = Rg = inverse Reynolds number,
kAT _ 1 1 1
o Lu 3 Re E Pr
0
C AT . . . L
=5 = E = Eckert number, which is related to the frictional
L heat and the heat due to compression,

and Pr = Prandtl number = %; .

logghlichtin?, H., Boundary Layer Theory, 8th Edition, McGraw-Hill, 1968,
anter XIT.

10 Q



At this point, the conduction heat transfer term can be dropped
from the energy equation since the shaped charge jet forms and develops
in a matter of a few hundred microseconds, at most. Thus, sufficient
time is not available to conduct (or radiate) heat in or out of the jet,

The final form of the energy equation becomes

3t ar oz Re a7
- —_ 2 — -2 —
+Y—_+(§_2_ $+(§%+-§{l—_) -%(-a-_‘é a1
T 9z 9z 3r or
7 au\? q
+_+_11) £l
T 9z at

IV. ORDEP OF MAGNITUDE ANALYSIS - NEWTONIAN FLUID

The nondimensional equations are ordered as follows:

z = 0(1)
T = 0(R), where R is small,
u = 0(1)
t=o(l) .
W du : . . .
Assume Of{ — )~ O {~— 1]}, or the radial and axial veluctity gradients
or 9z

are of the same order of magnitude, as implied by the coatinuity
equation. Therefore, the continuity equation is of order one. The
radial momentum equation becomes

0(R) O(R) 0(R)
Y,y , gk 22

3t 3T 3z T

(12)

xS,



Fdhiands bk O Rk bt B S
I

‘.

327

where the order of each term is given above it. Thus, — is

9z

negligible, and for the viscous terms to be included the Reynolds number

is assumed large, or ﬁ% = O(Rz). Thus,

- —_ - - 2 - =
y_—+72_—‘f_+ﬁig--ag+k—le- é:‘zi-réivz-:v_-z— (13)
ot ar 39z or Ir rir T

where the pressure gradient has not been assigned an order of magnitude,
but each remaining term in the equation is of order R.
The axial momentum equation becomes,

1 1
01 0(1 0(1 0(=) O 0Q1
M om o Cp 0Gp oW

- - - - . - 2.—
DV Beake B (e 2 )
ot ar 9z 9z ar T 3r 92
2%
where~f:5 can be neglected, and each term in the equation is then of
9z

order one, except for the pressure gradient which has not been considered.

From the radial momentum equation, EE is assumed of order O(R) or the
ar
pressure: gradient across the jet is of order Rz. Thus, the pressure
gradient across the jet is small and since the flow velocity outside the
jet is nearly zero, especially if the jet-atmosphere interaction is neg-
lected. The 3?; term is also small.
az

For the energy equation, further assume e = 0(1), and q = 0(1), or
there exists no a priori reason to suppose that the internal energy or
internal heat generation terms are neg11g1b1e Then the energy
equation becomes:

0(1) 0(1) o(l) o1y o(1y oM
_B_-ei_ 4--\7-8—-(E +E£=_1_[2-g(§_v.)2+z+(§§)2$
’T o 9z "° v/ 7 \oz
o® o) o) o) 0(1)  0(D) (15)

loo .= \2 o o .=\2 -
(Loz) gL Lomyly A
3z T ar T 9z at

12

Wor <2 (o
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or

= = = =\2 = ]
3¢,vi,gle,. Lfu)  1l3g 5
= = = Re \,7 E T

ot ot 3z at ]

4

assuming E = 0(1), and neglecting terms of order less than one. '
The final equations, returning to dimensional form, become 4

%‘f% (V) + %% = 0; 0(1), (16)
2
and |

The first and third equations are of order one. The second equation, the
radial momentwn equation, is of order R. The energy equation is of order
one, but is not required because of the incompressible flow assumption.
Since the pressure gradient terms have been previously argued to be
small, the first and third equations suffice for the determination of

V and u.

The final order of magnitude equations are equivalent to the
Prandtl Boundary Layer equations in cylindrical coordinates and for
transient flow. These equations are parabolic. The original Mavier-
Stokes equations are elliptic. An Eulerian formulation has been
employed.

The final equations account for:

1. Two-dimensionality (axis-symmetry),

2. Transient effects, and

3. Viscous effects.
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However, an ideal Newtonian incompressible fluid is assumed. This
assumption is in contrast to that of Riney!!, where a compressible, but
inviscid flow was assumed. Following the one-dimensional analysis of
DiPersio-Simon-Merendino?; incompressible flow is assumed, but the C 4
second order terms in the Navier-Stokes equations, i.e., the viscous -
terms are retained. The viscous terms are retained for two reasons: -
E they represent dominant or high order terms in the governing equations; . .
= | and these terms can be modified (by removing the Newtonian fluid assump-
s tion and Stokes hypothesis) to allow visco-plastic stress models to be
considered. Also viscous effects are important in the penetration

é- process.
i i Note that if steady state, inviscid, one-dimensional flow is
. assumed the governing momentum equations reduce to
i Lal 1
4 2 dz p dz
3
1 or
! 2

u P
—— — S
5 5 const,

halAD At B L

which is Bernoulli's equation, which was utilized for one dimensional
jet studiesls»2,3,

it

T P

Also note that the so-called pressure gradient term can be modified :
by assuming that the stress tensor can be divided into three parts. -
First, the static strength of the jet is extracted from the stress :
1 tensor and designated as o. The remainder of the stress tensor term is
3 divided into the pressure term and the deviatoric stress term, which is
3 then modeled as a Newtonian fluid. Thus, the axial momentum equation
1 becomes
- 2 i
E PB:-?—P.-?—O-... g——'u—.;..l.'_gil- ‘
i P Dt 3z "2z T ¥ 5 2 rar)’ 2
3 T
3 or
5 Dy, apre) , (3%, 1w
T 9z H - Tr /]’

Ll Atnate

URriney, T. D., "Numerical Evaluation of Hypervelocity Impact Phenomena," o
! appearing in High Veloeity Impcet Phenomena, Chapter V, Edited by .
R. Kinglow, Academic Press, 1970, P

I ' 14




Thus, the normal stress consists of the hydrostatic pressure plus the
static strength of the material. Again assuming a one-dimensional,
steady steady, inviscid flow,

[} P -
7dz Y Ta@ ° 0,
or

% p u2 + 0+ P= constént.

This equation is identical to the Bernoulli equation modified to in-
clude strength effects as given by Eichelberger?, Using this formulation,
the governing equations can be written as

13 (xV) u _
T or 3z ° 0, (19)
2
v 3V Vv 1 3p’ 3°V 19V Vv
=F Vs tugo= - =o= 4V + 3o - =), (20)
ot ar 9z p 3T (arZ r Jr r2>
and
2
du Ju au 1 3p' 3u . 1 8u
ETAE T T PR <3r2 YT r) ’ @

where v = u/p and P' =P +o.

When v is assumed known, there are three equations in the three unknowns
V. u and P', The first and third equations are of dominant order.

The derivation of those equations assumcd that the Reynolds number
is large. For hyperyelocity flow through air, this is a valid assump-
tion, Appendix A investigates this assumption for jet-target inter-
action, where the ta»get inaterial represents the penetrating medis or
where the jet viscosity is used in the free jet formulation.

V. BASIC EQUATIONS - VISCO-PLASTIC MATERIAL

For a visco-plastic material the basic equations are:

] au
S'IT(TV)""Q';=0, (22)

|-

15
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oV Vv Vv 112 ]
°(5‘€*"if*“ﬁ)’;['a?<”n)*s;(”zr)]» (23) —
o(r o )
.a.g il.l- -a-‘-'l :-1- .a_ —Z}_
P (at + v ar T Y az) T [ar (r Urz) * 9z ] ‘ (24)

This system has two unknowns in three equations. However, Equation (23)
is not a dominant order equation, as will be shown.

Now from Cristescul?, for a visco-plastic material,

v
[+] =2n*ﬁ,

%" 3™ 37
3V . du
992 % %2r = ™3z °* 5?) » and

where for the jet material,
n is the viscosity coefficient,
n+ = variable viscosity coefficient, and
k = yield stress in pure shear,
V1. NORMALIZED AND ORDERED EQUATIONS - VISCO-PLASTIC
MATERIAL

Now for V= V/uo, u = u/uo,

T = r/L,

120nigtesou, N., Dynamie Plasticity, Wiley and Sons, N.Y., 1967,
Chapter X.
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pu, 1
2 pu_L 3
e . 0 i!
L e
’ 4 the normalized continuity and momentum equations become:
F‘ Continuity: ‘
3 R A - SR 163 :
: T 3r dz ]
| Axial Momentum: ?

| ) ;

, - - =\ T 1

: N,yN, g, i%(-a—_iz")l*r k Re 173 3
r at or 8z 3z N 2 1737 35 \2 STV 3
f 3z 3z or ) i
é
- /2
] & au 1 WV 2%y 1
: - = = T T o2 =12 Sl 1
3 2 32 (ﬂ) +_1_<av+_ag> +(§_1_x_> ar  ar 2z i
- 13 2\s7 o7 ¥r
o ]
o : 7 — 2= 2= - 2= :
9 : 9z ar / \az az dr 9z 8z
; 1

17
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N

3 ‘ RN R X Re
: Re \or 57 o72 —\2 2 2\ 1/*
| 5 (av) +%(g\_1+au> +(39_)

| _k (_a_V_ ,au)_orors \az ar/\ar 3z of 9z _ 9T 0%
= 3/2
. 2/2 \8z ar §z>2+_1_ﬂ+3“ 2 57 \2
ar 2\sz  oF 3z
?
: o =\ —
+ _1 -a—: + -?-g 1 + k Re —172 .
T Re \32 aT = - — -

The first term in brackets represents a;z ; the second term in

30
hrackets represents __a_:_z_ ; and the third terms represents _;-'_z. .

Next, an order of magnitude analysis will be applied. The
continuity equation is of order one. The axial momentum equation is of

order one and becomes

(for X = 0(1) and Re = 0 (-17)),
R

18
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Ha e s s et

- —_ - 2--
By E,gE 2ok () T
ot 5T 82 € a2 u
3T
= 3u 1 323W 1 2% kK Re
"k": 2 — T!'E__—-Z 1 + —
3z f[au 9z or or u
— o -—
ar T
aV 22V 3V o am 9V  au d%u 3% 3%
[Pt - St -t - 3t - —=
_Eg_g 9r Jar 9z Ir or ar 23z ar or 32 3r 92
ar au
aT

+ -l—__ _a_g 1+ X Ee and after the order of magnitude
Re r 2r su

ar

analysis and algebraic grouping of the terms, the right hand side of the
above equation becomes

0(1) o(1) 0(1/R)

2— —_ —

. 1 27y 1w, K
0 + Re 3_2 + ) = - + =
r r Re 3T T

Thus, the dominant terms of the right hand side of the axial
f o
ar

J
momentum equation is governed by the % 2" terms and not the

90
22

3z

or normal stress terms. Thus,

19
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retaining terms of order one and higher, or

3u su Ju
°(at*"'a?*“ﬁ)-

or

13 (r c'rz)
T

For X = O(R), all terms in the final axial momentum equatio.n are of
order one. If K = 0(R?)

W, yom, zou 1 az_g}ui
3t ar ar T oor

or the axial momentum equation for visco-plastic flow for k = 0(R2),
j.e., small, reduces to that of a Newtonian fluid, except the viscosity
term in the Reynolds numbers may differ between the Newtonian fluid and
the visco-plastic modei unless the viscous effects in the Newtonian
fluid model are assumed to result from the viscosity of the metallic jet
due to the velocity gradient within the jet and the resuiting shear
stress within the jet. Also, the Reynolds numbers defined by the two
models are identical for the penetration process when the viscosity of
the target is the pertinent parameter.

The radial momentum equation is:

e R ] R CENR I
at ar 92z pu r Ir Ir 0z
and for Re = 0(1/R%) and X = O(R), with
g - —
rr _ _ 2 3V 1+ k_Re
2 TReor 2 2 2 |172]
pu by r Re or o o — -
° ALY . a (e 5) (2
5T 57 oT )
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X2 = Rl_ea—“— 1+ T('Ee k ariz , and the radial
az 9z9r au o
ar ar
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using the continuity equation.

For k = O(R%),

- - - - e 2— P -
N, vV .35 3!:% l.@%\«!_z_,ﬂ_;l =RL iAZL-l |,
ot ar 3z C|rar T or €lst T oz

Thus, the continuity and momentum equations for a visco-plastic madel
reduce to the equations for a Newtonian fluid for sm&ll values of the
normalized yield stress in pure shear, i.e., k = 0(R"), where the
Reynolds number may differ between the two models, as discussed earlier.

VII. DISCUSSION OF EQUATIONS

The governing equations formulated for the Newtonian fluid model
and for the visco-plastic model have been simplified by assuming
incompressible flow, axisymmetric flow, and by retaining only dominant
order terms. However, the final equations are still nonlinear and
analytical solutions, even approximate solutions, are not readily
apparent.

Nevertheless, the governing equations for the Newtonian fluid are
equivalent to the transient boundary layer equations. The boundary
layer equations have been treated extensively in the literature. How-
ever, the boundary and initial conditions differ, of course, between
shaped charge jets and houndary layer flow. For steady state conditions,
the equations can be solved by similarity transformations for generalized
boundary conditions. Steady state solutions however, may not realisti-
cally describe the true jet behavior.

The visco-plastic model governing equations are similar to the

Newtonian fluid model except thatan additional term kK (for k = O[R))is b
present. T b

If a one dimensional, transient flow is assumed and the normal stress
terms are retained, a somewhat simpler set of equations results.
Chou and Carleone“’!3 are investigating the solution of the one dimensicnal
transient, inviscid, incompressible equations using a strain hardening
model for the normal (axial) stress. Their equations employ a
Lagrangian coordinate system.

13Chou, P. C. and J. Carleone, "The Stability and Breakup of Shaped
Charge Jete," Submitted to Third International Symposium on Ballistics,
Karlerue, Germany, March 1977.
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VIII. CONCLUSIONS

Governing equations have been developed for an Eulerian, axi-
symmetric, incompressible flow. The stress tensor was modeled both as
a Newtonian fluid and as a visco-plastic material,

The visco-plastic material governing equations were shown to relax
to the Newtonian fluid equations when the yi~ld stress in shear was
assumed very small. However, the Reynolds numbers defined in the two
models are not necessarily identical.

For both models appropriate nondimensional groups were defined and
the dominant terms were determined by an order of magnitude analysis.
Other models of the stress tensor can be analyzed by a similar order of
magnitude analysis as long as the stress tensor can be expressed as
functions of the velocities or velocity gradients, (or displacements).

The assumption of incompressible flow is extremely important. This
assumption decouples the continuity and momentum equations from the
energy and state equations., The energy equation given for the Mewtonian
fluid, incompressible flow model involves an internal heat generation
term. Terms of this nature (frictional heat) are not included in the
energy equations formulated for the hydrocodes. This term will include
the jet temperature and may infiluence the balance between the kinetic
energy and the internal energy.
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APPENDIX A
THE JET REYNOLDS NUMBER
E The derivation of the final momentum and energy equations requires
E' that the Reynolds number be relatively large to allow the inclusion of 3
E the viscous terms in the final order-of-magnitude equations. This 3
o ) assumption is now investigated. 3
! E
;i : The Reynolds number is given by ;
p uy L E
P Re = 9 : :
e K E
%\3 a representative jet tip velocity may range from 3 - 9mm/usec, 3
X 3
: a representative jet length (measured from the virtual orgin) may
- range from 100 to 600mm, ;
- :
L a reEresentative kinematic viscosity, u/p can range from 0.25 to %
! 5.58,9,1% pm2/usec for most jet or target metals of interest. E
A L
. ; Thus, the Reynolds number may range from 102 to 10°. Usually a Reynolds E
2 number greater than 103 should suffice for a large Reynolds number .
g assumption. E
3 3
1
s
: z
£ E
]
- 4
] : :
4 é
g i
] %
;
3 E
] 1
: 1
3 14p, Harlow and W. Pracht, "Formation and Penetration of High-Speed ;
- Collapse Jets," Physics of Fluids, Vol. 9, No. 10, October 1966. 3
3 :
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