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SUPERSONIC FLOW=AROUND OF THIN BODIES WITH MACH NUMBER
CLOSE TO UNITY
by
G.F. Sigalov
( Presented by Yu.A. Mitrpolskiy, Member of Academy of Science , Ukrainian SSR)

In studying of flows in the region of tran-sonic speeds, one has to study prob-
lems described by non-linear differential equations. In connection with this, basic
results in solviirg such problems were obtained by a time curve method and a method
of series approximétions. The difficulties which appear using these methods are well
known. A %5:;§¥%r general methods of solution led to development of series of new appro-

f

#imation methods of study of own country problems Zor transonic flows (1-3).

The asymptotic method Fu* studying problems of around-sonic non-accented gas dyn-
amics, based on a problem of full approximation (6) was developed in the works (4,5).
Applying his method to a series of non-linear problems showed its effectiveness, co- |
munity and reliability of results(4,5,7)- |

Further development of a complete approximation method was given in the said work, |
and on its basis was shown a possibility to investigate non-linear problems of superso-
nic range of supérsonic flows at M_, > 1, such that Mo- 1 =0 (£)ye<1 -
small parameter of destruction. The method has a sufficient community of aim, which
makes it possible to study space, axis symmetrical, conical and other problems of
sonic flows.

In applying the asymptotic methods to mechanical problems, important is the questien
of real possibility to construct algorithms of higher approximations. The basic comple-
xities of calculation of non-linear effects are connected with a great labour-consuming
realization of higher algorithms approximations, so that a problem to construct appro-
ximation above the second is often hopeless. On the other hand, corresponding final in-
formation of exactness of the mathematical model in a series of problems determines
the contentment of second approximation. So, the erntrophy change in a transonic

flow is in the order of O (55) and the assumption »I flow isotrophy determines the

contentment of second approximation. Simultaneously, the construction of a third appro-

vimation requires entrophy calculation, which significantly complicates problem solving.
In connection with rhis 4 there is a current problem to construct effective algo-

rithm and methods of construction of second approximation. With regard to thisy the

problem of full approximation was set as a problem to select a paysical space reflec-~

©.0. L1 some new space, in which the solution of the first approsimation would give,
at a transition into a physical space, solution of two first: approximations. The reflexion

is realized by means of a special deformation of coordinates, which transforms a non-

linear differential equation in a physical space into a linear in auxiliary space, a

space of approximation. Therefore, the method of full approximation is by ideology

close to the method od deformated coordinates (8). The central question in a problem

of full approximation is a proof of its solution for a type of equation which is




being studied. In this workyproblem solving of full approximation of non-linear dif-
ferential equation of supersonic gas dynamics in a physical space is investigated by
means of linear equation of space approximation which is proved by the following theo-

rems:

> |
Theorem on asymptotic relation. Let a large number of elements E (SQCGC (<)

satisfy the equation (9):

Fut ta= W= Vo= [T g, 461+ 93400 x
X('u""'a‘*w‘*'(%*' )9 + 929, + 9, + )

'.’*‘-2"1"9”4— 2(t + P PP, + 2 (1 +‘Px)q’ﬂ’0l]; i
9EQ; 9EEQ):
and number of elements E; (5?,) € ¢° (¢2) satisfy the equation

,.A'-,:'_;:f?_,‘_'. vc+q“—(pu+0(a2+¢) =0; q'GQ‘; PEE, (). @
If: 1) a number of elements E (§2) and E,(§0) are of eaual power;
2 ML=ten0e; A=0(); v=06"); 0<ag|;
3 ‘P="’.; fell~1 L) <z1_=0(&"); o0<n<l;

4) operator P, which realizes the reflection, gives the relation of elemcn

cr
0]

q®9,2 i &N in the form ;

{e {§+ Bp &m0 7" Cﬂ"}}
9,{& 0, &}
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This has an asymptotic connectlo between the solutions
¢(x.y.2) =9 & 0.0 +0E"™,
0(")

where: o(e?*") has characteristic lim —— —
e»0 €
N is certain constant
QiQ are regions of the potential flow
qa qnd q, are regional points
e, v,MhO are dimentionless parameters 1

ay n are exponents, certain from condition of limits.

eMs
Result No.l. For small distructions Erf-l- &1l and the transition (3) transfers
L]
into transition of Prandtl - Glauert, and the equation (1) transfers into a linear

differential equation of small destructions theory.

, Result No.2. In selecting of transition (3) in the form of Prandtl - Glauert,

the equation (1) transfers into a non-linear differential equation of small destruction

theory for transonic flow (2). |
(ML — 1+ ML+ D09, — 9, — 0, +0EFN =0 &y

P
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The proaf of the theorem is analogous to the proof of the theorem for non-accetuated

flows (4, 5)and is not shown here.

As an example, let us investigate a flow problem of a bodily profilesat an angle
of atack and Mach value a little larger than unity,by an isotropic transonic gas flow.
The angle of %e Mach number and the profile edge are such that on the front and
rear edges are formed joined jumps of condensation with a supersonic flow at both sides
of jumps and the deformation function B% (_+_ 1, Oy 0) = 0. In this case, the conditions
in the theory of the second approximation are not used on jumps in a visible form. If

the form equation isy* = GF(x);'F—‘ = (1), the problem in a physical .. arca will be

ML — 1+ ML+ Dolo,—@, +0E =0 g€Q;
L=+ F  x€l—1 41 g€y ()
p=9, =0 |x|> 1.
Usi e the evaluations 29 3 from the theorem of a limiting condition, we shall
: s : : S S
obtain an expression for exponent n = Tie" ’at which a = I' shall have known
value of n=2/3 (10). Since the flows in un upper (+) and lower (-) areas are indepem-

dent, let us investigate the upper area. Accordingto the chazzcieristic equation theo-

rem in the area of approximation dVL-—I in physical area is

dy é_l_(’_eM.(?-i- )= )

T 3ML—1)
Integrating this expression, we shall obtain equatlon of curves ¢ = const

We shall write the solutlon of thu problem equatlon (5) in the form

v-k{n—-h(l +5%§_.‘li"¢; +ou’*°)

Using limiting condition, we shall obtain and expression for (p\“that means also for

the pressure coefficient:

i uc.lu)-—s(m. D p

‘I'he;; 'results entirely ‘é’&&kw’ith the known results of the second approximation
theory of Buseman and Van~Dyke, which were obtained by method of consecutive approxi-
mations (9) and method of deformed coordinates (8). However, our solution has a consi-
derable overweight; it is evenly useful in all of the flow area, providing that it does
not contain parts which lead to a cu.mﬁlative effect (8)’ and at the same time gives an
equation of corrected Mach lines.

It ahould be pointed out that all qualitative results yobtained in a non-".inear
flow of profiles, come from the obtained formulas (11). The obtaining of the non-li-
near result already in the solution of the first approximation makes the method of full
approximation approach the method of accelerated convergence (12). The proof of the

theorems (4, 5) together with the one given in this paper is constructive; it gives

3




also a selection of presentation. To the discussed solution , one may apply also
the method of the ( 4, 5, 7 ) works. The procedure of solving in this case is some-
what longer, however, it leads to the same results.

The overweight of the method that is developed is apparent if one compares the
method of full approximation with the method of accelerated convergence. In the method
of accelerated convergence, beginning with the second step one has to find integrals
of Pausson equations or nonhomogenous wave equations, which is connected with great
calculating difficulties (9, 13) and , in addition, it leads to non-homogenous solu-

/i
tions, connected with = cumulative effect. Formalization of the full”ﬁ)ro:f.imation me -

N

thod by itself already determines the problem if liquidation of these integrals. This

significant overweight of the method, at last, determines its great possibilities.
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