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INTRODUCTION ﬁ

The effects of turbulent media on propagation of various waveforms have been
studied for many years. These studies have included starlight scintillation,
underwater sound propagation, laser beam propagation and satellite 1ink scintil-
lations. Various theories and techniques have been developed to estimate turbu-
lent effects under various conditions. The emphasis in this report is on
satellit e signal propagation. Calculational methods, particularly multiple phase
screen algorithms have been developed that handle most cases of interest. However,
no overall picture has been developed that encompasses the set of likely in situ
environments, scale sizes, and other conditions of interest. The closest effort
to date was by Singleton (ref. 1), but this work was quite limited in the cases
studied. This lack has become particularly acute with the growing volume of signal
data from the Defense Nuclear Agency (DNA) wideband satellite st.udies, Air Force
Geophysics Laboratery (AFGL) aircraft studies, etc. This study is designed to
remedy the situation by systematically calculating and presenting in typical data
format signal propagation results that may be encountered. Features arz identi-
fied in the data that allow interpretation of the <n situ environments. Concep-
tually, the information presented should be viewed as "clean data"; i.e..
experimental data without the problems of lack of stationarity., time-spece ambigu-
ities, sampling problems, data sample boundary probler: and cther expcrirental
difficulties that becloud real data. One value of Z.., point of view 's to realize
that features that are marginally detectable here are probably nol use*ul in real
data. Thus, this study defines the type and quali.y of information ihat can be
obtained from signal propagation data.

Section Il discusses the propagation algorithms patticulariv the Rytov method
which is used for insight in interpreting and classifying resu’ts. Section III
contains the data analysis. Section IV summarizes the conclusions.

1. Singleton, D. G., "Saturation and Focusing Effects in Radio-Star and Satellite
Scintillations," J. Atom:. Terr. Phys., Voi 32, 1970.




SECTION 11

PROPAGATION METHODS AND SPECTRAL MODELS

The calculations reported here were done with the multiple phase screen (MPS)
method and the Rytov approximation (RA), These methods are described elsewhere
(refs. 2 end 3) and only necessary extensions to these description are given here.
The RA method calculates the correlation functions of the log amplitude and phase
fluctuations through a turbulent medium. The basic two-dimensional equations are:

d K S K2 .
= — P 2l P - iK p
x{(x) x(x + p) = K? / 5 dz sin [ZK(ZS + 2 z)]¢2 (z.Kp)e pt (1)

d K S K?
o(x) o(x + ¢) = K2/ -ﬁ-‘l/ dz cosz[-z-% (zs + 2g - z)]"’z(z.Kp)eiKpp (2)
-0l o
d K K?
ST XOF 0] = K2 | =P [ oz sinf 5@ (2 4 2 - z)J
- CO o]
(3)

2. MWittwer, L. A., UHF Propagation Effects in Scintillated Environments, AFWL-TR-
76-304, Air Force Weapons Laboratory, Kirtland AFB, New Mexico, 1977.

3. Rino, C. L., Analysis of Scintillation Effects on Communication Systems,
Stanford Research Institute (to be published).
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where

z = coordinate along propagation line-of-sight (1.0S)

A

X = coordinate perpendicular to LOS

z. = turbulent layer thickness

z_ = distance from bottom of layer to receiver where the correlation
functions are measured

K = rf wave number

Assume that there is no variation of the turbulent layer in the third coordinate
and that the fluctuation statistics are isotropic. The medium is represented by

¢2(2.Kp) = / / Ang (z,x) dny (z,e.x + 5Te ' KoPdode (4)

where

Ani = ni - n1

ny = index of refraction
ﬁ; = mean index of refraction

The prime value of the Rytov equations is that they provide a simple, quanti-
tatively accurate estimat e of the onset of phase -nd amplitude fluctuations and
their power spectra. If ¢2( Z,Kp) has no z dependence then the integral over z
can be done analytically, and we have for the log amplitude and phase power spectra

S (Kp) = K;zs 1- 3 &2 -Sin(—KinQ> - sin(l(gl(zs + zg)) QZ(KL) (5)

SX( Kp) == S+ ; ﬁ Lsin (K;Kzs ) - sin (§§ (zs + zg)) ¢2(Kp) (6)
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The expressions in brackets in equaticns 5 through 7 can be looked at as
filters which filter the ¢2( Kp) spectrum to give the different spectra. Figure
1 shaws the first two filter functions for zg = 107 cm, zg = 3 x 107 and K = 0.062.
The phase filter is roughly constant except for some oscillations. The log ampli-

tude filter goes as Kg until

2 1/2
p S
K; = 5,5 K ; X (8)
+ -
(2 2 ° - 2g)
and is approximately constant afteward. This latter behavior can be used to
evaluate measured signal amplitude spectra to determine ¢2( Kp) . Before actual
data can be confidently analyzed, however, the practical 1imits of the preceeding
equations must be known, as well as limitations on assuming

[E(x)| = 1 + x(x) (9)

where |E(x)| is the field amplitude. Equation 9 is not actually necessary, but

most experimentalists measure amplitude and not log amplitude. The calculations

discussed in section IIl amply demonstrate the range of validity of equations 5

through 7 and 9. Now look at ¢, Kp). Assume that the one dimensional index
of refraction power spectral density is

\)+l -2V
(k) = 2 & e Z)vaz
L2 + KZ)
P

(10)

where L is the outer scale size and 2v + 1 is the spectral index. If v = 1/2, we
have the familiar K;z spectra. If the fluctuations are two-dimensional and iso-
tropic, then the two-dimensional power spectral density is
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Figure 1. Amplitude and Phase Filter Functions
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¥ T(v +1) L2V (1)
| 2 2 2 v ;_1
(]/L + Kp + Ke)

sgz)(xp,xs) = 4n!/2

For three-dimensional isotropic fluctuations

Eﬁ{ r (v +3/2) LY

sg’)(xp,xe,Kz) . 81r-( (12)

L2 + K2 + K2 + K2 v
/ p € Z

If the fluctuation statistics are not isotropic, equations 10 through 12 can
be modified by generalizing the quadratic wave number terms. From equations (4)
and 11 it is clear that

% (%) sﬁ’)(Kp. 0) (13)

Thus tz( Kp) is the two-dimensional index of refraction power spectral density with
zero longitudinal wave number. The one dimension correlation function correspond-
ing to equation 10 is

HE S LI
Ar\i (Z,x) Ani (2,x + p) = —-—-"1—;7-—- (f) Q([e) (14)

These formula are useable for v > - 1/2 but some discussion is in order for
v < 0. For this case the one-dimensional power spectral density has infinite
power, and the correlation function is unbounded at p = 0. The phase and log
amplitude spectra, however, are still finite because only the spectrum near the
outer scale contribute to the propagation. Thus, we can still use an infinite
power spectrum in the sense that we are fitting the real in situ sgectrum correctly
near the sizes that determine the propagation. The use of - 1/2 < v < 0 does make
the total mean square fluctuation power ambiguous because not all of it contributes
to the propagation. Here, regard Zﬁf as just an adjustable parameter




‘

A\FWL-TR-77-183

—_ b (X, = 0)
S FE VRS (15)

to determine by fitting to a measured power spectral density.

Other useful two-dimensional power spectral densities are

Chesnut (ref. 4):

sgz)(v.p, k) = an BT en/T (% + k2 )L (16)
Gaussian:
sk, K, )= w12 e (K5 * K )L/ (17)
Cylindrical Rod:
—_— 2\
sgz)(xp, K ) = 4n and L2 JJ(KEME)HL) (18)

useful functions for spectral modeling have been developed by Rino and Sachs (ref.

(K; + K2 )’/2 L

The one-dimensional spectra used in this study are shown in figure 2. Other

5).

Equations 5 and 6 can be used to develop expressions that determine the

onset of amplitude and phase flucturations. This was demonstrated in reference 2
for the power law expression and has since been generalized. The following is

a summary for both guassian and power law spectra.

For

4.

LK?
—_— <]
zs+zg —

Chesnut, W. G., "Spatial-Frequency Analysis of Striated Nuclear Phenomena--
Part 2: A Model of the Striated Checkmate Cloud," Stanford Rsch Institute
(Unpublished)

Rino, C. L. and Sachs, D. L., "Striation Models for High Altitude Nuclear
Propagatior Effects," Stanford Research Institute (to be published).
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Figure 2. Selected One-Dimensional Power Spectra Normalized
to 1 for Kp =0
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;—2—=c(v)(2ne2) An? RS 9) -zfa’] v>1.b (24b)

where
An=n-n
n = electron density
n = mean electron density

C(v) = 0.9 e=¥”** + 0.05
By setting ¢2 = x? = 0,1, these expressions provide an accurate estimate of the
conditions necessary for the development of phase and amplitude fluctuations for
uniform layers.

Reference 2 demonstrates that if the scattering layer is sufficiently thick
then the phase and amplitude distributions are a function of the in situ power
spectral density. This work is expanded to include the phase, amplitude and sig-
nal power spectra. As in this reference, comparisons are made for a particular
in sttu spectrum between calculations made by assuming gaussian distributed fluc-
tuations and by using explicit geometric figures.

The electron density using explicit geometric figures can be written as

n(x.z) =) f, no(ai)F(x,z.xi.zi.a‘) (25)

where

fi = random variable with equally probable values of + 1

= peak on axis electron density

(24

F XsZyX, 024085 ) = geometric function used to construct electron di'stribution

1

fluctuation size

-J

number of striations

=
fl

10
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fi is used to guarantee that n(x,z) is zero mean. The flyctuation size, a5, is
distributed according to P(a). The P(a) and no(a) are chosen to give the correct
in situ power spectral density and An®,

The MPS propagation requires the integrated phase of a plane wave going from
z to z + Az on a mesh where - T < x < T. In two-dimensional calculations

. T+Az
o(x) = 21rmce2 JK'/ n (x,z')d z! (26)

2

For explicit representations, the striations are randomly located. If there
is an average of N/A striations per unit area in the striated region, then each
phase screen will have an average of 2N AzT/A striations contributing. The actual
number N for any given screen is distributed according to the Poisson distribution

2N Az A e.(ZN AzT/A)
N

Py(N) = (27)

To calculate a screen, N is sanpled along with N values of 3, and Xy The phase
screen is

N co
2
¢(X) z gl_:')-ce-i. -‘K- Efi no (ai)f F (x,’..xi gai ) dZ (28)
i=0 -0

The z limits are taken to infinity assuming that if a striation has its center
within the 2TAz area, then all of the phase effects of the striation are included
in the phase screen being generated.

For gaussian distributed fluctuations, the phase screen is described in terms
of a Fourier series.

o(x) = f‘l.- me e! X (29)
M=o

The bm coefficients are independent, zero mean distributed variables with a
variance of

N
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b2 = 2T K2 8z, (F) (30)

.

S it Xk

where ¢, Kp) is the two-dimensional isotropic in situ power spectrum defined
earlier.

Gaussian, K;z, and cylindrical rod power spectral densities are used to illus-
trate the convergence of the second order propagation statistics. The first three
spectra are constructed out of gaussian rods with

F(x,z.xi,zi,ai)-—- e [( X-MZ + (Z'Zi)z]/ﬁ (31)

The distribution functions for a and no(a) are

Pla) = 6(L - 2!/2 a)
gaussian (32)
— 1
2 An? A
n (a) ==
0 ( Nazmn )
\
) %
P(a) 21/ a2 ) 82 91/2
-2
},Kp (33)
- 1/2
; 2 21412
no(a) =’ — ‘/‘ an” A . e'a /4L
g NeLwd/2 (1 - erf (R/ZL))
» J
3 : : )
2 Pa) ==, 2277,
 ” K-? (34)
. 1/2 } P
¥ 0 (a) = _ 4 an? A o-2°/8L?
: 0 m3/? Ng? (1 - erf (Q/ZL)) J

12
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where % is te inner scale size, ¢ (a) is the Dirac delta function, and

* 2
erf (x) = ;,-zﬁf et at (35)
0

The cylindrical rod function is

1/2
F(x.z,x.‘.zi,ai) = 1 ,[(x-xi)z+(z~zi)z] <L (36)

and
p(a) = 6 (L - 2/7 )
cylindrical rod (37)
1/2
2
ngla) = ( . L )
2n N a?
The measure of thickness of a sca.cering layer is the mean free path defined
as
o -]
2 2
MFP = % (2a) (2"z %)e" /A% p(a) da (38)
2/21/2

for distributions where P{a) 48 (L -2V a) and

-1

MFP = {ﬂ;—-'-j-] (39)

for the others.
For a given an?, spectral type, 2., and L, N/A is varied to give the number
of mean free paths desired. The calculations described in section (11 examine

convergence for the second order signal statistics with scattering layers that

are five mean free paths thick.

13
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SECTION III

DATA ANALYSIS

Calculations were run for five in situ spectral types; KB‘, Ksz, K;’, K;s,
and gaussian. Data taken by AFGL* and SRI** (the latter from the DNA Wideband
Satellite) imply the existence of a K;‘ spectrum in polar environments with a
reasonable frequency of occurrence. Goldman (ref. 6) has derived conditions under
which this spectrum might be expected. The K;’ spectrum has been observed in
several ionospheric experiments (refs. 7 through 9)+. This spectrum is considered
the result of the EXB instability (refs. 6, 10 through 12). Recently it has been
shown that K;z can result from the decay of EXE modes into drift medes (ref. 13).
The K;’ spectrum also has been inferred from AFGL and SRI data. This spectrum
has been calculated at NRL (ref. 14) in spread F simulation studies. The KBS and
gaussian spectra were used to examine the propagation effects of single size
spectra, which have not appeared commonly in data.

L In the following, the environments are described by specifying L, Zos zg,K,
An? and the type of tluctuation power spectral density. The propagation LOS is
assumed to travel through the stationary fluctuations at v = 3 x 10* cm/sec.

This velocity is used to transform spatial data to time data. In particular, to
analyze the calculated spectral data, it is convienent to define three frequencies
which correspond to the first Freznel zone size, the flucturation scale size and
the signal scale size, respectively.

fr = 5 |5.5 K > (40)

* Whitney, H., Air Force Geophysics Laboratory, private communication.
** Rino, C. L.,Stanford Research Institute, private communication.
+ Kelley, M, C., Cornell University, private communication.

NOTE: References 6 through 14 are listed at the back of this section.

14
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fo = onl (power law) (41a)
fg = TF!ET (gaussian) (41b)

f, = zi;l?;) - “Vzo. (42)

The Fresnel frequency, fF‘ corresponds approximately to the maximum in the ampli-
tude filter function transformed to frequency space.

There are two classes of fluctuation power spectra as distinguished by the
signal structures they give rise to. The first,called multisize spectra, includes
all the power law spectra for v < 1.5. The name derives from the observation
that the size of fluctuation that dominates the amplitude fluctuations for weak
scatter and f. < fc is determined by the Fresnel zone size and not the fluctuation
scale size. Thus, any size fluctuation can dominate the amplitude effects given

the proper circumstances. The second class, called single size spectra, includes
power law with v < 1.5, gaussian, and exponential power spectral densities. For
these cases the amplitude effects are dominated by a single size fluctuation, the

scale size L.

For future purposes, it is useful to distinguish between weak and strong
scatter cases. Weak scatier is defined as having x* < 0.1 and S, > 0.5 while
strong scatter has y® > 0.1 or §, > 0.5. The definition for weak scatter has
been chosen because as demonstrated by the calculations, the weak scetter region
is where equations 5 through 7 and 9 are applicable.

The interplay of environmantal parameters defines different types of signal
properties for each spectrum. This is demonstrated by the propagation s;-ce
plots in figures 4, 20, 39, 5€ and 72 which were constructed using equations
19 through 24 to define ;; = 0.1 and ¢ = 0.1 curves. In all but the gaussian
plot, zs,zg,K and spectrum typeﬁirg fixed, where An? and L are the varied quanti-
ties. The gaussian case fixed An? but varied Z, with all other variables the same
as the other spectra calculations to examine the z dependence in equation 23.
Each of the propagation space plots has three distinct regions shown schematically
in figure 3.

15
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Figure 3. Propagation Space Plot fo: "eneric Spectrum

3. Region I is characterized by gaussian quadrature evolving to Raleigh
statistics as An® or 2, increases and by fF_g fs' The sets of figures 7 through 9,
42 through 44, 59 through 61 and 75 through 85 show the evolution of the signal
statistics. It is evident from the complex sigral plots, the amplitude distribu-
tions, and the phase distributions that the statistics are approximately gaussian
- quadrature. It is also clear that the distribution plots are not very sensitive
: to in situ spectral type. The different spectra do manifest themselves in the
’ complex signal plots and the spectral densities. Figures 23a and 24a for the
! KBZ spectrum and figures 75a and 76a for the gaussian spectrum clearly show the
relative lack of high frequency fluctuation in the gaussian case. The amplitude
and phase spectra for the weak scatter cases are clearly explained by the Rytov
approximation equations. Figures 23 and 75 are representative of fF < fs where
the peak in the amplitude filter function occurs before the break in ¢, at fS.

16
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The oscillatory behavior of the filter functions is apparent. The amplitude
spectra begin with an approximate 7* behavior to fF and the o, behavior after fF.
For power law spectra with a characteristic well defined break at fs’ the region
between fS and fF will be approximately flat. The phase spectrum for the most
part mirrors ¢, with the phase filter function effects apparent. The Fresnel
frequency is denoted by a deep notch. In some cases, the notch is easier to
identify than the corresponding amplitude spectrum peak.

If fF can be found by examining either the amplitude or phase spectrum
and it is at the low frequency end of the flat portion of the amplitude spectrum,
then fF’ fs and the spectral type are unambiguous!y determined. The location of
fF must be identified becauvse the same spectrum behavior can be generated with a
power law spectrum with v = 1 where fF > fs’ and fF will be at the high frequency
end of the flat portion of the amplitude spectrum.

Even if fF is not obvious from the spectrum, often a good estimate can
be obtained from knowledge of the propagation geometry and interpretation ambigu-
ities can be reduced. Figures 7, 26, 42, 59 and 81 show several weak scatter
spectra where fs N fr. The flat portion of the amplitude spectrum has disappeared
and the spectrum now has a sharp peak. Let us define the difference between the
approximate power law exponent of the amplitude spectrum for f < fs as ay.

For the ¢, spectra considered here, gy 2 5 for these peaked spectra.
This behavior unambiguously defines fs’ fF and the spectral type. These sharp
peaked data have been measured by AFGL.*

For all of the weak scatter cases with fF < fs. the signal power spectrum
is approximately the sum of the amplitude and phase spectra. This is seen by
examining equations 5 through 7 and noting that ¢? ~ E‘z; and x° = Ef.

As Z;; or z¢ increases, the scattering becomes strong. The phase spectrum
becomes ambiguous because of the rapid phase changes during deep fades. The ampli-
tude spectrum now begins to distort in shape where, for weak scatter, it just
increased in magnitude. The changes start at the lowest frequency and then work
unward. The general trend is toward a flat spectrum with a break at fo and with
the ¢, behavier beyond. Figure 27d shows a phenomenon that we will often see in

* Whitney, H., Air Force Geophysics Laboratory, private communication.
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in strong scatter for all types of propagation. There is an apparent second
break in the amplitude spectrum that does not correspond to any characteristic
frequency. This break designates the failure point in frequencv below which the
Rytov equations no longer hold., Thus, equations fail first at small f, and the
point of failure moves to higher frequency in a well-defined way eventually
coinciding reasonably well with fo. Behavior such as in figure 27d has been
observed in data taken by AFGL.*

The complex signal spectrum does not change shape appreciably as An?
increases but the break at fo does move to higher frequency. The spectral shape
after fo tends to follow ¢,. Figures 6, 22, 41, 58 and 74 show plots of S  versus

x? for all of the spectra. The S, is approximately the same monotonic function
of x* regardless of in ettu Spectrum when fo> 1.

b. Region II is characterized by doughnut statistics evolving to Rayleigh
as An? increases and by fS > fF‘ Doughnut statistics are characterized by large
phase fluctuations and small amplitude fluctuations. These statistics are often
seen in the ambient ionosphere and are thought to be characteristic of other
disturbed ionospheres as well. The general behavior in region Il is a function
of whether the in sttu spectrum is multisize or single.

(1) Multisize Spectra. Figures 30, 31, 32 and 33 show a typical
sequence of multisize calculations from the KBZ data. The first two sets of
figures are weak scatter and demonstrate the preponderance of phase effects.
The dominance of phase effects increases with L as demonstrated by comparing
the above figures with figures 34, 35 and 36. The influence of the particular
type of multisize in aitu spectrum is apparent in the complex signal plots seen
in figures 31 and 11 which correspond to environments that are significantly
different only in the in situ spectrum assumed.

Figures 35d and 35e show good weak scatter examples of phase and
amplitude for multisize spectra. The phase spectrum closely maps ¢, except for
the notch at fF which represents the power lost to the amplitude fluctuations.
The amplitude spectrum demonstrates the behavior expected from e<amining the
Rytov equations. There are three distinct spectral regions. The first is for
f < fS and is driven by the f* behavior of the amplitude filter function because

* Whitney, H., Air Force Geophysics Laboratory, private communication.
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¢, is approximately flat. For fS < f«< fF, ¢, « f~3 and the filter function still
goes as f* resulting in an approximate f' behavior. For f > fes the filter func-
tion becomes flat and the amplitude spectrum goes as ¢,, the difference, ay in
the power law exponent for f > fs and f < fs is approximately 4 regardless of

the spectral type. It is clear that the amplitude spectral shape near the peak

is only a function of the spectral type and not L.

Since the total amplitude power is dominated by the spectrum near
the peak, amplitude for multisize spectra can be characterized by the spectral
type and §?. This is an important result. It says that if lines are drawn in
region II parallel with the }T = 0.1 curve, the ampiitude spectrum, power, and
distribution are constant along any of the 1ines. This is very useful in that
a calculation for a given ;7 defines the amplitude effects for all L and an?
with the same ;7 with fF < fs' This means that from amplitude data alone, only
the distance away from the X% = 0.1 line is determinable and not the position
along that line. Thus, only an? L=?V can be determined. If L or an? can be
deduced from the phase or other data, then the ambiguity can be resolved. The
complex signal spectrum for Ef'i 0.1 is prosortional to ¢,. As the propagation
effects increase, the break denoted by fo moves to higher frequency keeping the
¢2 behavior for f > fo‘ These calculations show that both fs and fF are usually
apparent in the weak scatter amplitude and phase spectra as long as the frequency
range is large enough. Past scintillation data have tended to emphasize resolu-
tion at ever higher frequencies. The low frequsncy data are also quite valuable
particularly to find f even when the corresponding wavelengths may be  as large
as the characteristic dimension of the ionosphere. As an? increases, X becomes
larger than 0.1, S, becomes laraer than 0.5, and the propagation signal scatter-
ing becomes strong. The phase spectrum for all in situ spectra becomes dominated
by large rapid phase changes and no longer accurately maps ¢,. The amplitude
spectrum evolves qualitatively as in region I as the scattering becomes strong.
The Rytov equations begin to fail starting at the lower frequencies. The tendency
is for the low frequencies to flatten out to a break at approximately fo and o,
behavior beyond f See figures 30d, 31d, 32d, and 33d. The amplitude statistics
continue to be constant along lines parallel to x° = 0.1 in the strong scatter
region. The complex signal spectrum changes are characterized by the increases
in i, with Tittle change in spectrum. The S, and ;7 increase essentially mono-
torically te limits of 1.0 and 0.46, respectively. The amplitude distributions
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evolve to Rayleigh showing little spectral dependence. In addition, the ampli-
tude distributions always have a smaller population of deep fades than a Rayleigh
distribution (figures 37b, 32b and 53b). This is the source of the statement
that Rayleigh statistics are a worst case for amplitude sensitive systems. The
discussion of single size spectra shows that this is not always true.

For both weak and strong scatter S, is the same well defined, single
valued function of ;? that was found in region I. From the discussion of the
amplitude spectrum, it is apparent why this is true for any given spectral type,
but it is not obvious why the same function works for all multisize spectra and
for all spectra in region I. The most probable cause is that (in the cases
quoted) the majority of amplitude power comes from a narrow spectral range.

(2) Single Size Spectra

The behavior of single size spectra in region II is significantly
different and distinctive from that of the multisize spectra. The complex signal
plots clearly lack the high frequency content of the multisize spectra (fiqures
64a, 65a, 84a and 85a). For weak scatter, the amplitude and phase spectra are
precisely what would be expected from the Rytov equations. The basic difference
from earlier cases is that now ¢, breaks taster than f~* and the amplitude spec-
trum peak is now determined by the scale size and not the Fresnel zone size.
Figures 86 through 90 show a typical sequence of calculations as An? increases
for the gaussian spectrum. Figures 68 through 71 show weak and strong scatter
cases for the K;S spectrum. These figures clearly demonstrate the fulding of the
filter functions with ¢,. In figures 68d, the amplitude spectrum goes as f* for
f<fe, f~2 for fg < f < fp, and f=¢ for f > fe.  The Rytov equations show that
for any v > 1.5 there is some fS < fF for which that portion of the amplitude
spe.trum containing most of the power goes as K;“ ¢, (Kp) independent of fF.

The size of the ratio fF/fs required to make the amplitude spectrum and, hence,
the amplitude statistics independent of fF depends upon how large v is. In the
K;s and the gaussian calculations, we just barely reach the region of fF indepen-
dence as judged by the amplitude spectrum before the numerical limits of the
propagation algorithm are reached. For very small fs compared to fF then, we

see that the amplitude statistics and spectrum are constant on curves parallel

to the ;7 = 0.1 curve. We also see that the S  versus ;? curve becomes invariant
along ;7 = constant and roughly independent of single size speciral type. This
function is different from the corresponding function for multisize spectra and
offers an easy way to partially classify spectra from S  and ;; data (figures
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58 and 74). It must be remembered, however, that fs must be sufficiently small
compared to fF for the two types of spectra to be distinguishable in this manner.

Figures 56 and 72 show the propagation space plots for the K°° and
gaussian spectra, respectively, with S, = 0.5 plotted in addition to the ;? = 0.1
curve. The criterion for weak scatter is now driven by S, alone. The larger §,
for a given ;3 compared to a multisize case is evident from the complex signal
plots. These plots are characterized by a lack of deep fades and large signal
enhancements (figures 65a, 70a, 71a, 88a, 92a, 65b, 70b, 88b and 92b). It is
these enhancements that drive S, preferentially to ;i. The amplitude distribu-
tions also illustrate the presence of large enhancements and low deep fade popu-
lations.

As An? or z, increases and the scattering goes from weak to strong,
the spectra no longer obey the Rytov equations. The phase spectrum becomes domi-
nated by passes near the origin and becomes useless. The amplitude spectrum tend
to distort and change at all frequencies, not just the low frequencies as in the
multisize spectra. A new break appears which is correlated with fo (figures 66d,
71d, 84d, 87d, 89d and 92d). The slope for f > fo tends to a 5.0 to 5.5 power
law for both the gaussian and the K;s spectra.

The intermediate slope has a range of slopes. The most interesting
feature of the strong scatter is that S, becomes significantly greater than one
driven by the large signal enhancements. The peak in the amplitude distribution
moves to deeper fades and soon this case poses a more severe fade threat than
Rayleigh in having more deep fades. Eventually as An? increases, S, peaks, then
goes to 1; and the amplitude distribution goes to Rayleigh. The complex signal
spectrum shows a unique behavior not seen in multiple size spectra. At large
frequencies, the ¢, behavior maintains itself. At the lower frequencies, however,
the spectrum is evolving to a gaussian. Figures 69f and 66f demorstrate this
behavior. Eventually, the complex signal spectrum will be gaussian for all
important frequencies.

Figure 33a shows a compiex signal plot for a KBZ case that has Rayleigh
statistics; figure 85a is a corresponding Rayleigh case for the gaussian spectrum.

Even though both are Rayleigh, the difference in high frequency content is evident.

This is traceable to a K;3 complex signal spectrum in one case and a gaussian in
the ocher, It seems clear that eyeball analysis of signal plots is a useful
technique for differentiating types of spectra.
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c. Region IIl is the 1imiting statistics of the assumed spectra. The
amplitude statistics are Rayleigh. The amplitude spectrum is flat at f < fo and
drops off rapidly above fo‘ The complex signal spectrum evolves to an approxi-
mate gaussian for all cases except for where the asymptotic strony scatter limit
is approximately K;Z. The shapes of these spectra, except perhaps for the K;z,
do not contain much useable information about the environment. The only para-
meter remaining which characterizes both the complex signal and amplitude spec-
tra is & . Figures 5, 21, 40, 57 and 73 show plots of zo/Ll for all the studied
spectra. The L, and L,, are the environment scale sizes perpendicular and paral-
lel, respectively, to the propagation LOS. The plots are similar except for the
K;‘ case.

Figures 93 through 96 show the results comparing the signal statistics
for gaussian distributed fluctuations with those from an explicit representation
of the striations for four different in eitu power spectral densities. The
explicit representation results are represented by dashed histograms on the dis-
tribution plots and circles on the power spectrum plots. Table 6 shows various
other statistical m