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SUPERSONIC FLOW=AROUND OF THIN BODIES WITh MACH NUMBER
CLOSE TO UNITY

by
G.F. Sigalov

( Presented by Yu.A. Mitrpolskiy, Member of Academy of Science , Ukrainian SSR)

In studying of flows in the region of trail—sonic speeds, one has to study prob-

lems described by non-linear differential equations. In connection with this, basic

results in so1vin.~ such problems were obtained by a time curve method and a method

of series approximations. The difficulties which appear using these methods are well

known. A ~~~ei~tor general methods of solution led to development of series of new appro—

~imation methods of study of own country problems ::r transonic flows (1—3).

The asymptotic method fv~ atudying problems of around-sonic non-accented gas dyn-

amics, based on a problem of full approximation (6) was developed in the works (k,5).

Applying his method to a series of non—linear problems showed its effectiveness, co—

munity and reliability of results(k,5,7).~
Further development of a complete approximation method was given in the said work,

and on its basis was shown a possibility to investigate non—linear problems of superso—

nic range of supelsonic flows at M~~ > 1, such that M~~- 1 0 (E),~~<~-l -

small parameter of destruction. The method has a sufficient community of aim, which
makes it possible to study space, axis symmetrical, conical and other problems of
sonic flows .

In applying the asymptotic methods to mechanical problems, 1~~~~~~ X~t ~~ ~~~ questien
of real possibility to construct algorithms of higher appro~imations. The basic comple-
xities of calculation of non—linear effects are connected with a great labour—consuming
realization of higher algorithms approximations, so that a problem to construct appro-
ximation above the second is often hopéleos. On the other hand, corresponding final in-
formation of exactness of the mathematical model in a series of problems determines
the contentment of second approximation. So, the entrophy change in a transonic
flow is in the order of 0 ( E ~) and the assumption -

~~~ f _ c w  isotrophy determines the
contentment of second approximation. Simultaneously, the construction of a third appro—

;:imation requires entrophy calculation, which significantly complicates problem solving.

In connection with ~his ~ there is a current problem to construct effective algo-

rithm and methods of construction of second approximation. With regard to this, the

problem of full approximation was set as a problem to select a ~~y.~iGal bpace ~‘oX.L ec—
:~~i some new space, in which the solution of the first approximation would give,

at a transition into a physical space,solut ion of two first ~ipproximations. The reflexion
is realized by means of a special deformation of coordinates, which transforms a non-
linear differential equation in a physical space into a linear in auxiliary space, a
space of approximation. Therefore, the method of full approximation is by ideology

close to the method od deformated coordinates (8). The central question in a problem
of full appro ximatio n is a proof o: it s solut ion for a typ e of equatio n which is



being studied. In this work,problem solving of full approximation of non—linear dif-
ferential equation of supersonic gas dynamics in a physical space is inve 3tigated by

means of linear equation of space approximation which is proved by the following theo-

rem :
Theorem on as~’inptotic relation. Let a large number of elements E (~~~G C  (Q)

satisfy the equation (9):

X 
~~~~~~~~~~~~~~~~~~~~ +(2~, ~~~~~~ + f~ +P~P~ ÷ (1)

gEQ; ~ EE(Q);

and number of elements S1 
(
~~

) E C2 (Q1) satisfy the equation

~~ +ç~~_ p ~~± O (e 2
~~) = O ;  q1 €Q1; 9EE1 (Q1). (2)

If :  1) a number of elements E (2) and E, (g) are of eoual power;
. .Z A4 t~~O~ej~, )~=O( s ) ; % v = 0(e~~); O < Q ~~~I;

Id’ - 1; e~~~1; e 0(~’); 0< n< 1;

~+) operator P, which realizes the ref.ection, gives the relation of elemcnI~s

~ x, y,Z) 1 q1(~ i~~ ) in the form

—~ (3)
I~~~~~~~~~~uiA~; ~~i(M~,,— 1)~ ; B ira ”~~~~~~~~~,

This has an asymptotic connectio betw~en the solutions

~ (x,y, z) =q,(~,t~~)+O(e~~ ).

0(etm)
where : o(~ ±~5 has characteristic Iim —~ -- -.N,

N is certain constant

Q I Q~ are regions of the potential flow
q qnd q1 are regional points

are diientionless parameters
a~ n are exponents, certain from condition of limits.

Result No.1. For small distructions I and the transition (3) transfers

into transition of Prandtl - Glauert, and tie equation (1) transfers into a linear

~ifferential equation of small destructions theory.

Result No.2. In selecting of transition (3) in the form of Prandtl — Glauert,

the equation (1) transfers into a non—linear differential equation of small destruction

theory for transonic flow (2 ) .

IM~J. — I + M~, ~ + 1) ç~J ~~ 
— — ~~ + 0 ($~~°~ 0. (41 ,
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The pro3f of the theorem is analogous to the proof of the theorem for non—accetuated

flows (k, 5)and is not shown here.

As an example, let us investigate a flow problem of a bodily profile,at an angle

of atack and Mach value a little larger than unity,by an isotropic transonic gas flow.

The angle of ~~~~~~ 4cie Mach number and the pro file edge are such that on the front and

rear edges are formed joined jumps of condensation with a supersonic flow at both sides

of jumps and the deformation function B~, ( -‘- 1, 0, 0) 0. In thin case, the conditions

in the theory of the second approximation are not used on jumps in a visible form. If

the form equation isy* = 6~P( x); i=O( fl ,  the proble m in a physical L~ :. c~~a will be

tM~c, — I + M~ (’~’ + 1)~~ I p~ — ç
~ + 0(s~~ ) = 0; qEQ

,~. 
= (1 +rp~ )F~~; xEj—I-.- -f’ I); qEy; (5)

~~~~~~~~~~~~~~ I x I > 1 .
Us~ . the evaluations 2, 3 from the theorem of a limiting condition, we shall

obtain an expression for exponent Il = 
2 ± a ,4~~~ .at which a = i$ shall have known

value of n=2/3 (10). Since the flows in s~ upper (+ )  and lower ( — )  areas are indepem—
dent , let us investigate the upper area. Accordin~ to the c a:s::’:~istic equation theo-
rem in the area of approximation ~~~~ in physical area is

dy I ( WL~t,+ I)—

Integrating this expression, we shall obtain equation of curves con~t

* (t +L~~~~~~ const .
X — rV~ 3 (~L4!~ — 

~~~~
. 

~~,

We shall write the solution of th’: problem equation (5) in the form

‘p 

~k-~’(’ ~~&~ .ii’~
)) ~~~

Using limiting condition, we shall obtain and expression for ~~~that means also for

the pressure coefficient:

The~~ results entirely ~~~W with the known results of the sec3nd approximation
theory of Buseman and Van—Dy~~, ~hich were obtained by method of consecutive approxi—

~mations (9) and method of deformed coordinates (8). However , our solution has a consi-
derable overweight; it is evenly useful in all of the flow area, providing that it does

not contain parts which lead to a cu~~lative effect (8), and at the same time gives an
equation of corrected Mach lines.

It ahould be pointed out that all qualitative results ,obtained in a no:~— .inear
flow of profiles, come from the obtained formulas (ii). The obtaining of the non—li—

~~r zesult already in the solution of the firat approximation makes the method of full
approximation approach the method of accelerated convergence (12). The proof of the
theorems (4, 5) together with the one given in this paper is constructive; it gives

3
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also a selection of presentation . To the discussed solution ~ one may apply also
the method of the ( 4 , 5, 7 ) wo rks . The procedure of solving in this cane i.~ some-

what longer , however , it leads to the ~sme re ;ults.

The overweight of the method that is developed in apparent if one compares the
method of full approximation with the method of accelerated convergence. In the method
of accelerated convergence , beginn ing with the second step one has to find in t egrnn .
of Pausson equations or nonhomogenous wave equations , which in connected with rrent
calculating diff iculties (9,  13) and , in addition , it leads to non—h omogenous no lu—
tionts , connected with ~. sumulative effect. Formalization of the full~~~Droximation me —

thod by itself already determines the problem ~.f liquidation of theae integrals. Thin
significant overweight of the method , at last , determines its great possibilities.
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