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The equations of motion of an aircraft, for small perturbations from flight
with constant linear and zero angular velocities, are developed in detail using:-

constant-velocity or body-fixed axes,
¢ i encastré or free-free modes,
displacement or velocity body freedom coordinates.

The relationship is clearly stated between these various forms; and with other

i . proposed forms, in particular those using mean-body axes. The whole development
: is kept consistent, as far as possible, with the Hopkin notatxon scheme

. (R & M 3562). (/ ZWIQ )
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1 INTRODUCTION

An essential feature of effective research is good communication. For
communication to be successful it has to be unambiguous, and both attractive and
understandable to the 'recipient'. One wonders how much good work has been
largely wasted not because it has not been reported clearly but because those
who could have made good use of it have been deterred by approaches which were

strange to them and which they could not easily relate to their own experience.

Several different groups of aeronautical research scientists have been led
to investigate the dynamics of aircraft taking some account of their flexibility.
These groups include those whose primary concerns are active control, stability,
ride control, structural loads, flutter etc. In this particular field - the
dynamics of deformable aircraft - it has long been recognised that there are
serious communication barriers. In a recent paperI Taylor and Woodcock each
independently sought to provide a clear statement of the fundamentals of this
subject. The present paper is intended as a sequel to that paperl and in
particular to Part II of that paperl.

The objective of this paper is to study in detail various forms of the
equations of motion, for small perturbations from a datum motion, establish the
relationship between them, and, if possible, demonstrate how one can transform

from one form to another.

To study the dynamics of deformable aircraft we need the concepts of datum
motion of the aircraft, and the undeformed state of the aircraft, where through-

out the datum motion the aircraft is in the undeformed state. Departures from

the datum motion are called perturbations. Departures from the undeformed state 3
are called deformations. Consequently we need two frames of reference - a
datum-motion frame of reference and an undeformed-state frame of reference - 1
which are such that, if there are no perturbations the aircraft is at rest rela-
tive to the datummotion frame of reference, and, if there are no deformations

the aircraft is at rest relative to the undeformed-state frame of reference*.

The perturbations comprise therefore (a) the translations and rotations which are
necessary to make the datum-motion frame of reference coincide with the undeformed-

state frame of reference, and (b) the deformations.

* One could of course treat all perturbations in the same way as the deformations,
and use only one frame of reference in their description, but from several
points of view, and in particular consideration of large perturbations, the
above procedure seems to be the most attractive. 1
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We restrict ourselves to Lagrangian methods. Of these there seem to be

three possible types of approach:

(i) The use of Lagrange's equation for an inertial frame which is taken as

the datum—motion frame of reference.

(ii) The use of Lagrange's equation for a non-inertial frame (the undeformed-
state frame of reference) in conjunction with the principles of momentum

equations for the whole aircraft.
(iii) The same as (ii) followed by some coordinate transformation.

With the first approach there is usually little doubt as to which is the most
appropriate choice of axes within the reference frame. The axes, within that
frame, which coincide with a particularly significant set of body-fixed axes,
such as the principal axes of inertia, during the datum motion, would be a

suitable choice.

When the second approach is used there is something to be said for taking
a non-inertial frame whose position etc is of interest in itself. We have there-
fore taken a certain set of body-fixed axes to define the non-~inertial frame.
To do so involves imposing certain minor restrictions on the modes of deforma-
tion. The third approach can be thought of as a way of removing, to all intents
and purposes, these restrictions at the expense of a loss in the significance of

the body-freedom generalised coordinates.

The notation and nomenclature used is consistent, apart from one or two
noted exceptions, with that of Part II of Ref 1, and therefore also, to the same
degree, with that of Hopkin's comprehensive schemez. Attention is drawn to the
Glossary of terms and List of symbols at the end of this paper. We confine our-
selves to dimensional forms of the equations of motion and leave any normalisa-
tion or non-dimensionalisation to the reader. A further paperl6, which is
essentially a particularisation of the present work for the case of symmetric
perturbations in heave, pitch, fore and aft translation, and one deformation mode,

does however also give suggested non-dimensional forms of the equations.
2 DATUM MOTION

We postulate a datum motion, with respect to which the dynamics of a
deformable aircraft are to be investigated. One particular type of datum motion
is considered: straight flight, not necessarily level, with the aircraft having
constant linear velocity and zero angular velocity. It is assumed, as desired,

that no deformation of the aircraft takes place during the datum motion. This
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implies that all the forces acting on the aircraft are constant* and in particu-
lar, therefore, that the atmosphere is uniform. The only forces acting on the
aircraft are assumed to be the aerodynamic and propulsive, gravitational and
structural forces; with the addition, in the case of ground contact, of what we

call upholding (or support) forces.

As a basic frame of reference a constant-velocity axes system is used with
origin at the aircraft centre of gravity in the datum motion and axes parallel to
its principal axes of inertia in the datum motion. They are therefore body-fixed

axes during the datum motion; in fact the axes which Hopkin2

calls datum—~attitude
earth axes. Throughout this paper we will use the term constant-velocity axes
for these particular axes. The subscript f is used to denote values of

quantities during the datum motion.

3 DEGREES OF FREEDOM

The aircraft is assumed to be semi-rigid, ie having a finite number of
degrees of freedom in addition to its six body freedoms. Two representations of
any possible perturbations are used. They are not exactly equivalent but to

first order they agree.

The first, chosen for convenience in derivations using the constant-
velocity axes (alias the datum—attitude earth axes), can be visualised as
follows. The transformation of the aircraft from its datum motion position at
any instant to its perturbed position and shape at the same instant can be

achieved by the following successive steps:

§C) (c) z(<=)

(i) Translations, as a rigid body, x, /, Y, s 2 in the directions

of the respective constant-velocity axes.

(ii) Successive rotations, as a rigid body, V¥, 6, ¢ about the carried
axes** 0z, Oy, Ox where Oxyz are body-fixed axes, with origin at the particle
(reference point) which is coincident with the aircraft centre of gravity during
the datum motion, whose orientation is fixed in a small portion of the aircraft
which includes the reference point, which is either essentially rigid or other-
wise such that the axes will always remain mutually perpendicular. The orienta-
tion of the axes is chosen so that they coincide with the constant-velocity

axes during the datum motion. A frame of reference which coincides with the

* We are assuming also that the aircraft's mass and mass distribution are con-
stant and so neglecting the changes produced by fuel consumption.

*% By carried axes is meant the position of the axes following the previous rota-
tions. It is important to remember that the order of these rotations is not
commutative in general.
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body-fixed axes after this step will be called the no-deformation-body-fixed axes.
The bracketed superscript n is used to denote reference to them. They are, as
will be seen, in general only body-fixed as long as the aircraft is undeformed
from its datum shape. It should be noted that their relevance is limited to this

first representation of the perturbations.

(iii) Deformation such that the position of a particle relative to the

origin of the no-~deformation-body-fixed axes, and referred to those axes is given

by

- - -
< - x ]+ g, M
ys Vg 5
(n)
0 B b S Y

where there are n deformational degrees of freedom represented here by the modal
matrix R whose elements are functions of the particle being considered and are
independent of the datum motion. For a given datum motion R will be a function
of (xf,yf,zf). The function R 1is also constrained to be such that for small

perturbations the body-fixed axes remain mutually at right angles. Writing

R = la;, ... a, (2)
bl L bn
ey ..

the direction cosines of the body-fixed axes, in the Onxnynzn (no-deformation-

body-fixed axes) reference frame, are proportional to

aai 3bi aci
1 # a_xf qi ’ Z(a—xf') qi s Z('a';;) qi ’

0 0 0

z(aai) Z(abi) aci
~ q. ’ l + Cme— q. ' —) q- 9
ayf i ayf A i ayf 1

and 0

0 0

0
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respectively; and so they remain mutually at right angles for small perturbations
provided that

(aa.) db.
i Y SR i (e
oy (3: )
£ il
abi 3ci
(3;;) - = (E) ? for all i . 3)
0 0
B (09
ox 9z
£ £

A more complicated deformational representation than that of equation (1), or
further constraints on the modal matrix R in addition to (3), would be
necessary to ensure that the body-fixed axes remained mutually at right angles

for larger perturbations.

Thus, with this first representation of the perturbation, the position of
a particle relative to the origin of the constant-velocity axes and referred to

those axes is (¢f. Appendix A of Part II of Ref 1)

] = [x(] 4 sT[x ] 0
y ‘(:c) yl(C) y x(1n)
5 ((:c) z](C) " :.n)

where S , a function of the angles ¢, 6, y , is the axes transformation matrix

(or attitude deviation matrix) of Refs 1 and 2. Since

§ & 1= A¢ (5)

where* A¢ = 0 -p 6 (6)
vy 0 -¢
-0 ¢ 0

* Following Refs | and 2 the symbol A 1is used to denote a particular skew—
symmetric matrix formed from the elements of a column matrix whose leading
element is used as a subscript to A .
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equation (4) can be written, for small perturbations

rx((:ci ~ rx; + R I -Axfl-q,‘T ™

Y:C) e :

_zéc: _zf_ _qn+§j

where QUype co0» 9,6 aTe body freedom coordinates:-

=[x
In+2 ’fd
g [
(o] = [¢] - (9
9n+5 g
(fvs| (Y,

However a better approximation, (54), than (7), is required for certain purposes

in the derivation of the equations of motion for small perturbations.

The alternative representation of any perturbations from the datum motion
condition is to define the deformation relative to the body-fixed axes (see
Glossary of terms) such that the position of a particle relative to the reference

point is given by

x| =lx |+ R-Ry+ Afoq) q, (10)
y Ve .
z z, q,

where Ro is the value of R at the reference point, and (ef. equation (2))

Pq = F(acllayf)o (3¢ 2layf)o Ve : (11)
(aallazf)o
(abl/axf)o ...............-J
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Remembering that the elements of R satisfy the condition (3), it is easily seen
that equation (10) always represents a perturbation which is precisely a deforma-
tion relative to the body-fixed axes - the displacement of the body-fixed axes is
zero. The position of a particle relative to the origin of the constant-

velocity axes and referred to those axes is therefore given by

- " ": - [ A
X,EC) . xfc) + 8T R-Ry + Axe? [, ] (12
(c) ~(c) 2
yc yl 1 yf 2 ‘
(¢c) ~(c) g
Z q
e L Sk i

where (ifc),§fc),i(c))

(according to the standard Euler procedure) which transform the constant-velocity

are the translations, and (6.5,@) are the rotations

axes into the body-fixed axes. Thus for small perturbations this second represen-—

tation gives

:zéc)'ﬂ ~ ~x:: * M@ -R, * AxgPy) I —Axf] ’&l' (13)

Yc(:C) It ;

: t(:C)_‘ sz_ §n+6 > |

where —fit“n = —;‘fcﬂ (14)

an+2 §fC)
h?n+%- _?§C)A
et =101 . 15)
an+5 6
u§n+§J -?.J

It will be seen therefore that the two representations agree for small perturba-
tions (equations (7) and (13)) when the relationship between the two sets of

generalised coordinates is




12

= | I 00 q, 2 (16)
Pq g I qn+6

There is however, no relationship between the two sets of generalised coordinates
which will ensure agreement of the two representations when the perturbations are

not small (ie agreement of (4) and (12)).

4 EQUATIONS OF EQUILIBRIUM

The constant-velocity axes (datum—attitude earth axes) are an inertial
frame, since the datum motion has zero angular velocity. Consequently the

equations of motion can be derived from the inertial frame form of Lagrange's

i(aw)_ LA
dt aqi aqi 1

equation:-

(17)

where W is the kinetic energy relative to the frame of reference, and the ai
are the total generalised* forces in the degrees of freedom obtained by the

principle of virtual work. With the freedom specified by equations (4) and (7)
it is easily seen that, for small perturbations, W 1is a quadratic form in the

time derivatives &i of the generalised coordinates. Consequently the existence
of the datum motion requires that each of the total generalised forces* satisfies

the condition

Q) = 0 (18)

as regards their unperturbed values. Now from (7)

* We have referred to the 'total generalised force' since subsequently we describe
the various constituents as 'structural generalised force' etc.

PORRISTES
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and so the virtual work done by a distribution of force vectors (Ef,ff,if)
referred to the constant-velocity axes, acting on the particle whose location is

(xf,yf,zf), is, in the datum state,

[qu cee 6qn+6] (6 1 ) £ - [qu Yl an+6] 2 R
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where (if,ff,if), (if,ﬁf,ﬁf) are respectively the overall forces and moments
produced by the above mentioned distribution of force vectors. 1In flight the
force vector on any particle may include aerodynamic, gravitational, propulsive
and structural constituents. Other constituents such as the magnetic forces may
be present but they are considered to be negligible as regards our present

purpose. Thus the equation (18) can be rewritten as the matrix equation

where the expression in the [ ] is the element in the ith row of the matrix and
the individual terms are respectively the aerodynamic, gravitational, propulsive,
and structural contributions to -(ai)f . Expression for these, derived follow-
ing (22) and with the assumptions of section 3.1 are given in Table 1. The
structural generalised forces in particular merit some comment. The structure
cannot exert any overall force or moment on itself - this is intuitively true and
moreover is demonstrated to be so in Appendix A for the particular case of an

isotropic elastic body. It follows therefore that
(Ei)f = 0 for i =(n+l),...,(n+6) . (24)

With body-fixed axes we can as demonstrated in Part II of Ref 1 derive the
equations of motion using Lagrange's equations referred to a non-inertial frame
in conjunction with equations based on the principle of momentum. These equations

are respectively

v o &
——+J.+G.+i—§a?——-a;‘l- Q. (25)
3&- i 1 dt 3§. 34, i

i i i

where V0 is the centrifugal potential function, W is the kinetic energy
relative to the frame of reference, Gi is the gyrostatic force, Ji is a
certain coupling force between rotational body freedoms and the deformational
freedoms, and the 6i are the generalised forces obtained regarding the frame of

reference as stationary during any virtual displacement (¢f. Ref 1, Part II); and

KB % *
x| = Tom[lu |+ A fvg (26)
Y v v
m m
Z v \

077 -
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where § etc, £ etc, are respectively the resolutes along the body-fixed axes
of the total applied force and torque about the reference point, and u, ete,
are the resolutes of the velocity of the particle at (x,y,z). For perturbations
from our assumed datum motion the angular velocity of the body-fixed axes is
given by (see Part II, Appendix A of Ref 1)

p-Qg,

q

€ » ODr S

r

The perturbed position of a particle will be taken to be given by equation (10)
which satisfies the condition, necessary for the application of equation (25),
that the position of the reference point and the orientation of the body-fixed

axes is independent of the degrees of freedom q (& URc_108) [ SRR ) 18

Since the linear velocity is constant and the angular velocity is zero
during the datum motion it is found (see section 6.3 of Part II of Ref 1) that
all the terms on the left-hand side of equation (25) and on the right-hand sides
of equations (26) and (27) are zero when there are no perturbations. Conse-

quently the datum motion equilibrium conditions are

(ai)f = 0 i=1,...,n (29)

A
Fxf = 0 (30)

Ye
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It is easily shown (c¢f. equation (10)) that

Q| = @ - &y - Pl & (32)
: £
Q) 8

which can be alternatively written as

(31)f - I’le| - B e (33)
: fe Mg
(Qn) 8¢ N,

We can as before express these generalised forces as a sum of aerodynamic,
propulsive, gravitational and structural contributions. Expressions for these are

given in Table 2.

Finally we note that the second form of the datum motion equations (equations
(29), (30) and (31)) is merely the first form (equation (18)) premultiplied by

the matrix

SRR

R, Pq . (34)
0O I 0
o O I

5 APPLIED FORCES

5.1 Assumptions

The primary object of this study is the aircraft in flight well away from
the ground. When the aircraft is flying near the ground certain assumptions in
respect of the form of the aerodynamic forces cannot be made, while when it is
actually in contact with the ground additional upholding (or support) forces have
to be taken into account. These two cases are considered in Appendices B and C
respectively while here we restrict ourselves to situations where there is no
effect at all of the near presence of the earth other than gravity and the fact
that the flight is atmospheric.

5.2 Aerodynamic

The atmosphere is assumed to be uniform, and the aerodynamic forces are
assumed to have no hereditary constituent. Both of these are obvious departures

077
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from the truth. The first will rarely produce much error provided the 'uniform'
3 ; atmosphere has the same properties - density etc -~ as the actual atmosphere at
; some mean altitude of the aircraft's motion. For a perturbation which is a

maintained oscillation the second assumption is in effect eliminated by allowing

: ; the aerodynamic coefficients to be functions of the frequency of the oscillation.

4,5

Moreover Woodcock and Lawrence have shown that a good approximation to any

T

calculated oscillatory motion (decaying, maintained or growing) is obtained pro-

vided the aerodynamics used is for maintained oscillations of the same frequency.

In such cases one assumes a frequency for the aerodynamics, calculates the motion

and then repeats the procedure until the assumed and calculated frequencies are

in sufficient agreement.

The boundary condition to be satisfied by the air motion at the surface of
the aircraft involves the velocity of the surface normal to itself. With the
perturbation representation of equation (10) the slope vector of the body surface,
referred to the body-fixed axes, is a function only of the generalised
coordinates ﬁl, sioioly &n . Also the velocity of a particle, referred to the body-
fixed axes, is (see Ref 1, Part II, section 6.2 and Appendix A)

p— o F‘:- ,.rf-- f-:(c)q.‘
wl = (R - Ro + Afoq) q, |+ S ug| + X,
. *(c)
Vi : 1 Ve ) g
s 2(c)
w q w z
L‘n_| - n- e L E — ! <
-(sa_, 8T + 4 )oz 4:: - A~§ :1(")- (35)
g i(c) x P |
1 o
H y(c)
|
2 %
] zfc)
o L
where the angular velocity vector of the body-fixed axes is
N
Pi = Q; (36)

q
L:

and {x,y,z} is given by equation (10).

€ Dre S0

077




~

$)) , the
b

Thus, for small perturbations (where §~1 - Az, Q3 NI +0
’ ni’)s and

¢
¢

normal wash* will be a function of (&I. otalats an)’ ‘5|' iy an)’ (

w B T
A T¢ + i(c)
ue 1
H ;(c)
1
i e
— - it

Consequently, having assumed no ground and no hereditary effects, the local
aerodynamic force vector, referred to the body-fixed axes, will have the form,

for small perturbations:

~ o™ ~ F'. Lo ] r r-x A -A ¢ :
e e + ej qj *1%41 o Gnis G | * Auf In+g
j’l " a : 2
£ ff fj fn;l DR R ) { qn+2 qn+5 }
g g £ g j gn-;l 5% o o lale sie . qn+3 an+6_ J
. T L
el v et ¥ . (37)
= 2
2 SR oo ] | 900
5 3
fn;'l‘ ooooo e .-J L-qn+6_j

Similarly we find that with the alternative representation of the deforma-
tion the local aerodynamic force vector, referred to the constant-velocity axes,
will have the form, for small perturbations:

* Terms such as downwash, sidewash are commonly used. This is a generalisation
to suit any surface.

077
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L . p— — o pees - - - p— - 9
3 : (cﬂ -\ # % °
t e * 1%l z e] %G *1%h o Calal | || * A %
‘ (c) . 4 L
i ; f ff fj fn+l el 940 DUss
- £
‘ g® 8 8 . s q q
E ] Lo g e el O ST e | n+6) )
= = = - - -
; 3 3 = . . . < 1
L 4 Ae £ Gea| * |%nts €a+5 En+6| | Tn+s ¢ (38)
q 3
945 fn:rl& A O R e 945
: " Lq.n+6 gnla .-..oo.-oj L-qn+6
: E A
- Note that the coefficients ej, e i’ b Wl etc in the above expressions (37)
: and (38) are in general differential operators (polynomials in the differential
3 operator D = d/dt).
] 5.3 Gravitational

One can, for all intents and purposes*, assume the gravitational force

e

acting on a particle of mass dm to be a constant force 6&mg acting in the Z,

direction (vertically downwards) of the normal earth-fixed axesz. The orienta-

o T T S R

tion transformation from these axes to the constant-velocity axes can be

j achieved by a standard Euler sequence of successive rotations ‘I’f, 9f, d>f about
carried axes. Thus if we denote the last column of the axes transformation
matrix S by the symbol & . then the local gravitational force vector

referred to the constant-velocity axes is 6mg94,f where

tg =.] -eing ? (39)

sin Qf cos ef

1 A 1 (TN v
Hh

cos d)f cos 9f

Referred to body-fixed axes the vector components are not constant but have some
terms which depend on the perturbations. Thus we have

e T S

077 * The rate of change of g with location is extremely small almost everywhere.




5.4 Propulsive

A very simple model of the propulsive forces has been assumed. Time no

doubt will tell whether a more sophisticated one is required. It is assumed

that the propulsive force acting on any particular particle has constant compo-
nents (epf’fpf’gpf) in the direction of the body-fixed axes.

Since the modal matrix R (equations (1) and (2)) satisfies the condition
(3), we have

axf 0 f ayf 0 f azf 0

where Pq is given by equation (11); and so, with the deformation of equation (1)

the position of a particle relative to the reference point (the origin of the

body-fixed axes) and referred to the no-deformation-body-fixed axes is, for
(xf,yf,zf) small,
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x(n) g ‘(n) - x(n) = Ix 0 0 1]+ o A eva __n)
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e o i oy, offf? 5
. (n) (n) (n) i
§ z zn zn " 0 0 2 1 (ayf)o A T e
(=)
)y o | }
[ .
% - = Afoq q, . (42) :
g %

Thus, for small perturbations, the orientation transformation from the body-

fixed axes to the no-deformation-body-fixed axes is achieved by the rotations¥*

- Pq q, 6 (43)
In
3 The last term in (42) is the first approximation to (S - I)[:] where S 1is
y

the appropriate transformation matrix (¢f. equation (5)). Consequently the

orientation transformation from the body-fixed axes to the constant-velocity

axes is the result, for small perturbations of the rotation ;
-|¢] - Pq "0i'* = [Pq 0 1Ilf q : (44)
] : <
] 1, 9046

077 * The order is immaterial since the rotations are small.
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We find therefore that the local propulsive force vector, referred to the
constant-velocity axes, has, for the deformation of equation (4), the value

el WY ok
e ~s et | A, [Pq o 1] q, E (45)
pf
(c) .
fp fpf 3
" (e)
gp fpf_ qn+6_

5.5 Structural

On a particle of the aircraft it is assumed there is what we call a
structural force produced by the stresses in the material and possibly also
other causes such as friction. This structural force is taken to be entirely
determined by the current shape of the aircraft. Thus the two forms of the
structural force vector, referred respectively to the constant-velocity axes and

to the body-fixed axes, that we will use are:-

i -
(@] ~ o 7. ¥
es S esf + esl stats esn ql
(c) "
fs fsf fsl o 0 00 00 00 :
g'® g g
LS & Lsf_J L_sl ....‘..._1 .-an
™ s 1] o
~ et )t M1 ©en 0 -A, q, (46)
sf
fsf fsl Ve e e .
gsf gsl Vetivane LI
o - s et
e, =~ el e o el . (47)
f8 fsf fsl vos Ve e .
&g 8t 8gp rereeeed L9,
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The various coefficients in the above expression are taken to be constant.
That is we are assuming there is no structural damping. No really adequate
theory of the damping of aircraft structures has been developed. One either
neglects it and assumes that by doing so one will be 'on the safe side' - and this
seems to be at least nearly always so; or else one includes coefficients in the
final equations based on ground resonance test measurements and primitive theory.
It may well be that for most, if not all, aircraft dynamic studies one or other
of these procedures is adequate. It will be noted that we could here fairly
easily introduce a simple representation of structural damping by replacing the

constant coefficients of equations (46) and (47) by differential operators.

What exactly is meant by the term 'structural force' is perhaps made clearer
by the analysis of Appendix A for an isotropic elastic body. Intuitively one
knows that the structural forces on the aircraft will not produce any overall
force or moment on the whole aircraft (ef. Appendix A), but there may well be

forces tending to deform the aircraft.

It should perhaps be emphasised that the structural force coefficients eci’
ési etc of equations (46) and (47), in addition to the datum motion structural
force, will in general depend on the chosen unperturbed condition (ef equation
(A-13)). Thus, for example, the coefficients for the ground resonance test
situation will be different from those for the atiraft in level flight at a
given speed. Nevertheless one will often have to assume, particularly when
structural force information is obtained from experiments on the ground
(ef. Appendix C), that the structural force coefficients are independent of the
chosen unperturbed condition. In such circumstances there is usually little hope

of doing anything better.

6 DERIVATION OF THE EQUATIONS OF MOTION FOR SMALL PERTURBATIONS

6.1 Equations of motion using constant-velocity axes

With our chosen constant-velocity axes the equations of motion, as already

pointed out in section 4, can be derived using the inertial form of Lagrange's

equation:
d (3w W 2
() % - .

The kinetic energy W , relative to the frame of reference, is, using (7) given

by




T e s AR LSS

W= iZGm[:]l

and so
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= Yém

dael || R T -ad ) q (49)
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A‘Kf ql’l"‘
93
- o b
FRTR R -RTA a A (51) .
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| *¢ Xe e 3 L

Since, during the datum motion, the reference point is the centre of gravity

and the constant-velocity axes are the principal axes of inertia, we have

and

- Jom(ag)® = diag(I I I}

. k

where
>

(52)

= I (53)

n

3 Iz are the principal moments of inertia.

To determine the virtual work, and hence the generalised forces, we need

to take a better approximation, to the expression for the position of a particle,

than that (equation (7)) which sufficed for the unperturbed state.

(4)
E‘(C)—
(o]

(c)
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z(c)

. ol

+ R T -ag g

From equation

+ A¢R q,

=l
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L . It can be shown that, for any vector {E(C)E(")E(")},
B { |
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EEE
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f(c)

é(c)

where K¢ = 0 -~y O ‘ (57a)

* We have B¢e = i(A: + Ae¢) where the subscript 6y denotes the A matrix

formed from the elements of {0y -y¢ ¢6}(} -K¢[¢]) .
6
v
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Consequently,

Mox(€) ay(e) 5,(e)]
C C C

9q, 9q, 2q,

ax(c)
c

aqz

where a., b., c.
i By Rl
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are elements of the modal matrix R (equation (2)), and

(59)
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the generalised forces are therefore, using the principal of virtual work,

n+6

q = @+ Z Q9 (66)
i=1

, i
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where the expressions for the (ai) £ have already been given (equation (22))

t and where

ol

n+6

e
fl e®v e
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l e®v0cs 0000
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This expression can be simplified for
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and (cf equation (57))*

le; E, &J T,
AL

Vv sortid s @

AxeAge + Caexe (70)

where Cex is the lower triangular matrix, with zeroes on the principal diagonal,
such that

T
S T TN [j[efg] -[:][xyz]
y f
= A vk . an
It is easily be seen that
Lca =[o & = (72)
Efxf f =
0 0 -Lf
0 0 0

and so the matrix of the generalised force coefficients (equation (67)) can be

rewritten as

@1 = |I&Te, ... @

ij = n+6
fl .........
8 e N
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where

=(c)
=(c)

[
=(c)
Nc

e

rotational force coefficients.
referred to the constant-velocity axes, produced by the distribution of local

(C). ;(C), E(C)},

force vectors {e

~

Certain of the above terms can be expressed in terms of translational and

The overall translational forces on the aircraft,

is given by (ef equation (65))

n+6
= (say) rl-(f + Z igc) aj (74)
= i=1] 3(c)
%, Y
z z(c)
= j
I - Z-Ej (75)
c) £.
; j
" =
[

The overall moments about the constant-velocity axes produced by the same force

distribution are* (c¢f equations (7) and (65))

S (c)
ZA_(C) xc
- (c)
yc
z(C)
Cc
ZAEf x| - XAEf[R I -Agl[ q
Vg :
. qn+
+Iaxde oo e ol g
El :
Lgl tecsesens qn*
n+6
- =(c) i
(say) rLf + :E: L% ) 9 (76)
- i=1 | =(c
Mg Mj
N §(e)
- j

* A subscript

¢ 1is required with the symbol for the overall moments but not for
the overall forces since only the former depends on the position as well as the
orientation of the constant-velocity axes.
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where ifc) . ii:% » [}EAEfR i, XA!foé]
O
) oy PP E 15
=(c)
Nl eseesesss

En+6 : (77)

At this point it is worth noting that the perturbation in the moments is not just
the moments produced by the perturbations in the local forces, that is not just
the second term in the above expression. It should also be clearly understood
that the moment we are considering is the moment about the origin of the constant-
velocity axes and not about the reference point - hence the use of the subscript

¢ in the symbols for the resolutes of this moment (eg (76)).

Thus finally we have

- -T': - i
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Equations (50) (51) and (78) along with (48) provide the means for writing
out in full the equations of motion for small perturbations from the datum motion.
These are given in Table 3. The various contributions, aerodynamic etc, to the
generalised coefficients, have been obtained using the local load vectors given
in sections 5.2 to 5.5 (equations (38), (39), (45) and (46)). One may be
surprised that the expression for the propulsive matrix [Pij] given in Table 3
involves the constant matrix Pq (see equation (11)). This is a consequence of
our assumption that the propulsive force acting on any particular particle has

constant components in the direction of the body-fixed axes.

6.2 Equations of motion using body-fixed axes

Initially we will derive the equations of motion, using body-fixed axes,
from Lagranges equation for a non-inertial frame (equation (25)) and the equations
based on the principle of momentum (equations (26) and (27)) given in section 4.
The perturbed position of a particle relative to the body-fixed axes is that given
in equation (10), and for the body freedom coordinates we take the translations
{ifc), 9§c)’ ﬁfc)} and the rotations ($,8,)) (ef equations (14) and (15)). With
this representation the deformational freedoms are deformations relative to the
body-fixed axes, which we will call encastré modes. Thus the initial derivation

can be described as for:
(1) encastré modes and displacement body freedoms.

In the equations thus derived we can make coordinate transformations which
will give different meanings to the generalised coordinates, and so from the

initial equations we derive the equations of motion in terms of:
(ii) encastré modes and velocity body freedoms;
(iii) free-free modes and displacement body freedoms; and
(iv) free-free modes and velocity body freedoms.

6.2.1 Equations of motion in terms of encastré modes and displacement
body freedoms

The determination of what we call the ponderous terms, those not resulting
from any force* but from the fact that a system having mass is moving, has been
considered in some detail in Ref 1 (Part II). It is there shown that the
ponderous dampings and stiffnesses will all be zero if the angular velocity of

the aircraft is zero throughout the datum motion. Indeed, for our chosen datum

* One does of course speak of such things as inertia forces, centrifugal forces,
Coriolis forces but these are not really forces but merely a convenient
analogy arising from D'Alembert's principle.
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motion, in the non-inertial form of Lagrange's equation (see Ref 1, Part II or

§ Ref 15),

£

i av A ~

! 0 d | awW ow -

i = N 1. S :
5 3ﬁ; + Ji - Gi b aé i = Qi (79)

there are no first order terms, in the generalised coordinates, arising from Gi
or 3ﬁ/3§i .

PRSP 7. 1% 2 A g R R AN T T e

The linear velocity of the reference point and the angular velocity of the

body-fixed axes are (cf Ref 1, Part II section 6.4) given by

ey - 2 ‘
P S il X B A O ) B X O) E
: u Slug SAi(c)S Qyf #f + 5|x, ApS x, (80) E
el ot i ik e
2 2 o~ i
ad ¥ v ‘fd i ;
Sa |
Pl = qléf . (81)
q 6 ;
i-rd w&

Thus, with a particle position relative to reference point defined by equation

(10), the velocity of the particle is given by

u | = fue]* ®R-ry s é, + Ayl o -Axfé

; Yy Ve 3 ] é

| G s i il b
«[xOf . (82)

;o

2(c)

To the same order of approximation the velocities of the reference frame
(equations (80) and (81)) are
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u|l = |u| + i(c) + A é (83)
f 1 ug
:(c) ~
v Ve Y ()
w w EfC) v
p|l =~ |¢ (84)
q ]
r ¥
The centrifugal potential function Yo is therefore for small perturbations,
given by
2 2 LR
Vo = - 46 8 yl1g|é | + [omls 6 ¥JA (R-R
0 5 ug 0
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¥
A T T T
+ Jémlq, ... q J(®" - R Pobxg) [ Aug
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The Ji terms are given by

3|~ - Lo - gy - P:Axf)Axf é
g ]
I v
b S TR
= ( ({cmn A,f) pqrn) é . (87)
6
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The kinetic energy relative to the frame of reference (the body-fixed axes) is

T

@ = {lémlq, ... q ) ®" - Ry - P';Axf) (R - Ry + AxgP) | G (88)
q
and so
~ -
d faw_| . i it T R T |
It ;;— [ -Rr, Pq] ISmR'R  JémR TomR7Ax | | T | . (89)
: YémR mI 0 “R,
: SmAy R 0 I -P
o g - L%
aqq-

The above equations (86), (87) and (89) suffice to give the ponderous inertia
coefficients Aij for i =1-+n and all j (see equations (14) and (15)).

Details are given in Table 4.

The equations based on the principle momentum are, from (26), (27) and (82)




36

L| = ((Zcmxfn) - Ian) q [+1, % (91)
M : 8
N . |

and so the expressions on the right of these immediately give the other ponderous

inertia coefficients (ef Table 4).

Due to the force vector

n+6
o] - 5] + ) [5] 4 (92)
e - i=| Y
f ff fi
g g gi

it is easily seen that the translational force and moment about the body-fixed

axes are, respectively

- 7 ~ r-A
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% = e
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32 N N‘ S e 0000000 qn+6

Details of the separate contributions (aerodynamic etc) to these forces, obtained
using the different local force vectors (equations (37), (40), (47) and section
5.4), are given in Table 9. As pointed out in section 5.5 and Appendix A, there

will be no structural contribution.

: For the deformational freedoms the generalised forces resulting from the
local force vectors (92), are, using (10) and remembering that the frame of
reference is regarded as stationary in the assumed virtual displacement used to

calculate the virtual work,

where
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The individual contributions (aerodynamics etc) to these generalised forces,
obtained using the different local force vectors (equations (37), (40), (47) and

section 5.4), are given in detail in Table 4.

We have therefore obtained the complete set of equations of motion for
small perturbations of the datum motion. The ponderous terms come from
equations (86), (87), (89), (90) and (91), and the various forces from equations

(93), (94) and (96). Table 4 gives the equations written out in full.

It may be remarked that anybody coming to use the expressions of Table 4
may well not know the individual matrices R, Ro, Pq but only the complete modal
matrix (R - R0 + Afoq) (ef equation (10)). The constant matrices RO and Pq
are, however, in a sense arbitrary. They have only been introduced to ease the
understanding of the relationship between one form of the equations of motion
and another. Thus if constant terms are added to RU and Pq , and correspond-
ing changes made to R so that the new matrix (R - R0 + Afoq) is exactly the
same as the original one, the new matrix R will still satisfy the condition
(3). To set up the equations of motion using Table 4 therefore one might as
well take Pq and R

0
of course, be a matrix of encastré modes.

to be zero, but it must be remembered that R must then,

6.2.2 Equations of motion in terms of encastré modes and velocity body
freedoms

The linear velocity of the reference point and the angular velocity of the
body-fixed axes are given by equations (80) and (81). Taking the perturbation of
these components from their datum motion value as new generalised coordinates for

the body freedoms we have

qn+l ot B uf
an+2 L Vf
8043 g Ve
& G . T 2 al2@]_ , a|aC)
§ - D]y SAA(f)ﬁ Q¢+ 8 [% ApS X,
. i 3 2 (c) - (c)
£ 4| Yy
‘" Ll e
ox §n+l 5 Auf ?n+é 2 i
?n+2 qn+5
q
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and
an+4 - P o Q$ ¢ o qn+4 . (98)
an+5 1 8 qn+5
qn+6 - v dn+

The generalised coordinates for the deformational freedoms are kept the same as

those used in section 6.2.1 and so all together we have the coordinate

transformation
q, # |t 0 o al (99)
: R A
q 0 0 1I0}|q

&l . SRR 0 'c‘ll (100)
=1 =7
: 0 1ID AugD :
- -1
96 0 0 ID an+6

since both sets of coordinates will be zero in the unperturbed state.

One could start afresh and obtain the equations of motion, as in section
6.2.1, using the new coordinates. It is obvious however that the same result is
achieved if the transformation (100) is applied to the equation of motion for the
case (encastré modes, displacement body freedoms) of section 6.2.1 and Table 4.
This has been done with the outcome shown (however see below) in detail in
Table 5. It will be seen that the ponderous inertias now give rise to ponderous
dampings j;- and ponderous stiffnesses vij . One would similarly expect
terms in D! and D-2 from the various generalised force matrices. However
because of the form of these matrices, and in particular the form of the aero-
dynamic matrix for flight well away from the ground, the only negative power of
the differential operator D 1is that associated with the gravitational force

bl E
(see Table 5) »

It may have been considered desirable to have 2 symmetric inertia matrix.
However this is not possible - to make it symmetric one finds that one has to

premultiply the equations of motion by a singular matrix and so would just throw

e sl L
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away some of our information. The submatrix which is the inertia matrix for the

degrees of freedom 1| + n (the deformational freedom) will however be symmetric.

In Table 5 some new symbols are used resulting from writing the local aero-
dynamic force vector (equation (37)) in terms of the new generalised coordinates

(equation (99)), ie

In the use of Table 5 one can, as pointed out at the end of section 6.2.1,

take the matrices Pq and Ro to be zero and R to be a matrix of encastré

modes. The form given there is consequent upon the consistent use of R through-

out the paper for a matrix of free-free modes.

6.2.3 Equations of motion in terms of free—free modes and displacement
body freedoms

As already pointed out, the use of the non-inertial form of Lagrange's
equation (equation (79)) necessitates the choice of coordinates for the deforma-
tional degrees of freedom such that the position and orientation of the reference
frame (the body-fixed axes in our case) are independent of these coordinates.
However one may often prefer to have deformational freedoms which involve some
movement of the body-fixed axes, as, for example, when one desires to use normal
modes as some of the degrees of freedom. This difficulty is simply overcome by
applying a coordinate transformation to the equation of motion obtained in

section 6.2.1.

If we put
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then the total perturbation can be thought of as made up of the successive

perturbations:

. (i) Translations, in the directior of the constant-velocity axes, as a rigid
quy:
. Al e ey waokl a e (105)
3 :
QEC) a’n+6

(ii) Rotations as a rigid body, according to the standard Euler procedure:

= [qu 1] q,

(iii) Deformations:

The position of a particle relative to the origin of the constant-velocity axes

and referred to those axes is therefore, from (12), for small perturbations:

| ~

H + R I -Axf] q, ‘ (108)
y(C)

Xg
Ve .
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(c) -~
Ze Zg qn+6
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Each of the generalised coordinates EI -+ ﬁh is a measure of perturbation just
in an unconstrained, or free-free mode - there are no restrictions* on R as
distinct from (R - R, + Afoq).

As well as making the coordinate transformation (103) we premultiply the
equation of motion by the matrix

T

R.0 Pq (109)
0
I

© O

I
0
so that the symmetry of the ponderous inertia matrix will be preserved. The

resultant equation of motion i¢ given in detail in Table 6.

The local aerodynamic force vector, in this case, is written as (cf
equation (37))

n [ h
= B PO & "
S Tt Z €519 T [%a+1 ot Sni3) || 9ner | * Aug | 904
j’] o 5 L ~
f ff ?j fn*l R J qn+2 qn+5 ’
g 8¢ 8j _gn;! S PR e ] In+ In+
. J
+ rn;d sty G g ) (110)
fn;4 ® % 0000000 qn+5
Z i i3
fn+4 ........i q.

where the aircraft is well away from the ground.

6.2.4 Equations of motion in terms of free-free modes and velocity body
freedoms

To change from displacement to velocity generalised coordinates we made the
transformation (99). To change from encastré modes to free-free modes we made
the transformation (103). To make both these changes we do the latter followed
by the former and so we put

* Apart of course from the general restriction that we have imposed throughout
that it is such that the body-fixed axes always remain an orthogonal frame.
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§ | =]t 0o o I 0 0]} q (1
: 0 ID Ay [[-Ry I O :
T ee 0 0 1Ip -Pq 0 1 &‘“6
ie
Gy b 2 k2 0 T 0 0 q, ; (112)
. : g, .10 Jo w7 a2l
Tl - By D HTe 0 gl § |

The linear and angular velocities of the body-fixed axes are therefore, from
(97) and (98)

~ -
~ g \
u uc| + [ROD + Auqu 1 0] q, (113)
¥ b g
Bl e 9n+6
BE [PD 0 1])] § 114
P 5 q, . (114)
q
’ LF_ 9n+6
e Thus the coordinates an+l > ﬁn+6 are the components of the linear and angular

velocities of the body-fixed axes relative to their values due to the deformation

in the free-free modes.

The position of a particle relative to the origin of the constant-velocity

axes and referred to those axes is from (12), for small perturbations:

(c) R -1 -2 &

X, ~ x|+ [R D (AgeD  +AyD )] g (115)
(c) .

Ye Vg .
(C) v

¥e Zg 9n+6

whereas with the encastré modes of section 6.2.2 it was, from equations (12) and
077 (100), it was:-

e
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(C) [ L -1 3¢ =1 -2 ~
; X, ~ x| + R RO + Afo a ID (Afo + AUfD ) q; .
: Ye Ve 3
(c) -
Ze £ 9
(116)

In the present case therefore the generalised coordinates ﬁ] > qn measure
perturbations in unconstrained (free-free) modes, in contrast to the 'encastré &

modes’ which were constrained to have zero displacement and slope at the
reference point.

It is desirable that, for the deformational freedoms alone, if not for all

the freedoms, the inertia matrix should be symmetric. This is so for all the

previous developments and we arrange it to be so now by premultiplying the
equations of motion by

o A B T A S R TR

T ST
I Ro Pq (117)
[0 )2 )
O SO EST

in addition to the coordinate transformation (112). The resultant equation of
motion is given in detail in Table 7.

In terms of the current coordinates the local aerodynamic force vector is

written as (see equation (37)) .
n+6 S
o [e.] + .| g (118)
i £ Al
J= 3
f ff fj
4 _8£ 8j
e = FA . ] =
where T e i i 1ives B (119)
£n+i_ fn-;-i
gn+i L n+i

i the aircraft oeing well away from the ground. 077
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7 RELATIONSHIPS

7.1 Between local force vectors

In the derivation using constant-velocity axes we have written a typical

force vector (referred to the same axes) as (equation (65))

| =~ ee| + e, - N q (120)
z(c) - = v
£ £ R v e :
5 ¥ o A TS | I

while in the body-fixed axes derivation the typical force vector is variously
written as* (equation (92)) i
- 5 == - =i -5 r,\ -
e es| *|e s q,
f ff fl . L a
8 Lgf-J Lgl eo oo '.o- an&
=l - s & - J
= leg| +[8 -- b ﬁl
ff f] . ® 8 00 0 :
Lgt Lgl L B N .- an+&
—_ —: = o r~ - ;
7 eJ it 5 ns6| | U
£ ?l R e : 37
Lgfd Lgl LN ...J an+6-
P_-ﬁ o - ES —v -
= legl * 18, . §n+6 q, ‘ (121)
ff fl ® 0 0 00000 3
LBf. bgl ....'....i an+6_ ﬁ
* The dressings “,”, =, refer respectively to the cases encastré modes-
displacement body freedoms, encastré-velocity, free-free-displacement, and
free-free-velocity.
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Referring the latter to the constant-velocity (ie datum-attitude earth) axes

we have
@l ~ 5]- A, s (122)
] f qn+5
~(c) - -
g g .
where, from equations (98), (104) and (112)
-~ ~ -] ~ ~ ~
Y B qn+4 [Pq 01] 9
945 945 g
946 qn+6 qn+6
> e n'1[y, ; (123)
qn+6

If the typical particle position vectors, relative to the origin of the constant-
velocity axes and referred to the same axes are, to first order of smallness, the
same in each derivation then the force vectors will be the same, to first order,

in each derivation. Thus if (ef equations (7) and (13))

xc(:c) - -x ; + R 1 -ax f] q,
yéc) i :
zéc) _?f_ 9U+6
~ fo" + R-Ry+ AxgPy 1 -Ax] &l (124)
s :
fﬁ_ <‘in+6

then the corresponding force vectors will be equal for small perturbations.

Equation (124) is satisfied if

I




and so from (120) and (122)

g * I 00 "A; [P o1 . (126)

1 £ q

—

seevececee Ro I 0

>l Ml oI
—

CRCR A ) P 0 I
q

8‘ CRC RO R

For the other sets of generalised coordinates (124) is satisfied by (see
equations (99), (103) and (111))

I
ROD + Auqu

PD
q

Consequently we find that
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Equations (126) and (130)

forms of the local force vector.

m>1 Fol ool
- - -
.

>l

n+6

e e e v

e
~

e
n+6

sec s

-

n+6

o

sev e s

o =
-

e
n+6

e eveccs e

ceeneaann

R)D + AycP
PD

=k [Pq 0 1]

3 0 0

0 ID Ay,

Q O  ID

A7 [1>q 0 1) X

0 0]|-A-[p_o01]
ef q

ID Ay

0 ID

(130)
f

are the required relationships between the various

Putting them another way they are

= —EI EMJ E -0 D +A;f[001]
e ™ 0
_gl cevenenes ] -1>q I
e e sl
?1 coreeees |0 ID Ay,
fgl Fodiss s KO D |
- 5 -
= e, ve @ik I 0
e R TR
L_EI eeennnes ] L—Pq 0 IJ
- : -
= é'l oo & e I o . (131)
By acennya ~(ReD + AuP) IO Ay
jn cevnnennd] | BD 0 1D
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7.1.1 Between local aerodynamic force vectors when well away from the
round

For an aircraft in flight well away from the ground, as in the assumption
throughout the main part of this paper, it can reasonably be assumed that an
adequate approximation to the local aerodynamic force vector has the form given
in equation (37) (for body-fixed axes, encastré modes and displacement body
freedoms) or (38) (for constant-velocity axes). That is, with expressions of
the forms given in equations (120) or (121), certain coefficients have the

following character:

€nel e en+3 = en;l cee €/ 1a D (132)
fn+| ® e 00000 fn;l ® 0 800000
8n+1 o000 0000 gn;l e e 00000
ek el " 1.5 e €3 Auf i S PRER T e 16 D (133)
fn+4 e 0 00000 fn;l " e e 0000 fn;4 LI ) LN )
8n+4 0 s 00000 gn;l ® v e 0o 8“;4 ....... L]
St Baeal = By e ey (134)
fn+‘ L0 L B B N B ) fn;l L L B )
8n+l ..-..COOO n;l LI BB BN )
®ath *°* ®ne6] " |%at1 o0 i3] Mg * o3 cc ei6| D = Aeg - (135)
fn+4 LA L B O B fn;l LA B B fn;A L B BB N )

8n+4 e v eves e gn'.'l ®Ssececvoe . n;a LU B Y
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It follows from (126) that
$p > 23 ® e, .. 8] - Aequ
fl L B O Y fl e e 0 0000
8] e e 0000 gl e e % 00 00
*le s v enis (ROD + Auqu) + Eoln ron. Bty PqD :
fn;] ® 0 0 00 0000 fn;h e o . . e
Bopy e Buay e
i e (136)
and
etil = i i=1-+6. (137)
nti i
n+i 8n-;i

With the other sets of generalised coordinates we have (ef equations (101), (102),

(110), (118) and (119))

Zl .o €] = 3] e En = él 1 én ;
£, cencnes S Ten B, evanny
EI snmEn By ceeeens él wo ks
> én;l 5 én;-3 (ROD g A“qu) S én;A Wi én;6 PqD
fn;l sidnu e fn;4 R Eae e
§n;| EruvEsies én;4 TF AT
sessess (138)
§ oo B ] o= de ..o@ (139)
fl sessves fl souveve
B and B s
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Bl 1l = [y i=1...6 (140) ‘
En+i fn+1 fn~'0-1
gn+i §n+1 én-;'i
Bs imon Bgl = kB e .. én;3 D (141)
Pt e G
; §;+l il aae « a én;l RpE AT
and
Eh+4 et 3;+6 = én;l e én;3 Auf + én;4 So ;n;6 D . (142)
\ B aoadie s i TR
§£+4 e GOt An;] et énla Ap ronale

It will be noticed that the relationships (139), (141) and (142) have already
been substituted in equations (101) and (110), as appropriate, and the symbols

gi (i=1+n) and ¢ (i = [ > 6) are not used outside this sectiom.

Equation (138) gives tﬁzlrelationship one would expect between the two cases
where one has free-free deformation modes (the ~ and the “); (139) what is
expected for the two cases with encastré modes (the ~ and the °~); (140) what is
expected for the two cases with velocity rigid body coordinates (the ~ and

the ¥ ); and (141) what is expected for the cases with displacement rigid body
coordinates (the ~ and the ~). Finally it is interesting to note that, from

’ (136) and (138),

T én = le; oo e ]|+ Aequ . (143)

e ®

é
I LRI ) EI LR ) fl CRC A )

KL

SeviEny §1 TS By eeeeees

This relationship could, of course, have been immediately obtained from (130).

Equations (139) and (143) are in fact independent of the particular form of the

aerodynamic forces consequent upon remoteness from the ground.

077




52

7.2 Between overall force and moment vector coefficients

From the expressions for the overall forces and moments (equations (74),
(76), (93) and (94)) and the relationship (131) between the local force vectors

it is easily seen that we have the following connection between the coefficients

for the constant~velocity axes development and those for the basic body~fixed

axes (encastré modes displacement body freedoms) development:

ﬁ L L L

=)
s(c)
¥

(c)

el
=(c)

1
(c)
1

=(c)
cee X6

eeccoccece

I 0.0+ 0.0 A] (144)
Axf
R, I 0
s I 5 G ¢
q

I 0 o+ [0 Aif Aif]‘ (145)

Using the relationships between the various sets of body-fixed generalised
coordinates (equations (99), (103) and (111)), we also immediately find that:

[okd]

N> =l
.
.
el
.
.

1 see s e

—

oI =< >0lj

qu_fq(ﬂ

LIS

N(n

<l

e

R |

I 0 0 (146)

~(RD + AycP ) ID Ay,
~P D 0 1Ip
q

T
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it e e
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2 231t
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T(R,D # Ay Py) ID Au

| -PqD 0o ID
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7.2.1 Between overall aerodynamic force and moment vector coefficients
when well away from the ground

With the particular forms of the local aerodynamic force vectors
appropriate to flight where there is no ground effect (equations (37), (38),
(101), (110) and (118)) it follows that certain coefficients have particular
forms (¢f Tables 8 to 12)

(c) (c)
xn+l ks Xn+3
(c)
Yn+l
(c)
zn+l

eveccec e

(c) (c)]
xn+6 4 A Xi

s s b CRCEC RN AR

ool--o-on-J
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L(c) (c)

T U Ln+3 = ? ole s Lé D - Axf (150)
(c) c)
Mn+] RO BN Mi . ee e .
L A L S
n+l X
(c) (c) c) (c) c) (c)
Bty s B o1 ™ Li oo Lg Aug + Lé s L@ D - ALf (151)
(c) (c) c)
Mn+4 el ol e alerele MI.{ elaeis v uislele Mg S O R y
(c) (c) c)
Nn-i-lo slalalelstetarels N}-‘ e clatais e ais Né A P Al

~

and similarly for the and ~ coefficients except that the term Axes ALg

are absent. For the ~ coefficients (and similarly for the v coefficients)

we can simpiy write §n+l = ﬁu, §n+4 = ip etc. It is then easily seen
(ef section 7.2) that
(c) : 2 ¥ 7
X. Xe = zo = X = X
X X X u u
xgc) io = 'i'- = i = i'
¢ [ ¢ P P
? (152)
LSC) = L = io = ?‘ = t
X X % u u
L‘c) = ]:o = f:- = ?_‘ = Y t
¢ b T AL :
J
~ -8 (c) (c) [ (c) (c)
X, ... X X, X X7 e X5 L (RD + AygP )
% ¢(©) v{e)
l ee e 000 ’ . . i ee 00000
: (c) (c)
Z] seecec e Zl . .o LZ;‘ oo e .o
- [ xée) €)]p p+a e
X¢ viole Xw q Axf q
YSC) ® S0 00000
(©
c
z ® 0 0000000
¢ et
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: : t_N(ic Peeneenns
= L] e Ln s (154)
T A
ﬁl Lkl
xfc) xx(f) +Afoq - |% ... X = 3'(] in (155)
ch) Y, oeeeeen. i'rl
zfc) Z) ceeeens 2, eeeenn
Lfc) Lr(lc) +Afoo+ALqu « JT, . B o= IE .. L] -
Ml(c) By ciins e PR
Nfc) | P ﬁl

sessee (156)

The above relationships can be confirmed from the expression of Tables 8 to 12
using the relationships between the local aerodynamic force vectors given in

section 4.1.1. Anybody with prior knowledge of relationships between aero-

dynamic derivatives may well be surprised by the equations (152). They are used

to relationships such as (see eg Ref 2, section 22), for our case of zero

angular velocity during the datum motion,

Z: = 7 +w

¢ P f

w

It must be emphasised therefore that our terms Z& are not derivatives. In

general they are differential operators. Thus we could write (the notation is

ephemeral)

Z; - vfz- 3 (157)

S




= 4 + ..D + * 00
% T %
(158)
= + .D + * e 0
21: o e
and then, making use of (97) and (98), we find that the coefficients of ¢ in

Z and Z are respectively

zg + ZgWe = 2,Vp
and (159)
2, *zgWe = Zive .

The former term is commonly called Z$ since it has come from a Taylor expansion
in terms of the displacements; while the latter term is written as the linear
combination (Zp + Z",wf = Zéyf) of three derivatives since a Taylor expansion in
terms of velocities was first used before transforming to the displacement
coordinates. Equating these two expressions then gives (157) which contrasts
with our relationship

2 2p (160)

where the quantities involved are not derivatives.

7.3 Between coefficients in perturbation equations of motion

In the constant-velocity axes derivation a general expression [6151 for
any of the matrices, [Qij]’ _[Eij]’ -[Pij]’ -[Gij] was obtained in equation
(78). The corresponding general matrix [Qij] for the body-fixed axes derivation
using encastré modes and displacement body freedoms is given by equations (93),
(94) and (96). From the relationships between the local force vectors
(equation (131)) and between the overall forces (equations (144) and (145)) we
then find that




In addition we have the relationship between the ponderous inertia matrices
(cf Tables 3 and 4)

A s __T_T

[Aij] =T =i Pq [Aij] I 9 0 : (162)
' 0 -R, I 0
0 0 I P 0 I

The three other forms of the perturbation equation of motion that we have con-
sidered were all obtained simply from the equation for the body-fixed axes,
encastré modes, displacement body freedoms, case by a coordinate transformation
and possibly also a matrix premultiplication (see sections 6.2.2, 6.2.3 and
6.2.4). Thus we have

6,0 = 8.4l . 0 0 (163)

0 ID " -AuD

0 0 !
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& , S, |
1J] ’ RO Pq
ol T
A ) e

-
T T
[Qijl I R, Pq
0 ' 0

0 0 IJ

where each of these matrices may be a Q

G#JD ) matrix with the appropriate dre881ng.

matrices we have

ij

& . =

ij]

ij

>

ij

ij

o

'o

lo o of

00
I 0
0 I
0 0
m ! -a.D
ug
0 !

e A N Y g

-
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Similarly for the ponderous

(164)

(165)

(166)

(167)

(168)

(169)

(170)

(171)
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[ij) = [Aij] 00 O y (172)
0 ~Ayg
0

The various quantities required, in addition to the coefficients in the original
form of the perturbation equation of motion, to transform to another form of the
equation are summarised in Table 13. The transformations between the variocus
forms derived using body~-fixed axes, require, when there is a change between
encastré and free-free modes, some modal information in the form of the matrices
RO’ Pq . In addition certain information on the datummotion forces is required
when transforming to or from the constant-velocity axes form. For example
XASfof is required with Asg replaced in turn by Aeg) Aepf, Aesf and

Aegf (= gGmAE¢ ). The sum of the forces on any particle during the datum motion

will be zero* agd so, for example

E(A 2 e TR )A = 0 (173)
Se - %t sf gf/ *f
though
YA K oF 0, (174)
et *¢

One can therefore assume, in transforming to or from the constant-velocity axes
form, that all the individual datum motion forces are zero. The result will be
an equation which has the right solution though the individual terms are in
general wrong, being different from those obtained when the equation is derived
directly. Thus, for example, for a rigid aircraft (ie n = 0) in a vacuum, since

” from the equilibrium equation (Table 1 or 2) we then have Ang = 'Apr s We
have (c¢f Tables 3 and 4)

;1 = [o o] ; Pl (o -Ang] (175)
o o s 8
and 5
6,50 = [o -Ang] , BB = fo o] (176)
0 o : o o

* This, of ¢ourse, is more than is said by the datum motion equations for it is
inconceivable that the degrees of freedom should be as numerous as the particles
077 of the aircraft.
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in the constant-velocity form and body-fixed form (displacement body freedoms)

of the perturbation equations respectively. However, if we transform from one to

the other, using equation (161), and in the transformation assume the datum motion

forces are zero, then we find that these gravitational and propulsive matrices

are unchanged.

7.4 With certain other published equations

A number of authors (Milne6, Etkin7, Taylorl, and others) have suggested

the use of mean-body axes in the derivation of the equations of motion of a

deformable aircraft. In our derivations of sections 6.2.3 and 6.2.4 a frame of

reference, occupying the location the body-fixed axes would have if there were no

deformation (ie if the first n generalised coordinates were zero), can be

thought of as mean-body axes provided the modal matrix R satisfies the

conditions* for mean-body axes, viz:

JémR = 0

LomAx.R = 0

The equation given in detail in Table 7 does not agree, for example, as regards

individual terms with that obtained by Etkin7. Like us he used Lagrange's

equation for a non-inertial frame in conjunction with body freedom equations

obtained by the principles of momentum. However he naturally considered the

components of the momentum referred to the mean-body axes rather than the body-

fixed axes. It is easily seen that the mean-body axes become coincident with

the body-fixed axes if they are given translations

and rotations

* A way, but not the only way, of satisfying (177) is to take as modes a set of
the free-free normal modes in the absence of gravity.
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(cf equations (115), (2) and (11)). If we denote by superscript (m) quantities

referred to the mean-body axes* we can write, using (5),

;@] ~ -}’: - AP | ‘ (180)
AXf q 4
3 @ ¥ :
: E _gJ 9.
and
’ [ (m) £y e i “ -
L ~ |- xRy + agp) |4, (181)
™ ] :
. m .
-(m) o v
LFm g dn
b where X, L etc can be written in terms of the ﬁi using equations (93), (94)
and (112). Thus if we add**
0 o6 0 (182)
Ax P
gt q Boxe

o

AngRo + ALngq

to [Ei.], and apply the conditions (177); and similarly with the matrices [;ij]
and [ ij]. we should, and indeed do, get the body-freedom equations+ given by
Etkin7. He, incidentally, follows the fairly common practice of including the
propulsive terms in the aerodynamic matrix; and he also chooses his modes to

satisfy the normal mode condition, that ZGmRTR is diagonal, in addition to (177).

It also can be shown that our deformation freedom equations of Table 7,
subject to the mean-body axes condition (equation (177)) become identical with

Etkins7, in their non-concise form+, if a term (c¢f equations (161) and (163))

* Thus f;m), ﬁ;m), ﬁ;m), are typical moment components about the origin of the

mean-body axes (hence the subscript) and referred to those axes (hence the
superscript).

**% In fact ALBf = 0 ; and there also is no change to [Eij] since the structure

cannot exert any overall force on itself.

+ In the 'non-concise’ form they had before division by an appropriate mass or
077 moment of inertia.
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P R.-JA R- (?A A )p
q Axsf 0 esf esf x:/ q

(183)

is added to Iﬁi.] in the 11 submatrix position, and similar additions are made to

[fij], Iiij] and [-Qij]. Some of these additional terms are of course zero as a

consequence of the characteristics of the gravitational and structural forces

(sections 5.3 and 5.5) and of the conditions (177).

Summing up, therefore, we see that we can transform, from our perturbation

motion equation obtained using body-fixed axes, free-free modes, and velocity

body freedoms (Table 7 and section 6.2.3) with deformation modes satisfying the

conditions (177), to equations obtained using mean~body axes and similar free- .

doms by adding

L

T
P R.~JA R- (?A A )P 0 0
q Ang 0 egf egf Xe/ q

P
g

(184)

to [éij] and making similar additions to lPij], [Eij] and [-Qij]' Since, as

noted in section 7.3, the sum of the forces on any particle during the datum

motior will be zero, it follows that the sum of these additions will be zero.

The resultant equations are given in detail in Table 14.

Note that the aero- .

dynamic overall force and moment about the origin of the mean-body axes, referred
to the mean-body axes, are (c¢f equatioms (155), (156), (180) and (181))

-

x(m)
v (m)

7 (m)

I‘(m)
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N (m)

—

xfc)
(c)
L

(c)
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L§°)
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by
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(c)
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so0 000000

s e

I‘(f:)
n
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ees X X sas X
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~

e e 0000 Y L )
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e o000 0 z LU
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Though considering the use of various frames of reference - mean-body axes,
body-fixed axes, principal axes -~ Milne (Ref 6, Part I, Appendix 1) states the
perturbation equations of motio. a concentrated form appropriate to any type
of body axes. Thus his equations, when the perturbations are small, with the body
axes chosen to be coincident with the principal axes of inertia through the air-
craft centre of gravity during the datum motion (ie equations (52) and (53) being
satisfied), are identical with ours for body-fixed axes, free~free modes and
velocity body freedoms (Table 7 and section 6.2.3) when the matrices (184) etc

are added to our constituent matrices of Table 7.

For a rigid aircraft it is usual to reduce the perturbation equations of
motion to what Hopkin2 called 'a concise form' by dividing each force equation by
the mass and each moment equation by the appropriate moment of inertia. Etkin7

and others (Ref 8 for example) have similarly set up a 'concise' form for the

equations of motion of the deformable aircraft. Thus their final form7’8 is
that given when the equation of Table 14 is premultiplied by
ifae’s. o 0] . (187)
0 ml 0
0 0 I

Finally we would just mention that various other authors (Refs 9 to 13 et al)
have derived or quoted the perturbation equations of motion for a deformable air-
craft. For the datum motion that we have considered it is believed that their
forms are all included in the cases we have already considered though the nota-

tion and/or assumptions used are not always clear.

8 CONCLUDING REMARKS o

We have been able to develop in detail various forms of the perturbation
equations of motion of a deformable aircraft and present them in the attached
tables (Tables 3 to 7 and 14). These relate to small perturbations from a datum
motion which is straight flight with constant linear and zero angular velocity.
The relationships between the various forms were established and stated, and the
requirements for transformation from one form to another listed (Table 13). A
particular feature of the work has been the care with which account has been
taken of the various forces (structural etc) which were already present in the
unperturbed state. To make use of the equations the reader will of course have

to call in the help of the aerodynamicist and the elastician (or make use of
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the results of a ground resonance test as in Appendix C) and possibly others
as well.

There is room for further development: different unperturbed conditionms,

better representation of the propulsive fqrces, more realistic model of

structural damping, more accurate representation of the hereditary nature of the
aerodynamic forces, etc - but the need for such refinements has yet to be con-
vincingly demonstrated.




Appendix A
3 STRUCTURAL FORCES FOR AN ISOTROPIC ELASTIC BODY
The meaning of the term 'structural force' on a particle or element is
perhaps better understood when it is defined in terms of stresses for an iso-
tropic elastic body with no structural damping. Then (cf eg Ref 3) the structural
; force is given by, for the unperturbed state
1 & 90 90 a0 o
E . " 2 XX xy Xz
2 Csf f =, Oy, o )dxfdyfdzf
. f £ f
& £ element
4 sf
90 90 ETej
st D - AP » e dx_dy_dz
9x dy 9 e e
f f f
3 element
aozx aqu 9 =
: &, Oy, 3%, ) xglyplz, |
f f f ]
; element ;
i 7 s 1
E.V 4 4
- '[ (oxxl + oxym + oxzn)d(surface) (A-1)
surface
[ (oyxz + oyym + oyzn)d(surface)
’ surface
|
% g (cle + ozym + czzn)d(surface) ‘
surface |

where o0__ etc are the stress components (0 = oyx etc)

ke

1 XX xy
4 f means the integral over the free surface of the element
‘ surface

2£,m,n are the direction cosines of the outward drawn normal to the
surface.

The first term is the structural force there would be on an entirely internal

element of the body, and the second is the reduction consequent from the fact that

there is no structure to exert a force on the free surface of an element. It is
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immediately obvious, using Green's formula relating surface and volume integrals,

that the sum of the above structural forces over the whole body is zero and so

Xl = ) esl =0 . (A-2)
sf fsf
zsf gsf

We also have from Green's formula, with S enclosing the volume V

90
- - = =
/ (yf e oxy)dv [ myfcxyds (A-3)
v S
and 3%
[ (xf —Eaxf - oyx)dv = f zxfoyxds 5 (A-4)
v S
Consequently, since axy = ayx
20 o0, -
[ €rf _ﬂayf - X _Laxf )dV = f(myfoxy - leoyx)ds (A~-5)
v S

and so

90 90 90

Rl el el @ i § AV
f\az dy 9z

v f f f

= [yf(!,axx + oy + no‘xz)ds
S

- [xf(zoyx + moyy + noyz)ds . (A-6)
S

Using this and similar relationships derived in the same way we find therefore
that
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L.l " ZAxf el = 0 (A~7)
Msf fsf
Naf 8sf

where the summation is over the whole body.

In the perturbed state described by equation (4) the structural force on a

particle will have the form, referred to the constant velocity axes:

(c) T 7y
eg = § el * ey - enll (A-8)
(c) .
fs fsf fsl Sk :
(c)
g Bgs Bgy ceceecec]]a

since the structural force, referred to the body-fixed axes, will be unchanged
for any perturbation without any deformation. The above analysis can therefore
be repeated using this force vector and replacing (xf,yf,zf) by (xéc),yéc),zic)).
Consequently we find that

z P T 0 . (A-9)
£ ceeeeres
81 - ""'4
()]
{Ax(c) e . (A-10)
c f(t:)
S
(c)
8s

Expanding the latter equation in terms of the generalised coordinates (see
equations (5), (7) and (A-8)) and using the fact that

3 (c) &
Ax(c) k) Aegg | %c a=1h
c (c)
fsf yc
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we get from the first order terms the relationship

= -
Axg | 86 Axgheg| = lAeg R T -ax]

f ceecsces

sl

g

zA'xf esn = ersz

2 (Afoe sf & Aeszxf) = 0 (A-1 4)

The latter equation is of course equivalent to (A-7). Now the general expres-
sions for the overall forces and moments, referred to the constant-velocity

axes, (equations (74) and (75)) give, using (A~8) or (46), structural contribu-
tions due to the perturbations:

ey

(e) -
Xs erSf

Y(c)
S

z(c)
s

-Axsf A erszxf.-zAfoesf

J qn+6

cesees (A=16)

Consequently from (A-2), (A-9), (A-13) and (A-14)-all these contributions are

zero.

The above expressions (A-15) and (A-16) are of course independent of the
assumption of an isotropic elastic body; and so if we assert that a structure

cannot exert any overall translational force or moment on itself we immediately
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find that the relationships (A-2), (A-7), (A-9), (A-13) and (A-14) are true in
general.

So far we have taken no account of the relationships between stress and
strain and displacement. The strain components are simply related to the first
derivatives of the displacements; and for our 'isotropic elastic body' the stress
and strain components are linearly related by Hooke's Law. Consequently it can be
shown that the strain energy of a deformed elastic body is a quadratic function
of the first derivatives of the displacements (¢f Ref 14). Thus, in our case,

the strain energy E 1is a quadratic function of the generalised coordinates q; *

E = E + [(Ei)fl q | + i[ql qnﬁl [Eij] q, (a-17)

.
e A
. .

qn+6 qn+6

where, without any loss in generality, [Eij] is written as a symmetric matrix.
From the fact of the existence of such a potential function it immediately
follows that the matrix of the generalised structural force coefficients, in the
perturbation equation of motion, is, as we have already indicated by our notation,
[Eij] which is symmetric. Thus from the form already deduced for this matrix
(Table 3) we see that

T . .
ZR = LR 1s symmetric
fsl veesssan
gsl L g & 0 S
ie )le f g R = ZR? e e (A-18)
sl 1 1 ;S ;

s
. f
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Appendix B
PERTURBATION EQUATIONS OF MOTION NEAR THE GROUND

For an aircraft in flight close to the ground the boundary condition to be
satisfied by the air flow at the surface of the ground has an important effect on
the air forces applied to the aircraft. Consequently the forms taken, in the
main part of this Report, for the local aerodynamic force vector at the surface
of the aircraft (equations (37), (38), (101), (110) and (118)) are no longer an
adequate representation of the truth. It is necessary then to write the local -
aerodynamic force vector in the appropriate one of the forms we have taken for
the typical local force vector (¢f for example equations (120) and (121) in
section 4.1). The matrix of generalised aerodynamic force coefficients, for the
constant-velocity axes derivation, is consequently given by equation (78) with
the '-' dressing omitted. Similarly the other forms are obtained using the
relationships (161), (163), (164) and (165) - again omitting the bars -, and
put in terms of the desired local and overall aerodynamic load coefficients by
the use of equations (126), (130), (144), (145), (146) and (147). The resultant

aerodynamic matrices are given in detail in Table 15. For the various body-fixed

axes cases the local aerodynamic force vector has been written as (¢f equations
(100), (104) and (112))
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n n+6
~ ef +Z a'j +
ff j=1 j=n+l
8¢
n n+3 n+6
=
~ le.| + §. + SV é. |71y
f j f j+3 j j
ff j=1 j=n+l j=n+4 £,
J
8¢ Sj
eeeces (B=1)
where e ..o | = le ... e +6 1 (B-2)
fl S TN fl “iersisielsiotate R0
iy TR 1
gy &) q

and the coefficients éj, 35 etc are, in general, differential operators.
Similar expressions hold, and have been used, with the subscripts (x,y,z,$,0,V¥)
replacing (n+l,...,n+6), for the overall forces and moments. Comparing (37) with

(B-1), and so on, we note that

€t 0 Cne6l — |Gai1 ¢ eniel D Aug (B~3)
fn+1 o 00 0000 fn;] ® 0 00 0 0000 0 D
gn+l e 0 0000 00 n;l ® 0 000 00 00

etc, as the distance of the aircraft from the ground becomes large.

B.1 Upholding forces

When there is contact between the aircraft and the ground, as, for example,
during the take-off run, additional forces are obviously felt by the aircraft.
These we will call upholding, or support, forces. We will assume the normal
earth-fixed axes Ooxoyozo have been defined such that during the datum motion
the aircraft has zero velocity components in the directions Ooyo and Oozo .

Its velocity Yy in the direction Ooxo will be constant, in accord with the
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assumption throughout this Report that any datum motion considered is one of
zero angular velocity and constant linear velocity. One case of certain particu~
lar interest (¢f for example Appendix C) is that for which u. 1is zero. We also

0
assume the earth surface, when under no external load, is given by

- 29 2
2, 5 (x4550) (B-4)
and that the earth behaves elastically* such that when displaced to
zg = z(o)(xo,yo) it exerts a force 2
s (o) - .
0
L0 _ (0

P

at (xo,yo,z(o)), referred to the normal earth-fixed axes.

Transformation from the normal earth-fixed axes to the constant-velocity

is accomplished by

(i) translations (uot,0,0) in the direction of the normal earth-fixed

axes;
(ii) rotations (d},G&,QE) in the usual Euler order about the carried axes.

Thus we are assuming that the reference point coincides with the origin 0O of

the normal earth-fixed axes at the instance t = 0 during the datum motion.
Writing

5 = ligs Ky 2] (B-6) ;

we find that a particle on the outside of the aircraft, which was at the point
(xf,yf,zf) in the unperturbed state, is in contact with the ground at an instant

during small perturbations of the datum motion provided that

520 32(®) ;
Q;f xe | = Z;O) + |- 3—’-%—— ,y = -a;(r;—— A l S:f x((:c) - X > 0 (B-7) ; 4
, Ve y{f: “ Wy |
z¢ zcc i *

* 1If desired a more general representation could be used with 6£0) taken to be .
a differential operator. 077




Appendix B 73

where £¢ is given by equation (39), zéo) and its derivatives are evaluated
at £
x50 = [iX [x]] +u.t 2 P (B-8)
0*Yo & |%e| * Yot “bf £ .
Vg b
zg zg
and from (B-6),
F -
jq, = cos 9f cos \I'f (B-9)
f
= ~ cos <I>f sin ‘I'f + sin ‘Pf cos ‘I'f sin ef
L sin (I>f sin \Ilf + cos <I>f cos \I’f sin Of-
ORI, T 8. sin ¥ 1 (B-10)
42 cos 8, sin ¥, s
cos QE cos q% + sin @E sin QE sin GE
C sin ‘I’f cos ‘I'f + cos <I’f sin \Ilf sin GfJ

Consequently, provided (B-7) is satisfied, the ground exerts a force on that
particle of the aircraft which, referred to the constant-velocity axes is given
by the vector

e 51(10)24’:?4 9 [e] - %
(c)
fu bLd
g (c)
Su ] z
0) (0)
+ LT x -z(o) raﬁu 36u 0
| £ P [""o T
Vg
g
az(O) 52 (0) s
+-ax ’-ayp T | sq,fx -xf
y Ve
(c) _
077 z z

vesess (B=11)




74 Appendix B

where 650), z;O) and their derivatives are evaluated at the point given by
(B"s) .

Now during the datum motion these forces must be constant and so we must

have either

u, = O (B-12) Q ;

or

D L)
P u

axo = axo = 0 everywhere . (B-13) .

With either of these conditions satisfied we can write, at the point given by
F" (B_s) ’

, Z;O) = zp(xf: Yf9 zf) (B-“‘)
! s§°) = 6, Ve 2 (B-15)
and J
Wifreat @] - 7 e i
» " Gu E‘I’f Xe zp Bug (xf, Yeo zf) . (B-16)
| Ve
: z

Thus (B-11) becomes, remembering that S is orthogonal

! -
f M7 SO TR AR e U :
b ’ ’ g
:’ u u <I>f u <I>f (I>f ue q>f 3xf 3yf asz e
3 f(c) ;
u

g(c) 9z 322 9z ™ ()

u

Note that, from (B-14),

azp/axf

azplayf

azplazf
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and so
T i RC o
sq)f 3zp/3xf azl(, )/3x0 . (B~19)
0
azp/ayf 3zp /3y0
9z_/9d 0
25/ 32 | BT
Similarly
T 1 - (s | ¥
S(I,“E 3§ulaxf 36u /axo . (B—20)
(0)
asu/ayf 36u /ay0
86ulazf‘ | 0 ¥
Thus the functions Gu, zp must be such that
[asu 38 asﬂ
= 0 (B-21)
8xf ayf azfd ”q)f.
and
[az 9z 9z W
—£ B _P = 0 . (B-22)
My Oyp E, !q)f
In addition, if the condition (B-13) is the one which is satisfied during the
datum motion, then these two functions must also satisfy
[acu 36u aau1
i e (B~23)
axg 9y, azf_ ‘bf
and
[az _a:.z 3z_]
== =2l =0 (B~24)
Bxf ayf azf- qxf

Expressing the perturbation in terms of the generalised coordinates used in

the constant-velocity axes development (equation (7)), equation (B-17) becomes
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= (say) euf + e . . (B-25)
fuf o

8uf

The resultant overall forces and generalised forces can be obtained, as in the

other cases, from the general expressions (74), (76), (22) and (78). We will

write a generalised upholding (support) force as

and the perturbation equation of motion will then be

{[Aij]Dz + [sijl + (Gijl + [Pijl + [Eijl - [Qij]} q, = 0 (B-27)

qn+6

where the Sij are obtained as above, the aerodynamic matrix [Qij] is given in

Table 15 and the other matrices are given in Table 3. The equation of equilibrium

(Table 1) can similarly be modified.
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Appendix C
PERTURBATION EQUATIONS OF MOTION IN THE GROUND RESONANCE TEST SITUATION

During a ground resonance test it is reasonable to assume that there will
be no aerodynamic or propulsive forces, and the constant-velocity axes are :
stationary and such that Ofyf is coincident with the normal earth-fixed axis
Ooyo . Thus the two attitude angles (?,¥) of the undisturbed aircraft are zero.
There will of course normally be some excitation forces but as throughout the

. rest of this Report we will assume them to be zero. It will be a simple matter
for the reader to include them if desired. We will also assume that at each
: support point the ground profile and stiffness are both stationary. Hence from

(B-25) the upholding (support) force vector* is, referred to the constant-
velocity axes

(el} .  .€O) 2 T & =
e, 8, %@ ~ S0 e R I -Axl q, (c-1)
Euof £ °F
g(©) "
u .
(c)
8y 9n+6
where, in this ground resonance test situation
%@f = [- sin ef A « (C-2)
0
cos G&

From the equilibrium equation (¢f Table 1) we immediately find that

- Zg‘(lo)RTJL o = elomk’zy + IRT [ ‘ (c-3)
£ ; £
£
sf
st
and k
(0) - >
Zsuf A ta, 0 (c-5)

* We are continuing to assume that the support forces are purely elastic. For
the soft suspension desirable for a ground resonance test it may be necessary

to take account also of the effect of the mass of the suspension on these
077 support forces.
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and so, using equations (75), (77) and (78) along with (C-1), the upholding

(support) matrix is given by

T T

- [sij] = - Za“ R fozi’f[R I -Axg
I
Ax,
+ r 0 0
0 0

fAlq)fZ‘st + ersz

(=]

(c-6)

where we have made use of the argument:=(C-3) is true for any R and in

T

particular for RT =R Aa where Aa is an arbitrary constant skew-symmetric

matrix of the type of equation (6), and so

e (0) T
( Z(t;uf + gém)R )Azq,f[

which gives since {a ...} is arbitrary

- (ngl?)RT)A%f ). g(ZGmRT)Ag,Qf

a

)

(c-7)

(c-8)

The gravitational and structural matrices are given in Table 3, and so

(sijl + [Gijl + [Eij] = Js |&F

u
1
Axg

2

T
Py O

R T -Agl
[ T
ZR e§l vev. Mg
£ ceeeeens
Bgy oo
0
K TAe (R

o]

cesees (C-9)

077
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The equation of motion for small perturbations is therefore

{ia 007 + 15,0 + [ 51 + 1) [

where the inertia matrix is given in Table 3 and the other terms come from the
above equation (C-9). It is normal practice in ground resonance tests to make the
support stiffnesses (the Gu) as small as possible so that the first term in

(C~9) can generally be ignored. We can also replace the terms involving the
datum values of the structural force vectors by terms involving the coefficients
in the expressions for the perturbations thereto. This is done through the

relationship

TAe R = Jax: [e,, --- . (c-11)

fsl O
gsl S0 00 s 0o
which is a consequence of the fact that the structure cannot exert any overall
moment on itself (¢f the particular demonstration in Appendix A). It also should
be noted that for most structures (cf Appendix A) the submatrix in (C-9)

T

R e vos €
sl sn

fs] ® % 0000000
g B TR

can be taken to be symmetric.

The main objective of a ground resonance test frequently is to gather
information about the structural forces. If the function R represents the
normal modes measured in such a test which are not predominantly body freedom
modes, and the suspension is sufficiently soft then we see that to a good
approximation

ZGmR?R . is diagonal

J6mR = 0
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-1
= T T )
LomAy R Taxe [o , .- o, IR €y sreoE (Zsmn R)
f "0 0 00 a0 f ® 00000000
sl sl
gsl 00 00 000 gsl ® 9 000000

oale niee - KC=14)
and

T . .
IR € cee € is diagonal. (C-15)

fsl ® 2000900
g e e 000000

sl

Thus knowing the frequencies of these normal modes we can immediately find all
the elements in the second term in (C-9), or in the structural matrix of Table 3,

for these particular degrees of freedom and this particular datum motion. That

is we have

T
ZR esl sn

D gL ~ (ZGmRTR)diag{w% W% wi} (C-16)

sl
g

: 2 2
ZAxf ey o+ e | ® (ZGmAfo)d1ag{wl cew w ) (c-17)
f cevescnn

where wg is the circular natural frequency of the ith mode. We would emphasise
that these values of the structural coefficients strictly apply only to the
ground resonance test situation. For other stress states during the datum
motion it is obvious from (C-11) or (A-13) that e+ e will be different
fsl s b v i
Es1
even if the modal matrix R 1is the same. Nevertheless, being devoid of hope of

doing anything better without excessive effort, it will often be assumed that
these coefficients, e etc, in the components of the local structural forces,

are independent of the chosen unperturbed condition.

To obtain the structural matrix in the perturbation equations of motion
using body-fixed axes is a little more difficult (c¢f Tables 4, 5, 6 and 7). We
have from (131) and (46):
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T =~ ~ T T
IR Mgy an By R e, ... el * (ZR Aesf)Pq
f a0 000 oo f L R B
sl sl
gs] *o 000000 gsl LR

which, for normal modes, can be evaluated from (C—Il), (C~16) and (C-17). The
other terms (cf, for example, Table 6) comprise one, P Z\esfk , which similarly
To be

able to evaluate the latter it appears that one will also require measurements of

can be easily evaluated, and one P ZAeszxf whxch sets a problem.

the unperturbed values of the upholding (support) forces. When using constant-

velocity axes it was remarked above that one may often have to assume that

e ceee_ s and hence (cf, for example, (C-11)) the weighted sum ZAesz are

sl

fsl L A
s1
independent of the chosen unperturbed condition.

Similarly with body-fixed
and er R + (ZAfoe

axes one may have to assume that ésl are ésn are

fs] ® e %0000

g ss 0000

sl
independent of the unperturbed state.

sf q

In section 7.4 we considered also the use of mean-body axes. It is
however rather more difficult to relate the structural coefficients there
derived (cf Table 14) to the results of a ground resonance test, for the normal
modes obtained in a ground resonance test do not satisfy the two conditions

; (equation (177)) for mean-body axes (ef equations (C-12) and (C-14)). We will

not therefore pursue the connection.

This consideration does however highlight the fact there is in general
some inertia coupling between the normal modes measured in a ground resonance
test and the rigid body rotational freedoms. How large this is it is difficult
to tell. No doubt, for an almost two-dimensional structure, such as an air-
craft, it could certainly be made small by the use of a continuous* soft support -
from (C-11) and (C-14) it clearly will be small if the structural forces in the
unperturbed state are small. In practice the cross inertia couplings between
the measured modes and the rotational body freedoms have rarely been calculated.
Moreover, if they had been, one would not know how much was the 'true' value,
how much was due to experimental error (it is not unusual to find large inertia

couplings between two measured 'normal' modes), and how much was due to

* Continuous in the sense that every point on the underside of the aircraft is
077 supported.
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inadequacies in our mathematical model of the suspension (massless, elastic,

and infinitely soft). All this, along with considerations of structural damping

and friction, suggests that measured normal modes should be used with caution,

and that one should regard ground resonance tests primarily as a fair check of

theoretical predictions rather than a source of data.
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Table 1

| DATUM MOTION EQUATION USING CONSTANT-VELOCITY AXES

I Equation

[ @e v v @ @] = o0

Constituent matrices

| Aerodynamic Gravitational Propulsive Structural
E (CR - ey - @] - @)
|
E ) e .
i T & r = i = = -
; T T T T
% IR e g({émk )zq,f YR L, YR e s
f fs fot iY:
| S Epf 8s
i

an mgzq,f xpﬂ 0

3 Yo

Z

1°g Zp

| 0 Log] 0
l; :f ot
i‘ iy d Mg

e — S et b - e et

Overall forces
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Table 2

DATUM MOTION EQUATION USING BODY-FIXED AXES

Equation

[— Q) + G)g + (B, + <i:i>f] = 0

Constituent matrices

Aerodynamic Gravitational Propulsive Structural
(G - 6pd - @) = (€]
Thlel iy A TR T T
I - Ry PoAx)[es g{({dmn ) mno}zqk- 16 =8, PoAxp) e, Ir"[e ¢
£ for fot
8¢ 8pf B¢
= Sl
xﬂ mgt Xof (i}
Y s Y
£ pf
[ % [ Zpt]
1, () [Lof] 0
Hf pr
Lyl [ Npe
e d - o _ . - -
Overall forces
See Table 1

Note:

For the purpose of this table equations (29), (30) and (31) have been
combined into one matrix equation.




Table 3

PERTURBATION MOTION EQUATION USING CONSTANT-VELOCITY AXES

Equation

{[Aijln2 + [Gijl + [Pijl + [Eij] - lQijl} q = 0

qn+6

Constituent matrices

(1) Inertia (ie ponderous inertia)

- ) = | Tes®  Jene"  -JomeTay,
J 6mR I 0
XsmAfo 0 i

T e T TP T e e e T e R T TE—————

(ii) Gravitational

T T

(iii) Propulsive

e N Py ST T

P T f) s
o= R P 0
[Pu] (X Aepe) Pq :
| Z(Afoeprq +Ae gR) 0 R R




(iv) Structural

)

- fo;) = - [o

Constituent matrices (concluded)

E | [E; 5]

Aerodynamic

Overall aerodynamic force coefficients

[T
RTe,, .-« e

sn

f LRI A A

sl
gsl

) (c) (.
Flff xe x;ﬂn
v§e)

x
2§¢)
L'x

L§e)
x
uied
x

N§©)

See Table 8

Table 3 (concluded)

.........

.........

()
S
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1 Table 4

PERTURBATION MOTION EQUATION USING BODY-FIXED AXES IN TERMS OF ENCASTRE MODES
AND DISPLACEMENT BODY FREEDOMS

Equation
2 2 ~ ~ ~ )
{[Aij]D + [Cij] + [Pij] + [Eij] - [Qij]} q, = 0

g qn+6

Constituent matrices

(1) Inertia (ie ponderous inertia)
8 i SR T P e T
[Aij] = [T Ry By JSmR'R  JémR J 6mR A [T 00
o 2 ) 6mR mI 0 % 10
0.0 I ZsmAfo 0 T 2 S

(ii) Gravitational

> 2 3 T T
[Gij] 0 0 g({cmR )qu)f + RoAX ¢
0 0 —Ang
0 0

gqu,fZGmR - BxrRy

(1i1) Propulsive




Table 4 (concluded)

Constituent matrices (concluded)

(iv) Structural

[XRT ¥R +P:2Aesz +P:(ZAeszxf)Pq

LRI )

sl

CRCRC RN A S )

(v) Aerodynamic

o [Qij] -t i

- [Faloto - B - (ireeme)e)

Overall aerodynamic force coefficients

See Table 9




Table 5

PERTURBATION MOTION EQUATION USING BODY-FIXED AXES IN TERMS OF ENCASTRE MODES
AND VELOCITY BODY FREEDOMS

Equation

" 2 ~ - a ~ ~ - " -1
{[Aij]D + Ogglo s )+ 60 + Byl v B - @) + Gy

Constituent matrices

(i) Ponderous

> T T T
i [Aij] ol B s J6mR'R  JomR J smR A || I 00O

3
~
»O'-IJ

0 I

0

(ii) Gravitational

0

0 0

=)

L_sszq,,fZ&uR - AxgRy O

T T
0 -E(ZSmR )A,, o + RoAxog

0
0 0 -Axg £
A

0 0




Table 5 (continued)

Constituent matrices (continued)

(iii) Propulsive
[?ijl = 0
0

ThepsR = AxyeRy + (erpfA*f)Pq

(iv) Structural

o . T T
[Eij] = PR pq{Aesz + Pq(XAeszxf)Pq

(v) Aerodynamic

S
i L B
65 0

0 0 1

ey ‘nﬂ

)
©




Constituent matrices (concluded)

Overall aerodynamic force coefficients

See Tables 9 and 10




i ? Table 6

PERTURBATION MOTION EQUATION USING BODY-FIXED AXES IN TERMS OF FREE-FREE MODES

AND DISPLACEMENT BODY FREEDOMS

| Equation
i {[Kijln + réij] + [Fij] + [Eij] - ﬁij] } ql = 0

1 qn+6

i N

Constituent matrices

(i) Ponderous inertia

rxi j] = | Jomr™R Y 6mR" -7 6uR T Ax - 3
.
) SmR mI 0 {
) SmAy R ()} B

(ii) Gravitational

E &
- T - T - a3k 2 T
(Eij] g{Pquq)f ({amn) (chmn )Ag @qu} PARgeRy O g({dmn )Ag, %
—Axg qu 0 'Ang .
| sAzq,f(ZGmR) - AxeRy 0 S |
|
(iii) Propulsive ;.
~ T ; ]
Byl = % {Z‘*epfR i (z“epf“"f)"q 7 Axpf“o} SRR
E | 0 o 0
; hXAepr + ({Aepfof)Pq = AxpeRy 0 o_J




Table 6 (concluded)

Constituent matrices (concluded)

(iv) Structural

£, -

(v) Aerodynamic
e

= : (“f"o = IAegR - (X"f‘lf)’q)
0

0

Overall aerodynamic force coefficients

See Tables 9 and 11
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Table 7

PERTURBATION MOTION EQUATION USING BODY-FIXED AXES IN TERMS OF FREE-FREE MODES
AND VELOCITY BODY FREEDOMS

Equation

{ﬁﬁ]DZ + [.Tij]D + Wij] + léij] + [iij] + [Eij] - léij] + légjln—'} g = 0

n+6
Constituent matrices
(i) Ponderous
I T
X..] = | JsmR'R 0 O
1]
) 6mR 0 o
JémAy. R 0 O
v [~ T T
[Jij] = |0 JemR -JomR"Ax
0 ml 0
0 0 I
= n
o P T
(vij] 0 0 ()jsmn )Auf
0 0 -mAuf -
L9 0 0

(ii) Gravitational

=

2 T & T 1.
[éij] g{PquQf(ZGmR) (Zm )Ag, q,qu} PAxgeRo 0 0
“AxgePq 0 0

{ ohry (Tou8) - Axyehy oo
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Table 7 (continued)

Constituent matrices (continued)

(ii) Gravitational (concluded)

Bg1 = o o -g(ZGmRT)Ag,

P¢
i
i 0 0 Ang
P - 0o o 0
:
i,
B (iii) Propulsive
. ;_ Tropulsive 4
E ] e 5
| ;] Pq{ZAepr + ({Aepfof)Pq Axpro} 0 0
| 0 0 0 :
3
4 {Aepfn + (ZAepfof)Pq - Ay, Ry 0 o_

(iv) Structural

~ ey
. T - T
[Eij] = |-IrR Byy. e Sgh # Pq{{Aesz + (ZAeszxf)Pq} 0 0
f . .. .0
3 Asl
; 851 ceee ]
0 0 0 ?

.
r
o
o
o
|
i
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Table 7 (concluded)

Constituent matrices (concluded)

(v) Aerodynamics

I—TD " T[>
g - {Ir
[61 J] = Ir°[E 1 “n IR 8nvl»l g% §n+3
f, Cals ey fn+l clstesiniale
E’ ....... Boey coeeeeee .
o v B ~ 3
xl . = X“ Xv X
Hee e
E. ik 2h Z
2 i E“ ...... 1
P v ] [~ - »
LI . Ln Lu Lv L
rl ....... M, ... .
R N
1 3 E“ ...... ]

Overall aerodynamic force coefficients

See Tables 10 and 12

0

0

T [ o
IR, - 6,

IR
P q xr
R

Z isiaieie's
P g

ﬁ‘ﬂq

L L
P q Lr

5

| e < R
P

~

INE. - iieieieres
P -

L= rey Ty |

T AROO

el Cctcteecee

J P:(Axfko - lAegR - ():‘ef“"f)’q) x

0

0
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Table 8

OVERALL AERODYNAMIC FORCE COEFFICIENTS - CONSTANT-VELOCITY AXES -
WELL AWAY FROM GROUND

e L 0 i) 3 A s 4 0




Table 8 (concluded)

e € - e, 9 - o
Lic) = {A*fen-;l Lgc) = ZA‘fen:M etc.

NB: xg“) » for example, is not a derivative in the usual sensez. All the above

terms such as x§°) > x“) are in general differential operators, and thus there

[
will be contributions to the x$ derivative from xéc), x£°) and xic) i 5
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Table 9

f ! OVERALL FORCE COEFFICIENTS - BODY-FIXED AXES ~ ENCASTRE MODES
AND DISPLACEMENT BODY FREEDOMS

Gravitational

* x81 xg’m6 = [0o o Axsf]
;: = Ygl e e e 00Nt
f 2 ® 0 0P v e NP0
L 8! e
| .
E | e e - ]
P | Lgl Lg,n+6 = E‘ng% gAngZGmR 0 o
| ~
"‘ Mgl ® o000 v
; -Ngl ® o0 0000000
|
; Propulsive
s : - : -

: Xpl st xp,n+6 = 0

! Ypl ..... o e e 0

} LZP‘ cerieciecne

1

>
>
]

Py ot e Byl [AxprO—ZAepr+({Aepfof)Pq 0 0]

ﬁ LR RN A A

2>

" e A L = G

é pl ..........L

Aerodynamic - well away from ground

{ E

| E
Xl cee Xn ~ Z e o0 b
A~ ~ '
Yl LU B fl LU :»
i L B B B a ee s s




el B AR b 4

Table 9 (concluded)

Aerodynamic (concluded)

[0

LR R Y

AA’
oA 1% K

eve v e z se0 000

’ o L_x -

~

where xi — Zen;l ’

= " XAIfen-;l A

>

® Zen‘h 5

s ZA“fan;a :

(td

NB: i; » for example, is not the usullz

1o Dol o= Daxgf@y e &f - TaegR + axeRy - (ZA.fAuf)Pq

etc.

x; derivative. All the above terms

such as X:, X: are in general differential operators, and thus there will be

y ¢ L
contributions to the x; derivative from x;, x;

and X: .

¢
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Table 10

OVERALL AERODYNAMIC FORCE COEFFICIENTS FOR VELOCITY BODY FREEDOMS -

BODY-FIXED AXES ~ WELL AWAY FROM GROUND

a a2
Xq Xr

st
LV LW

e

(2]
(il

2> !
©-° -

>

=t

r
-

i. f‘.
y z

ZAxf

+4 °°

™!

n+l

rh)

n+l

oD

| ®n+]

!

n+4
n+4

n+4

Ton Mo

iy

€n+3

)

-
—
~
. . en+6
R
cesscscns
emd

(ef equations (101) and (102), and note to Table 9)

101
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Table 11

! OVERALL FORCE COEFFICIENTS - BODY-FIXED AXES - FREE-FREE MODES
i g AND DISPLACEMENT BODY FREEDOMS

; Gravitational
4 Fv ~ A a
{ ~
E Yg‘ L R B I
;E _zgl ..l....‘l';
| < g :
| Lyt o+ Lgnes| = l}ngno-ga,@f{ma 0 o0
»\1 Mg] ® 000000 b
LNgi ® 00000000
Propulsive
| R
\; xpl L 3 xp’n+6 o
Ypl ® 0000000 v
bzpl ...l....‘..d
F" o T °
Lp oo Lpoose| = [ApeRo ZAepr*(ZAepfof)Pq 0o o
Mpl ® 9 90 0000 0 -
LNpl S0 00000

Aerodynamic - well away from ground

l

ﬂxz
]

~1
L

l see n

m ®)

Ny < M




Table 11 (concluded)

Aerodynamic (concluded)

cie B d e cor T | - TAeR + AgR) - (ZAefA,f)pq ¢

For the other aerodynamic coefficients see Table 9 since ;{;




Table 12

OVERALL AERODYNAMIC FORCE COEFFICIENTS -~ BODY-FIXED AXES - FREE-FREE MODES -
VELOCITY BODY FREEDOMS - WELL AWAY FROM GROUND

B, eeeenn

-

= Dag¥ ... B - AR +ageR - (i‘ef"f)’q

81 o0 s

For other aerodynamic coefficients see Table 10 since iu - X > §p

u
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Table 13

TRANSFORMATION BETWEEN DIFFERENT FORMS OF THE
PERTURBATION EQUATION OF MOTION

105

To transform from one form of the perturbation equation to another ome

requires, in addition to the coefficients in the original equation, the following

quantities (ef section 4.3):

motion forces could be considered zero.

Body-fixed
.f:r R Candbiaias Encastré Free-free
Form .
From velocity Disp. Velocity Disp. Velocity
(or to) 7
Dressing
Form Dressing A ~ o L4
Constant- //_//
velocity j
e
Body- Encastré =
fixed displacement A Xg» tf etc OA‘, ‘r@@
IAg R, Jasoax %
£ £O%g o8
A %
Body- ncastr =
fixed velocity = ;f’ tf';tc Aug
[Aeh ANt /
R LA%g ¢
: R, P V
Body- Free-free P RO tq ets R. P R Pq /
fixed displacement Zf’ f’Z 0’ 'q Ayg /
Az R, JAzchx /
£ £7%E &
R, P, Ay
0’ 'q £ Ry P V/
Body- Free-free & 0’ 'q P A
fixed velocity b Xe» Ly ete Aug Ro» Fq "
XAEfR' XAEfof //
Notes: (i) Ay; should always be known.
(ii) Need information about deformation modes going from or to to deduce
Ro, Pq .
(iii) Entries in the table of a typical force vector indicate the complete
set of these (aerodynamic, propulsive etc) are required.
(iv) In transformation from or to the constant-velocity form the datum-

The result would be an

equation with the wrong constituent coefficients but the right

solution.




swdle 14

PERTURBATION MOTION EQUATION USING MEAN~BODY AXES IN TERMS OF

E FREE-FREE MODES AND VELOCITY BODY FREEDOMS
rE {Eijlnz + ﬁij]D + [\'Iijl + lfijl. + [ﬁﬁl - mij] + [51;5]1)"} li.l
e

Constituent matrices

(i) Ponderous

[Kij] - diag{ZGmRTR 0 o}
[.-Iij] = d1ag{0 mI In}
: [Tvu.] = |o o 0
0 0 -mAuf
0 o 0

(ii) Gravitational

3 %* , =
F [c';iJ] 0 o0 0 ]

(iii) Propulsive

MR SR AL Sl

2, g = 0 0 o0
0 0 o
| TAepe® + (XA"fA‘pf)Pq Gy
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Table 14 (concluded)

Constituent matrices (concluded)

(iv) Structural

B ~ -~ 7
Eij] SR ZR fsl cee e 0 o0
fsl 00 00000
gs, 00 00 00
0 0O 0
0 0 0
b -
(v) Aerodynamic
b= gl
- - T, . % o
[aij] IR g ... & IR €41 *°° Shu3 IR & vt ' 46
] ® 80 00 00 fn+l ® 90 ® 00 00 fn*a LI I
g‘ *e 80000 §n+l L L A ) gn+4 L I )
e Pﬂ ~ - ] '-A ~ ~
x§°) e %8O oo %% R YR
n u v W P q r
Y(C) 0 000000 ? ® o000 000 ? ® 0 0 0 00
1 u P
(c) o
L—Z‘ ---ooa---- h-zu .'....._J -Zp EEEEEE)
- —
() () [g & . a s e s
I.l Ry I.n 7 Lu Lv i Lp Lq Lr
M§C) ® 99 00 000 ﬁ ® 000 0 00 ﬁ ® % 80 00
(c) ¥ :
N c * o P00 0P N e e o0 0 0 N ® s 0 0 .
1 -l _u - ...NP
- -

NB: In the above equations the modal matrix R has been chosen such that
JémR = 0
lomax,R = 0

These equations of motion have not been derived directly in the present paper but
in section 7.4 we have merely shown that they are equivalent, for a modal matrix

satisfying the above conditions, to the equations of Table 7.
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Table 15

AERODYNAMIC MATRICES IN PERTURBATION EQUATIONS OF
MOTION WHEN NEAR THE GROUND

Constant-velocity axes

2L A e
= - T T T
[Q].J] IR fe, ... N IR yy «-- €3 Ir Caet vt Cnug] * Aeg
€ e o s S : +
By ceeeeen Boap tceveres Bragy vcce o
, xf°) x'(f)-‘ x’(‘“) x:‘"') Fx:“) xg") x:°) %
(c) (c) (c)
Y ol it Y Y€
: o .
(c) (c)
3 2, ceveeeees ] z: _z:")
- 7
Lf" L‘(‘“) B Li“’ + Ax L:C) 1 L] efo n " |
(c) ]
A u,‘f) ....... 0 B e s 0 o -1 i 4
(c)
LLN, ......... ] el S . SRR 0 0 o
)

*Body-fixed axes, encastré modes, displacement body freedoms
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Table 15 (continued)

*Body-fixed axes, encastré modes, velocity body freedoms

*Body-fixed axes, free-free modes, displacement body freedoms

<ig ) SRTEE E




PR IR

110

Table 15 (concluded)

*Body~-fixed axes, free-free modes, velocity body freedoms

a8l w = QW e i
s BN ) San TR
....... K it
R N S O R
¥ % Cacd “Teai
A e ks i
T, i, i t) - 1‘.:1 a2
5 B iaeees R ecnoene
) Li’ seennee] Li: sveean]
.

* In the above expressions:

0
0

0
0

p:(Axfno - TAe,R - (ZAefoﬁ) Pq) 0 o

0
0

.......

-------

.......
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GLOSSARY OF TERMS

(i) Fundamental terms

a system is said to have n degrees of freedom
if its position and shape can be uniquely specified
by n parameters, but not by less than n

degree of freedom

semi-rigid a body is said to be semi-rigid if it has a finite
number of degrees of freedom in addition to any
body freedoms

body freedom a body is said to have n body freedoms (n < 6)
if its position, with a given shape, can be
uniquely specified by n parameters but not by
less than n

perturbation a disturbance from a datum state

deformation a perturbation in shape

circular frequency the frequency of oscillation multiplied by 27

natural frequency a constant frequency of free oscillation of a
system

generalised coordinates the set of parameters used to specify the position

and shape of a system

generalised force the coefficient of the increment of a generalised
coordinate in the expression for the virtual work
of a system

(ii) Types of force

aerodynamic¥* exerted by the air on the external surface of a
body
propulsive* produced by the operation of a propulsive unit

such as a jet engine

gravitational resulting from the gravitational attraction
between each particle and the earth

structural resulting from the stresses in a body

upholding (or support) resulting from contact between a body and the
ground

ponderous a reversed effective force consequent to a system

having mass

inertia a force which is proportional to the second
derivative, with respect to time, of a generalised
coordinate }
damping a force which is proportional to the first f
derivative, with respect to time, of a generalised
coordinate

* The distinction between aerodynamic and propulsive is not entirely clear-cut.
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GLOSSARY OF TERMS (continued)

(i1) (concluded)

stiffness

(iii) Frames of reference (all

a force which is proportional to a generalised
coordinate

right-handed orthogonal* cartesian)

normal earth-fixed axes

constant-velocity axes

body-fixed axes

mean~body axes

no-deformation-body-
fixed axes

datum-attitude earth
axes

(iv) Orientation

angle of inclination

angle of bank

axes fixed relative to the earth with the z-axis
vertically downwards

axes having constant linear and angular velocity
relative to an inertial frame. (The ones used in
this Report have zero angular velocity.)

(For the datum motion considered in this Report
these are always taken to be coincident with the
datum-attitude earth axes - see below.)

axes whose origin and orientation are fixed in a
small material portion of the body which is such
that the axes always remain mutually perpendicular.
(The ones used are such that the origin coincides
with the centre of gravity of the body, and the
axes are parallel to the principal axes of
inertia, during the datum motion.)

axes, with origin at the centre of gravity, of
the body, orientated so that the kinetic energy
relative to the axes is a minimum.

an axes system, arbitrary except imso~far as it
is of the same order of nearness to the body-
fixed axes and the datum-motion-body-fixed axes,
with respect to which it is assumed, in the
constant-velocity axes derivation, that the posi-
tion of any particle of the body is given as a
linear function of deformational generalised
coordinates.

axes with which the body-fixed axes coincide
during the datum motion. (These are not in
general body-fixed axes. They are earth-directed
not earth-fixed.)

angle between the x-axis of the body-fixed axes
and the horizontal plane

angle between the z-axis, of the body-fixed axes,
and the vertical plane containing the x-axis of
the same frame

* With one of the assumed forms of deformation (equation (1)) the body-fixed
axes only remain mutually at right angles for small perturbations of the datum

motion.




(iv)

(concluded)

nose-azimuth angle

Deformation

free-free modes

encastré modes

GLOSSARY OF TERMS (concluded)

angle between the projection of the x-axis, of
the body-fixed axes, on the horizontal plane, and
the x~axis of the normal earth-fixed axes

unconstrained modes of deformation - actually a
slight constraint has been imposed in that the
body-fixed axes are kept orthogonal during small
deformations

modes of deformation constrained to have zero
values and zero slopes at the reference point




LIST OF SYMBOLS

In this list i, j are used as typical dummy subscripts.

Gt S s 7 I

skew-symmetric matrices involving ¢, 0, y , etc (see equation (6))

ponderous inertia coefficient

lower triangular matrix involving ¢, 0, y (see equation (56))

lower triangular matrix involving e, f, g, x, y, z (see equation

(71))
D differential operator d/dt

strain energy when no perturbation

generalised structural force

structural stiffness coefficient

generalised gravitational force

gyrostatic force

gravitational stiffness coefficient

gravitational 'build-up' coefficient (¢f for example Table 5)

unit matrix

principal moments of inertia of undeformed aircraft

I = dlag{Ix Iy Iz}

J a certain coupling force between the rotational body freedoms and
the deformational freedoms in Lagrange's equations referred to a
non-inertial frame

ponderous damping coefficient

matrices formed from the elements of {¢ ® Yy} etc (see equation
(57a))

aerodynamic rolling moment

[l B o)

total rolling moment

E | Lg'Lp’Lu gravitational, propulsive, upholding (support) rolling moments

aerodynamic rolling moment coefficients

aerodynamic pitching moment

total pitching moment




LIST OF SYMBOLS (continued)

gravitational, propulsive, upholding (support) pitching moments

aerodynamic pitching moment coefficients

i N aerodynamic yawing moment
3 N total yawing moment
. Ng.Np.Nu gravitational, propulsive, upholding (support) yawing moments

aerodynamic yawing moment coefficients

; ! 0 position of reference point (particle), origin of body-fixed axes
an 0n position of reference point when perturbations involve no deforma-
| } tion, origin of no-deformation-body-fixed axes (ef section 3)
Oxyz body-fixed axes

constant-velocity axes (identical with datum—attitude earth axes)

mean-body axes

no-deformation-body-fixed axes

normal earth~fixed axes

generalised propulsive force

matrix of modal slopes at reference point (equation (11))

propulsive stiffness coefficient

generalised aerodynamic force

total generalised force

matrix relating angular velocities and orientation (ef equation (36)),
see Ref 1 (Part II) or Ref 2)

aerodynamic coefficient

modal matrix (equation (2))
R value of modal matrix at reference point

RZ,R3 certain matrices, see equations (59) to (61), formed from the
modal matrix elements ;

S axes transformation matrix (cf equation (5), see Ref 1 (Part II)
or Ref 2)

s,f § where necessary to designate arguments - in this c'ase d’f, e,, \Iff
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¢9
0,Y ,Y

etc

NN

Zs,ZP,Zu

z ,z"z

¢’
z;,zu,zp
etc

generalised

LIST OF SYMBOLS (continued)

upholding (support) force

upholding (support) stiffness coefficient

certain matrices whose elements are particular datum motion
particle coordinates (see equations (62) to (64))

centrifugal

potential function used in Lagrange's equations

referred a non-inertial frame!

ponderous stiffness coefficient

kinetic energy relative to reference frame

overall aerodynamic force resolute

total overall force resolute

gravitational, propulsive, upholding (support) overall force

resolutes

aerodynamic

force resolute coefficients

overall aerodynamic force resolute

total overall force resolute

gravitational, propulsive, upholding (support) overall force

resolutes

aerodynamic

force resolute coefficients

overall aerodynamic force resolute

total overall force resolute

gravitational, propulsive, upholding (support) overall force

resolutes

aerodynamic

x-component
y-component
z-component

x-component
coefficient

force resolute coefficients

of modal function (equation (2))
of modal function (equation (2))
of modal function (equation (2))

of local aerodynamic force vector
in x~component of local aerodynamic force vector when 077

near the ground
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LIST OF SYMBOLS (continued)

coefficient in x~component of local aerodynamic force vector when
well away from the ground

x-components of gravitational, propulsive, etc local force vectors

coefficients in x-components of gravitational, structural etc
local force vectors

y-component of local aerodynamic force vector

coefficient in y-component of local aerodynamic foree vector when
near the ground

coefficient in y-component of local aerodynamic force vector when
well away from the ground

y-components of gravitatianal, propulsive etc local force vectors

coefficients in y-components of gravitational, structural etc
local force vectors

acceleration due to gravity
z-component of local aerodynamic force vector

coefficient in z-component of local aerodynamic force reactor when
near the ground

coefficient in z-component of local aerodynamic force vector when
well away from the ground

z-components of gravitational, propulsive etc local force vectors

coefficients in z-components of gravitational, structural etc
local force vectors

first column of &Qf (equation (B-9))
second column of Sp. (equation (B-10))

direction cosine of outward drawn normal to surface
third column of Sq,f (equation (39))

direction cosine of outward drawn normal to surface
mass of aircraft

direction cosine of outward drawn normal to surface
number of deformational degrees of freedom

angular velocity resolute

angular velocity resolute

generalised coordinate

angular velocity resolute

time

linear velocity resolute

particle velocity resolute




LIST OF SYMBOLS (continued)

linear velocity resolute

particle velocity resolute

linear velocity resolute

particle velocity resolute

particle position resolute

resolute of reference point position relative to its position in
datum motion

particle position resolute relative to origin of constant-velocity
axes

particle position resolute relative to origin of mean-body axes
particle position resolute relative to origin of no-deformation-
body-fixed axes

particle position resolute

resolute of reference point position relative to its position in
datum motion

particle position resolute relative to origin of constant-velocity
axes

particle position resolute relative to origin of mean-body axes
particle position resolute relative to origin of no-deformation-
body-fixed axes

particle position resolute

resolute of reference point position relative to its position in
datum motion

particle position resolute relative to origin of constant-velocity
axes

particle position resolute relative to origin of mean-body axes

particle position resolute relative to origin of no-deformation-
body-fixed axes

value of z, at the surface of the ground when under no external
load

angle of inclination
angle of bank
nose-azimuth angle (also known as the heading or heading aygle)
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Gu(xf ayf "f)

(0)
6“ (xo ’ yo)

ém

etc

Q

€ e

Dressings
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LIST OF SYMBOLS (continued)

(0)
6“ (xo ’yo)

earth (or support) stiffness coefficient

mass of a particle
orientation angle of body-fixed axes relative to datum motion

stress components

orientation angle of body-fixed axes relative to datum motion
orientation angle of body-fixed axes relative to datum motion

circular natural frequency

see Table 15

(1) Subscripts

Absence of subscript, in appropriate cases, denotes values relative to or
about the origin of the body-fixed axes.

5 B 0@ m

P
s

u
0 (nought)

denotes value relative to or about the origin of constant-
velocity axes

denotes values during datum motion
denotes gravitational
denotes value relative to or about the origin of mean-body axes

denotes value relative to or about the origin of no-deformation-
body-fixed axes

denotes propulsive, or (in Appendices) ground profile
denotes structural
denotes upholding (support)

denotes value relative to or about the origin of normal earth-
fixed axes

(ii) Superscripts

Absence of a bracketed superscript to a resolute indicates that it is the
value of the resolute along the body~fixed axes.

()

(m)

denotes value of resolute along the datum—attitude earth axes
(ie the constant-velocity axes). This is a change from the (f)
of Ref 1

denotes value of resolute along the mean-body axes
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LIST OF SYMBOLS (concluded)

(n) denotes value of resolute along the no~deformation-body-fixed axes
T denotes the transpose of a matrix

(0) (nought) denotes value of resolute along normal earth-fixed axes

(iii) Suprascripts

* (dot) denotes derivative with respect to time

- (bar) denotes total or typical

* (circumflex) refers to body-fixed axes, encastré modes, displacement body
freedoms

~ (cap) refers to body-fixed axes, encastré modes, velocity body
freedoms

~ (tilde) refers to body-fixed axes, free-free modes, displacement body
freedoms

» (dip) refers to body-fixed axes, free-free modes, velocity body
freedoms

= (double bar) refers to mean-body axes, free-free modes, velocity body freedoms
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