AD=A051 934 UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES DEPT OF==ETC F/6 9/2
MICROCOMPUTER EVALUATION.(U)
JAN 78 P B HANSEN: C HAYDEN NUOOI“-TT-C-D?I“

MLASSIFIED

| or

ADAO0S51934

MICROCOMPUTER EVALUATION

_COpY®

PER BRINCH HANSEN
- AND CHARLES HAYDEN

FILE

JANUARY 1978

00C

P ATEMENT X
ved for Dubhc fble

/2“&8.“1«\“
Distrib

ase; |
o dRIGHAC |

2 Computer Science Department
University of Southern California

£

SECURITY CLASSIFICATION OF THIS PAGE (When Dato Erered)

REPORT DOCURENTATION F/.GE

READ INSTRUCTIONS
BEFO: . COMPLETING FORM

V. REPCRY NUMBGER 12. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

5. TIFLE (and Subtitle)

.

("\

MICROCOMPUTER EVALUATION, |

Technical

6. PERFORMING ORG. REPORT NUMBER

7o AL Lk
]

/ Offer Brinch/Hansen # |

)
14-77-C-g714f e

Charles/ Hayden / /S

University of Southern California
Los Angeles, California 90007

9. PERFORMING ORGANIZATION NAME AND ADDRESS [/ ¢ 10. ::giI;AzOERLKE»JE:JTT.N?:‘OBJESS'I'. TASK
p . S ———
;- Computer Science Depastrrrent -

(AR CONTRQLLING OFFICE NAME AND ADDRESS
Office of Naval Research

Arlington, Virginia 22217

/|

43 + 10

. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)

15. SECURITY CLASS. (of thie report)

Unclassified

DECL ASSIFICATION/ DOWNGRADING
SCHEDULE,
Not applicable

15a,

DISTRIBUTION STATEMENT (of this Report)

Unlimited

. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse sido if necessary and Identily by block number)

process switching time

microcomputer evaluation, instruction sets, Concurrent Pascal interpreter,

ZOJBST RACT (Continue on reveree side il necesesary and ldentily by block number)

the report describes the most frequent virtual ins

microprocessors.

This report evaluates the ability of 16 -bit microcomputers to implement a
subset of the programming language Concurrent Pascal.

mentation; the second part evaluates the process switching time of various

The first part of
tructions and their imple-

\ AN

DD,

FOHM
JAN 7

EDITION OF | NOV €515 OBSOLETE
S/N 0102-014-6601

) 1473

SECURITY CLASSIFICATION GF THIS PAGE (When Dare

MICROCOMPUTER EVALUATION-

Per Brinch Hansen and Charles Hayden

Computer Science Department
University of Southern California
Los Angeles, California 90007

January 1978

Summary

This report evaluates the ability of 16 -bit microcomputers to implement a subset
of the programming language Concurrent Pascal. The first part of the report de-
scribes the most frequent virtual instructions and their implementation; the

second part evaluates the process switching time of various microprocessors.

BISTRIB: 7imst 200t s o
Disi. — '\:"""' ARHTY poes

_SPTiL

Per Brinch Hansen and Charles Hayden

Computer Science Department
University of Southern California

Los Angeles, California 90007

December 1977

Summary

This report defines a precise method for comparing microcomputer
instruction sets. Each microcomputer 1is judged by its ability to
interpret the virtual code generated by the Concurrent Pascal compiler.
The standard of comparison is the Concurrent Pascal interpreter for the
PDP 11/45 minicomputer. This report identifies the most frequent
virtual instructions and their implementation on the PDP 11/45 computer.

It then evaluates the speed and size of interpreters implemented on

vario*s 16-bit microcomputers.

2 v r“"‘%;;__ 5

v cod g

:

pr
4
.
&

Contents

1. Introduction

2. Virtual Machine

3. PDP 11/45 Interpreter

4, Implementation Constraints
5. GA 16/110 Microcomputer
6. LSI 11 Microcomputer

7. NOVA Microcomputer

8. PACE Microcomputer

9. CA LSI 4/10 Microcomputer
10. TI 9900 Microcomputer

11. Performance Comparison

Acknowledgment

References

14
16
21
22
28
34
39
43

T Sp—

1. INTRODUCTION

A new research project at USC seeks to develop a programming
methodology and machine architecture for concurrent programming on
microprocessor networks with distributed storage. The starting point of
this project 1is the programming language Concurrent Pascal implemented

on the PDP 11/45 minicomputer [Brinch Hansen, 197T7a].

The initial aim of the project is to evaluate existing
microcomputers and select one of them for a uniprocessor system with a
display terminal and a floppy disk. This microcomputer system will be
able to execute concurrent programs written in a subset of Concurrent

Pascal [Brinch Hansen, 1977b].

The Concurrent Pascal subset includes
processes, monitors, classes
routines, statements, expressions
enumerations, arrays, records, queues
terminal and disk input/output
It does not include reals and sets and cannot execute sequential Pascal

programs.

A concurrent program will be compiled on a PDP 11/45 minicomputer
and transferred to a microcomputer via a floppy disk. The compiled code

consists of virtual instructions that will be executed by a machine
program called the interpreter. Such an interpreter already exists in

the PDP 11/45.

o i st i v

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 2
INTRODUCTION

Our initial goal is to compare the instruction sets, input/output

facilities, and prices of existing microcomputer systems. This report

|
H

~£; concentrates on the first of these aspects: the efficiency of the
i;; instruction sets.

'%i Our primary goal 1is to use a microprocessor to implement an
ﬂ i abstract 1language for concurrent programming. Although the final
.; language chosen may differ from Concurrent Pascal in details it is
g likely to have many things in common with it (among them processes,

E procedures, arrays, records, and enumeration types). The code generated

L g should therefore be quite similar to that of Concurrent Pascal.

It is therefore reasonable to use the Concurrent Pascal interpreter

! for the PDP 11/45 as a precise standard of comparison for the
instruction sets. This report identifies the most frequent virtual
instructions and the machine code that interprets them on the PDP 11/45

computer.

The report also defines the machine code needed to interpret the
same virtual instructions on various microcomputers. This is used to
estimate the absolute size and speeds of Concurrent Pascal interpreters

for these microcomputers.

Since our aim is to develop new microcomputer technology that will
E simplify language implementation for non-trivial applications we will

ignore 8-bit microprocessors and concentrate on 16-bit processors.

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 3
VIRTUAL MACHINE

2. VIRTUAL MACHINE

Since the virtual machine spends most of 1its time executing

sequential statements within a process we will only describe the

sequential aspects of the virtual machine here. The virtual machine for

Concurrent Pascal is described in more detail elsewhere [Brinch Hansen,

1977a].

In a microcomputer network each processor should perform a
reasonably simple task that does not require too much storage. We will
therefore assume that a virtual instruction potentially can address the

entire store of a single processor. Each processor can access its own

store only.

In a uniprocessor system the store is divided into segments of

fixed length

interpreter

- Jvirtual code

process segment

process segment

The lengths of the virtual code and the process segments are determined
by the compiler. This is possible because a Concurrent Pascal program

consists of a fixed number of processes without recursive procedures.

Each process segment is organized as a stack that grows from high

towards low addresses. The storage of procedure parameters and

variables in the stack is shown below.

&
®)

5, B e, SRR

-

MICROCOMPUTER EVALUATION: INSTRUCTION SETS y
VIRTUAL MACHINE

temporaries

variables

dynamic link

parameters

The store consists of 16-bit words divided into 2 bytes each. Words are
addressed by even byte indices. An enumeration type (or an address) is
represented by a single word in the stack. Arrays and records are
represented by one or more words. A text string consists of an even

number of bytes.

A dynamic link of 5 words defines the state of the process prior to
a procedure call. The parameters and variables are addressed by
positive and negative even displacements relative to the dynamic 1link.
Temporary addresses computed in the stack are absolute within the whole

store.

A concurrent program can only access variables that are either
local to a procedure or global to a class, monitor, or process.

Procedures cannot be nested.

A concurrent program is compiled into a single segment of virtual
code. Each virtual instruction consists of an operation code followed
by zero or more arguments. The operation codes and their arguments each
occupy one word. The virtual code refers to program labels and stack

variables by relative addresses only.

The Solo operating system for the PDP 11/45 computer is a typical

example of a non-trivial Concurrent Pascal program [Brinch Hansen,

MICROCOMPUTER EVALUATION: INSTRUCTION SETS v 2)
VIRTUAL MACHINE

1977al. A dynamic analysis of the virtual code executed by the Solo
system shows that 9 kinds of virtual instructions account for 71 per

cent of all instructions executed.

virtual dynamic execution weighted code
instruction frequency time time piece
(%) (usec) (usec) (words)
OURANGUESIAS: 1) B0 v doke -0 TN L L ARk, e sl
index 7 19 13 12
pushaddress 13 8 1.0 3
pushconstant 9 6 0.5 2
equalword 5 10 0.5 6
copyword 5 s 0.4 2
copybyte 4 7 0.3 2
enter 1 22 0.2 10
exit 1 15 0.2 8
"""""""""" R RS TR T R I R

- - - ——— - —————— - —————— - —————————

The execution time of a particular virtual instruction weighted by its
frequency of execution defines the contribution of that instruction to
the average instruction time. Since 71 per cent of all instructions

contribute 6.7 wusec the average instruction time on the PDP 11/45 is

6.7/0.71 = 9.5 usec.

The total length of the selected code pieces 1is 49 words. The

whole interpreter is about 1000 words long on the PDP 11/45.

We will choose these virtual instructions as being representative

of the 50 virtual instructions or so needed to implement the Concurrent

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 6
VIRTUAL MACHINE

Pascal subset. This will be our basis for evaluating the speed and size

virtual instruction.

bﬁ of interpreters on other machines.

<

if% 3. PDP 11/45 INTERPRETER

E%

;?E In implementing the Concurrent Pascal subset, we will ignore the
“% address mapping of the PDP 11/45 computer and view it as a 16-bit
% é ! machine that can address a store of 64 K bytes (or 32 K words). Words
&E; are addressed by even (byte) addresses [Digital, 1975].

E - The machine has 8 word registers that are used as follows by the
; ! interpreter

é e W, X, y scratch registers used during the interpretation of a single

¢ s the address of the stack top.
b, g the base address of the current local and global variables.
L q the virtual program counter.
: P the real program counter.
The virtual program counter q points to the next virtual instruction (or

one of its arguments). The real program counter p points to the machine

code that interprets the virtual instruction.

T

The interpreter code will be defined in Pascal-like notation so

that each 1line corresponds to one machine instruction. The store and
the registers are declared as follows:
var byte: array [integer] of integer;

W, X, Y, b, 8, a, s, p: integer;

MICROCOMPUTER EVALUATION: INSTRUCTION SETS
PDP 11/45 INTERPRETER
Most of the time, however, we will refer to the store as an array of

words.

Among other things the store contains the virtusl instructions.
Consider, for example, the virtual instruction that pushes an
enumeration constant on the stack. This 1instruction consists of two
words representing the operation pushconstant and a constant value.
When this instruction is executed the virtual instruction counter g

points at the constant value:

pushconstant

q —>=

Since the stack grows towards low addresses the interpreter first
decrements the stack top s by one word (2 bytes) and copies the constant
value from the virtual ccde to the stack. It then increments the
virtual program counter q by one word (2 bytes) to make it point at the
next operation code. All this is done by a single machine instruction

wnich can be defined as follows

8 :- 2; word(s) := word(q); q :+ 2;

(An assignment such as s :- 2 is a short-hand for s := s - 2)

The interpreter contains a code piece for each virtual instruction.

An operation table defines the starting addresses of the code pieces.

o

b . -

AV

-

-

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 8
PDP 11/45 INTERPRETER

operation table

code piece

.....

code piece

The operation codes are used as indices in the operation table to locate
the corresponding code pieces. When one code piece has been executed

the next piece is located as follows:

virtual code operation table code piece

g—=operation code code address eiole el

The virtual program counter g points to the next operation code which in
turn 1is the absolute address of an entry in the operation table. The
selected entry in the operation table contains the address of the

corresponding code piece that will perform the operation.

So the next code piece 1is 1located by a doubly-indirect jump
instruction
p := word(word(q)); q :+ 2;
Each code piece ends with such a jump to the next code piece. This
single instruction 1is the only overhead of code interpretation on the
PDP 11/45 computer. This efficient form of code interpretation is

called threaded code [Bell, 1973].

The purpose of the operation table is to enable the compiler to

generate fixed operation codes that are independent of any modifications

to the code pieces. The only requirement is that the table must start

PDP 11/45 INTERPRETER

at a fixed absolute address.

below:

pushconstant(value):

next;

code that interprets 1it. Each

instruction.

variable to
address on the stack:

pushaddress(displ):

word(s) :+ word(q);
next;

When this code piece is

The general notation used to define a code

It defines the name and arguments of the

The virtual instruction pushaddress

the local base address b and pushes the resulting absolute

S 2= 25 word(syr 3= b}

i+ 25

executed the
points to 1its argument (the displacement).
because the jump to the next code piece increments q as soon as it hnas

used the operation code as a table index.

The instruction pushvariable computes the absolute address of an

enumeration variable and pushes the value of the variable on the stack:

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 9

piece 1is illustrated

s := 2; word(s) := word(q); q :+ 2;

virtual instruction and the

line corresponds to one machine

The instruction next is the indirect jump defined earlier.

The rest of the selected code pieces are defined below.

adds the displacement of a

virtual instruction counter

q 9

This is a general rule 3

f_g
E £
B4

.

S

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 10
PDP 11/45 INTERPRETER

pushvariable(displ):

W 3= b

w :+ word(q); q :+ 2;

s 1= 2; word(s) := word(w);

next;

The instruction copyword assigns the value stored in the top of “the

stack to the enumeration variable whose address_;§”storea’bélow the top
of the stack. The address and the value of the variable are popped from
the stack:

copyword:

word(word(s + 2)) := word(s); s :+ 4;

next;

The instruction copybyte assigns the rightmost byte stored in the
top of the stack to the byte variable whose address is stored below the
top of the stack. The address and the value of the variable are then
popped from the stack:

copybyte:

byte(word(s + 2)) := byte(s); s :+ U;

next;
This instruction is included because the processing of text strings is a
fairly frequent case that 1is awkward to handle on some 16-bit

microprocessors.

The instruction equalword compares two words in the top of the
stack and replaces them with a boolean value (1 or 0) defining whether

or not they are equal:

e o c—

SV e et e

i et

-~

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 1
PDP 11/45 INTERPRETER

equalword:

W o= 0

word(s) compare word(s + 2); s :+ 2;

if equal then

W i+ 1

word(s) := w;

next
The comparison instruction sets a condition register which can be tested
only (but not stored directly). The testing is done by a skip
instruction followed by an increment instruction. This 1is described

here by an if statement of two lines.

The index instruction assumes that the stack already contains the

absolute address of an array variable and the value of an index into the
array. The instruction checks that the index i is within a fixed range
(min < i < max) and replaces the array address @A and the index i by the
address of the array element A(i) computed as follows:

@A(i) = @A + (i - min) * length (where length is the number of bytes

per array element):

Ei} MICROCOMPUTER EVALUATION: INSTRUCTION SETS 12
! PDP 11/45 INTERPRETER
!

uiﬁ index(min, max-min, length):
} X := word(s); s :+ 2;
fi; X :- word(q); q :+ 2;
:Ef if less then
F:%{ goto rangeerror;
ﬁzi ‘ x compare word(q); q :+ 2; 4
ii§‘ if greater then
f‘ goto rangeerror;
?% x :* word(q); q :+ 2;
! word(s) :+ x;
: Y next;

Enter is the first instruction executed within a procedure. TG
assumes that the stack already contains the parameters and return

aldress (old q) of the call

s old q

parameters

DR

The instruction allocates stack space for the dynamic 1link and the

variables of the procedure call

e o — - ~ A

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 13
PDP 11/45 INTERPRETER

‘ s T
variables varlength
b—#lline no A
old s I
old b
old g poplength
old q
parameters 1
3 J

enter(notused, poplength, lineno, varlength):

8 = 2; word(s) := g;

3 %= 25 word(s) := bj;

word(s) := s;
word(s) :+ word(q); q :+ 2;

8 - 2;'word(s) := word(q); q :+ 2; :

o
1]
192]

S

word(q); aq :+ 2
next;

The unused argument is irrelevant in the Concurrent Pascal subset. :

, Exit is the last instruction executed within a procedure. 1t
J removes the local variables, the dynamic link, and the parameters of the
procedure call from the stack and reestablishes the previous values of

the registers from the dynamic link:

b §

W AN = AP

J MICROCOMPUTER EVALUATION: INSTRUCTION SETS 14
| PDP 11/45 INTERPRETER

i exit:

I 22y g O A GRS Ll o
Yor

o o

N g < b
8 e 2
W = word(s)s 8 i1+ 2%

b := word(s); s :+ 2;

g = word(s): s :+ 2%

| g v= wordls)y s 1+ 24

4

w
1]

W3

3 A

PO

-~

4. IMPLEMENTATION CONSTRAINTS

Since Concurrent Pascal originally was implemented on the PDP 11/45
the wvirtual code 1is somewhat biased by the general features of that

machine (although it does not reflect any of its details).

In evaluating other machines it therefore makes sense to give the
implementor some freedom to modify the virtual code slightly to use
these machines efficiently. There are, however, very good reasons for
limiting this freedom. Since the long-term goal of this project is to
1 invent simpler computer architectures an obsession with the

peculiarities of existing machines would only distract us from that
goal. Furthermore, it is essential to wuse the existing Concurrent

Pascal compiler witn as few changes as possible to limit the initial

) effort.

tgtonp ol -8

g Y

¥

73:#?%?*

L s

)

T, et o

MICROCOMPUTER EVALUATION: INSTRUCTION SETS
IMPLEMENTATION CONSTRAINTS

With these conflicting goals in mind we have established the
following constraints on the implementation of interpreters

microcomputers:

The following will ggi change from one machine to another

The word lengfh (16 bits)
The format and size of the virtual instructions
The format and size of variables
The structure and direction of the stack
The following may be changed:
The operation codes (as long as they are fixed)
The encoding of byte addresses in the virtual code and the stack
The table, registers, and machine code used to implement the
interpreter.
The changes must only require modifications to the 1last pass of the

compiler.

£

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 16
GA 16/110 MICROCOMPUTER

5. GA 16/110 MICROCOMPUTER

5.1 Machine Properties

The General Automation 16/110 and 16/220 computers are single board
LSI microcomputers. The machines are similar and will be treated
together. There are 7 registers: 3 accumulators, 3 index registers, and
a base register. There are two separate sets of registers, but only one
set is accessible at a time, so this feature will be ignored. In
absolute addressing mode the first 32 words of memory can be accessed.
Indirect addressing and indexing may be used with this mode. In based
mode an offset in the range 0 to 31 may be added to the contents of the
base register to determine the address. This too may be used with
indirect and indexed addressing. Some instructions allow program
counter relative addressing, and others allow immediate operands.
Addresses are usually word addresses. They are either 15 or 16 bits in
length, depending on a bit in the machine state. Two machine
instructions wuse byte addresses, in which the least significant address
bit is used to select a byte and the rest is used as a word address.

The byte addressing within a word is the opposite of the PDP 11s.

5.2 Interpreter Implementation

All displacements and 1increments will be in words. Addresses

stored 1in the stack will generally be word addresses, except that the

address of a character within a string is a byte address.

b ki

3

-

& MICROCOMPUTER EVALUATION: INSTRUCTION SETS 17
GA 167110 MICROCOMPUTER

s
o 7

T

| The Concurrent Pascal machine registers will be allocated as

5: follows:

;} X, Y accumulators

%f S, W index registers

;f b, g low memory (locations 0 to 31)
: q base register

The transfer operation next uses the technique of treaded code.

o 5 o “HED!

Each virtual instruction contains an absolute address in the operation

.-

. ' table. The next operation is
x:=word(word(q));
q:+15

p:=X;

This sequence takes 8.2 usec.

The following describes the code pieces for the nine most frequent

virtual instructions.

pushconstant(value):
x:=word(q);

word(s):=x;
next;

pushaddress(displ):
x:=word(q); ;
q:+1; |
y:=b; ’
X4y
s:=-1;
word(s):=x;
next;

S——— - U ST S

&l MICROCOMPUTER EVALUATION: INSTRUCTION SETS 18
3 GA 16/110 MICROCOMPUTER

s pushvariable(displ):
J x:=word(q);

B qi+l;

ﬁ wiz=bj}

4 Wi+X;

B x:=word(w);

= S

N word(s):=x;

next;

copyword:
i=word(s);
41
:1=word(s);
1+
word(w):=x;
next;

NS
0w X

o \

5 , The exclusive or instruction in the following code piece changes a PDP
11 byte index to a GA 16/110 byte index.

copybyte:

:=word(s);

HES

:=word(s);

HE S

¢ Xor 143
byte(w):=right(x);
next;

TwEwX

The if statement in the following code piece 1is a conditional jump

instruction. The compare instruction sets indicators for the test.

‘equalword:

w:=0;
x:=word(s);
si+1;

x compare word(s);

® 4if equal then
wi+l; 3
word(s):=w; 3
next;

%ﬁ ' MICROCOMPUTER EVALUATION: INSTRUCTION SETS 19

b GA 16/110 MICROCOMPUTER

E}. In the next code piece, the length parameter is the length in words

?ﬁ except for character arrays. In this case it is zero and a byte address }

A is computed.

N index(min,max-min,length):

:=word(s);

t+1;

:=word(q);

I

HED & 7

if x < 0 then goto err; .
compare word(q);

greater then goto err;

1

<0 X 0 <

<
-

i
-.l

: g

2 i
if x = 0 then goto A;
! N

yiuX;

goto Bj;
A: w:¥2;
B: yi4W;

word(s):=y;

next;
errs goLo rangeerror;

.0 X .0

T

enter(notused, poplength,lineno,varlength):
qs+1;
s:=1;
X:1=8;
word(s):=x;
si=1;
Xx:=b;
word(s):=x;
S:i=1;
x:=word(q);
q:+1;
X:+S;
word(s):=x;
=1y
x:=word(q);

' x:=word(q);
| q:+i;

S:i-X;
5 : next;

e —

SRR .

. MICROCOMPUTER EVALUATION: INSTRUCTION SETS 20
i GA 16/110 MICROCOMPUTER

exit:

. Ww:=b;
s:=word(w+1);
§ x:=word(w+2);
; S=%s

g x:=word(w+3);
§ giox:
q:=word(w+h);
next;

P

5.3 Performance

The execution times and space requirements are summarized below.

virtual execution weighted size
instruction time time (words)
X b F RN S N
pushvariable 26.2 6.8 10
! index 48.2 3.4 22
pushaddress 23.6 31 9
pushconstant 18.9 1506 T
equalword 26.6 13 10
copyword 2105 ke 8
copybyte 24.6 1.0)
enter 60.7 .6 23
exit 27,2 -3 10
G e v L N S B S R T R W G AT

Average instruction time: 27.2 usec.

e e c—

9 L

. G"

¥ o

MICROCOMPUTER EVALUATION: INSTRUCTLON SETS 21
LSI 11 MICROCOMPUTER

6. LSI 11 MICROCOMPUTER

The LSI 11 is a microcomputer version of the PDP 11 minicomputer.
It wuses the same basic instructions as the PDP 11/45. The differences
do not affect the code pieces of the interpreter. Thus only the speeds

of the machines differ. The execution times and space requirements are

summarized below.

virtual execution weighted size

instruction time time (words)
(usec) (usec)

pushvariable 242 6.3 4

index 77.4 5.4 12

pushaddress 22.0 2.9 3

pushconstant 13.6 12 2

equalword 29.8 15 6

copyword 130 <6 2

copybyte 10320 5 2

enter 54.6 5 10

exit 39.9 4 38

R GEE B G e S e

Average instruction time: 27.2 usec.

7

o

e vt

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 22
NOVA MICROCOMPUTER

7. NOVA MICROCOMPUTER

7.1 Machine Properties ;

«

Tne NOVA computer family is a raqge of 16 bit processors, including
a single chip microprocessor. All %xecute the same basic instruction
set. The machine has 4 registers, 2 of which may be wused as index
registers. Arithmetic <can only be done between register pairs. The

stack operations PUSH and POP are included in the instruction set, but

the stack grows in the opposite direction from the Concurrent Pascal

stack and is therefore is not used for ©o©ur purposes. The addressing
modes of interest are direct and based. In the direct mode the
instruction can directly access a word with memory address 0-255. In

based mode an offset in the range -123 to 127 is added to the contents
of one of the index registers to determine the memory address. Indirect
addressing may be specified 1in addition to each of these modes.

Auto-increment 1locations, memory words 16-23, are incremented

automatically after serving as indirect addresses. All addresses are 15

bit word addresses.

7.2 Interpreter Implementation

All displacements and increments will be in words. A variable
address stored 1in the stack is usually an absolute word address. The
only exception is the address of a character within a string. This is a
byte address which will be interpreted by one of the instructions

pushbyte or copybyte.

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 23
NOVA MICROCOMPUTER

The Concurrent Pascal registers will be allocated as follows:
X ¥ registers
W, Z index registers
s, b, g low memory (below 255)

q auto-increment memory (16-23)

The transfer operation next uses a modified form of threaded code.

Each code piece finishes by jumping to the next virtual instruction,
which jumps to the next code piece. An operation table in low memory
contains the absolute address of all code pieces. So the next operation
is

p:=q; Qq:+1;
and the virtual instruction is

p:=word(addr)
where addr is a fixed address in the operation table. The whole

sequence takes about 9 usec.

The following describes the code pieces for the nine most frequent

virtual instructions.

pushconstant(value):
x:=word(q); q:+1;
Sie=y
word(s):=x;
next ;

it ol il i

MICROCOMPUTER EVALUATION: INSTRUCTION SETS
NOVA MICROCOMPUTER

pushaddress(displ):
x:z=word(q); q:+1;
y:i=b;

word(s):zy;
next;

pushvariable(displ):
x:=word(q); q:+1;
wWi=hs
Wi+X;
x:=word(w);
S:=3
word(s):=x;
next;

copyword:
Xx:=word(s);
s:+1;
w:=word(s);
S+l
word(w):=x;
next;

The ¢ register used in the following code piece is a one
The if statements are conditional skip instructions.

#177400 is a byte mask and is stored in low memory.

copybyte:
x:=word(s);
s:+1;
y:=word(s);
s:+1;
weo=y div 27 es= y mod 2;
y:=word(w);
if ‘e = 1 then

swap bytes in y;
z:=#17T7T400;
y: and z;
yi+X;
if ¢ = 1 then

swap bytes in y;
word(w):=zy;
next;

An octal constant

|
|
|
i

-~

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 25
NOVA MICROCOMPUTER

equalword:

wiz0;
x:=word(s);
si+1;
y:=word(s);
if x = y then

wi+l;

word(s):=w;

In the following code piece the length argument is the length in words.
For character strings the length will be zero. A byte address is formed
by concatenating a low order bit to the word address.

index(min,max-min,length):
y:=word(s);
s:+1;
x:=word(q); q:+1;
yi-X;
if y < 0 then
goto rangeerror;
:=word(q); q:+1;
f y > w then

W
i .
goto rangeerror; |

w:=word(s);

x:=word(q); q:+1;

1if x = 0 then
Wwi¥2; |

Xf x » 1 then /|
¥ %%

Yi4Ww;

word(s):=zy;

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 26
NOVA MICROCOMPUTER

enter(notused, poplength,lineno,varlength):

Qi
si=1; |
> X:=g; 4,
24 word(s):=x; |
Bt s:=1;
% x::b; '
Y word(s):=x;
Jfﬂ = sa=l:
;Kf Xi=s;
Y y:=word(q); q:+1; :
, X:14Y;
= | word(s):=x;
S:=13

x:=word(q); q:+1;
word(s):=x;
X128}
bis=x:
,‘q y:=word(q); q:+1;
: i Xi=Yy;
; Si=X;
next;
y ;

SRERG.

exit:

rd(w+1);

rd(w+2);

* ee 00 e ee

O we O we O e

rd(w+3);
rd(w+4);

s o T ol b T A i s i 2 Rt

SO XM XoXKUu XL

M os o
TR LI X I XEXIO

e O

o LI L TR N T I T [1

7.3 Performance

S OATENCT CORPAOSRNITE S v

The execution times and space requirements are summarized below.

e ststrir . AN B -

MICROCOMPUTER EVALUATION: INSTRUCTION SETS
NOVA MICROCOMPUTER

virtual execution weighted

instruction time time
(usec) (usec)

pushvariable

index¥

pushaddress

pushconstant

equalword

copyword

copybyte

enter

#Time given is for character string access.

Average instruction time: 33.2 usec.

Lk e e ra, m———— T ISR

size
(words)

Others require 96.3 usec.

o

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 28
PACE MICROCOMPUTER

8. PACE MICROCOMPUTER

8.1 Machine Properties

The National Semiconductor PACE is a single chip 16 bit
microprocessor. It has 4 accumulators, two of which may also be used as
index registers. There are five addressing modes of interest. Direct
addressing allows any word in low memory (addresses 0 to 255) to be
accessed. Direct indexed addressing forms the effective address by
adding a displacement 1in the range -128 to 127 to an index register.
Indirect addressing can be used with these modes to give indirect and
indirect indexed addressing. If indirect addressing is used, the source
or destination register must be accumulator 0. Some instructions allow
program counter relative instructions (jumps), and others provide
immediate 8 bit operands. The PACE includes stack instructions but the
stack holds a maximum of 10 elements and thus does not satisfy our

requirements. All addressing is by word.

8.2 Interpreter Implementation

All displacements and increments will be by words. A variable
address stored in the stack is wusually a word address. The only

exception is the address of a character within a string. This is a byte

address which will pe interpreted by pushbyte and copybyte.

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 29
o PACE MICROCOMPUTER]
:? 3
,}f The Concurrent Pascal machine registers will be allocated as
k:' follows:
S‘
g X register 0
; y register 1
3 ;‘ W, S registers 2 and 3, which are index registers
']
® b, g, q low memory ;
A ﬁ The transfer operation next jumps from the end of a code piece to
L
' the next virtual instruction, which jumps to the next code piece. The q
' E register is incremented as the first operation of each code piece. So
i the next operation consists of the steps:
X P:=q; S
) E
p:=word(addr);
and Q1
Here addr is a fixed address in the operation table, which is stored in 1
low memory. °~ The whole sequence, which will be written simply next,
takes 10.5 usec.
The following describes the code pieces for the nine most frequent
virtual instructions.
i i pushconstant(value):
! s:=1;
x:=word(q);
q:+1;
word(s):=x;
next;

e ——

———— - e

%7

ks

-

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 30
PACE MICROCOMPUTER

pushaddress(displ):
x:=word(q);
q:+1;
X:i+b;
s:i=1;
word(s):=x;
next;

pushvariable(displ):
x:=word(q);
q:+1;
X:i+b;
s:=~1;
wWizX;
x:=zword(w);
word(s):=x;
next;

copyword:
:=word(s);
t+1;
:zword(s);
)
word(w):=x;
next;

w0 x

The following code piece uses a one bit register c, which can be tested
by a conditional branch instruction. The octal constant #177600 is used
as a mask.

copybyte:
y:=word(s);
S:+1;
w:=word(s);
Si+1;
Ww: div 2; c:= w mod 2;
:zword(w);

if ¢ = 1 then goto A;
x: and #177600;
yi+X;
goto Bj;

A swap bytes in x;
x: and #177600
yi+X;
swap bytes in y;

B: word(w):z=y;
next;

R OO 0

B
|

Iy

> S

B A oo

_.
i

I

el
 ABbe g, 4

o

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 31
PACE MICROCOMPUTER

Thne following code piece uses exclusive or (xor) to test for equality
since subtraction is not available.

equalword:
wi=1;
y:=word(s);
)
¥ s=word(s);
X Xor v;
1f x <> 0 then

w:=0;

word(s):=w;
next;

In the following code piece a comment notes the lack of a multiplication
instruction. Multiplication must be done by software.

index(min,max-min,length):
:=word(s);

T

:=word(q);

t+1,

L==X3

4V

if < 0 then goto err;

X X0 XK

Vi=x;
x:=word(q);
qisl;
Xiz==X}
X4y
if x > 0 then goto err;
w:=word(s);
x:=word(q);
qa+l;:
if x = 0 then goto A;
" multiply y:%¥x
goto Bj;
A: W eI
B: Wi+y;

word(s):=w;
next;
err: goto rangeerror;

MICROCOMPUTER EVALUATION:

PACE MICROCOMPUTER

INSTRUCTION SETS

enter(notused, poplength,lineno,varlength):

q:+1;
s:=1;

32

X:i=g;

N word(s):=x;
Sie=1
X::=b3
word(s):=x;
s:=1;
x:=word(q);
q:+1;

i X:+S;
word(s):=x;
Sii~1¢
x:=zword(q);
q:+1;
word(s):=x;
b =s;
w:=word(q);
q:+1;
Xiz==X;
S:+X;
next;

Ut 304

e vk

G b i~

o

ol o

: exit:
w:=zb;
s:zword(w+1);
x:=word(w+2);
bys =06
x:z=word(w+3);
gi=x;
x:zword(w+4);
qQ:=x;
next;

8.3 Performance

The execution times and space requirements are summarized below.

Ty e

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 33 i
PACE MICROCOMPUTER

¥
s
gﬁo virtual execution weighted size
Lin instruction time time (words)
F2y (usec) (usec)
; pushvariable 3356 83T 9
¥ index* 80.5 5.6 24
s\'
& pushaddress 28.0 3.6 T
o pushconstant 25.2 23 6
» .
: equalword 34.3 e T 10
é copyword 25.9 1.3 T
4 _ copybyte 51.1 2.0 17
enter 81.9 «8 23
%)
1 exit 32.9) 10
26.3 113

* Time and space for multiplication not included.

Average instruction time: 37.0 usec.

-y st ol

i

. K,

AR o P

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 34
CA LSI 4/10 MICROCOMPUTER

9. CA LST 4/10 MICROCOMPUTER

9.1 Machine Properties

The Computer Automation LSI 4/10 computer is a single board LSI
microprocessor. It has 2 accumulators and 2 index registers. There are
four relevant addressing modes. Short absolute addressing accesses a
word in memory locations 0 to 63. To this may be added the contents of
one or bothk index registers. Long absolute addressing allows any
address to be selected, modified by one or both index registers. Long
addressing mode requires two word instructions. Some instructions are

available in 1long or short form only. Short indirect addressing finds

the memory address in 1low memory (locations 0 to 63). Relative
addressing 1is wused for program counter relative jump instructions.
Addresses are either (1) fifteen bit word addresses; (2) sixteen bit
word addresses; or (3) sixteen bit byte addresses. Two bits in the
machine state determine the addressing currently in effect. Byte
addressing within a word is opposite of the PDP 11. This machine has a
stack, but there are no instructions for pushing or popping individual

items, so it is unsuitable for our purposes and is not used.

9.2 Interpreter Implementation

All displacements and increments will be words. The machine state
will normally specify word addressing. A variable stored in the stack
is normally a word address except when it refers to a character in a !

string, 1in which case it is a byte address. The pushbyte and copybyte i

R i Seaiie I8

MICROCOMPUTER EVALUATION: INSTRUCTION SETS
CA LSI 4/10 MICROCOMPUTER

instructions temporarily change the state to byte addressing.

Concurrent Pascal registers are allocated as follows:

X, ¥y accumulators

S, W index registers

b, g, q low memory
The transfer operator next uses the technique of threaded
operation is

w:=word(word(q));

q:+1;

p:=w;

This sequence takes 19.7 usec.

35

code. The

The following describes the code pieces for the nine most frequent

virtual instructions.

pushconstant(value):
x:=word(q);
q:+1;
s:=-1;
word(s):=x;
next;

pushaddress(displ):
x:=word(q);
qi+ts
X:+b;
si=1;
word(s):=x;
next;

S,

press
8.

i

e b —

MICROCOMPUTER EVALUATION:
CA LSI 4/10 MICROCOMPUTER

pushvariable(displ):
w:z=word(q);
q:+1;
Wi+b;
x:zword(w);
Sit=1;
word(s):=x;
next;

copyword:

x:=word(s);
S+l
Ww:=word(s);
s:+1;
word(w):=x;
next;

The exclusive or instruction
change a LSI 4/10 byte index

copybyte:
x:=word(s);
o
w:=word(s);
s:+1;
W xor 1;
change to byte mode;
byte(w):=right(x);
change to word mode;
next;

The if statement in the following

instruction.

equalword:
y:=0;
Xx:=word(s);
si+1;

yi+1;
word(s):=zy;
next;

INSTRUCTION SETS

in the following code

into a PDP 11 byte index.

code piece 1is a

36
piece 1is wused to
conditional jump

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 37
CA LSI 4/10 MICROCOMPUTER

¥
o index(min,max-min,length):
k- y:=word(s);
g: S:+1;
31 y:-word(a);
q:+l;
if y < 0 then ggoto err;
' x:=word(q);
5 gi+l;

o e

: goto B;

! K3 y:*¥word(q)+x;

E ¢ B: q:+1;
word(s):=y;
next;

err: goto rangeerror;

“ -
o wty,

enter(notused, poplength,lineno,varlength):

word(s):=x;
s:=1;
x:=word(q);
q:+1;
X:+S;
word(s):=x;
Si=1;
x:=word(q);
q:+1;
word(s):=x;
bizs;
s:-word(q);
q:+1;
next;

WEe IR gy

7 a5

vim

&

MICROCOMPUTER EVALUATION:
CA LSI 4/10 MICROCOMPUTER

exit:

w:=b;

s:=word(w+1);
:=word(w+2);
12X
:=word(w+3);

:=word(w+4);

HED
ext;

9.3 Performance

X
b
X
g::sX;
X
q
n

INSTRUCTION SETS

38

The execution times and space requirements are summarized below.

weighted
time
(usec)

size
(words)

- - ——— = - — - —— - - ————

virtual execution
instruction time
(usec)
pushvariable 46.1
index 106.9
pushaddress 42.4
pushconstant 38.6
equalword 46.0
copyword 39.6
copybyte 57.8
enter 116.2
exit 51.9

12.0
T+5
5.5
3.5
2.3

- ——————————— - ——— - ———— - ———— -

Average instruction time:

51.8 usec.

g
: i
3

Sikam s,

&

.:."L £_i

i

"I

MICROCOMPUTER EVALUATION: INSTRUCTION SETS 39
TI 9900 MICROCOMPUTER

10. TI 9900 MICROCOMPUTER

10.1 Machine Properties

The Texas Instruments 9900 microcomputer is a single chip
microprocessor compatible with a family of minicomputers. The machine
has 16 general purpose registers, which are implemented in main memory.
A workspace pointer contains the address of the register block. The
register mode specifies that the operand is in a register. The register
indirect mode specifies that the address is in a register. Register
indirect auto-increment mode specifies that the address in in a
register, and that the register is to be incremented after it is used.
Some instructions use other modes, such as program counter relative
jumps. Addresses are byte addresses, and each instruction specifies

whether it operates on byte or word data.

10.2 Interpreter Implementation

The Concurrent Pascal registers are all allocated in general
registers. Addressing is identical to that on the PDP 11. The transfer
operator next implements threaded code, as on the PDP 11. The operation
table may be 1located anywhere in memory, and the virtual instructions

contain absolute address of entries in this table. The next operation

is:

x:=word(q)

; qi+2;
p:=word(x);

This takes approximately 17 usec.

MICROCOMPUTER EVALUATION: INSTRUCTION SETS
TI 9900 MICROCOMPUTER

The following describes the code pieces

virtual instructions.

pushconstant(value):
Si=2;
word(s):=word(q); q:+2;
next ;

pushaddress(displ):
x:=word(q); q:+2;
s:-2;
X:+b;
word(s):=x;
next ;

pushvariable(displ):
:=word(q); q:+2;
X:+b;
S:-2;
word(s):=word(x);
next;

copyword:
x:=word(s); s:+2;
y:i=word(s); s:+2;
word(y):=x;
next;

copybyte:
x:=word(s); s:+2;
y:=word(s); s:+2;
byte(y):=right(x);
next ;

The if statement in the following

instruction.

code

piece

is

a

conditional

40

for the nine most frequent

skip

o s

MICROCOMPUTER EVALUATION: INSTRUCTION SETS
TI 9900 MICROCOMPUTER

equalword:

w:=0;
word(s) compare word(s+2); s:+2;
if x = y then
Wi+l;
word(s):=w;
next;

index(min,max-min,length):
x:=word(s); s:+2;
x:-word(q); q:+2;
if x < 0 then goto err;
x compare word(q); q:+2;
if greater then goto err
x:*word(q); q:+2;
word(s) :+x;
next;

err: goto
rangeerror;

enter(notused, poplength,lineno,varlength):
q:+2;
S:-2;
word(s):=g;
S:-2;
word(s):=b;
8:-2;
word(s):=s;
word(s) :+word(q); q:+2;
8:=2;
word(s):=zword(q); q:+2;
bii=g
s:=word(q); q:+2;
next;

exit:
Si=bi;
S142;
wi:zword(s); s:+2;
b:=word(s); <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>