
AD—AO 51 890 STAWORD UNIV CAL. IF DI GI TA l. SYSTEMS LAB F/a 9/2
THE DESIGN AND IMPI.ENENTATION OF AN OPERATING SYSTEM TRACER. (U)
OCT 77 0 J ROSSETTI. T H BREDT N000I’e—67—A—0112— OOfl

UNCLASSIFIED D54. tr97

U_
~~1!I flJEBUiU~ftU!

END
o*1t

F LMED

4 —7S

L. _________ I

V _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

e~,,ter for
elioble

orriputin,g

THE DESIGN AND IMPLEMENTATION OF AN OPERATING SYSTEM TRACER

I ‘
‘

~~~ David J. Rossetti 
-

~

and
Thomas H. Bredt

Techni cal Note No. 97

October 1977

c~r~
u w

CENTER FOR RELIABLE COMPUTING
Digita l Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford Univers i ty

Stanford, California 94305

This research was supported in part by the Joint Services Electronics
Program under Contract N00014-67-A-0l l20044. Computing resources were
provided by the SLAC Computing Services , Stanford Center for Informa-
tion Processing.

DISTRIBUTION STAT} MENT A
App~ov:~d t ’ ’ ~~

~~~~~~~~~~~ i~~~~~~~: _~


I

The Des ig n and Im p lemen ta ti on of an Opera ti n g System Tracer

David J. Rossetti
and

Thomas H. Bredt

Techn i ca l No te No. 97

October 1977

Digital Systems Laboratory
Stanford University

Stanford , California 94305

ABSTRACT

ç STRAP , a general system for collecting a trace of mach ine-
instruction execution on a high performance processor , has been
implemented. Its generality lies in its ability to trace all

• instructions executed by the processor , whether they are issued
by the supervisor or by a user program , and also in its ability
tu do this without significant impact on system performance.
STRAP crea tes a “ virtual machine ” environment in which the op-

• erating system appears to be executing normally, but is actually
having its instructions traced by a program lying between it and
the real processor. Burst sampling is used to avoid excessive
tracing overhead, and the real processor interprets the traced
instructions , keeping the instantaneous burst overhead down to
about 45:1.

The resulting traces , which can be useful for architectura l
studies and performance evaluation of existing systems , can now
contain dita for all parts of the operating system. We present
example results showing how the data have been used to study :
1) The usage of various operating system components , 2) The dif-
ference in branching patterns between supervisor and user code ,
and 3) The difference in instruction frequency distribution be—

• tween the two modes of operation.

INDEX TERMS: com puter architecture , i ns truc ti on set des i gn ,
IBM 370, measuremen t , operating systems , per formance
evaluation , tracing, virtual machine

r
~F[3 Li . I

S •—

The Design and Implementation of an Opera ting System Tracer

D a v i d J. Ro ssetti

and

Thomas H. Bredt

Digital Eystems Laboratory

• Stanfo rd University

INTRODUCTI ON

In this paper we discuss the design and implementation of a

p rogram to trace operating system and user pr ograms. The program ,

called STRAP /370, runs as a job under the IBM OS/VS2 operating

system and produces an instruction—by—instruction trace of code

executed by the IBM 370 processor. There are two factors which

make this program different from most other tracers: 1) There is

no Limitation on the type of program traced (e.g. supervisor mode

as we lt as user mode instructions are traced). 2) The trace does

This research was supported in part by the Joint Services
Electronics Program (U.S. Army, U.S. Navy, and U.S. Air Force)
under Contract N00014-67—A—0 112—0 44. Computing resources were
provided by the SLA C Computi ng Services , Stanford Center for
Information Processin g.

—1—

_____________ _ _ _ _ _ _ _ _ ________________ ______________________ ___________

not represent continuous instruction execution , but rather

periodical ly samples short bursts of execution , using the

intermediate periods to write trace buffers to an external medium

such as tape or disk.

Significant results have been obtained in the past using

pr ogram traces to evaluate computer architectures. There are many

examples in the Literature of trace—driven simulation projects Cl ,

2, 3], in which tracing has been used to provide the empirical

backing for analytic methods in system eva luation. Winder [4)

• describes a project at RCA Labs to develop a complete library of

trace tapes which were mainly applied to cache system evaluation .

• In the paper he describes three trace programs , one of which could

• trace some of the supervisor routines but was used to study only

cache pe rformance. More recent ly, a the sis by Lunde CS)

• demonstrates the evaluation of instruction sets using problem

program trace data .

Previously, however , there has not been a practical way to

gather complete detailed information about operating system

programs. Such data could be used to measure the behavior of

• supervisory programs , to measure the usage of various operating sys-

tem services , and to generally evaluate software system

architecture. It simply has not been pr actical for a program to

simulate or trace the entire workings of a machine such as the

System/370. STRAP/370 is a program that provides the detailed

trace information without resorting to wholesale interpretation.

—2—

41

_ _ _ _—
.
~~

-
~~~~~~~~~~ - —•~~--- • - -~~

. 
~~~~~~ ——-.- ----•.--—--— -• -~~~~~~ -- •-- •~~~-- • - • -~~~--


- 1,1~~

It can trace code executin g in supervisor or user (problem) state ,

while interrupts are enabLed or disabled —— in short any program.

It has been implemented on an IBM 370 Model 168 at the Stanford

Linear Accelerator Center (SLAC) triplex computer system (6],

running under the IBM OS /VS2 op erating system. The environment and

structure of STPAP/370 are discussed , then an example is given to

show the applicability of this toot to operating system

measurement.

THE PROBLEM

Current operating system measurement tools generaLly provide

the ability to collect information at two levels of detail. At the

job level events can be measured which could probabLy be best

described as accounting data. As an exam pLe , the IBM System

Management Facilities feature [7], an integral part of OS/VS 1 acts

as a central agency within the system for the recording of job , and

• resource transactions as they occur. Gross statistics such as run

• time , number of tapes used , files used , etc. are available and can

be used in performa n ce measurement as welt as acc ounting

applications.

The second Leve l of measurement detail is exemplified by the

class of software monitors currently being used to tune large scale

H systems. The IBM Generalized Trace FaciLity (GTF) [8] and the

Confi guration Utilization Evaluator (CUE) from Boole & Babbage ,

—3—

-• -
~~~~~~~~~~~~~~~~~

- -
~~ ~~~~~~~~~

- -

L —.~~~~
—-- • .. •

~~~~~~•


____ —~
,. —.-

~‘
-•

~~—-- -
~~—---~~

•—•~-- ~~~—• - •.~~~~~~ - ~~-~ ••-~~ •-~— - - •- -—- -----~ -

Inc. [9] are exampLes. Monitors such as these can record system

related events , such as interru ptions , page faults , input/output

device activity, user program activation , etc. Current operating

systems and monitors provide these servi ces either staticaLl y (as

GTF does, being part of the operating system) or dynamicall y (as

most software monitors do), through the use of traps and calLs to

event recording routines.

The finest level of detailed information availabLe to a

.1 software probe reLates to instruction execution. Trace programs ,

• typicalLy interpretive , exist for most computer systems. With

slowdown factors on the order of 20:1 to 100:1 these programs

simulate the hardware available to user programs. Such trace

• programs , however , have been able to trace only instructions

• executed in the problem (or user) state. All supervisor processing

done on behalf of user programs is missing from the trace. In

fact , since usually the tracer is itself a problem program , not

even interruptions and suspensions of execution can be measured

directly. Thus , classical tracing has been of value only at the

• local level in such areas as debugging and code optimization , and

not of significa nt use in measuring global system behavior.

But how can more comp lete detailed information be obtained from

a software monitor? Suppose we would like to fill the gap between

• current software monitors and hardware monitors by providing the

ability to trace system events at the level of instruction

execution. The STRAP/370 system is a system which has been

—4—

- - - - - -----— - •---- -- • —-- -

~~
—
~~~: ~~~~~ 

•



developed to provide this more powerful tracing method. Any

program running in the OS/VS 370 environment can be traced ,

including all components of the operating system itself. Thus ,

this new measurement facility extends the range of software tools

wh i ch can be applied in the measurement of Large scale systems ——
from accounting data to a trace of each instruction executed.

REQUIREMENTS OF THE TRACING SYSTEM

What are the requirements of a usable tracing system? First

Let us consider the type of information that is required by a

facility capable of monitoring supervisor and user states , possibly

during interrupt handling. Events occuring at the machine language

leve l , along with relevant state information , are listed below.

EVENT STATE INFORMATION

Instruction execution The instruction executed

Operand values

virtual addresses , ReaL addresses

Sp ecial informaion (e.g. condition code)

Interru ption OLd /new pr ocessor status

T i me o f o c c u r r e n c e

• Interruption description

—5—

_ ___ _ • 
_ _ _  •



— — — • - • . ••- - -—

Processor state change New procesor status (e.g. masks etc.)

4: Register contents

The first requirement is that the measurement toot be able to

record the above events so that the execution of the traced segment

of code can be reconstructed if desired.

Secondly, the tracing system must allow for selective recordi ng

of trace data. If , f o r  e x a m p le, a user were studying just the

stream of real addresses generated by the system , then it should be

possible to specify that only reaL addresses be recorded.

The third requirement is that the tracing facility must not

noticeably degrade system performance. Clearly, there will be some

overhead in the gathering of the trace data , h o w e v e r to me asur e an

H actual system over an extended per iod of time (on the order of

hours ), this impact must be minimal , else the use of the toot

becomes impractical. It also seems clear that as degradation

increases , the validity of the operating system trace data becomes

more questionable. For example , external events that are

asynchronous to processor execution wiL L  seem to occur at a higher

• ra te. In an extreme example the operating system could spend most

of the avai lable time handling interrupts , due to tracing sLowdown .

To solv e this and other problems a scheme for sampling the

• instruction stream in a “ski p—trace ” fashion is used in STRAP. The

sampling method is described in the next section.

—6—

_ _ _  
_ _  _ _  

j



The final , most important , and most difficult requirement of a

pr ogram that takes complete control of the operating system is that

it be absolutely error free. Since it is running at a Logical

leve l between the operat ing system and th e ha rdwa re, such a pr ogram

‘A must be more reliable than the operating system itself. As an

example of the problems inherent in such a venture , o ne ha r d w a re

and one operating system “bug ” have been uncovered during the

testing phase of the STRAP/37 0 system .

THE SAMPLING APPROACH

In order to prevent unacceptable system degradation , it is

necessary to sample the event (instruction ) stream. Each sample

consists of a packet of contiguous events (mostly instr uctions )

that are recorded until a specified amount of time , t, on the order

of milliseconds , has passed. The time between samples , 1, is also

controlled and is on the order of seconds. Figure 1 illustr ates

• Events Are Being Traced Duri ng These Periods

• uiiiiu iimi -

~~~~

T T

• Figure 1. Periodic Sampling of the Event Stream .

• this scheme. Typica lly, if a sample is taken every other second (T

= 2 sec.) and each sample represents , sa y, one millisecond Ct =

- - -—• - • ••—••—-—•.••—-- ‘——• • •••--••—,—

~1

0.001 sec.) of execution on the IBM 370/168, less than 2 per-

cen t degradation in processor perform ance will result due to trac—

ing. In addition to the benefit of control over system impact ,

this sampling approach affords aid in two other areas:

1) The sample can be accumulated in a memory buffer (during

which time the effective execution rate is lower). At the end of

the sample the operating system is allowed to run normally, thereby

• providing standard input/output facilitie s for external recording

of the trace buffer . Without sampling, the system would have to be

stopped at some point , since the central processor can fill buffers

faster than they can be emptied ; execution in this mode would

surely destroy both system performance and trace data validity. An

average of about 10 (8—bit) bytes of trace data is recorded for

each instruction traced. The trace buffer may be as large as

desired , however a reasonable size seems to be between 4,000 to’

20,000 bytes.

2) Since sampling gathers on the order of thousands of

instructions per second (not millions) , an extended measurement ses-

sion does not generate an unmanageable amount of data. Thus , it is

possible to gather a reel of tape encompassing, say, a few hours of

running and to analyze system activity over a longer period of

time.

In spite of its advantages , the sampling method also raises a

quest ion : How is STRAP tracing t: be triggered so that the samples

~~~~~~~ •
- •

~~~~ 
T.:’

~~ • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ _ _

-~~~~~ ~~~~~~~~~~~~~~~~~~~—r ..r ~~~~~~~r- - T - ’~~~-~~~-~~~~ •~~ ’ ‘r --

are taken totally independent of where the system is executing? At

f irst , one might consider using a clock , such as the hardware clock

or a pseudo—clock maintained by the operating system. This use of

the “timer run—out ” feature is described by Cantrell and Ellison

[10] in their measurement of the GE—635 system. eut it is cLear

that an interrupt from such a source could not be allowed to occur

in many critical areas of the operating system. A convincing

example of such a critical routine is the timer interrupt handler;

a second timer nte~’rupt could never be tolerated there. So no

interrupt controlled by the operating system can be used as a

trigger if we require the trace to begin with an arbitrary

instruction. Also , to get a truly random sample of instructions

from the event stream , the trigger should operate asynchronously,

completely isolated from events occuring within the processor.

What is evidently needed is an externa l , independent source for

trace trigger interruptions , with the requirement that such

interruptions be non—maskable , i .e. always processed at the end of

the current instruction.

• In System /370 (S/370) there are two classes of asynchronous ,

non—maskable interrupt which could be used to signal the start of a

• trace —— Machine Check , and Restart. The Machine Check

interruption occurs when a serious machine error is detected during

the execution of an instruction. The processor may or may not be

left in a well—defined state when the Machine Check interrupt

handling routine is entered. If it were to be used for tracing

purposes , a means for causing a false Machine—Check would probably

—9-

‘ -- - - -7--’ ‘ 1

— — —~~~~~~ —-—-—-•- —-• --- —~~~ -- ,--~ — - -
-‘II ’

be necessary. Needless to say, this approach seems a bit drastic;

let us consider the other alternative.

The Restart interrupt is initiated by pr essing the RESTART

push button on the S/370 console. It is impossible to disable under

program control and its priority is such that the Restart interru pt

handler is executed before any other interrupt handler , should

other interrupts occur simultaneously. Thus , the Restart interrupt
I,.’

is an ideal candidate , since its use seems to minimize undes irable

•
• side effects , and since OS/VS makes only slight use of the restart

function. *

HARDWARE ENVIRONMENT

In order to capture all system events which occur , there must

• be a means for gathering the machine state after each such event ——
instruction , interruption , etc. One way to do this would be to

construct a complete machine interpreter which would be able to

• simulate all user mode , supervisor mode , and external events , just

as the hardware does. Another scheme would be to cause execution

to be interrupted after each relevant event , in this case after

each instruction is executed. Clearly, if such a “trapping ”

• m echanism were available in the hardware , the monumental task of

* Restart is also used by the IBM Dynamic Support System (DSS).
This subsystem is an OS/VS maintenance aid and is not used during
normal operation.

— 10—

--‘-——U

emulating a full S/370 is reduced to the not so monumental task of

handling these traps and collecting the state of the machine. In

the S/370 such a flexible facility does exist and is catted the

Program Event Recording (PER) feature. In the next few paragraphs

the three hardware components used by STRAP will be described. The

first two , Restart and PER , are an integral part of System/37 0, the

last , the Trace Ace , was developed specifically for this project.

Hardware interrupt process ing which takes place in System /370

[11] is much Like that which is done in System/360 , the major

• difference being the manner in which fixed storage locations

provide and receive certain state information . The majority of

this state onformation is coalesced into a 64—bit doubteword termed

• the Program Status Word (PSW). It contains such program state

• items as: instruction address , storage protection key,

interruption disable masks , etc. Corresponding to each interrupt

th ere is a “new PSW ” in a fixed storage location which is used to

define the entry address and state of the handler for that

interrupt. If , during the execution of an instruction , there is at

least one interru ption active for which the pro cessor is enabled ,

the following sequence of event s trans pires :

1. Complete the processing of the current instruction.

2. Store the current Program Status Word (PSW) for the

highest priority interrupt currently present in its

predef ined (fixed) storage Location.

— 11—

k
_ _ _ _ _ _

_ _ _

- -- .-

— --~~~~~~~~~~~~~~ ‘-‘ -‘-~~~- -~~~--- -- -- - -~~~ -•

3. Fetch a “new PSW ” corresponding to that interrupt (from

its predefined storage Location) and make it the current

PSW , i.e. use it to define the new processor state.

4. Using the current PSW , are any enabled (unmasked)

-~~~~ interruptions active? If yes , continue from 2; else begin

execution of the interrupt handler ror this interruption

using the current PSW.

The net result of the above is that an interru pt handler begins

execution , white al l other accept ed (non—masked) interruptions have

been “stacked” in the chain of PSWs by the loop above. Interrup-

tions that are not accepted (i.e. due to masking) remain active and

waiting.

The Restart interrupt is used by STRAP to receive the stimuli

from the external world. As alLuded to earlier , its advantages

are: 1) It is unmaskable , i.e. will interrupt any program. 2)

Priorities are arranged such that the Restart interrupt handler

will gain control first if more than one interru ption is active.

This is vital to STRAP ’ s ability to trace all OS /VS interru pt

hand ling . 3) The interrupt is easily activated by the Restart

console pushbutton , or a suitable substitute.

When a Restart interrupt occurs , the PSW in storage location 0

(Restart “new PSW ”) is made the current PSW , whit e the curren t PSW

— 12—

;.,
•~~
_ _ _ _ _ -‘-- - - - -- — ---‘-- ‘ - - --‘—~~- ‘

-

~~~~~~ -

—

~~~~

••— —-- — • -.— “-
- •

,;-~~~~
:- - - :

-‘ - , ____&_ - - -—— • ••s• __ __
-
• L,~ ZsL~~~~ - - - -

‘• , ,, - - -

I -‘ -

~~~~

- :‘ ‘
~~~

‘
~~

- -

~~~

-- “ ---

~

-‘

~~~~~

-,

~~~

--—--- - • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

is stored in Location 8 (Restart “oLd PSU”). Since beforehand

STRAP has judiciously tampered with the PSU in Location 0, the

• STRAP Restart interru pt handler receives control instead of one

provi ded by OS/VS. The Restart “new PSW ” is said to be “owned” by

STRAP. The STRAP Restart interrupt handler initializes the trace

buffer and various flags , then prepares the S/370 Program Event

Recording machinery (described next) for tracing before returning

to the interrupted program. Note that thi s proce ss is completely

transparent to the program which was interrupted.

The PER facility uses the S/370 program interruption to sense

or “trap ” events associated with instruction execution. Those

events which can be trapped are:

• 1. Successful branch — when a branch instruction actually

caus es transfer o f control.

2. Instruction fetch — when an instruction is fetched from

the virtual storage area specified by the PER

bounds reg isters .*

3. Storage Alteration — when a storage location within the

virtual storage area specified by the PER bounds

* The PER bounds registers are two processor registers whi ch
define , respectively, the Lower and upper vitrual addresses of the
storage area to be monitored. STRAP sets this range to incLude aLL
addressable storage.

—13—

~~~~~~~~

—-

~

--- -

_ _

- - - •  s --- - •  ‘ ‘ •

~

:‘— -‘- --‘-- -‘

~

- - — —

~

_—

~ 



‘ - ~--m

registers is changed.

4. General register alteration — when any of a subset of the

16 general purpose registers is modified. The subset

is specified by a 16—bit mask contained in a CPU

control register.

As illustrated in Figure 2 below , a PER event causes a program

interruption to b~ ta k e n , and in addition information describing

the event is stored in fixed storage locations. In Step 1, four

• actions take place: la) The current PSW is stored in the program

old PSW location as for a normal program interruption , ib) the

-~ ~ • program interruption code is set to indicate a pr ogram event , ic)

the PER code is set to describe the nature of the event , and id)

[ C~~~~ RE~~~~ PSW J 
“SW

___PR OCRMI Li) PSW 1 f i ~~~;RAM n’:%~~i~;w 1

(1b)—af~~~~~~~IlA~~~~~~~~~ ]

(1c)~~~~~~~~~~~~~~~~~~~~~ c~~ E 
Figure ~~. lI I ’ I t \ ~~~r~ I I I t C, ’ r 01 , t Prucoss ing

i r a 1 I ~~•~,’, } •‘I~I t

( 1d)____—_
[~~~~~~~ADn~~ s~~~~~ ]

the PER address is set to the address of the event—causing instruc—

tion. With this information , the program event handler has all it

—1 4—

- ~~~- --~~~~~~~~~~~~~
-
~~~~~~~~~~

— ---‘-‘.~-- -- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ., - - _____ ______-

needs to analyze the situation. Step 2 involves the norma l PSW

loading at interrupt time. The program interrupt new PSU is made

current and an interrupt handler , in our case the STRAP inter—

rupt handler , begins execution.

‘
-‘I

The final hardware component to be discussed is the Trace Ace ,

the device used to generate Restart interrupts periodically,

independent of the centraL processor. The Trace Ace is a
I.

variable—rate clock which can be set to tick at intervals from 1 to

200 seconds; each tick causes one Restart interrupt . It interfaces

to the 370/168 operator control panel via a very simple connection ,

and as such it acts as a physical extensi on of the Restart

pushbutton. Also , since it is completely self—contained and

trivially connected , the STRAP system is highly portable , allowing

it to be used in a variety of processing environments.

THE STRUCTURE AND HOW IT WORKS

This section defines the OS/VS software environment which

exists prior to tracing, and shows how STRAP modifies this

environment. It then describes the internal structure of STRAP and

shows in general how events are pro cessed.

In our conte xt , the operating system acts as a buffer between

- ‘ the user programs and the hardware. It provides a “virtual

machine ” to the user which is similar to the actual hardware , but

— 15—

- - - —
- ‘——‘ — —-a---- — — -a.--.a.s •~~~.,t••. ,.

_ _ _- -——-_l~~~~

- - - - -- --- -‘~~~~~~~ . . - ~~

has added capability in some areas , e.g. supervisor calls , and

diminished capabiLity in others , e.g. privileged instructions.

Th e net effect of such a transformation is an OS/VS machine which

i s m ore u s e f u l , pow erful , and reliable than a “bare ” system. This

hierarchical nesting of real and virtual machines is illustrated in

Th VIRTUAL~~~~ Rfl~E

T~1E OS/VS_V~~~~~~~~~~ CMINE r
~~~~~~~~~~~~~~~~~~~~~~~~ I

- pt 
- SYSTFW3TO  SYSTEM/370 I

I 
HARII SVAR-E RESTART 

F 
kf~ HARDWARE

F- 
_ _ _ _ _ _ _ _ _  

14 ~ 
I i

• I W.V-LEVEL Ios/V S I TRACE ROSTINE S
OPERATING SYSTEM I

-~~~~ 

L_+4_~
_J

_ _

• t OPERATING SYSTEM I

• 
[f} 

...

_ _  

... L/_4 _\i
a~ Toe Standard CS/VS Environment TASK TASK1 

~~~~~~~~~~~

____ I t T ~~~

Figure 3. Tracing — From the Standpo int b) The 06/VS Env iron ment as Modif ied
of Virtual Mac hine . , by STRAP.

Figure 3a.

Now , i f one wi sh es to t r a c e a l l even t s a t in t e r f a c e “A” in the

• f ig ure abo v e, then the operating system must be presented with a

virtuaL machine which is identical in every way to a bare S/370.

The primary goal of the STRAP system is to do just that . Using the

hardware facilities described above , i t has been possible to trick

OS/VS into thinking It is controlling a reaL S/370. In actuaLity
—16—

• - - - -—---

_ _ _ _ _ _ _ _ _

_ _ -—- -~~-—--~~-- - - - - - - - - - -- - —— ___

the real machine has been modified into one which interru pt s at the

end of ea c h i n s t r u c ti on , as shown in Figure 3b above.

The S/370 hardware has been logically replaced by another

virtual machine which simulates S/370 to the operating system.

What the hardware actually executes is an instruction stream

composed of OS/VS instructions intermixed with the STRAP

instructions needed to gather data. Again it will be stressed that

the operating system cannot tell the difference , except for a

momentary slowdown while the sample (on the order of a thousand

instructions) is being col lected. In fact , all modifications are

made at run time and relate just to the fixed storage areas

maintained by the hardware , allowing STRAP to be portable to any

similar operating system , with no installation changes required .

In summary, a c l e a n , hierarchical structure has been established so

• that system modifications necessary for tracing are simple and

localized to the hardware/software interface.

A more detailed representation of the internal structure of

STRAP is given in Figure 4. As shown , aL l poss ib le commun i ca ti on

paths between OS/VS and the hardware have , by necessity, been

• “virtualized” by various components of STRAP. The zeroth—level

interrupt handlers (ZLIH) provide the means for recording

interruptions before they are seen by the OS/VS first—level

interrupt handlers (FLIN). The ZLIH5 deposit information into the

trace buffer , then effectively simulate the event so that normal

OS/VS interrupt processing may take place.

_ _ _ _ _ _ _ -~~~~~~~~~~~~~~~~~~~~~_

os~ I

p1 I - c.,

I

_ _ _ _

_ _ _

~~~~~~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

i

,,
~hHi~}o~
_ _ _ _ _ _ _ _ _ _ _

r~ 1 I —
~ 1

~

] ~

~~~:

- 

/1/’L
~~~.j j.~!J

0.

~~~ ~I’
— 18 —

~~~~~ ~~~~

- -

- - -— -

--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

---

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - , , :~~~~~ _ _ _ _ _ _ _


— -- --- ,---
~~~~~~~~~~

—- ‘— -—-

!- 
~~~~~~~~~~

The ZLIH for program interruptions is markedly different from

the others. Since the hardware signals PER events by causing

pr ogram interru ptions , the program interruption ZLIH has the

responsibility of recording the relevant data from instruction

execution. When it is entered it gathers instruction and address

• information , then returns control to the next instruction. Because

PER is enabled for instruction—fetch trapping over all of the

virtual address space , a program interruption will be set up during

p the execution of that instruction. When it completes , the program

interruption ZLIH will again be entered , and the process repeats.

The Restart interru pt han dler is responsible for the activation

of all ZLIHs upon receipt of an Restart interrupt. It insures that

• indeed a trace buffer is available , records header information ,

and constructs the “traced virtual machine ” discussed earlier by

appropriately modifying the ‘new and old PSUs in fixed storage.

From that point on , instructions and interruptions are continuously

traced until the buffer is filled. The ZLIH UNHOOK routine then

restores the environment in which OS /VS normally executes by

deactivating the ZLIHs , completes header information in the buffer ,

and awakens the trace control routine to indicate that a buffer is

ready for output. Trace control then schedules the buffer for

output to tape or disk and pr epares a new buffer for the next trace

sampLe which will be gin when the Trace Ace tick s.

As shown in the diagram , facilities are aLso provided for

—19—

I

•

~

~

-- -- - • -

communication with the operator. He can suspend and restart

tracing, display summary information , an d pe r fo rm var i ous con t rol

functions related to STRAP. Mo r e o v e r , the trace control routines

run in user mode. Hence modifications can be made and tested using

the input/output and error recovery support of OS/VS. In other

words , the operating system will continue to function during

checkout of new code in the trace control sections. Unfortunately,

the same cannot always be said for modifications made to the

low—level data gathering routines!

Since STRAP is entirely event driven , a state transition

diagram can be used to summarize its operation. The four states

that STRAP can be in are:

1. OFF STATE

a. There are no modifications of OS/VS or its data areas;

tracing is not possible.

b. All new PSWs are “owned” by OS/VS .

c. The Trace Ace is off.

2. DORMANT—READY STATE

a. Tracing will begin as soon as the Trace Ace ticks.

b. STRAP owns the Restart new PSW , OS/VS owns all others.

c. The Trace Ace is (typically) on.

d. A trace buffer is available to be filled.

3. DORMANT—NOT—READY STATE

—20—

_ _
__• — - - -- - - -

~~~~-



.

Same condit ions as DORMANT—READY execpt that no buffer is

available. A Trace Ac e tick will cause no effect.

I-
4. A CTIVE (TRACING ) STATE

a. Events are be ing recorded as they occur.

b. All new PSWs are owned by STRAP.

c. PER is enabled for alt events and over all of virtual

storage.

d. A Trace Ace tick has recently occurred.

e. The S/370 appears to be executing at approximately 45 to 1

slow down.

The state transition diagram is shown below , along with a diagram

illustrating the synchronization of the various STRAP processes .

PRELIMINARY RESULTS

This section presents some examples of the information that can

be obtained by tracing. The particular examples given here deal

with supervisor usage , instruction usage , and the behavior of

supervisor and problem programs with respect to the distance

between successful branch execut ions. The measurements displayed

• here are from the same monito r run , a 15 minute session during

production processing at the Stanford Linear AcceLerator Center

triplex mu ltiprocessor. The data represents approximately 100,000

instructions and consists of a primarily scientific workload.

Table 1 is a summary of usage of various functions of the

OS/VS2 supervisor. It was generated by accumulating dynamic

—2 1—

______• -- • - ~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ••-‘ -- - — •

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----“ —-



-•__ ~~~~~~~~~~ ‘~~~~ - • 
•~~~~~~~---—~~•~~~~~~~. • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘STOP” (EMANT Trace
From READY Ace
Operator Tick

Trace
ffe r Ace

Start OFF vai lab le ~~~~~~~~~ Tick

“GO” From Operator
Buf fer

MANT Full
NOT

READY

p Trace
Ace
Tick

Figure 5, States of the Trace .

U T

~~~ t H
• 14 3 2 Ii 3

ACTIVE NOT- READY READY ACTIVE NOT-READY

~ii~ir t iu i i  111111 JflU’~ nHhItIIllii ~
Buffer  ¶ Bu f fe r  Buffer
Full H eany

_ _ _ _ _ _  
V

t
Bu ffe r  I/O Active ~ Bu f fer  I/O Act ive

Trace Ace Tick Trace Ace Tick

Figure 6. Synch ro n iza t ion of Tr ace Routines .

• instruction execution counts in a histogram representing the OS /VS2

supervisor nucleus. Then a map of the modules within the nucleus

was used to coalesce the counts into totals which represent various

functions provided by the supervisor , e.g. storage supervision , I/O

supervision , etc. In the table they are ranked in decreasing order

to demonstrate the relative usage of the respective services. Some

interesting characteristics of this particular run are:

1) The I/O supervisor executed almost three times as much code

as its nearest competitor , the paging supervisor , and alone it

accounted for over one third of all nucleus execution.

—22—

~~~~~.

-,

~~~

“-- -- -- • .• - ‘- 
•‘ ‘ ‘ 

—— -— 
S . _~~~~ 

——



~~ -~~~~~~~--- — --— —-~~ --  - -—~~~- - ~~~~~ - -

F

2) Over two thirds of all nucleus computing was restricted to

four areas: I/O supervisor , paging supervisor , storage super—

v i sor , and the dis patcher .

3) Although the paging rates during the tracing period are

known to have been quite low , the paging supervisor exhibited a

• non—trivial amount of computing . This is most probably due to the

fixed overhead re quired just to maintain the paging system ,

regardless of the actual amount of paging done.

4) The OS/VS trace routines , which maintain a trace table for

diagnostic purposes , accounted for over 8% of nucleus executi on.

In all , the results tend to substantiate and quantify intuitive

feelings about the behavior of the OS/VS2 supervisor. Further

measurement in this area may be helpful in the design of future

supervi sory programs.

• The next two examples show how the trace data can be separate d

into problem state and supervisor state streams to enable

comparisons between supervisor and user programs. Figure 7 shows

two frequency histograms which represent the distribution of

inter—branch distances. The height of the bar at each bin

represents the percentage of occurrence of that particular “run ”

length between two instruction address counter discontinuities .

—23—

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ •


- • __________

TADLE 1. SUPERVISOR USAGE MAP - IN RANK ORDER
(Nucleus Control Sections Only)

No. Of Pct. Of Cumu-
Instructions Nucleus lative

component of Os/vS2 Nucleus Traced Total Percent

i, Input/Output supervisor (los) 13,870 314.39 % 34 .39 %
2.’ Pagin g Supervisor 5, 1714 12.83 147 .22

3. Storage Supervisor 14,437 11.00 58.22

• 14. Task Dispatcher 3,880 9.62 67.814
5. Contents Management Routines (Pgm. Fetch, .tc.) 3~593 8.91 76.7,

6. Trace Routines (within os/vs Itself) 3,252 8.06 814.82
7. Wait/Post Routines 2,313 5.714 90.55
8. Interrupt Handlers (FLIHa) 1,1495 3.71 94.26
9. Tinier Handling Routines 1,1614 2.89 97.114

10. Miscellaneous (each < 1.0 percent) 1,152 2.86 100.00

1~ta1 Number of Instructions Traced in Nucleus 140,330 100.00

The curves passing through the histograms are smoothed plots of the

same frequency data. These graphs clear l y show that the supervisor

tends to execute code in shorter bursts , as might be expected. Its

purpose is more to control processes and machine resources than to

process data and solve problems.

Finally, instruction frequencies are tabulated from the

segregated data (Tables 2 and 3). The first two columns of numbers

g ive each instruction ’s percentage of all instructions executed in

that state , and the accumulated percentage , respectively. The

PERCENT CHANGE column indicates how the percentage for each

instruction differs between the problem and supervisor states.

Large differences could ind icate dramatic differences in their

instruction usage.

—24—

~~~~~~~~~

-

~~~~~~~

--- - - - -
.- • .

- -

V

-

~~

—-— _ _ _ _ _ _ _ _ _ _ _

•

‘~~~ C

f ~•t

Inter-Brench Oistønces
~

I
• V • V J V V • • • ‘ ‘ ‘ rT

PROBLEM STATE

MEAN 6. 37~

~~ ~~~~~~~~~~~~~~~ ~f1~as’ , f , , I I I V ‘ ‘ ‘

• —
SUPERVISOR STATE

~~
MLN5.55 14

H

e -i /1. ,.j a ~~~~~~~~~ ~~‘-,-cd~[[
0 • 5 10 is ae

• NUMBER OF CONSECUTIVE INSTRUCEIONS EXECUTED
-
~ •

BLEWEEN TWO INSTR ADDR DISCONTINUITIES

Figure 7.

As might be expected , a differentiation was evident. Some of

our observations are discussed here:

1) The supervisor consistently used branch , bit , and character

manipulation instructions more that problem programs did. On the

other hand , the problem state percentages for the computational

instructions (e.g. add , subtract , com pa r e , and floating point) were

consistently higher than their supervisor state counterparts .

—25—

~H
_ _ _ _ _ _~~~~~~~~~~~~~~~~~~~~~• 1_~~__~~~~~~~ - - - - - •

~~~
-
~~~

- - --
~~~~

-----
~~~~~~~~~~~~

-

- N

~~~~~~~~
— . -

~~~_

—‘- -U - - -

-- ..- --— — - ••--—— ~~~ ~~
-
~~

_ - —

-— ___••_ ‘__•_•• n—.-—-• •——-•— ‘ -•
~~~

-—- •——“ • ‘-—‘—---——---—-
~~ 

•- •—— •— —,•—•. - —, — —• • •• —• • - - • - •  - — - ‘— • - —• — — - •—‘-,• •— —•— — —— -— —•—-_•——• —

2) The Test Under Mask (TM) instruction , in particular , climbed

14 positions in rank and 6.62% from problem to supervisor state.

This is an excellent indication of the type of processing the

• supervisor does —— flag testing, table scanning, and routing of

control based on the tests.

3) The Load (L) instruction is another interesting example ,

problem state being 15.62%, about 5% higher than in the supervisor.

This could be attributed to the differences in code generated by

compilers and assembly language programme ~ s. Compiler generated

code tends not to maintain base registers for long periods of time ,

but rather will “forget ” a base and then later reload it. Assembly

language programmers , h ow eve r , will try to maximize the life of a

• base register , thereby avoiding reloading it later.

CONCLUSIONS

The concept of “virtualizing ” the hardware/operating system

interface has proven to be useful in tracing global system

execution. The ability to collect such detailed information from

both user and monitor execution has helped in the further

understanding of both , especially where the two modes differ. More

extensive use of these techniques wil l  provide a more useful base

for the design of future computing systems. The data can now

represen t all execution on the processor , including the single

l a r ges t us e r of com p u ter t im e, the operating system itself.

—26—

• •

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ------—


r~~~ ~~

•
p4

Table 2. Supervisor Instruction Freqs. (greater than 1%)

CUMULATIVE PERCENT 1
RANK INSTRUCTION NAM E PERCENT PERCENT CHANGE

I ~~ 1, DC Branch on Condn 21.30 21.30 +8.514
2. L Load (RX) 10.45 31.75 —5.17

- -

~ 3. TM Test Under Mask 7.914 39 .69 +6.62
4. LA Load Address 5.98 145.67 +3.27

F ~t 5. DCII Branch on condn 5.55 51.22 +2.82
6. LR Load (RR) 5.06 56.28 -1.08
7. ST Store 2.86 59.114 -14.74
8. LTR Load and Test (BR) 2.57 61.71 +1.16
9. BALE Branch and Link (ER) 2.31 614.02 +1.78 *

10. C Cohipare (BK) 2.12 66.14 —0.35
11. SR SUb FaCt (BR) 2.08 68.22 -2.10
I~ . HAL flrpnch mid Link (RX) 1,88 70.10 *1.07 ~13. 12.1 Load Multiple 1.75 71.85 +0.73

• 16. MVC Move 1.74 73.59 +0.69
1 . SN Store Multiple 1.69 75,28 +1.06 *
16. CLI Compare Log. Immed. 1.147 76.75 +0 .77 *
17, IC Insert Character 1.38 78.13 +0.52 *
18. NI AND Immediate 1,38 79.51 +1.31 *
19. 01 OR Immediate 1,35 80.86 +1.29 *
20, 10.1 Insert Char. (Mask) 1.34 82.20 +1.34 *
21. LII Load Halfworct 1.34 83.54 +0 .814 *

• 22. N AND (Rx) 1.214 84.78 +0.60 *

- Notes:
•

-
- * : Indicates that the inst ruction occurred less than]%

in problem program state for this run.

1. Difference is expressed as Per_SUP_STATE — PCT_PROB_STATE
for each Instruction.

ACKN OW LEDG EMEN TS

We would L ike to express our sincere appreciation to the SLAt

Computing Services operations and systems staffs for their

incessant cooperation through the development of the system. Also

to Dr. R. McClure , 8. Rau , and Dr. 6. Rossman of Palyn

Associates for the Trace Ace , along with their many ideas and

—27—

~

LiT ’
.

’

~~~~~ 
- 

•~~~~~~~~~~~~~~~~~~~~ • •



Table 3.

Problem State Instruction Freqs . (greater than 1%)

CI~~ULATIV E PERC ENT1RANK IN~ TRU CTI ON NAME PERCENT PERC ENT CHAN GE

1. L Load (B K) 15.62 15.62 +5.l’(
2. BC Branch on Condn 12.75 28.38 —8 .~4
3, ST Store 7.60 35.97 +4.71#
4, LB Load (RB ) 6.14 42.12 +1.08

• 
~~~

. AR Add (nn) 5.514 47.6, +14.57 *
6. SR $ubtraet (Rn) 14.19 ~1.k +1.10

•
~~~
, 51,1, Shsft Left  Logiea~ l+ .09 

~~~~~~~~~~ 
+3,38 t

8. BXLE Branch Index LE 3.69 59.62 +3.60 *

9, LE Load (Floating) 2.92 62.54 +2.92 *
10. BCR Branch on Condu 2.73 65.27 —2.82
11. LA Load Address 2.71 67.98 -3.27
12. C Compare (RX) 2.47 70.46 +0.35
13. STE Store (Floating) 2. 147 72.92 +2.47 *

• lii . CR Compare (ER) 2. 144 ‘T~~37 +i .~~4 *
15. A Add (EX) 2.00 77.36 +1.69 *
li~. LTR Load and Test (RB) 1.41 78.78 -1.16

• 17. Th Test Under Mask 1.32 80.10 —6.62
18. MVC Move 1.04 81.14 —0.69
19. 124 Load Multiple 1.02 82.16 —0.73

No tes:
• , *: Indicates that the instruction occurred lees than 1%

in supervisor state for this run.

1. Difference is expressed as PCr_PROB_STATE - PCT_SUP_STATE
for each instruction.

suggestions. And , f inaL ly, to M . Powell for his excellent

assistance and the many hours he donated to the implementation of

STRAP.

- - REFERENCES

1. Cheng, P. S., “Trace—driv en system model ling,” IBM Systems J.
8, 6, 1969, 280—289.

2. Ma ttson , R. 1., Gecsei , J., Slu t z, D. R., Tra i ger , I. L.,
“ Evalua ti on tec hni ques for s tora ge h i e re rc h ies ,” IBM Systems
J. 9, 2, 1970, 78—117.

3. Sherman , S., Baskett , F., Browne , J. C., “Tra ce—Driven Modeling
and Analysis of CPU Scheduling in a M ultiprogramming System ,”
Comm. A CM 15 , 12, December 1972, 1063—1069.

—28—

k:
Lt -•

*

_ _ _ _ _ _ _ _ _ _ _ - •~~i: - - — -—-~~~~~ —---

- ~~— - -~~~~ • - • -•~~~~~~- • -~~~~ - • • •-~~~~ • -~~~~~~~~~
•-
~~~

•.
~~~~~~~~~~

4. Winder , R. 0., “A Da ta Base for Computer Performance Eva tuat i3 n ,”
Computer , Vo l. 6, No. 3, March 1973, 25—29.

p.
5. Lun de, A., “Evaluation of Instruction Set Processor Architec—

ture by Program Tracing, ” Ph. D. thesis , Carnegie—Mellon
University, 1974.

6. “Users Guide to Triplex System ,” SLAC Computing Services ,
User Note 69, JuLy 1974.

7. “OS/VS System Management Facilities (SMF) ,” IBM Systems Reference
Library, 6C35—0004 , 1973.

8. “IBM OS/VS Service Aids ,” IBM Systems Reference Library,
GC28—0633, 1973.

9. Hol twick , G., “Desi gning a CommerciaL Performance Measurement• .
~
j System ,” Proc. ACM SIGOPS Workshop on System Performance

• • Evaluat ion , April 1971 , 29—58.

• 10. Cantre ll , H. N. an d Ellison , A. L., “Mul tiprogramming system
performance and analysis ,” Proc. AF IPS 1968 SJCC , Vol. 32,
213— 221.

11. “IBM System/370 Principles of Operation ,” IBM Systems Reference
Library, GA22—7000, 1973.

I

-29-


~~~~~~~~~~~~~~~~~~ 

SECURITY CLASSIFICAT ION OF THIS PAGE IWh.n D•ti Enter df

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I REPORT N U M B E R  - ItThI tiE 3 R E C I P I E N T S C A T A L O G  NUMBER

Technical Note No. 97 
b ~i~i — •

‘
~~~~~~ _________________________

4. T I T L E ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 5 TYPE OF REPORT & PERIOD COVERED
• P ‘ ‘, The Design and Impl ementation of an Operatfng •

-
~~~ System Tracer s t )Tec

~
1
~~~ r, 

~

‘

~~~~~~
“ 

~~~~~~~~~~~~~~~~ ----~~~
-

~~~ —-— -~~
- - - • 

V 
~~~

6 P E R F O R MIN G 0R0 RE PORT N U M B E R

I ~~~ 7 AUT H ORIsI

• • —~~~~~~~~~~~~~~~~~~~~ ‘~~~~‘~~~ 8 CONTRACT OR G R A N T N

D~V T ’ 7~~~ et~i~~~~~rhomas H/
Bredt J JSEEJ~~

OOl4_67_A :
~~~~~~~ 1

“— - --/ 
_____________________________________________________ ~ij J~

_ ’_ ’ ’
~ 
-

9 PERFORMINC-  O R GA N I ’A T IO N  NAME AND ADDRESS 10 PROGRAM E L E M E N T . PR O J E C T  T A S K

Digital Systems Laboratory A R E A  a. WORK UNIT NUMB E R S

Stanford University 7151
Stanford, CA 94305 _____________________________

12~~~~ P O I ~~~~ AIf 13. NO. GES
11 CONTROLL ING O F F I C E  NAME AND ADDRESS / 1 ’  Oct u~~ I?77 3O~ iSponsored Projects Office \~L. 15 SECIJ R ITY CLASS. (of t his rep~~~~

)
Stanford University UnclassifiedStanford, California 94305

14. MONITORING AGENCY NAME a. ADDRESS ( i f  d i f f . from Controlling Of f i ce)

15.. DE C L A S S I F I C A T I O N  DOWNGRADING
SCHEDULE

16 D I S T R I B U T I O N  STATEMENT (of thi s repo rt l

• 
This document has been approved for public release and sale; its distribution is

- 
• 

- 
unlimited .

17 DI S T R I B U T I O N  S T A T E M E N T  lot the abstract entered in Blo r k 20 , if d i f ferent  trorri rep o rt l

18. SUPPLEMENTARY NOTES

• 19 K E Y  WORD S ICo nt inu e on ‘eye’S: $ide it n.c.Isary and identify by block number )

computer architecture operating systems
Instruction set design , performance evaluation
IBM 370 tracing

• measurement virtual machine

• 20. ~~~~ T R A C1 Cont i nue on rev erse s ide if n.c.s.ary and identif y by block number)

STRAP , a general system for collecting a trace of machine-instruction execu-
tion on a high performance processor, has been implemented . Its general i ty lies in• Its ability to trace all Instructions executed by the processor, whether they are
issued by the supervisor or by a user program , and also in its ability to do this
without significant Impact on system performance. STRAP creates a •virtual machine0
environment in which the operating system appears to be executing normally , but is
actually having Its Instructions traced by a program lying between it and the real
processor . Burst sampling is used to avoid excessive tracing overhead , and the

~~~~~~ FORM 1A~~~)
~~~~~~ 1 JAN 73 U~~ ’f ~~ _________________________________________

EDITION OF 1 Nov 65 IS OBSOLETE . , SECURIT Y CLASSIFICATION OF THIS PAGE IW hen Data Entered)

i 
— 

LIo~ - l i  
• 

T C ’

_ _ _ _ _ _ _  - • •~~~~~~~~~~~~~~ • •~T~ ’ 
- • •



1

ABSTRACT ( continued)

real processor interpret s the traced instructions , keeping the instantaneous burst
overhead down to about 45:1.

The resul t ing  traces, which can be useful for architectural studies and per-
formance evaluation of existing systems, can now contain data for all parts of the
operating system. We present exampl e results showing how the data have been used
to study: 1) The usage of various operating system components , 2) The difference
in branching patterns between supervisor and user code, and 3) The difference in
instruction frequency distribution between the two modes of operation .

/~~~~
••

5.”
’

5 ’

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


r~~ ~~~~~~~~~~~

-

~~~

-

• JSEP REI~~RTS DISTRIBUTION LIST

Department of Defen se Commandant
US Army Command and General Staff

Director College
Na tiona l Secur ity Agency Attn : Acquisitions , Library Division
Attn: Dr. T. J. Beahn Fort Leavenworth, Kansas 66027
Fort George 0. Meade
Maryland 20755 Commander

US Army Communication Command
Defense Documentation Center (12) At tn : CC—OI-’S-PD

At tn : DDC-TCA (Mrs . V. Caponio ) Fo’~-t Huachuca , Arizona 85613
Cameron Stat ion
Alexa ndria , Virginia 22314 Commander

US Army Ma ter ials and Mechan ics
Ass istant Director Research Center
Electronics and Computer Sciences Attn : thief, Materials Science Div .
Off ice of Director of Defense Wa tertown , Massachusetts 02172

• Research and Engineering
The Pen tagon Commander
Washington , D.C. 20315 US Army Materiel Development and

• Readiness Command
Defense Advanced Research Attn : Technical Library, Em. 7S 35

Projects Agency 5001 Eisenhower Avenue
• Attn : Dr. R. Reynolds Alexandria , Virginia 22333

1400 Wilson Boulevard
• Ar l ington , Virginia 22209 Commander

US Army Missile R&D Command
• At tn: Uiief, Document Section

Department of the Arm y Redstone Arsenal , Alabama 35809

Commandant Commander
US Army A ir Defense School US Army Satellite Communications Agency
Attn : ATSAD—T-CSM Fort Monmouth , New Jersey 07703
Fort Bliss , Texas 79916

Director
• Commander US Army Signals Warfare Laboratory

US Army Armament R&D Command At tn : DEL.SW-OS
Attn : DRDAR-TSS Arlington Hall Station
Dover , New Jersey 07801 Arlington , Virginia 22212

Commander Project Manager
• US Arm y Armament R&D Command (BRL) ARTADS

Attn : DRDAR-TSB-S EAI Building
Aberdeen Proving Ground West Leng Branch , New Jersey 07764
Aberdeen , Maryland 21005

NOTE: One (1) copy to each addressee unless otherwise indicated .

1 1/78

~~~~~~~~~~~~~~~~~~~ zT ~~1T~~ _ _ _ _  _ _ _ _ _  _ _ _ _ _ _ _


----- - —

—

Commander/Director Commander
Atmospheric Sciences Lab. (ECOM) US Army Electronics Command
Attn : DRSEL-BL-DD Attn : DRSEL—TL-EN
White Sand s Missile Range (Dr . S. Kroenenberg)
New Mexico 88002 Fort Monmouth , New Jersey 07703

Commander Commander
US Army Electronics Command US Army Electronics Command
Attn : DRSEL-NL-0 (Dr. H. S. Bennett) Attn : DRSEL-NL-T (Mr. R. Kulinyi)
Fort Monmouth , New Jersey 07703 Fort Monmouth , New Jersey 07703

• • Director Commander
TRI-TAC US Army Electronics Command
Attn : TT-AD (Mrs. Briller) Attn : DRSEL-NL-B (Dr. E. Lieblein)
Fort Monmouth , New Jersey 07703 Fort Monmouth , New Jersey 07703

Commander Commander
US Army Electronics Command US Army Electronics Command
Attn : DRSEL— CT-L (Dr . R . Buser) Attn : DRSEL-TL—MM (Mr . N. Lipetz)
Fort Monmouth , New Jersey 07703 Fort Monmouth , New Jersey 07703

Director Commander
Electronic Warfare Lab. (ECOM) US Army Electronics Command
Attn : DRSEL-WL-MY Attn : DRSEL-RD-O (Dr . W. S. McAfee)
White Sand s Missile Range Fort Monmouth , New Jersey 07703
New Mexico 88002

Director
Executive Secretary, TAC/JSEP Night Vision Laboratory

• US Army Research Office Attn : DRSEL—NV-D
P. 0. Box 12211 Fort Belvoir , Virginia 22060
Research Tr iangle Park
North Carolina 27709 Col. Robert Noce

Senior Standardization Representative
• Project Manager US Army Standardization Group , Canada

Ballistic Missile Defense Program Canadian Force Headquarters
Office Ottawa , Ontario , CANADA KIA)K2

Attn : DACS-DMP (Mr. A. Gold)
• 1300 Wilson Boulevard Commander

Arlington , Virginia 22209 US Army Electronics Command
• Attn : DRSEL-NL-B (Dr. D. C. Pearce)

Commander Fort Monmouth , New Jersey 07703
Harry Diamond Laboratories

• Attn : Mr. John E. Rosenberg Commander
2800 Powder Mill Road US Army Electronics Command
Adeiphi, Maryland 20783 Attn : DRSEL—NL—RH-1

(Dr. F. Schwering)
HQDA (DAMA -ARZ-A) Fort Monmouth , New Jersey 07703
Washington , D.C. 20310

Commander
Commander US Army Electronics Command
US Army Electronics Command Attn : DRSEL—TL-I
Attn : DRSEL—TL-E (Dr. J. A. Kohn) (Dr. C. G. Thornton)
Fort Monmouth , New Jersey 07703 Fort Monmouth , New Jersey 07703

1/78 2

US Army Research Office (3) USAF European Office of Aerospace
Attn : Library Research
P. o. Box 12211 Attn : Major J. Gorrell

p1 Research Triangle Park Box 14 , FPO , New York 09510
North Carolina 27709

LTC Richard J. Gowen
Director Department of Electrical Engineering
Division of Neuropsychiatry USAF Academy, Colorado 80840

• Walter Reed Army Inst itute
of Research Mr. Murray Kesselman (ISCA)

Washington , D .C . 20012 Rome Air Development Center
Griffiss AFB, New York 13441

• Commander
White Sands Missile Range Dr. G. Knausenberger
Attn: STEWS-ID—R Air Force Member , TAC
White Sands Missle Range Air Force Office of Scientific
New Mexico 88002 Research , (AFSC) AFSOR/NE

Bolling Air Force Base , DC 20332

Department of the Air Force Dr. L. Kravitz
Air Force Member , TAC

Mr. Robert Barrett Air Force Office of Scientif ic
RADC/ETS Research , (AFSC) AFSOR/NE
Ilanscom AFB , Massachusetts 01731 Boiling Air Force Base , DC 20332

Dr. Carl E . Baum Mr. R . D . Larson
A FWL (ES) AFAL/DHR :1
Kirtland AFB , New Mexico 87117 Wright-Patterson AFB , Ohio 45433

• Dr. E. champagne •
Dr. Richard B. Mack

• AFAIIDH RADC/ETER
Wright-Patterson AFB, Ohio 45433 Hanscom AFB , Massachusetts 01731

Dr. R. P. Dolan Mr. John Mottsmith (MCIT)
RADC/ETSD HQ ESD (AFSC)
Hanscom AFB, Massachusetts 01731 Hanscom AFB , Massachusetts 01731

Mr. W. Edwards Dr. Richard Picard
• AFAIITE RADC/ETSL

Wright-Patterson AFB, Ohio 45433 Hanscom AFB, Massachusetts 01731

• Professor R. E . Fontana Dr. J. Ryles
Head , Department of Electrical chief Scientist

Eng ineering AFA L/CA
AFIT/ENE Wright-Patterson AFB , Ohio 45433
Wright-Patterson AFB , Ohio 45433

Dr. Allan Schell
Dr. Alan Garscadden RADC/ETE
AFAPL/POD Hanscom AFB, Massachusetts 01731
Wright—Patterson AFB, Ohio 45433

Mr. H. E. Webb , Jr. (ISCP)
Rome Air Development Center
Griff isss AFB , New York 13441

3 1/78

•- - - . -~ ~~~~~~ • _ ~~~~~ —— • -- --~~ - • • ~~-- - -

LTC G. Wepfer Naval Weapons Center
Air Force Office of Scientific Attn : Code 601 , F. C. Essig

Research , (AFSC) AFOSR/NP china Lake , California 93555
Bolling Air Force Base , DC 20332

Naval Research Laboratory
LTC G. McKemie Attn : Code 5510 , W. L. Faust
Air Force Office of Scientific 4555 Overlook Avenue , SW

Research , (AFSC) AFOSR/NM Washington , D.C. 20375
Bolling Air Force Base , DC 20332

Naval Research Laboratory
Attn : Code 2626 , Mrs. D. Folen

Department of the Navy 4555 Overlook Avenue, SW
Washington , D.C. 20375

Dr. R. S. Allgaier
Naval Surface Weapons Center Dr. Robert R. Fossum
Code WR—303 Dean of Research
White Oak Nava l Postgraduate School
Silver Spring , Maryland 20910 Monterey, California 93940

Naval Weapons Center Dr. G. G. Gould
Attn : Code 5515 , H. F. Blazek Technical Director
China Lake , California 93555 Naval Coastal System Laboratory

Panama City, Florida 32401
Dr. H. L. Blood
Technical Director Naval Ocean Systems Center
Naval Undersea Center Attn : Code 7203, V. E. Hildebrand
San Diego , California 95152 271 Catalina Boulevard

San Diego , California 92152
• Naval Research Laboratory

Attn : Code 5200, A. Brodzinsky Naval Ocean Systems Center
4555 Overlook Avenue , SW At tn : Code 753, P. H. Johnson
Wash ington , D.C. 20375 271 Catalina Boulevard

San Diego , California 92152
Naval Research Laboratory
Attn : Code 7701, J. D. Brown Donald E. Kirk
4555 Overlook Avenue , SW Professor and chairman
Washington , D.C. 20375 Electronic Engineer , SP-304

• Naval Postgraduate School
• Nava l Research Laboratory Monterey, California 93940

Attn : Code 5210, J. E . Davey
4555 Overlook Avenue , SW Naval A ir Development Center
Washington , D.C. 20375 Attn : Code 01, Dr. R. K. Lebb

Johnsville
Naval Research Laboratory Wa rminster , Pennsylvania 18974
Attn : Code 5460/5410 , J. R. Davis
4555 Overlook Avenue , SW Naval Research Laboratory
Washington , D.C. 20375 Attn : Code 5270 , B. D. McCombe

4555 Overlook Avenue , SW
Nava l Ocean Systems Center Wash ington , D.C. 20375
Attn : Code 75 , W. J. Dej ka
271 Catal ina Boulevard Capt . R . B. Meeks
San Diego , California 92152 Naval Sea Systems Command , NC #3

2531 Jefferson Davis Highway
Arlington , Virginia 20362

1/78 4

_ ii
~~~~~~~~~~ 

____T 1

~~~~

- .
_ _ _ _ ~~~~~~~~~

- • - - - • •~~ ••—~~~~~•~~~~~~~~~~~~~~~~~~~~~ •

r - -- ----
~~~~~~~

-- - •-- --•---
~~~~~

—
~

- - - -

Dr. H. J. Mueller Naval Underwater Systems Center
Naval Air Systems Command Attn : Technical Library
Code 310 , JP #1 Newport , Rhode Island 02840

I” 14].1 Jefferson Davis High wa y
Arlington , Virginia 20360 Off ice of Naval Research

Electronic and Solid State
Dr. J. H. Mills , Jr. Sciences Program (Code 427)
Naval Surface Weapons Center 800 North Quincy Street
Electronics Systems Department Arlington , Virginia 22217
Code DF
Dahlgren , Virginia 22448 Off ice of Naval Research

Mathc~~ t ics Program (Code 432)
Naval Ocean Systems Center 800 North Quincy Street
Attn : Code 702 , H. T. Mortimer Arlington , Virginia 22217
271 Ca ta lina Bou levard
San Diego , California 92152 Office of Naval Research

• Naval Systems Division
Naval Air Development Center Code 220/221

• Attn : Technical Library 800 North Quincy Street
• Johnsville Arlington , Virginia 22217

Warininster , Pennsylvania 18974
Director

Naval Ocean Systems Center Office of Naval Research
Attn: Technical Library New York Area Office
271 Catalina Boulevard 715 Broadway, 5th Floor
San Diego , California 92152 New York, New York 10003

Naval Research Laboratory Office of Naval Research
• Underwater Sound Reference Division San Francisco Area Office

Technical Library One Hallidie Plaza , Suite 601
P. 0. Box 8337 San Francisco , California 94102
Orlando , Florida 32806

Director
Naval Surface Weapons Center Office of Naval Research Branch Office
Attn : Technical Library 495 Summer Street
Code DX—21 Boston , Massachusetts 02210

• Dahlgren , Virginia 22448
Director

Naval Surface Weapons Center Office of Naval Research Branch Office
Attn : Technical Library 536 South Clark Street
Build ing 1-330, Code WX—4O Chicago , Illinois 60605
White Oak laboratory
Silver Spring , Maryland 20910 Director

Office of Naval Research Branch Office
Naval Training Equipment Center 1030 East Green Street
Attn : Technical Library Pasadena , California 91101
Orlando , Flor ida 32813

Mr . H. R . Riedi
Naval Undersea Center Naval Surface Weapons Center
Attn : Technical Library Code WR-34
San Diego , California 92152 White Oak Laboratory

Silver Spring , Maryland 20910

5 1/78

- - - C ..- —— _ ~~~~~~~~~~~~~~~~~~~~~~~~~ —
.


~~~~~~~ i 

~~~~ 

-- -—

~~~~~~~

•

~~~~~~

--- ———- -

~~~~~~~~

--

Naval Air Development Center Dr. W.  A .  Von Winkle
Attn : Code 202 , T. J. Shopple Associate Technical Director for
Johnsville Technology
Wa rminster , Pennsylvania 18974 Naval Underwater Systems Center

New London, Connecticut 06320
Naval Research Laboratory
Attn : Code 5403 , J . E .  Shore Dr.  Gernot M . R. Winkler
4555 Overlook Avenue , SW Director , Time Service
Washington , D.C.  20375 US Naval Observatory

Massachusetts Ave . at 34th SI ., NW
A. L. Slafkovsky Washington , D.C. 20390

• Scientif ic Adv isor
Headquarters Marine Corps

• MC-RD-1 , Arlington Annex Other Government Agencies
Washington , D.C. 20380

Dr. Howard W. Etzel
Harris B. Stone Deputy Director
Off ice of Research , Development, Division of Materials Research

Test and Evaluation Nat ional Sc ience Foundat ion
N0P 987 1800 G Street

• The Pentagon , Room 5D760 Washington , D .C .  20550
Washington , D.C. 20350

Mr . J .  C. French
Mr. L. Sumney National Bureau of Standards
Naval Electronics Systems Command Electronics Technology Div ision
Code 3042, NC ~1 washington , D.C. 20234
2511 Jefferson Davis Highway

• Arlington , Virginia 20360 Dr. Jay Harris
Program Director

David W . Taylor Devices and Waves Program
Naval Ship Research and Nat ional Sc ience Foundation
Development Center 1800 G Street

Code 522.1 Wash ington, D.C. 20550
• Bethesda , Maryland 20084

Los Alamos Scientific Laboratory
Naval Research Laboratory Attn : Reports Library
Attn : Code 4105, Dr. S. Teitler P. o. Box 1663
4555 Overlook Avenue, SW Los Alamos , New Mexico 87544
Washington , D.C .  20375

Dr. Dean Mitchell
Lt .  Cdr. John Turner Program Director
NAVMAT 0343 Solid—State Physics
CP #5 , Room 1044 Division of Mater ials  Research
2211 Jefferson Davis Highway National Science Foundation
Arlington , Virginia 20360 1800 G Street

Washington , D.C.  20550
Nava l Ocean Systems Center
Attn : Code 746 , H.  H.  Wieder Mr.  F. C. Schwenk , RD-T
271 Catalina Boulevard National Aeronautics and Space
San Diego , California 92152 Administration

Washington, D.C.  20546

1/ 78 6

-

~

•--— - • - •—- •



~~~

—--.--—-.—•••‘--.-•-• •.-•-•- - - .•,•—•-

• • M. Zane Thornton Director
Deputy Director , Institute for Stanford Electronics Laboratories
Computer Sciences and Technology Stanford University

Nationa l Bureau of Standards Stanford , Cal i fornia 94305
Washington, D.C. 20234

Stanford Ginzton Laboratory
Stanford University

Nongovernment Agencies Stanford , California 94305

Director Officer in charge
Columbia Radiation Laboratory Carderock Laboratory
Columbia University Code 18 , G. H. Gleissner
538 West 120th Street David Taylor Naval Ship Research
New York . New York 10027 and Development Center

Bethesda , Maryland 20084
Director
Coordinated Science Laboratory Dr. Roy F. Potter

• Univers ity of Ill inois 3868 Talbot Street
Urbana , Illinois 61801 San Diego , California 92106

Director of Laboratories
Division of Engineering and

Applied Physics
Harvard University
Pierce Hall

-

Cambridge , Massachusetts 02138

Director
Electronics Research Center
The University of Texas
Engineering-Science Bldg. 112
Austin , Texas 78712

Director
Electronics Research Laboratory
University of California
Berkeley, California 94720

• Director
Electronics Sciences Laboratory
University of Southern California

• Los Angeles , California 90007

Director
Microwave Research Institute
Polytechnic Institute of New York

• 333 Jay Street
• Brooklyn , New York 11201

• Director
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge , Massachusetts 02139

7 1/78

1-
_ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • 

-

~~~~~


