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PREFACE

This work represents the continuation of an effort  begun earlier
with the preparation of the Army report Fracture Mechanics Design Hand-
book. The objectives are to provide an introduction to fracture mechan-
ics fundamentals and to provide a convenient source of fracture mechanics
information for designers, stress analysts, and engineers . The first
volume was limited to isotropic, homogeneous materials ; this volume is
limited to filamentary composite materials .

The subject of fracture mechanics of filamentary composites is not

• yet settled. While its validity for making strength predictions has
• been confirmed for a number of composite systems, its need is still not

clear. The need is not clear for two reasons. While it is true that
composites are subject to a certain amount of crack—like damage, they
are not generally subject to fatigue cracks as metals are. Also, com-
posites are inherently tough; the toughness increases with the unnotched
strength. The question of need will perhaps become clearer in a few
years as more structures are built of composites. The experience gained
will indicate whether brittle fracture and the need to control it are
major concerns.

This volume contains a summary of fracture mechanics techniques
for filamentary composites. An elementary introduction to the notation
and constitutive equations of composite laminates is included in Chap-
ter 1. The basic stress fields on which fracture mechanics theory is
based are given in chapter 2 along with several numerical solutions
which illustrate certain anisotropy and size effects. chapter 3 is
concerned with some fundamental ideas of fracture behavior, fracture
mechanisms, and fracture criteria. Fracture toughness using various
specimen geometries for epoxy and aluminum matrix composites is discussed

• in Chapter 4. Chapter 5 contains two theories which attempt to explain
the fracture behavior of composites with stress concentrations~

For a variety of reasons a number of topics related to the present
one were omitted from this volume, Chopped fiber composites and fatigue
of composites were not included. Because work-of-fracture measurements
are not normally specimen—independent, work—of-fracture ideas were not
included . They are primarily used to obtain the relative fracture resis-
tance of different materials. Mode III type crack loading, because it
it is believed to be of infrequent importance, was r~~t mentioned.

This report reflects only the state-of-the-art at the time of pub-
lication and it is expected that a stress analyst or engineer will sup-
plement the data presented with other solutions commonly needed in his
specific work as they become available.
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Chapter 1. INTRODUCTION

Fracture mechanics of composites is a new and complex subject.
Reference 1 discussed the fundamentals of fracture mechanics of iso-
tropic materials; the following chapterb discuss the fracture mechanics
of composites; its analytical foundation, its experimental basis, and
the fundamentals of its application.

1.1 Fracture Mechanics of Composites

The concepts of linear elastic fracture mechanics were developed
primarily for applications to metals. For a number of reasons, these
concepts are currently being applied to composite materials . A strong
advantage of filamentary composites is that they can be tailor-made with
the strength and stiffness oriented as needed for a specific application,
so that high strength-to-weight ratios result. Because of this, these
composites are successfully competing with metals in many industries,
espec ially the aerospace industry. In material comparisons, fracture
mechanics provides a consistent way of ranking the fracture resistance of
the candidate materials. Furthermore, the fail-safe design philosophy
of damage tolerance or damage containment requires the estimation of
residual strength of damage members. This has encouraged the investi-
gation of fracture mechanics as a tool for making such estimations.
Fracture mechanics is based upon the occurrence of crack-like flaws in
the structure, and while fatigue cracks normally do not form in composites ,
f law damage does occur in a number of ways. Ballistic damage to military
aircraft is an outstanding example. Other flaws such as tool scratches
and the like occur. Some flaws are inherent to the production process:
internal flaws due to pocr vetting of the fibers, improper adhesion of
the matrix and fibers , air bubbles, and dirt are a few. The application
of fracture mechanics has been further prompted by the behavior of com-
posite laminates containing notches and holes. For such laminates,
the strength does not conform to the conventional concept of a stress
concentration factor; therefore, fracture mechanics together with the
idea of an inherent flaw have been developed for making strength predic-
tions in such cases.

The history of the application of fracture mechanics of composites
is quite recent. The method involves determining stresses around a
flaw which is modeled as a crack. Although heterogeneous as well as
anisotropic , filamentary composites are commonly assumed for analysis
purposes to be representable as homogeneous media. Within that context
Sih, et al. [2 ,3] prov ided the fundamental solution in 1965 for the
stresses near a flaw tip in an anisotropic plate. The stresses, although
somewhat different from the isotropic case , retained the same type of •

stress singularity that forms the basis of conventional fracture mechanics.
Sth defined the anisotropic stress intensity factors and showed for cer tain
fundamental cases that these were the same as their isotropic

5
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counterparts. Sih further showed that these stress intensity factors
could be related to the strain energy release rate of Griffith [41 .
Wu ’s experiments (5 ,6] then showed that fracture mechanics concepts
could be applied to composites . His experiments were limited to uni-
directional composites , with the initial crack parallel to the fibers.

In a typical composite laminate the mode of fracture is far more
complex than it was for Wu ’s case. For angle plies , crack extension
is frequently accompanied by a general area of crack tip damage: delami-
nation between plies and splitting between fibers within plies . Fracture
surface appearances range from what could perhaps be described as smooth
to those of a “shaving brush. ” The application of fracture mechanics to
a wide variety of laminate configurations been demonstrated by Konish
and his associates [7, 8, and 9] through fracture toughness testing
programs.

1.2 Introduction to Filamentary Composites

The materials under discussion here are limited to those known
as filamentary composites , that is, materials made up of long continuous
fibers embedded in a matrix material as shown in Figure 1. Common reinforcing
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Figure 1. Fiber reinforced lamina.
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fibers are glass , graphite, and boron; common matrix materials are epoxy
and aluminum. The fibers have extremely small diameters: 5.6 and 8 mils
are two common sizes for boron; graphite and glass are an order of magni-
tude smaller, having diameters of 0.3 to 0.4 mils. The amount of fiber
material is normally specified by giving the fiber volume ratio, yb ,
which is the ratio of the fiber volume to the total volume .

The laminates are built up from the matrix and fiber raw materials
by a number of processes. Shell structures are typically fabricated
by a filament winding process, a method whereby a machine winds a con-
tinuous bundle of the fibers wetted with the epoxy matrix material onto
a mandrel of the proper shape . Other structural laminates are fabricated
by the lay-up of a tape containing both the fibers and epoxy matrix
materials. The 3—in, wide tape contains the untwisted fibers oriented
in the longitudinal direction. The successive layers of tape are applied
at whatever angle is required to give the resulting laminate its desired
properties of strength, stiffness, and directionality. A built—up laminate
is shown in Figure 2. After the laminate is built up from the tape it
is subjected to a curing process of heat and pressure.

2

iooooI~~~~~~~
P

Figure 2. Filamentary composite laminate.

In the literature of composites a• code notation is used to desig-
nate the stacking sequence and the angular direction of the ply fibers
with the laminate axis (x—axis, Figure 2). A few examples [10] vifl
illustrate the method.

7
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Laminate Code

45

0 E45/0/~
6O2/3O]T

-60

-60

30

+45

-45

-30 [±45/±30/0/±(452) ~ T
+30

0

+45

4.45

- 
-45

-45

The coding sequence starts at the most positive z lamina. The “T”
subscript indicates that the total laminate is shown. For laminates
having mid—plane symmetry , a subscrip t” s” is used to indicate that only
half the laminate is shown, as follows:

Laminate Code

90

0

0 E 90/O~/45]~
45

45

0

0

90

If the symmetric laminate has an odd number of laminae, the code
denoting the center lamina is overlined, indicating that half of the
laminate lies on either side of that lamina:

8 j
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Laminate Code

0

45 [0/45/~~/]
90

45

0

A repeating sequence of laminae is termed a set; it is coded as
follows :

Laminate Code

45

0 et

90

45
O set

90 
_____  

((45/0/90)4]T or (45/0/9034T

0 set

90

45
0 set

90

45
0 set

90 
______

45
0 set

90

90 
t
[(45/o/90)2]5 or [ 45/0/90125

0 set

45
90 •

0 set

45
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In informal application. of the code , a laminate may be referred
to by giving the laminate ’s set but not the number of sets . For example
the preceding laminate might be referred to as simply a (45/0/90)
laminate. 5

1.3 Constitutive Equations

The constitutive equations are thoroughly discussed [11]; the
following is only a brief review. First an anisotropic sheet in a state

• of plane stress is considered. The in-plane directions are denoted as
1 and 2. Then the stress-strain relationship is

~ i1

02 ~ 12 ~22 ~26 G
2 

(I)

‘V 12 Q16 ~ 26 ~66 ~
‘l2

where the stresses , a,~, c2, and ‘V 12, and the strains cI. c~ , and 
~12’ 

are
referred to the 1 and 2 axes. The quantities Q

~ 
are the elastic con-

stants comprising the stiffness matrix. The stiffness ma~trix is syin-
metric so that six independent elastic constants completely specify the
stress-strain behavior.

Consider now an orthotropic (three mutually perpendicular planes
of syimnetry) sheet as represented by a lamina of filamentary material,
Figure 1. It is assumed that the lamina is homogeneous; then the stress-
strain relation, in Equation (1) simplifies to

01 ~ 11 ~12 0 
~l]

02 Q12 £2 (2)

~ 0 
~66 

712j
where the elements of the ahiftness matrix are:

— E11/(1 — v12 v21)

‘~ E 1~l — v  v‘~22 22’ ’ 12 21

— v21E 11/ ( l  - V 12 v21) — v12E22/(l - V 12 p21) 
(3)

• “ — G‘~66 12
n = n  = 0‘~l6 ‘~26

~ - ~~~~~~~~~~~~~ -~~—-~~~~~ , 
~~-—w——— ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~
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There are four independent elastic constants: E11 and E72, the
Young ’s moduli Inthe land2 direct ions, respectively; G12, the shear
modulus; and v12, the major Poisson’s ratio.~ Note also that from

Equation (3):

v21E11 — v 12E22 .

The compliance matrix S~ can be found by inverting the stiffne8s
matrix. Results are:

~ll ~12 0 01

~l2 ~22 ~ 02 (4)

~12 0 0 
~66 ‘V

~I2

where the elements of the compliance matrix are,-

~ 11 ‘ 11

S22 ‘ 22

~l2 — -v 12/E11 — “~ ‘ 21~E22 (5)

‘66 — 1/C 12
8 5 016 26

It is important to note that the stress-strain relation. in Equations (2)
and (4) are for a specially orthotropic lamina , where the constitutive
relations are referred to the principal axes (1,2) of the orthotropic
lainina .

Normally the principal axes of the lamina do not coincide with the
reference x and y axes for the laminate. In that case the constitutive
relationship must be transformed through an angle 9 to the laminate axis
x and y as shown in Figure 1. For brevity, the details which are
included in Reference 11 viii be skipped. The resulting stress strain
relation is:

0xx ~i1 ~12 ~ l6 ~~~

0yy ~ 12 Qfl Q26 €~~, (6)

‘Vxy ~ i6 ~26 %6 7xy

A 
11 

•

- ———---- —-~~~~~~~~~~~~
— • •—

~~
. -

~~
. • -“ 

~
. • . -

~~
-
~~~
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where Q~~, the components of the stiffness mat’- ix referred to the

arbitrary x-y axis , are [ 11] :

Q11 cos~ 0 + 2(Q12 + 2 Q66) sin2 6 co,2 9 + Q22 sin4 0

Q11 sin4 6 + 2(Q~2 + 2 Q66) sin2 6 coB2 6 + Q22 cos4 6

• = + - 4 Q66) sin2 6 cos2 0 + Q12 (sin4 6 + cos4 0)

+ - 2 Q12 
- 2 Q66) sin2 6 cos2 6

+ Q66 (sin4 e + cos4 6) (7)

Q16 = - Q12 - 2 Q66) sin 6 cos3 9 + (Q12 
- Q22

+ 2 Q66) sin3 0 cos 6

• = - - 2 Q66) sin3 0 cos 0 + (Q 12 - Q22

+ 2 sin 0 cos3 0

None of the terms in the stiffness matrix are zero now. In fact,
the stiffness matrix has the same form as for a fully anisotropic plate,
Equation (1). However, there are still only four independent elastic
constants. The terms 

~ 16 and Q26 are merely linear combinations of the
first four Q’s. Of course, this stiffness matrix can be inverted to
find the corresponding compliance matrix S for an orthotropic plate.
Thus, i_I

S11 S12 S~,6 0~~~

C —~~~~~ ~~

‘ 

~~

‘ a (8
yy 12 22 26 yy -

s16 S26 ~66 ‘V
~~~

where (5] is the inverse of E~], or ES) — [Q)~~.

1.4 Laminate Constitutive Equations

Given the location and orientation of all the plies, it is
possible to compute the macroscopic elastic properties of a laminate
from the elastic properties of its constituent plies . To do so, the
constitutive equations for each k ply shown in Figure 3, are first
referred to the laminate axes x and y, then the stress resultants are
computed across the laminate thickness, B, by integrating the stresses

• across each lamina thickness.

12
~~~~~~rn
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Figure 3. Notation for lamina coordinate within a laminate.

In general , the results are rather lengthy: the in-plane stress
resultants not only depend upon the mid-plane strains but upon the
bend ing curvature as well; the laminate exhibits coupling of extension
and bending . This means that applied extension causes bending or
warping or , conversely, an applied moment causes in—plane forces. This
is normally an undesirab le situation in that panels subjected to tension
would warp out of plane even if the tension were due to thermal stresses
resulting from a change in temperature.

It can be shown that the bending-moment coupling disappears if the
laminates possess mid-plane synunetry [11]. Mid—plane symmetry means
that for every ply above the laminate mid-plane there is one of equal
properties and orientation an equal distance below the mid-plane. Most
laminates have mid-plane symmetry to prevent the undesirable warping
mentioned previous ly. Consequently, all of the following will be restricted
to mid-plane symmetric laminates . Moreover , applied moments are nat
considered; therefore, the moment-curvature constitutive relations will
not be required. With these limitations then, the stress resultants

~~~~ 
Ny~ Nxy) on the laminate element in Figure 3 are related to the

strains (€ ,~~. 
~~~~~?

‘ i,~,) by

N A A A £ •x 11 12 16

• Ny — A12 A22 A26 ~yy ~~~

N
xy A16 A26 A66 7xy

L .  13
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where

Au — 
k~ l ~~ij ~ k (hk 

- bk.. l) (10)

Thus for mid-plane symmetry the in-plane laminate stiffness is essentially
the sum of the stiffnesses of the constituent plies Q~~

,, all referred to

[ the common laminate axes, x and y.

If one works in terms of the average laminate 
‘~~~x~ 

‘
~yy’ ~xy’

• where

N A11 A12 A16

• ‘~~ N —
- 

~ A1~ A22 A26 ~yy (11)

Nxy A16 A26 A66 ~
‘xy

then the laminate stress-strain relationship becomes

a C C C11 12 16

~ C C C £ (12)yy 12 22 26 yy

C16 C26 C66 7xy

where

[C] — [A] (13)

The compliance matrix [a] can be found by taking the inverse of the
stiffness matrix , (C] . That is ,

[a] [C]~~ ( 14)

so that

£_ a a • a11 12 16

a12 a22 a26 ~yy 
(15)

a16 a26 a66 ~~~

Equations ( 12) and (15) are the laminate constitutive equations . The
elements ~~~ of the stiffness matrix are computed from Equations (10)

14
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I
and (13) ; and the elements a~ , of the compliance matrix are given by
Equation (14) .

If for every ply having a +0 orientation there is a ply of equal
properties with a - 9 orientation, then a16 a26 — 0 and the laminate
is specially orthotropic, having only four independent elastic constants.
In that case, the elements ajj of the comi liance matrix are defined in
terms of the laminate’s engineering constants in a manner identical to
Equation (5) , which were derived for a single orthotropic lamina.

• A laminate which contains an equal number of laminae of +9 and -e fiber
- 

• orientation is referred to as a “balanced” laminate.

The term quasi-isotropic, sometimes used in the literature, refers
- to a particular type of laminate which is near ly isotropic in stiffness.

Examples are : a three—ply laminate with a [0°/±60] orientation , and
• a four—ply laminate wi th a [0°/±45°/90°] orientation .

15
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Oiapter 2. CRACK TIP STRESSES FOR ANISTROPIC MATERIALS

The application of fracture mechanics- is based upon the mathematical 
-

form of the stresses around the tip of a sharp flaw. Results leading
to basic definitions have been obtained for fundamental geometries in
anisotropic materials. Some of these results will be discussed . Addi-
tionally, some numerical solutions which demonstrate certain geometric
and material effects for selected filamentary laminates will be consid-
ered .

2.1 Crack-Tip Stress Fields in Anisotropic Plates

In Chapter 1, the form of the stress—strain relationship for an
• anisotropic plate (or laminate) was noted to take the form

e~~ . a 1,1 a12 a16 a~~

£ — a12 a22 a26 ~~~ (16)

a16 a26 a66 VXY

where the ajj are the compliance coefficients for the plate. If the

anisotropic plate is also a laminated plate then the stresses a~~, ar,,
and ‘V must be considered to be stresses averaged over the laminate

KY
thickness. Here the bar denoting average has been dropped and the
stresses , when applied to a laminate, will be understood to represent
average stresses.

The form of the crack-tip stresses for an anisotropic plate shown
in Figure 4, has been presented by Sih et al. [2] and others [3 ,12]
using either those methods discussed by Lekhnitskii (13] or the Westergaard
stress function approach [12]. Use of the equilibrium equations together
with the compatibility equations results in a fourth-order governing
equation. Solving this equation involves finding the roots of the
characteristic equation ,

a11~~
4 - 2 a 16 I~

3 + ( 2 a12 + a 66) I,L2 — 2 a 26 I.~ + a 22 ” 0  . (17)

These roots are cOrn_p lex or purely imaginary and occur in conjugate
pairs, i.e., 

~~ 
— and 

~2’ where the bar denotes conjugate.
Omitting the details, the stresses and displacements (2] are given in
the following equations for two cases: (1) the loads symmetric about
the crack plane and (2) the loads skew symmetric about it.

16
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Figure 4. Stress components in the neighborhood of the crack tip.

Loads symmetric:

a — ge. I ~1~ 2 ( I~2 - 
U 1

~~~~~ [~~l 
- 

~2\Icos 0 + sin 0 /cos ~ + U1 sin 9

ICi 1 1 / I
~1 _ _ _ _ _ _ _ _ _a Rel  I 

_ _ _ _ _ _ _  
- 

_ _ _ _ _ _ _

~ ~~~ [~ i - U2\.fcos e + sin e ./~~ e + sin 6

‘V 
‘CI ~~ f U IU2 ( 1 - 1

KY 
~~~~~~~~~~~ [M l~~~

J
~2\sfcose+ U sin G ./cosO+ M2 sin O

(18)
and

u K
IJ~~ Re[ U2 (M iP2Icos 0 + U2 sin 9

- ~&2P1i/COB ~ + ~~~~~~~ o) J 
-

v — 

~~ ~~~[U1 U2 (t l~24~ c05 ~ + U2 sin 0

- U2q2~~cos ~ + U1 s~n
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• • Loads skew-symmetric: -

a ~ Re F 1 ( U~ 
- 

2

__ - t
2 \/~os e + U2 sin ~ /cos 9 + U1 sin 9

~~~ 
_ _ _  

1 1a — Re _ _ _ _ _ _ _ _  
- 

_ _ _ _ _ _ _ _

~~~~~~~~~~ 

- IL 2 ~ /co8 ~ + U2 ~~ ~ + U1 sin 0

• ‘Cii 1 1 / IL
1 

I L
2

‘V Re.’ I -
KY 

Ll 
- U2 \Jcos 9 + sin 0 ,[cos ~ + U2 sin 0

and (19)

u = KnJ~~ Re 
[U 1 U2 

(~2J~05 0 + U2 sin 9 ~lJcos ~ + U1 sin

v = KnJ
’
~~

’ 
~e’ [U1 ~ IL2 (~2fcos ~ + sin o - ~

t
lJcos e + U 1 sin

The polar coordinates, r and 6, shown in Figure 4 ; U1 and IL 2 are
roots of the characteristic equation, K.~ and ‘CIi 

are stress intensity

factors, u and v are displacements in the x and y direction, respectively,
and the quantities p,~ 

and q
j 

are convenient combinations of certain elastic
properties given by:

2
Pj  a11 Uj  + a12 — a16 Uj

a22a12 ILj 
+ - a26 — 1,2) ‘ (20)

From Equations (18) and (19) , it can be noted that the stresses

exhibit a crack—tip stress singularity of r~~~
’2 as in the isotropic case .

The angular distribution of the stresses, that is, the variation of the
stresses with 0, depends upon the material properties through the roots

The displacements also exhibit an anisotropic effect: for sym-

metric loading, displacements are not necessarily symmetric; for skew—
synseetric loading, displacements are not necessarily skew-syitmetric as
in the isotropic case. This means that skew—symmetric loading cause,
crack opening in addition to forward sliding; symmetric loading causes
crack forward sliding in addition to crack opening . This displacement
effect disappears if the crack is oriented along one of the material’s
principal directions.

18
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The stress intensity factors, IC.1 and K~1, represent the strength
• of the stress singularities. They have been defined in a way which is

analogous to the isotropic case. Formulas for finding IC~ and 1L~ from
the appropriate stress functions are given in Reference 2. Omitting
those details, consider the results for some fundamental cases. For
example, the results for the geometry shown in Figure 5, a crack of
length 2a in an infinite plate, are:

— a (~ta)l/’2

• (21)

- 

a t

Figure 5. Tunnel or line crack in an anisotropic plate
loaded with biaxial tension .

Results for the probeim in Figure 6 are:

IC.1 _ 0 .

1/2 (22)
• K11 _v (,ca)&(

I
’- 
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Figure 6. Tunnel or line crack in an anisotropic plate
under remote shear.

As a final example, the results for the wedging force problem in
Figure 7 are:

— P
1/2(~ra) (23)

Figure 7. Tunnel or line crack with a crack -surface wedging force.

• It will be noted that the expressions for ‘Ci and ~~~~ Equations (21) ,
(22) , and (23) are identical with their isotropic counterparts. They
depend upon the loading and crack length the same way as for the iso-
tropic case . For cracks in infinite anisotropic bodies where the stress
resultant on the crack is zero, these results are true in general: the

- 

- anisotropic stress intensity factor is the same as for the isotropic
case with the same geometry and loading. In other words, the stress
intensity factors are not material dependent for cracks in infinite
plates. If the stress resultant on the crack surface is not zero or if
stress free boundaries occur near the crack, then the anisotropic stress
intensity factor will differ from the isotropic one. This latter case
will be discussed in more detail later.
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One must be careful in using formulas for stress intensity factors.
Two siiñi lar definitions of both ‘Ci and K~~, differing by the factor

are in common usage. The two definitions are normally distinguished
by the use of lower-case or upper-case K; this is the notation adopted
here . That is , K1 ‘.~/~~k1 and ‘C~ ~~~~~~ •

The basis of the equivalence of the Griff ith concept of fracture
and the stress intensity approach is the relationshup between the stress
intensity factor and g, the strain energy release rate . As in the iso—
tropic case , the strain energy release rate can be determined by calcu—
lating the work done by the crack—tip stresses in closing the crack over
a vanishingly small distance at the crack tip . To avoid almost insur—
mount able mathematical complications in performing this calculation , it
is assumed that the crack ext ends in a collinear manner although in an
anisotropic material this frequently will not be the case. If symmetric
loading (Mode I) and skew—symmetric loading (Mode II) are considered —

separately, results are [2],

1U1~~ 21
— - T a22 ~~~ L U1U2 ] - 

(24)

~II — a11 ~ in [‘-~1 + 12]

where g.1 and g~~ 
are the strain energy release rates for symmetric and

skew-symmetric loading , respectively. When both modes are present , then
the cross-influences of the displacements cause cross-product terms of
IC
~ 

and in the expressions for g, namely,

‘CI PCI (U~ + U2) +
i~~~ T a22 J.in 1 I -

J
r 1 (25)

— 2 all + U2) + UlI.L2J

where

- +8tOta1 g1 ~~

For the special case of an orthotropic material with the crack on one
of the material ’s planes of symmetry , the two modes are independent , so
that

~~~~ 21
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g — ~~j
’~~i~~i 

[

~~~~i

-

~~~~~~~~~ + 
2 a~ 2 + a

66J

g = 
2 .~1!. I / !~i + 

2 12 + a661 1/2 (26)
ii ‘CiI

J~~[J 
a11 2a 11 j  

-

8total — g1 + g11

In suninary , it is well to note the numerous similarities between the
isotropic and anisotropic cases . Equations (18) and (19) indicate that
for a given material the crack-tip stress distribution for different
specimen geometries will be identical, and the r 1

~’2 stress singularity of
isotropic materials is preserved. Furthermore, the stress intensity fac-
tor depends upon the load and specimen geometry in the same way as for
isotropic problems, and is related to Griffith’s strain energy release
rate. In fact, as already noted, the stress intensity factor for a
crac k in an anisotropic plate, except for two conditions, is exactly the
same as for a crack in an isotropic plate having the same loading and
geometry. The two conditions are: that the plate must be infinite in
extent and the resultant of any loads on the crack surfaces must be zero.
The finite plate effect is a detail which will be dealt with in the next
article. It thus seems reasonable to assume that the stress intensity
fector concept can be employed to predict fracture for anisotropic mate-
rials as is done for isotropic materials . Proof that this idea also
applies to fV lainentary composites, which are heterogeneous as well as
anisotropic , must be based upon experimental investigations of crack
extension in various composites.

2.2 Effect of Finite Specimen Size

To apply conventional ~racture mechanics to composite materials aknowledge of the stress intensity factor is required. This is needed
both for cracked structural components under analysis for residual
strength and for specimens proposed for fracture toughness testing. A
considerable collection of stress intensity factor solutions already
exists for isotropic materials of various geometries and loading condi-
tions [1, 14]. Thus, it would be advantageous to understand to what
extent isctropic stress intensity factors could be applied to anisotropic
cases to recognize problems for which this practice would be expected to
be accurate and to have a basis for judging the degree of accuracy. As
mentioned before , for problems involving free boundaries near the crack
tip, the stress intensity factor exhibits a dependency upon the
anisotropic material properties. Solutions for such problems involve
numerical techniques such as the boundary integral equation method (15,
16, 171 finite elements (18], and boundary collocation [19].

22
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The double-edge-cracked (DEC) and the center-cracked tension (CCT)
specimens are familiar fracture toughness specimens for isotropic mate-
rials. Thus it is not supriaing to find that numerical work for com-
posite laminates has been largely devoted to these specimens.

Snyder and Cruse [ 16] determined the finite correction factor for
the CCF specimen for a number of practical laminate configurations. The
lamina properties were chosen as

• E11
iii 2l X lO6 psi

E22 — 1.7 X 106 psi

6 (27)
G12 

= 1.4 X 10 psi

v12 = 0.21

which are representative of graphite—epoxy. A sample of the results
are shown in Table 1 and Figure 8. The lamina angles are relative to
the crack direction. All results are for a plate length to width aspect
ratio of 21JW 3. Results are given in the form,

(28)

where Y is the f inite plate width correct ion, K1, is the Mode I stress
intensity factor, o is the applied stress, and a is the half crack
length. The value of Y for a crack in a infinite isotropic plate is fl•
In Table 1 the results for the isotropic case should first be compared
with the quasi-isotropic laminate, (0/±45/9O)~~. Except for 2a/W = 0.8,
the results for the two are within a fraction of 17. of each other;
therefore, the isotropic and quasi-istropic results agree well. This must
be kept in mind in comparing the results on F igure 8. Note that the
amount of departure of the angle-ply results from those for the quasi-
isotropic case is a measure of anisotropy. All results are fairly close
to isotropic (quasi-isotropic) results; with the greatePt departure
occurring for the (±45)~ laminate, The results for the (±45)~ laminate
are approximately 117. higher than for the isotropic plate. The stress
intensity for the (9O)~ laminate (fibers perpendicular to the crack)

is nearly the same as for the isotropic case; the results for the (0)

laminate (fibers parallel to the crack) are slightly lover than for the
isotropic case. The variation of the stress intensity with ply angle,

~~~, for the (±a) laminates is shown in Figure 9 for 2a/W — 0.6.
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ThBLE 1. FINITE WIDTH C ORRECTION FACTC1~S FOR CENTER-CRACKED
PlATES (2L/W — 3~ F 161

K1

Material1 2a/W3 
- - —

Isotropic 0.4 1.954

Isotrop ic 0.6 2.308
Isotropic d.8 2.910

(0/±45/90)~ 0.4 1.962

(0,/±45/90) 0.6 2.298

(07±45/90), 0.8 3.157

(9027±45), 0.4 1.972

(9027±45) , 0.6 2.323

(902/±45), 0.8 3.231

(904/±45) , 0.4 1.962

(9047±45) 0.6 2.298

(9047±45) 0.8 3.177

(90), 0.4 1 977

(90), 0.6 2.296

(90) 0.8 3.111

(±45) 0.4 2.050

(±45) 0.6 2.493

(±45) , 0.8 3.596

(±30) 0.4 2.011

(±30) 0.6 2.415

(±30) 0.8 3.277

(±60) 0.4 2.020

(±60) 0.6 2.430

(±60) 0.8 3.444

(0), 0.4 1.932

(0) , 0.6 2 .220

(0) , 0.8 2.942

(90)~ 0.6 2.234

p

1. Lamina angles measured from crack
axis.

2. Constant displacement applied to
ends of specimen.

3. See Figure 8.
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Again, the greatest departure from the isotropic (quasi—isotropic) case
is for a — 45°. Snyder and Cruse [16] used both a constant displacement
loading and a constant stress loading on the ends of the plate. The two
cases were within 27. except for the (90)8 laminate where the constant
displacement loading was approximately 37. lower than the constant stress
loading. For a shorter plate this difference would increase.-

Konish [20] using the boundary integral technique, obtained results
similar to those in Reference 16 for the CCr. His results are written
in the form

K1 — (29)

where Y~ is the isotropic geometry correction factor which is a function
of the specimen geometry only and H is an anistrophy factor. The ratio
of the anisotropic stress intensity factor and its isotropic counterpart,
H , is defined by - 

-

K1 K : anisotropic
H _ _ _ _  

I (30
~~~~ K.1: sotrop

Thus, the deviation of H from unity is a direct measure of the effect of
material anisotropy on the stress intensity factor.

The variation of the anisotropy factor H with crack length and ply
angle is tabulated in Table 2 and shown graphically in Figure 10 for the
CCT specimen. Results are likewise given for the DEC specimen tn Table 3
and Figure 11. For both specimens the properties of the graphite p lies
were

E
11 20.5 x io6 psi

E “ l.37 X lO6 psi22 (31)

C12 — 0.752 X l0~ psi

v12 0.31 ,

which, except for G12, are very nearly the same as those used by Snyder -•
and Cruse [16], Equations (27). The ply angle a in Tables 2 and 3 and
in Figures 10 and 11 is referred to a line perpendicular to the crack
rather than parallel to the crack as in Reference 16.

The anisotropy factor H increases with crack length for the ccr
specimen while it decreases with increasing crack length for the DEC 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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specimen. This suggests that the effect of anisotropy is strongest
- 

- 
when the crack tip is near a free boundary. For both specimens, the
severest stress intensity occurs when the plies are oriented at ±45°,
which agrees with the behavior observed by. Synder and Cruse (16] in
Figure 9. The lowest stress intensity occurred when the fibers were
either aligned with the crack (a — 90°) or perpendicular to the crack (a = 0°).
The intensity was approximately the same for those two orientations,

TABLE 2. ANISOTROPY FACTOR IN CCT ANGLE-PLY SPECIMENS OF
T300/5208 GRAPHITE/EPOXY [20]

2a/W* 0.1 0.2 0.3 0.4 0.5 0.6 0.7
H H H H H H H

(00)
, 1.000 0.997 0.991 0.984 0.975 0.964 0.952

(±10°) 1.001 1.000 0.997 0.994 0.990 - 0.985 0.979

(±15°) 1.002 1.002 1.003 1.003 1.004 1.004 1.005

(±20°) 1.003 1.005 1.010 1.016 1.023 1.030 1.037

(±25°), 1.004 1.010 1.020 1.033 1.047 1.061 1.074

(±300)
5 

1.005 1.016 1.032 1.052 1.073 1.094 1.113

(±350)
, 1.007 1.021 1.043 1.070 1.098 1.125 1.145

(±450)
, 

1.007 1.025 1.053 1.087 1.120 1.152 1.164

(±550)
, 1.002 1.016 1.037 1.062 1.087 1.107 1.149

(±60°), 0.999 1.008 1.023 1.040 1.058 1.080 1.115

(±65°), 0.996 1.002 1.010 1.020 1.033 1.050 1.073
(±700) 0.995 0.997 1.001 1.006 1.012 1.021 1.034
(±750) 0.995 0.995 0.995 0.995 0.996 0.997 1.002

(±80°), 0.996 0.995 0.992 0.988 0.984 0.980 0.976

(90°)~ 0.998 0.995 0.990 0.983 0.974 0.964 0.952

*See Figure 10

_ _ _  
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Figure 10. Anisotropy factor versus net section reduction for
center-cracked specimens [20].
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TABLE 3. ANISOTROPY FACTOR IN DEC ANGLE-PLY SPECIME~~ OF T300/5208
GRAPHITE/EPOXY [20)

2a/W* 0.1 0.2 0.3 0.4 -  0.5 0.6 0.7
H H H H H H H

(0°)5 0.945 0.956 0.965 0.972 0.979 0.986 0.991

(±100) , 0.969 0.978 0.984 0.987 0.991 0.994 0.996
(±150) , 0.992 0.999 1.002 1.003 1.003 1.002 1.001
(~~ O°) 1.019 1.024 1.026 1.023 1.019 1.013 1.008
(±250) 1.050 1.052 1.055 l.049 1.041 1.029 1.018

(±30°), 1.083 1.082 1.086 1.079 1.066 1.049 1.031

(±350), 1.120 1.115 1.112 1.107 1.092 1.069 1.043

(±450)
5 

1.142 1.148 1.135 1.131 1.116 1.087 1.057

(±550)
, 1.112 1.122 1.116 1.098 1.084 1.064 1.048

(±60°), 1.092 1.097 1.089 1.072 1.058 1.045 1.036

(±65°), 1.056 1.067 1.059 1.045 1.035 1.027 1.023

(±70°), 1.022 1.037 1.029 1.021 1.016 1.013 1.012

(±75°) 0.996 1.008 1.005 1.002 1.001 1.002 1.004

(±80°), 0.973 0.985 0.986 0.987 0.990 0.994 0.998

(90°), 0.947 0.960 0 .967 0 .973 0.981 0.987 0.993

*See Figure 11.
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Figure 11. Anisotropy factor versus net section reduction for
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again in agreement with Reference 16, Figure 8. The stress intensity
factor for a given ply orientation angle and that angle’s complement
were approximately the same. For example, the values for the ±10° and
±800 ply laminates were almost identical. In most cases , the isotropic
solution underestimates the stress intensity factor. Thus, the isotropic
solution tends to give conservative results for the critical stress inten-
sity factor when used in a fracture toughness test. The same results,
used to make a residual strength calculation for a cracked member where
the toughness is known , would underestimate the stress intensity at the
crack tip and thus result in an inflated , nonconservative value for the
strength of the component.

The dependency of the stress intensity on the crack tip-free edge
distance was illustrated by plotting the anisotropy factor H as a func-
tion of the nondimensionalized free edge distance for both the CCT
and DEC specimens. The free edge distance is

~f W/2 a

for the CCT specimen and

L
f 

= a

for the DEC specimen. The results for some representative laminates
are shown in Figure 12.

For £f/W> 0.3, the anisotropy effect is virtually the same for the

two specimens. H for both specimen approaches unity at approximately
£f/W = 0.45 .

The stress intensity factor depends strongly upon the shear modulus
C12. The axial modulus ratio E11/E22 plays only a secondary role, a
fact which has bean demonstrated by Synder and Cruse (163 as well as
Konish [20]. If the shear modulus for an angle ply laminate is accom-
panied by the stress intensity factor, it increases to a maximum at
a 45°. Konish demonstrated this for various 2a/W ratios of the CCT
and DEC specimens. Because results are similar for the two cases, only
the CCT specimen is shown in Figure 13. The relative shear modulus G
is the shear modulus for the angle ply laminate divided by_the shear
modulus f o r  the quasi—isotropIc (0/±45/90) , laminate. A C greater than

unity indicates a laminate relatively stiff in shear, while a G less than
uni ty  indicates a laminate relatively soft in shear. It can be seen in
Figure 13 that for laminates stiff In shear (C > 1), the stress inten-
sity exceeds the Isotropic value ; for laminates soft In shear, the
stress intensity Is lower than the isotropic value.
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Figure 12. Anisotropy factor versus free-edge distance for represen-
tative laminates. Open points denote canter-cracked specimens;
filled points denote DEC specimens [20].

Figure 14 shows a comparison of results obtained by Osias and Crusa
[ 15) and Konish [20] for the CCT specimen with fibers at ±450. The
material properties were slightly different. The properties of Equations
(31) were used in Reference 20 while properties of Equations (15) were
used in Reference 15. The G12 

used by Osias and Cruse [ 15] was approxi-

mately twice that used by Konish (20]; hence, the Osias-Cruse results
should be higher than those of Konish. However, that is not the case;
the Konish results are slightly higher. There is little practical
difference between the two: compare H — 1.10 to H 1.16 for a/b — 0.7.It should be kept in mind that the greatest departure from the isotropic
value occurs for the present case, i.e., when the fibers are at an angle

- - 
of ±45° f

I
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Figure 13. Anisotropy factor versus relative shear modulus for
center-cracked specimens [ 20] .

Thus far, the discussion has indicated that the anisotropy effec t
on the stress intensity is not extremely large . It must be pointed out
though that the numerical results are not in universal agreement with
this. For example , consider the boundary collocation results of Bowie
and Freese [19] for the square orthotropic CCT specimen in Figure 15. For
values of EJEy greater than unity, results for different cracks lengths

are only moderately lower than for an isotropic case , but for values of
E,/E~ less than unity, that is, with the stiff  axis perpendicular to the
crack, the stress intensity increases sharply to values considerably above
the isotropic. Furthermore, for a/b — 0.4, the results have been veri-
fied by Atluri et al. (18] using the finite element technique. The reason
for the behavior exhibited in Figure 15 can perhaps be explained by two
effects. First, the plate is square, which, compared to a long plate,
increases the finite correction. The second affect is related to the
material properties. The problem was formulated in terms of two material
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constants, 
~l 

and 
~2’ which are combinations of the four orthotropic

material constants E
~ , Ey~ G~~, and ~~~~ i.e.,

~l~2 
_ ./EJE~ -

_____ 
1/2 

(32)
+ 

~2 
a fl VEJE + EJ2G - v }

Elastic constants for real materials were not chosen. Instead , relative
values of and were used, i.e., 

~l 
1 was chosen, which leads to

= EJEy~ The solution was then comp leted by choosing values of

~2(E
/E). This left the shear modulus, G , and Poisson’s ratio,

unspecified . Their values, however, are implied by the second of
Equations (32). In fact, if a typical value for Poissoa’s ratio is
assumed and G is calculated in terms of either E or E forxy x y
E
~

/Et 
a 0.3, G turns out to be larger by a factor of four or five

than a unidirectional graphite epoxy laminate. In other words, picking
specific values of 

~~ 
and~~2 in some cases implies a shear stiffness which is

artifically high compared to real materials. It has already been noted, based
on-thework ofXonish [20] aswell as others [15, 16] , that hlgh values of
shear stif fness lead to high anisotropy factors as shown in Figure 13.

The work of Konish [20], Snyder and Cruse [16], and Osias and Cruse
[ 15] , indicates that the anisotry factor for angle plies is greatest when
a = ±45°. A finite element solution obtained by Mandell (2].] disagrees with
this. Figure 16 shows a comparison of the stress intensity from the
finite element technique [21] compared to the boundary integral equation
method [20). The two methods agree fairly well from 0° to approximately
30° and from 75° to 90°, but disagree sharply in the region from 30° to
75° . In fact, the finite element results show the stress intensity to
decrease to a minimum value at approximately a — 50°, near the place
where the maximum occurà according to the boundary integral equation
method [20]. The reason for the disagreement is not known ; more numeri—
cal work will be needed to settle the issue completely. It is believed
that because the boundary integral equation technique has been widely
applied to anisotropic crack problems by several researchers, a great
deal of confidence can be placed in it.

The effect of plate. length to width aspect ratio for a DEC specimen
was illustrated by Atluri,et al. [181 . The results for fibers either
parallel or perpendicular to the crack are shown in Figure 17 for a
length to width ratio, 1./b, of 4. These results agree with the behavior
found by Konish and noted already: for low a/b the isotropic solution
would overestimate the stress intensity; for large a/b the isotropic and
anisotropic cases converge. Figure 18 for 1./b — 1 (square plate) tells
a different story. With the material ’s stiff axis parallel to the crack
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Figure 17. Stress intensity factor in an orthotropic tension plate
with double external cracks . Material principal directions parallel
to geometric axes of symmetry . (1./b = 4) (18]. - 

-

the anisotropic stress intensity factor is as much as 507. greater than
the isotropic value. Whereas the isotropic case is not very sensitive
to the aspect ratio , a/b, (compare the isotropic solution in Figure 17
with that in Figure 18) the anisotropic solution is very sensitive. While
this indicates that a great deal of caution must be exercised when using
isotropic solutions for unidirectional laminates, it should be kept in
mind that 1./b a 1 is a rather severe aspect ratio — one that for testing
purposes could easily be avoided. With the material’s stiff axis per-
pendicular to the crack, the isotropic solution once again gives a con-
servative estimate of the anisotropic stress intensity factor.

For all examples considered thus far, the crack line has coincided j 
-

wIth one of the laminate ’s principle axes. Atluri et al. [ 181 studied
the stress intensity behavior in the DEC specimen with the principal
axes at either +45° or -45° to the crack line as shown in Figure 19. 

~~~ -~~~~ • - - - - ~~~~~~~~ - - -~~~~~~~~~~ ~~~~~~~~~~~~ — - -~~~~~~ -~~~-——~~~~~~ —-—- —-- - -~~~~~~~~



25
0 E~~

.25,000 000 psi 
I

I G,,~, -770.000 psi-: g — 0.27 .51
U V

4Y ~~~~~~~~~~~~~~ T
2.0 -r ~~~1fl~ / J A E~ 25,000,000 psi

I I I I / / G~~ 770,000 psi

~~~~~~~ x/ 
Py~~027

1L~J /Ui I
I 4N*~ê êi
~ 1.5

1 0 ISOTROPIC PLATE
N
-J
4
I
0
z 1.0 I I I I

0.2 0.4 0.6 0.8 1.0
CRACK LENGTH sib

Figure 18. Stress intensity factor in an orthotropic tension plate
with double external cracks. Material principal directions parallel
to geometric axes of symmetry. (1./b — 1) [18].

The laminate corresponds to a graphite-epoxy material. For this problem ,
which lacks the symmetry of the previous examples, a value of exists
also. The greatest departure of K.1 from the isotropic case and the

largest value of K11 occur at approximately the same location, a/b 
a 0.4.

It should be noted that even though this problem represents a severe
example in terms of material directionality and fiber orientation to the
crack, for a/b > 0.6, the isotropic and anistropic solutions for K.1 agree
quite closely.

2.3 Mixed Orthotropic Laminates

Results so far have been restricted to either unidirectional or
angle ply laminates. In practice, a mixed type of orthotropic laminate
is frequently encountered. It is reasonable to expect that the effect
of anisotropy would be less for these materials because they are less
directional. Figure 20 [15] confirms this,where- a (±45) laminate for
a CCT specimen is compared with three mixed laminates. The isotropic
solution is within approximately 4~ of the three mixed laminates. Data
[ 20) for several mixed orthotropic laminates of various component materials
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Figure 19. Stress intensity factor in an orthotropic tension plate
with double external cracks. Material principal directions 45° to
geometric axes of symmetry [18].

are shown in Tables 4 and 5. Again, the isotropic solution is seen to
be within 47. of correct results and indeed for most cases within 17..

— A number of problems were solved by Cruse and Osias [15] for circular
and elliptical holes with symmetric radial cracks contained in plates of 4
mixed laminates. An example is shown in Figure 21. The anisotropy fac-
tor for a ±45° laminate is compared with three mixed laminates. Except
for small crack length, a, the quantity 11 is near unity for the -three
mixed laminates. Again, it can be seen that the (±45) laminate deviates
the most from isotropic behavior, being approximately 107. higher than
the isotropic solution. It is important to note the behavior for the short
cracks . As the crack first penetrates the hole ’s edge , the anisotropic
solut ion either overshoots or undershoots the isotropic value on the order of
10% , As the crack grows in length, the solution (for the mixed laminates)
approaches the isotropic solution. Thus, Figure 21 indicates that
when making residual strength caluclations for short edge cracks , a
great deal of caution is required . If most of the fibers are perpen—
dicular to the crack, then the calculated isotropic stress intensity
should perhap s be increased by approximately 107. for a conservative
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TABLE 4. ANISOTROPY FACTOR IN DEC SPECIMENS OF MIXED ORTHOTROPIC
LAMLNAI’ES (20]

a- (O°ft45°) (O°r/±45°) (0°2/M5°) 
~~~~~~~~ 

(0’,/M5°)
Material fiTS Boroi/Epozy HTS Glass/Epoxy fiTS

• 2a/W* H H U H U

0.1 1.040 1.010 1.010 1.003 0.997

0.2 1.037 1.012 1.012 1.004 0.992

0.3 1.037 1.014 1.014 1.006 0.995

0.4 1.033 1.013 1.013 1.006 0.997

0.5 1.030 1.014 1.014 1.008 1.001

0.6 1.018 1.007 1.006 1.003 0.998

0.7 1.011 1.004 1.004 1.002 0.998

See Figure ll./

TABLE 5. ANISOTROPY FACTOR IN CC~ SPECIMENS OF MIXED ORTHOTROPIC
LAMINATES [20]

a (0°/±45°) (00
2
/±450) (00

2
/±450) (0°z/M5°) (0°4/±45°)

Material fiTS Boron/Epoxy fiTS Glass/Epoxy HTS
2a/W H B H H H

0.1 1.002 1.002 1.002 1.001 1.001

0.2 1.006 1.003 1.003 1.001 1.001

0.3 1.012 1.005 1.005 1.002 1.000

0.4 1.019 1.008 1.008 
- 

1.003 0.999

0.5 1.028 1.011 1.011 1.004 0.998

0.6 1.037 1.014 1.014 1.005 0.996

0.7 1.045 1.017 1.017 1.006 0.994

*Sae Figure 10. -
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strength estimate. For engineering calculations a similar approximate
correction could also be applied to the isotropic solution for (±45)
laminates (except for extremely short edge cracks) , but for most mixed
laminates the isotropic solution appears tq be sufficiently accurate
for moat practical applications.

The effect of short cracks at the edge-of a hole is also illustrated
in Figure 22 for a specific hole radius of 0.15 in. in several mixed
laminates. The values were calculated by Bowie and Freese but were
included via personal communication in a report by Oleter and Woodbury
( 221 . The results [22] were used for making residual strength calcula—
tions of panels damaged by ballistic impact (Chapter 5). For all laid-
nates , the material properties increase the stress intensity above the
isotropic value; but as the crack grows, the laminate values approach
the isotropic solution.

H 45
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Chapter 3. FUNDAMENTAL FRACTURE CRITERIA 
- 

-

~~

As seen in Chapter 2, within the framework of fiber-reinforced
laminate theory where it is assumed that filamentary laminates behave
in a homogeneous and aniaotrop ic manner , the stress analysis for cracks
presents no serious obstacle. The physical process of crack extension
in a laminate, however , tends to be very complicated; many modes of fai l-
ure are possible. In a unidirectional composite, the crack most frequently
extends collinearly in the direction of the fibers; in a cross-ply laminate,
the crack frequent ly extends in an irregular manner following the fibers
of one ply for a distance and then turning to follow the fibers of a cross
ply. Delamination of the lantina may occur in the crack—tip region .
Resulting fracture surfaces range from smooth to the “shaving brush” type.
Obviously, the heterogeneity of the laminate strongly influences the crack
behavior . In light of this , the question is: Is it possible to character-
ize the fracture behavior of filamentary composites using the theory of
linear elastic fracture mechanics (LEFM) along with its assumption of
homogeneity? Considerable supporting evidence of this idea now exists —
evidence shows that conventional fracture mechanics can indeed be
used to predict the strength of cracked (notched) laminates .

3.1 Fracture of Unidirectional Composites

The discussion in this section is limited to the fracture behavior
of a unidirectional laminate containing a crack oriented along the fiber
direction. Admittedly a special case, the validity of LEFM applied to
unidirectional laminates is fundamental to the more general question of
the validity of LEFM for built—up laminates . A series of tests was con-
ducted by Wu (5 , 6] to determine under what conditions LEFM could be
applied to the fracture of unidirectional composites. His specific
experimental objectives were as follows:

a) To determine the mode of crack extension in the presense of
both symmetric and skew symmetric loads.

b) To determine if the concept of critical k1 and ~~ could be
applied .

c) To determine a fracture criterion for the case of co~~ined mode.

Two materials were used in the tests: balsa wood sheets and fiber glass
reinforced epoxy sheets known as Scotch Ply 1002.

The balsa wood sheets, 0.0625 in. thick , and the Scotchply sheets,
0.05 in. thick, were both prepared with artificial flaws oriented along
the grain or fiber direction. The balsa wood plates were loaded to fail-
tire using the four load paths shown in Figure 23; and the Scotchp ly was
loaded to failure using load paths No. 1, 2, and 4. Thus , the flawed
plates were tested with tension normal to the crack; a coirbination of

- ~~~~~~~~~~~~~~~ 
-
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Figure 23. Load paths used by Wu [5, 6].

tension and shear, and pure shear . To prevent buckling in shear, the
balsa wood sheets were clamped between glass plates; the Scotchply
sheets were clamped between Teflon-lined plastic plates. There were
several reasons for oreinting the flaw along the grain. The
orientation of the flaw must be known to find k

1 
or k

11 
and the

preferred orientation of a natural flaw is along the fibers. Also there
was a consideration of displacements; the stress intensity factor for
the anisotropic case is consistent with thd isotropic case insofar as
stress distribution is concerned , but not for displacements, i.e., a
symmetric load can produce skew—symmetric displacements and a skew sym-
metric load can cause crack opening. This effect disappears if the
crack is along one of the material’s principal directions. Moreover,
the extreme of the critical stress intensity factor should occur when
the crack is oriented along one of the principal di~ections .

For all load paths including pure shear, the crack propagated
collinearly along the direction of the fibers. To determine if critical
values of k

1 
and k

11 
are indeed material constants, it is necessary to

determine their form in terms of crack length and load. For example, for

load path No. 1, K1 — c7~/~~, K~~ 0 (recall that K~ and K11 —

./~ k.11) .  Thus, if critical Ici is a material constant, then the critical
stress should be proportional to(critical crack length)V2. Thus, a plot
of critical stress versus critical crack length on a log—log scale should
result in a straight line with a slope m of — 1/2.

48
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Wu plotted the critical stress (either the critical normal stress
or the critical shear stress component as appropriate to the load path)
versus critical crack length and fitted the data with a straight line of
slope m. Figure 24 shows the results fcr load path No. 1 (tension) for
both balsa wood and Scotch Ply 1002. The values of m for all load paths
ranged from -0.47 to -0.55 for balsa wood and from -0.46 to -0.50 for
Scotch Ply , in both cases very near the value of -1/2. Thus, it was con-
cluded that and 1ciIC were indeed material constants.

(a) (b)

50

40 — r 0  40 — T 0

PATH NO. 1 
PATH No. 1

~~~~~~~~~~~~~~~ rn~~~~~47

- BALSA WOOD 
5 — 

SCOTCHPLY

2 1 1 1 1 1 1 1  1 I 1 1 1 1 1
.1 .2 .3 .4 .5 .6 .7.8 .9 1 .15 .2 .3 .4 .5 .6 . 7 .8 .9 1

CRITICAL HALF CRACK LENGTH, a (in.) CRITICA L HALF CRACK LENGTH,. tin.)

Figure 24. Result of tension tests for balsa wood and fiber reinforced
epoxy (Scotchply 1002) [5].

An extending crack in an isotropic plate, typically turns to a direc-
tion norma l to the greatest applied principal stress. But the crack in
these experiments extended collinearly under a combination of Mode I and
Mode II. Thus, unlike the isotropic case, it becomes important to deter-
mine a fracture criterion for combined mode extension. Wu [6] considered
the maxia~a energy release rate criterion of Irwin [231 .

+ iii: ~~ — constant (33)



where from Equations (14)

SI — 
4/

~~~~~
l[j

/
~~~~+

2 a12 +a
66]

2 a12 + a
66] 

-

Substituting for and g~~ into Equation (33) yields

k~~+~
,
/l k~~~= C’ (34)

where the right-hand side has been redefined as C’, a constant. If Equa-
tion (34) is true, then it should hold for both of the following cases :

pure tension, ‘ci 
= ~ 0

pure shear , k.L = 0

These two conditions in Equation (34) result in

C ’
~~~

K
~c

4
~~.f~IC
a22 \kiic

which, when substituted into Equation (34), yields

(f ri)  
(

~~~~

)

2 

- 1 (35)

This is the energy release rate criterion in terms of stress intensity
factors. Figure 25 shows the values of failure of k1 and k~~ for the
Scotchply material tested by Wu. It is instructive to compare the data
with the strain energy release rate criterion, Equation (33) or equiva-
lently, Equation (34). Let the right-hand side be given by and use

the value reported by Wu for of 930 psi-(in,)~~
’2
. Further,Wu repdrted

a11/a22 — 0.33. These values, inserted into Equation (34), result in
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the dashed line on Figure 25. It is apparent that g
1 + g~~ — constant

does not adequately describe the fracture behavior in the presence of
combined mode.

For purposes of fitting the data, the results were plotted
in nondimensional. form as ahown in Figure 26, The equation

~~1 
___ç + ( 1~ ) — l  (36)

•IC YIIC/

fits the data very well and is shown as the solid dark line. Equation (25) -

is represented by the dotted line. While Equation (36) provided a good fit to
the data for both balsa wood and Scotchply, it should be kept in mind

- that Equation (36) is basically only an empirical equation which explains
nothing fund amental about the fracture mechanism. On the other hand, the
g approach represented by Equation (35) is fundamental. Its failure
to represent the data must be considered .

During the fracture tests , the crack extension process observed. It
was noticed that , though the crack basically followed the fiber direction,
it did not extend in a completely planar fashion, that it intermittently -

skipped back and forth across bundles of fibers as shown in Figure 27.
This resulted in the upper and lower fracture surfaces being connected
by fibers. Corten (12] discussed the idea that these fibers acted as
shear connectors for Mode II disp lacements but that because the fibers
were parallel to the fracture sur f ace, they carried almost no load nor-
mal to the crack surface. The effect of the shear connectors was to cause
an apparent value of tci]c larger than the actual

One other point about the g approach, Equation (35), must be dis-
cussed. Lauratis [24] conducted some off—axis tension tests on Scotchply
which contained only natural flaws in the form of bubbles, voids
fiber-matrix delamination from lack of wetting, etc . She obtained good
correlation of Equation (35) with her test results. The question is, if
Equation (35) would not correlate for Vu’s experiments, did it correlate for
Laura itis? Unfor tunately, Lauraitis failed to discuss this point even though
she used Vu’s data for k1~ 

and a11/a 22. One can speculate as to why she found
good correlation. The answer may lie in the model she chose. She modeled
the microflaws as tunnel cracks and inferred the microflaw crack length
from her tension tests. A penny-shaped flaw, (as she mentions) or
an elliptical flaw may well have been more representative of the actual flaw
geometry. A different flaw model would have changed not only the magnitude
of k.1 but would also have changed the relative amounts of it1 and

Thus, the tunnel shaped model may very well have been fortuitious and
a more realistic crack shape might have actually given poorer corre-
lation. In any case, the answer is rxt clear at this time i~d more
work will be needed to settle the question. In the course of her work

53.
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Figure 26. Dimensionless representation of interaction between stress
intensity factors k

1~ 
and k11~ for Scotch Ply (6].

Figure 27. Crack extension by skipping across fiber bundles.
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Lauraitis [ 24] established the existence of microflaws orien ted along
the fiber direction in the fiber glass epoxy.

The general formulation of the combined mode problem will be dis-
cussed further later on; the point to be made here is that Vu estab-
lished the validity of apply ing fracture mechanics to orthotropic plates,
more specifically, to unidirectional fiber composites with fiber—aligned
cracks . Others have confirmed this. Konish etal. (7,8] tested graphite-
epoxy using three point bending, Slepetz and Carison [25] tested
glass epoxy and two graphite epoxies using the compact tension specimen.

For the case where the initial crack is aligned with unidirectional
fibers, the exper~menta1 data from tests on several fiber composite
systems agree: the fracture path extends generally along the fiber
direction, the critical stress intensity factors are material constants,
and in spite of the heterogeneity of the material, LEPH can be usefully
applied to predict the fracture of auch systems.

3.2 Fracture of Nultidirectional Laminates

This section deals with the fracture of multidirectiona]. laminates
of varying stacking sequences and angles. Some information on fracture
of unidirectional composites where the original crack plane does not
coincide with the fiber direction will also be included. Because of the
many possible lay—up patterns for laminates, fracture surfaces are varied
and frequently complex in shape. General statements are more difficult
to make than in the last section; results for several laminates of
different stacking sequences and angles must be considered. In doing
this, there will be less emphasis on fracture toughness values (Chap-
ter 4) than on the degree of applicability of LER4 to such systems.

The applicability of LEF~1 to composites has been investigated by
Konish and Cruse (8] and Konish et al. [7, 9]. They ran a number of
experiments on cracked specimens of different configurations. The
specific purposes were to determine whether the fracture path was deter-
mined by the geometry of the initial crack and the load ing or by the
material orientation and to investigate whether LEFM could be usefully
applied to composites.

In keeping with the objective, the test procedures followed those
developed within the framework of conventional fracture mechanics. They
employed the three-point bend specimen shown in Figure 28. The
material was a graphite epoxy. To establish reproducibility five tests
each were run on a unidirectional laminate (a — 00) and a multidirectional
laminate [Cr (0°/±45°/90°)~ ]. The crack length , a, for both materials
was 0.4 in. Single tests were then run for a — 00, 45~ , 90° (±45)
and (0°/±45°/90°) ,all with starter cracks of 0.2, 0.4, and 0.6 in. The

short crack lengths were included to permit evidence of material dominance
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Figure 28. Three-point bend specimen showing fiber direction.

to develop. The beams were loaded to failure and the critical stress
intensity factors, called K

Q 
here, were computed for all three crack

lengths. The K
Q 
values were determined from the isotropic formulas.

Results for K
Q 

along wi th gQ, the critical strain energy release rate,
are shown in Table 6. To be a material constant, KQ should be independ-

ent of the crack length. While perhaps not conclusive, results indicate
that within experimental error K

Q 
is essentially constant for each lami—

nate. It should be noted that for the 450 laminate, the presence of
tension—shear coupling would induce both Mode I and Mode II behavior at
the crack-tip. K

Q 
will reflect the presence of both modes although the

relative amount of K
1 
and K.~~ was not known. The grouping of the tough-

ness values; the toughness of the 80° and 45° laminates, is an order
of magnitude less than the other three because the 90° and 45° lamin—
ates fractured through the matrix whereas the others fractured across
fibers. -

Figure 29 shows the load-displacement curves for the reproducibility
tests for the a — (0°/±45°/90°)~ laminate. As a matter of convenience, -

the cross-head displacement was monitered rather than the crack-opening
displacement as specified by ASTM for the testing of metals (26] . The
shape of the curves in Figure 29 is important. The curves exhibit linear
behavior over most of their range with only a very slight amount of non-
linearity preceding the maximum load or instability. In the testing of
composites, there is a crack-tip damage zone which is somewhat analogous —

to the crack-tip plastic zone for metals. Thi, damage zone is due to
such things as splitting parallel to the fibers and delamination between
plies. A great amount of such crack—tip damage causes increasing com-
pliance with increasing load, leading to a highly nonlinear load-
displacement curve. In the extreme case, the fracture would be a slow
tearing type and the application of brittle fracture mechanics becomes

4 1  
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TABLE 6. CRITICAL STRESS INTENSITY FACTORS FOR SEVERA~LGRAPHITE EP~~IES [7]

K , lb/in.2

g , in.
1~~

• 3 Q,jin. XL0 2
Fiber KQ~ lb/in.2 JI~. x l0~~ (average) lb/in.

Orientation
Angle, a a — 0.2 in. a — 0.4 in. a 0.6 in.

00 1 28.8 36.3 32.6 117.

90° 1.66 1.46 2 1.56 0.943

450 0.690~ 2.22 2.39 2.30 
_____

(±45°) 18.5 18.5 16.3 17.7 9 4 7~ 45.0

(O0/±450/9O0
)~~ 23.5 21.7 20.5 21.9 55.1

Notes:

1. Specimen was crushed before crack propagation occurred.

2. Instrumentation failure.

3. This value omitted when calculating ave. K
Q

4. No gQ available because the crack propagated in a mixed mode, which

could not be directly uncoupled.

suspect. The curves in Figure 29, however, exhibit only a slight amount
of nonlinearity, indicating that the failures are essentially brittle,
i.e., catastropic with little prior warning, and that the usual ideas
of brittle fracture mechanics apply.

The tests (7] were run for severa l laminate types and the fracture cur- 4
faces varied . In the absense of photographs , a brief description is
given of each type as follows:

a) a — 0° — The path of crack growth, though somewhat irregular, was
roughly coplanar.

b) a — 450 —The crack grew along a plane containing no fibers,
i.e., at 45°, to the starter crack, and the resulting fracture surface
was very nearly planar . Crack propagatiOn took place here under a com-
bination of and K1I 
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Figure 29. Load versus cross-head displacement for five three-point -

bend specimens (reproducibility tests) of a (O0/*450/9O0)~ graphite
epoxy laminate (a — 0.4 in.) (7].

c) a — 90° —The crack grew along a plane containing no fibers,
coplanar with the starter crack. -

d) a — (±45°)5—For a — 0.2 in., the crack almost f~~ediately -

turned 45° from the started direction. For a — 0.4 in., there was a 
-
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greater tendency for coplanar growth . For a — 0.6 in., crack dominance
was apparent with a lmost coplanar growth . For both a — 0.2 and 0.4,
zig-zagging was apparent.

e) a — (0°/±45°/90°) 5 — Crack growth -was coplanar .

That crack dominance of the fracture process decreases for the
shorter crack lengths is indeed apparent from the preceding fracture
surface descriptions. This leads to questions about minimum crack size
for which the K

Q 
criterion will apply. Descriptions of near microscopic

details of crack growth in graphite epoxy and glass epoxy laminates have
been given by Mandell [21]. In that study, a minimum crack size of 0.1 in.
for two laminates~ (90/0/90/~)~ and (45/0/-45/’~~)~ was given above which

fracture was expected to be controlled by the KQ 
criterion and below which

the application of fracture mechanics becomes doubtful. The minimum
initial crack size for which the crack-tip stress field will control the
fracture depends upon the lay-up of the particular laminate and strickly
speaking would require determination for each case. As an alternative,
the minimum crack size (21] might be adopted for similar laminates as an
approximate value useful in design situations.

3.3 A Lamination Theory of Fracture [15 , 27]

By properly controlling the orientation of the constituent plies,
it is possible to build a laminate in such a way as to produce predict-
able stiffness properties, that is, to tailor a laminate from its cons t i t uen t  -

plies for a specific application. It would thus be advantageous to be
able to predict the fracture toughness K

Q 
or the critical strain energy

release rate g
Q 

for the laminate from the values of the critical energy

release rates for the constituent angle plies, gQ1. A relationship for

doing this, developed by Cruse [15, 27], shows that the energy released
by coplanar crack growth at fracture is the sum of the energies released
by each angle ply constituent at fracture. The relationship is restricted
to laminates of angle ply constituents and is based on the assumption of
coplanar crack growth, which requires fracture of the fibers. As noted
in the previous article, the energy required to fracture a simple ply
by matrix failure is much less than for an angle ply material.

Th~e crack is modeled as a narrow ellipse (Figure 30) with a/b << 1.
The stress at the ends of the ellipse (x1 — ±a) is given by

— 1 
~ Jm

where i
1 
and 

~2 
are the roots of the characteristic Equation (17). This

equation is rewritten as
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Figure 30. Elliptical crack model [27].

~.L +~~ L
2 ~~~~~1 _ 9_

~~_ l ) (38)

~l~2 
a a

and the last term is neglected in comparison with a/a. Equation (24) is

now recalled for g1, the strain energy rate. Substituting Equation (38)

into Equation (24) results in

2

1— i—  (39)0 2 22 \a/ a

where the subscript I has been dropped from g. Assuming that the stress
intensity for an anisotropic specimen is the same as for an isotropic
specimen of identical geometry, the following is written:

(40)

where Y is the finite correction factor. Substituting Equation (40) into
Equation (39), the following is obtained:

g — ~ Y~ a b (a22 a2) (41)

At the tip of the ellipse, the State of stress is uniaxial, i.e., a1 
—

— 0. Since a22 — I/B22, then a22 a2 ii the local hoop strain ~~In the limit for vanishing b, 
~2 

is unbounded but the product b€2 is
bounded (27]. Defining b€2 to be ~; Equation (41) becomes

— a ~/2 . (42)
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1
The quanity 6 is interpreted by Cruse as a crack-tip stretching, physically
related to the fracture process. A fractographic examination by Cruse
and Stout [28] indicated that for a graphite epoxy laminate, the values
of for the constituent angle plies were essentially the same. This
means that there is no significant crack growth in any ply prior to frac-
ture. Thus, one can set — 6. Furthermore, let the value of 6 at
fracture be and the stress at fracture be o

~
• The stress on the

constituent angle ply of thickness h.~ is related to the overall stress
a on the laminate thickness B by

N
aB “

~~ 
aK
h
K (43)

where N is the number of constituent angle plies. Substituting for a
from Equation (43) into Equation (42) and letting fracture conditions apply

— 
results in

gQ 
— 
[i1 

aQIChk/B] 5~ Y
2/2 . (44)

Similai~ y, the f racture criterion for a constituent angle ply can be
written:

gQ 
— Y2a~~ 8~~/2 . 

- 
(45)

Using the preceding observation that — 6~, Equation (45) can be com-

bined with Equation (44) to yield 
-

N -

gQ 
— ~~~ g~~h,~/B . (46)

k l

This shows that the energy released , by coplanar crack growth is the
stun of the energies released by the angle ply constituents, a result
which perhaps is intuitively apparent. It must, however, be kept in
mind that Equation (46) applies only to Mode I, i.e., the crack propa—
gates in its plane, and the damage area at the crack tip due to splitting
between fibers and delamination between plies is small. Cruse [27] - —

applied his resul ts, Equation (46) to the data from Reference 7, which -

are shown in Table 6. The value of g
Q 
for the (0/±45/90) laminate is

computed from Equation (46) to be:

gQ — 117 (
~
) + 45 (

~
) + 0.9 (

~
) + 52 in.—lb/in.2
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Compared with 55.1 in.-lb/in.2, the value is low by only 6L Consider-
ing that in a laminate failure, there are probably other energy consum—
ing damage processes not included in Equation (46), the results are
remarkably close. Cruse and Osias ( 15] have checked the model against
the g

~ 
results from three-point bending for a number of other laminates ,

inc luding (90/±45), (90/±45) , (0/±45) , and (0/±45) . The gQ predicted
from Equation (46) was for most cases within 57. of the measured gQ. Equal

accuracy for many other laminates would not be expectea. As Cruse [27]
points out, if the crack grows by delamination followed by independent
p ly fa ilure, then Equation (46) would not apply.

3.4 The Energy Density Theory [29 , 30]

As already noted , the Griffith-Irwin equation which relates g
~ 

and
is based upon collinear crack propagation. Further, the idea of total

strain energy release , g1 + g11 — 
~~ 

for combined mode problems depends
upon collinear crack propagation, which as already shown, is often
contrary to experimental evidence. In an effort to circumvent this diffi-
culty , Sih and Chen [30 , 31, 32] have devised a fracture criterion that
constitutes a fundamental departure from the classical theory of fracture
mechanics. The method , which employs the familiar quantities k

1 and k11,
is based upon the strain energy density outside a small core region
surrounding the crack tip. With this method, it is possible to calculate
the initial crack propagation direction as well as the critical load.
For composites , the method applies to unidirectional laminates; it assumes
that fracture occurs by crack propagation in the matrix.

The energy density theory must first be explained before its appli-
cation to composites. A basic idea of the theory is that the continuum
mechanics solution, on which and k~ are based, stops short of the
crack tip by a distance r0, Figure 31.

- 
r
~ 
- RADIUS OP CORE REGION

Figure 31. Core region surrounding the crack tip.
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r i
The radius r0 is approximately the same order of magnitude as the crack-
tip radius. Let the crack tip be embedded in an isotropic (matrix) mate- —

rial having Young’s modulus, E, Poisson’s ratio, v, and shear modulus,
C — E/[2(l + V)J .  Now the strain energy dw/-dA stored by the element

— r~~9t~r is considered:

— 
~j (a~~ 

+ a~, + a~5) - ~ (ci,~~a~~ + a
~~
azz + azz a~~)

(47)
1 / 2  2 2
2~~’,

ixy Tyz~~~~xz

where the stress components and are zero for plane strain. The
isotropic crack—ti p stresses for Mode I loading are (-1 , 3],

• 0 1  9 39a — — cos — i 1 — sin — sin —
~o c j~~ ~~~ 2 2

9 1  9 39
a — cos— t l + s i n — s i n -—-
y yj~~ ~~~ 2 2 

- (48)
1(
1 9 e 301 — — cos — sin — cos —2 2 2

a55 
— v(a

~~ 
+ a

~~
) (plane strain)

-- 
and for Mode II,

a ~~~~5i~~!(2+~~05!~~05M) -

~oc 2 2 2

9 9 30a •—sin — cos — cos —2 2 2 : (49)

1 !~I.L cos ! (1 - sin sinxy 2~~ 2 2

a
55 

— v(a~~ + ~~~ (plane strain)

where k1 and k.~ are stress intensity factors and r and 9 are crack tip
polar coordinates. Upon substituting the preceding stresses into Equa-
tion (47), the energy density can be written as

— A 
-- ~~~~~~~~~~ 

--
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— + 2 a12~~~~1 + a22~~I) • (50) 
- 

-

The coefficients a
11, a12 and a22 fo~ plane ótrain are given by

a11 — 
- 4v — cos 6)(l + cos 9)]

a12 — .j~~(2 sin 9) ( cos 9 - (1 — 2v) ] (51)

a22 — t ht4~ - v) (l  - cos 0) + (3. + cos 0) (3 cos 0 - 1)]

The local strain energy density function dW/dA is proportional to

as r becomes smaller and smaller dW/dA becomes larger and larger. The
intensity of the strain energy is referred to as the strain energy den-
sity factor, denoted by S, where

S — cx11k~ — 2 a12k~k11 — ~22k11 . (52)

This is the key quantity in the application of the theory. It depends
upon 0; thus, it is direction sensitive and its role in characterizing
the strain energy is somewhat analogous to the role of k~ or k~~ in

characterizing the stress field. In the energy-density theory, the two
hypotheses of unstable crack propagation are as follows:

a) Crack initiation takes place in the direction of the stationary
value of the strain—energy density factor, that -is,

— 0, at 9 — 9 ~ (53)

and the crack extends in the direction 9
0

b) Crack extension occurs when the strain~energy density factor
reaches a critical value, i.e., when

k~~) S~ ‘ 
for 9 — . (54)

The difference between S and S~ must be clearly understood. For a given
value of 0, S can be calculated in terms of crack length and applied load
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through k1 and k
11. On the other hand , S is a characteristic of the

material, a measure of the material’s resistance to fracture. The advan-
tages of the S-theory are that it is applicable in the presence of both
Mode I and Mode II loading and it will predict the initial direction of
crack propagation.

Sih and Chen [30] applied the theory to Wu’s data [5, 6] for glass
epoxy. They adopted the model shown in Figure 32. A crack length of
2a is embedded in the matrix material parallel to the fibers, where the
clear distance between the fibers is 2h. For finding the stress intensity
factors , they assumed that the material at a distance greater than h from
the crack is homogeneous and orthotropic, with properties E1, E2, V 12
v21 and G12, parallel  and perpendicular to the crack, Figure 32. The
crack is contained in an isotropic layer of thickness 2h between these
two orthotropic materials as shown in Figure 33.

FIBERS

MATRIX CRACK

Figure 32. Fiber composite in tension with crack parallel to the fibers.

The average clear spacing 2h between the fibers can be calculated in
terms of the fiber volume fr action V

f 
by assuming that the fibers are

distributed uniformly throughout the matrix. Consider the fiber of
radius R shown in Figure 34 surrounded by its portion of the matrix
material. The dotted lines represent the centerlines between fibers.
For a unit thickness perpendicular to the paper, the total volume VT is

V
T — (h + 2R)2 (55)
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Figure 33. Sih and then [30] model of crack in fiber composite.

I I— — — — — r’ — - 
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I i i
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1 h

I.. — - • — — .III_ a ~— — —I, 2R I h i1

Figure 34. Cross section of fiber and matrix.

and the volume of the fiber VR is

VR
1u
~~ tR2 

. - (56)

Using the definition of the fiber volume fraction, V
f 
is

2 (57)
T (h + 2R)
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and solving for h/R, the following is obtained:

1 (58)

which permits calculation of h in the model of Figure 33. Sih and Chen
— 

used a V
f 
of 56.57. from Equation (58) which results in h/R = 0.18, a

small distance.

— The stress intensity factors for the problem of Figure 33 are [30]

k1 = •(l) a.J7

k11 
= ~‘(1~ a,/~ sin ~ cos ~

The quantities •(l) and 4(1) depend upon the material’s elastic properties
and the geometric parameters such as h and a. The values of ~r(l) and •(l)
must be found from Fredhoim integral equations which have very complicated
kernels. For h/a small , i.e., h/a << 1, the expressions for 1~r(1) and •(l)
become greatly simplified , no longer requiring integration of a complica-
ted function. The case of h/a << 1 includes a wide range of fiber corn-
posites and flaws. Sih and Chen evaluated •(l) and ~~~ for the Scotchply
1002 material used by Wu 15 , 6]. The values are

•(1) = 0.290 , *(l) — 0.170 (60)

Values for ~(l) and *(l) of unity in Equation (59) would correspond to
the case of a crack in an isotropic plate. Because the values are con-
siderably less than unity in Equation (60), it can be seen that the
effect of the fiber reinforcement is to lower the crack-tip stress inten-
sities, resulting in a higher fracture strength for the fiber composite. - - 

-

The S
e— theory predicts the initial direction of crack growth

from Equation (53). Except for the special case of tension normal to the
crack p lane, 8

~, 
will not be zero. As noted in Section 3.1, the crack

in a unidirectional laminate normally grows parallel to the fibers,
seemingly at variance with the S

~
_ theory. However, it must be kept in

mind that 9~ is only the initial crack direction; the crack can turn

after its initial increment of extension. For Scotchply 1002 , Sih and
then argue that the fracture process is brittle, that there is a distinct
point of instability on the load-deflection curve, and that most of the
stored energy is dissipated at the point of incipient fracture where the
crack extends by a small amount â~a. m other words, it is the initial
increment of crack extension ~~a which cauees fracture and the remaining

66
- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— ~~~--— -~~ --~~~~~~ -~~~ -~~~~~ 



~~~IUIUIU’IIUUUP~~~~~~~~~ 
- -- 

~~~~~~~
-—

~
-— 

~~~~ —~~~~~~~~ =~~ -.---- ~~~~~~~~~~~~~~~~~~~ - “~~~ 
~~~~~~ 

- 
-~~

-
~~~~~~~~~~ -—-‘-~~~~ —-- ~~‘- - — --‘--

- ‘ I
energy required for the actual separation of the plate into two pieces
is small. Of course, it is only the initial crack direction which makes
an angle of 0 with the main crack surface.

0

This argument, if valid, is only valid for brittle behavior. The
crack is contained in a layer of matrix material whose half thickness h
is only O.18R. With no more room than this, the discussed amount of
initial crack growth z~a atan angle of would indeed have to be small.

Would this small amount of extension consume most of the fracture energy?
Whether the argument is strictly correct or not is perhaps academic if
the theory gives good correlation with experimental data, which it did
for Scotchply 1002 (5, 6].

To apply the theory, expressions for and k~~ from Equation (59)
are substituted into Equation (52) so that the energy density factor S is
known in terms of 0. Equation (53) is then used to find the initial
crack direction 0 . For the present case, several different values of

~~, the load direction, are being considered so that for each value of ~
there is a corresponding value of 0 . Figure 35 shows how the angle
varies with ~~. For ~ = 90 0

, 0 = 0, the crack direction is along the

original crack plane, as expected . For each value of ~ the value of
o can be inserted into Equation (52). Furthermore, let critical condi-

tions apply , i.e., S —*5 and a —
~ 
ac. Then the following fracture cri-

terion results:

Sc — a
2 
a [o.084a11 sin

4 
~ + 0.049a12 sin

3 
~ cos 

~ (61)

+ O.029a22 cos4 . —

— CRACK ANGLE

Figure 35. Fracture angle as a function of crack ~mgle [30]. 
- -
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Sih and then determined a value of S from the data (5, 6]. With the

mater ial constant Sc known, from Equation (61) the way in which critical stress
varies with ~ can be determined for several chosen crack lengths.

Figure 36 shows the results for five selected half crack lengths;
a — 0.01, 0.02, 0.05, 0.1, and 0.51 in. The results from the experiments

- - [5, 6] for a 0.51 in. are shown as dark squares. Except for small
values of ~~~, the curve for a 0.~ l in. agrees well with the data. The
curve for a = 0.02 in. agrees well with a

c 
for uncracked specimens [24],

represented by dark triangles. This indicates that microf laws on the
- 

- 
order of 0.04 in. in length must have existed in the uncracked specimens.
Lauraitis ’ microscopic examination [ 24] had previously revealed flaws in
the form of bubbles and gaps along the fibers. She had already inferred
the flaw length to be approximately 0.035 in. which agrees well with the
2a = 0.04 in. value indicated in Figure 36.

UNIDIRECTIONAL
SCOTCHPLY 100270.0 

~ UNCRACKED SPECIMEN
• CNACKED SPECIMEN

-
~~ oo.o • a~~O.5l in .

~ 50.0~
a 0 .Ol j n.

40.0 0.02

0.05

~ 30.0 - 0.1
0.51

20.0

10.0 -

• —1 -
0 30 60 90

13—CRACK ANGLE 
-

Figure 36. Critical stress versus crack angle [30].

The variation of the critical stress with crack length for several
values of ~ is shown in Figure 37. Again, there is good agreement between
the experimental data and the curves.

The S theory appears to be a versatile and successful fracture cri-

terion. It will predict noncollinear crack growth for situations where
a mixture of k

1 and k
11 exist. The method deserves further consideration.
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Figure 37. Variations of critical stress with half
crack length (30].

To verify its usefu lness, it should be applied to a variety of unidirec-
tional composites. Attempts should be made to adapt the theory to
cross-ply laminates . From an engineering viewpoint , the main disadvan-
tage in applying the model discussed here is the difficulty of finding
a stres~ analysis for a particular geometry, or loading , keeping in mind
that the model requires the crack to be contained in a strip of isotropic
material surrounded by orthotropic material. Certain approximations uiay
be possible to alleviate the problem. Certainly, considerable simplifi-
cation resulted [30] for finding •(l) and 4r(l) when h is small; h would
be small for most composites of interest. The form of k

1 
and k11 in

Equation (59) suggests a possible approximation. For a finite plate it
might be possible to determine k.~ and ‘~u assuming the crack to be embedded in a
homogeneous orthotropic plate and then apply 0(1) and ~(l) determined
from an infinite plate solution as correction factors to account for
the crack lying in an isotropic strip surrounded by orthotropic material.
This idea is speculation and has not been tested.
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Chapter 4. TOUGHNESS TESTING OF COMPOSITES

Chapter 3 included some fracture toughness information; however ,
there the emphasis was on the fund amental question of the applicability
of LEFM to composites , and toughness testing was an incidental issue.
For the testing of metals, rigorous American Society for Testing Materials
(ASTM) specifications (26] exist. To obtain valid data, certain require-
ments must be met with regard to, among other things, specimen thickness,
crack length, shape of the fracture surface, and linearity of the load-
displacement curve. A test that meets all of the ASTN standards is then
referred to as a valid test and the valid fracture toughness i denoted
by Kic. Until it is shown that the ASTM test requirements are satisfied,

the fracture toughness is referred to as K , the candidate fr acture

toughness. Because in the case of composites there are no standards for
verifying toughness validity or K

ic 
status,the KQ 

notation has been generally
adopted to denote a composite ’s fracture toughness. The word valid,
when it is used in connection with a composite’s fracture toughness,
means only that the value is believed to be geometrically independent,
a material constant ; it does not mean that ASTN requirements were met ;
this is impossible by definition.

In this chapter, a samp le of results which address some of the
unique problems of toughness testing of composites is included. Emphasis
will be on general material behavior, techniques, and methods rather
than on individual values of fracture toughn~~s for any given material.

4.1 Characteristics of Fracture Toughness

Fracture toughness testing technology was developed for use on
metals. It is well to consider the various ways in which the toughness
behavior of composites differs from that of metals. One very strong
contrast between the toughness behavior of composites and metals is the
difference in the relationships between the ultimate strength and the
fracture toughness for the two. The ultimate tensile strength and tough-
ness of a composite are directly related to the tensile behavior of the
filaments . This is indicated in the curves of Figure 38 for a number of
laminate configurations . The ultimate strength increases as the per-
centage of plies- in the load direction increases. Because boron is
significantly stronger than graphite, the boron curve is steeper. Fig-
ure 38 (b) shows that in addition to the ultimate strength the fracture
toughness also increases as the percentage of load-oriented plies increases.
The fracture toughness and ultimate strength are directly related. As
the ultimate strength increases, the fracture toughness increases. This
is in marked contrast to the behavior of metals which usually exhibit an
inverse relationship between the ultimate strength and fracture toughness. -

Metals of high tensile strength are normally brittle.

70

- - - - - -  -- - --~~-- - — -_ -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~— -—-~~~----_ -- - - _ _ _



_______ - - - 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~

- -  

~~~~~1

-

~~~

100 — BORON EPOXY

0 / /‘ o (0/±46/0)~
80 - D_ (0

2/±45/0/90)$

60 —

40 — GRAPHITE EPOXY

o—(O/±45/90)5
—

— (02/i 603’02~T

10 20 30 40 50
PERCENTAGE OF PLIES IN THE 00 DIRECTION

()
36~~~

3 0-

25 -

PERCENTAGE OF PLIES IN THE 0° DIRECTION
1W

Figure 38. Behavior of strength and toughness with increasing
load-oriented plies [22]. 3
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In the design of a composite fracture test, the procedures, methods,
and requirements [26] for the testing of metals are frequently used as
guidelines. For example, the compact tension specimen and the three-
point bend specimen, the two standard specimens for metals have been used - -

considerably. But other requirements are not amenable. For example,
fatigue crack cannot normally be generated in a composite. Various
procedures have been used for finding PQ. the critical load in a test.
Some researchers use the maximum load, some use the pop-in value, and
others use the procedure of Reference 26. Additionally, the mechanism
of crack extension is far more complex than it is for metals. In multi-
angle laminates, the tendency for the crack to follow the fibers and
the resulting delamination between plies results in a very irregular
fracture surface.

In a unidirectiona l laminate, the tendency for the crack to follow
the fibers results in a combination of Mode I and Mode II extension
which is usually not separable in the toughness test. The object of
toughness testing is to obtain for a given material a value of the criti-
cal stress intensity factor which will be independent of the specimen
dimensions. This raises questions relative to minimum permissible speci-
men thickness, crack length (both of which for metals are controlled by
the crack-tip plastic zone size), and specimen width.

4.2 Size and Shape Effects

If the critical stress intensity factor is a material constant,
then it should be possible to determine a value which is independent of
the specimen geometry; i.e., a number of different specimen shapes should
all  produce the same value of the fracture toughness, as long as certain
minimum size effects with regard to specimen width, crack length, etc.
are met. Tests can be run using specimens of varying size and shape to
see if it is possible to obtain geometry-independent toughness values
and to determine what minimum specimen sizes produce anomalies in measured
toughness values.

Cruse and Osias [15] ran such a set of experiments. The results
from three-point bend specimens were compared with those from CC1~ speci-
mens. Figure 39 shows the geometries. The thicknesses were considerably
different for the two specimen shapes: 0.07 in. for the CCT specimen
and 0.35 in. for the bend specimen. Moreover, tests were run for three
different sizes of CCT specimens, having scale ratios of one, two, and
five; all dimensions except the thickness were changed . The material
was a graphite epoxy in a laminate configuration of (01±45) . Five beam

specimens and three center cracked specimens were tested for each configu-
ration. The cracks were sharpened ultrasonically to a width of approxi-
mately 0.010 in. The critical load P

Q 
was found by the ASTM method [26];

the critical stress intensity factor, K
Q~ 

was calculated using the
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isotropic formulas [1]. The results are shown graphically in Figure 40.
As the crack length is increased, K, appears to approach a constant value

2asymtotically (approximately 36,000 psi-in.. ), which might be called
the fracture toughness for the laminate. -

In metals the elastic crack-tip stress field is assumed to control
fracture if the crack-tip plastic zone size is small compared to the
crack length. In the case of a fiber composite, there is a crack-tip
damage zone which is analogous to the plastic zone in isotropic metals.
Cruse and Osias [15] suggest that with the fibers perpendicular to the
crack the damage zone size, r0, can be estimated from a formula similar
to that for metals, namely

r 

~~ 
(
~~

-)
~ 

(62)

where K
Q 

is the candidate fr acture toughness and 
~lU is the fiber direc-

tion ultimate stress. If r is small compared to the crack length, then

the crack—tip elastic stress field would be expected to control the
fracture behavior. If r

0 
becomes too large, then the usual elastic stress

field characterized by the stress intensity factor is no longer an accurate
representation of the crack-tip stresses and geometrically independent
results for K

Q 
would not be expected . In Figure 40, the ratio of half

crack size to damage zone size is approximately fourteen for the longest
crack and approximately six for the shortest. Perhaps a better way to
view this is by estimating the relative sizes of the damage zone and
the elastic singularity. If it is assumed that the elastic singularity
is on the order of , say , a/S in size, then the sizes of the elastic
singularities for the CCT specimen are 0.10, 0.04, and 0.02 in. Only
for the large specimen (a — 0.5 in.) is the elaøtic singularity aub-
stantially larger (factor of three) than the damage zone. The large
damage zone size indicates that due to effective crack blunting, KQ
should not be too sensitive to crack sharpness. In fact, Broutman (33]
has indicated that the critical notch tip radius in a composite is at
least an order of magnitude greater than that in most metallic materials.

Another size effect which Cruse and Osias [15] considered is that
due to the fiber ply thickness. In metals it is assumed that inhomo-
geneities are small compared to the size of the stress singularities;
otherwise, the crack tip may experience a mixture of modes. In composites,
this implies that the ply thickness should be small compared to the singu-
lar ities. The ratio of singularity size to ply thickness (approxi- -

mately 0.0064 in.) varied from more than 15 for the large CCT specimen
to more than 3 for the smallest.
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point bend and cCT specimens (15].
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Result. in Figure 40 indicate that there was no strong thickness
effect. There is excellent agreement between the 0.35—in, thick bending
specimen and the 0.074-in. CCT specimen. If debonding beyond the crack -

tip is small and not affected by thickness, then no significant thickness
effects are expected (15]. -

While more work will be required before precise limits can be placed
on specimen sizes and crack lengths, it appears [15] that there are no
thickness effects down to 0.070 in., and that inhomogeneous effects due
to ply thickness are not significant for crack lengths, a, greater than
0.5 in. It is suggested that the same conclusions should apply to
boron/epoxy laminates.

A nuirber of papers not discussed here may be of interest to stu-
dents. The CCT specimen has been used by a number of researchers in
addition to Osias and Cruse [15]: by Zimmer (34] for a bidirectional
composite; by Beaumont and Phillips [35] who observed the effect of
varied fiber matrix bond strengths ; and by Phillips [36] who compared
the critical strain energy release rate with work—of—fracture measure—
ments. The toughness of a carbon—carbon composite, a material for ther-
mal protection on reentry vehicles , was investigated by Guess and Hoover
(37] using a beam in three—point bending.

4.3 Tensile Edge-Cracked Specimens

The single—edge—notched (SEN) and DEC or notched specimens (Figure
41) were used by Mandell (21] to investigate the toughness of various
graphite/epoxies. In calculating K

Q~ 
Mandel]. used a special K—calibra-

tion derived form a finite element program. The crack, cut with a dia—
mond saw, had a thickness of approximately 0.011 in. The specimen length
was three times the width.

The laminates tested were separated into two classes, brittle and
nonbrittle. The load displacement curve for the nonbrittle laminates
deviated strongly from linearity prior to catastrophic fracture. Follow-
ing the nonlinearity, the final fracture was still sudden with a sharp
drop in load. The inelastic behavior was exhibited by a general cracking
of the specimen throughout the cross section with cracks propagating
parallel to the fibers within each ply. Laminates which displayed the
nonbrittle behavior had most of the plies oriented at 450 or greater to
the load direction (Table 7). Fracture mechanics is inappropriate for
the nonbrittle laminates.

For the first two laminates in Table 7, fracture tests were run
using the SEN specimen for varying crack lengths: a — 0.30, 0.60 and
0.88 in. Figure 42 shows the results. Data scatter prevents firm con-
clusions but no significant variation of K

Q 
with crack length is apparent

for the three crack lengths investigated.
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TABLE 7. BRITTLE AND NONBEITTLE GRAPIIITE/EPOXY PLY

CONFIGIJRAflONS 1211

Brittle Behavior

(9O/O/9o/~)

(45/0/-45/~~)

(±15)

(±30)

Nonbrittle Behavior

(±45)

(*45) 2
(±60)

(±75)

Table 8 contains results from the DEC specimen. The two laminates
of Figure 42 are included. The K

Q 
values in Table 8 from the DEC speci-

mens are significantly lower than the SEN values in Figure 42. These
are directly compared on Figure 42 where the DEC results are plotted as
open circles. Mandell (21] suggests that this difference may be related
to a statistical variation in KQ or possibly to specimen gripping problems.
It is interesting to note that if the K calibration for the DEC specimen
is low as suggested by Figure 16 that the values of K~ for that specimen
would also be depressed. -

The SEN tension specimen was also used by Olster and Woodbury [22]
to find the fracture toughness of several glass, boron, and graphite
epoxies. The plate width was 0.750 in. and the edge crack length was
0.230 in., a bit short for valid data (Section 4.2). Results are shown
in Table 9. Several replica tests were run for each configuration. Even
though the crack length was below the desired minimum, the data in
Table 9 serve as good indicators of the effect of lay-up configuration
on fracture toughness. Two values of critical k..1 

are given: one

corresponds to the onset of fracture and, while it was not specifically
stated, the other probably corresponds to the maximum load. It is felt
that the onset value should be used in residual strength calculations.
This procedure is at the least conservative. Also, the increase in
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TABLE 8. CALCULAFED VALUES OF FRACTURE TOUGHNESS ASSUMI NG BRITTLE
BEHAVI OR, DOUBLE-EDGE-NOTCHED SPECIMENS (GRAPHITE EPOXY) [21]

Specimen Fracture
1 

Geometry (in.) Toughness*
PLy K (ksi ‘in )Configuration Width Crack Length Q

(90/0/9O/~) 2.0 0.25 28.5
2.0 0.50 27.6

— 

(45/0/-45/’~~)~ 2.0 0.25 30.3

(±15) 1.50 0.25 47.1

(±30) 1.50 0.25 27.9

(±45) 1.50 0.25 15.1

(±60) 1.50 0.25 6.7

(±75) 1.50 0.25 2.8

*Average of two or more tests.

from the onset value to the higher value signifies, if not complete
failure, at least the incurrence of more damage to the structure. Thus,
using the lower value is consistent with the damage containment philosophy.

4.4 The Compact Tension Specimen

The compact tension specimen has been used extensively in the frac- —

ture toughness testing of metals. Slepetz and Carison [25] have also
investigated this specimen, Figure 43, for the testing of composites.
The7 tested both unidirectional and cross ply (equal number of plies in
orthogonal directions) configurations for a glass/epoxy and two types
of graphite/epoxies. Material properties are given in Table 10. The
laminate thicknesses were: eight plies of glass and twelve plies of
graphite. It was necessary to constrain the cross-ply specimen with
side plates to prevent buckling. Because the compliance technique was
used , the critical strain energy release rate, ~~~ was determined rather
than K

Q
. Of course, the two are related by Equation (24) for colinear

crack growth.

To determine the suitability of using analytical rather than
experimental calibration, Slepetz and Carlson [25] conducted compliance
tests. The technique involved applying a load to a specimen which
contained an initial slot. From the load deflection curve, the compliance 

-



TABLE 9. FRACTURE TOUGHNESS VALUES FOR SEVERAL BORON , GRAPHITE,
AND GLASS EPOXIES [22]

I’
Q Q

At Onset of Fracture Fracture Toughness

Material (ksi—in . ~‘2) (ksi—in. 1/2)

Boron/Epoxy

(O/±45/O)~ 15.2 21.1

(0
2
/±45/0/90)

5 25.8 32.6

(0/±60/0) 14.8 18.2

Graphite/Epoxy

(0/±45/O)~ 21.6 27.5
2

(02,1±45/90)8 13.5 20.8
2

(0/±603,/02)T 17.4 26.3
2

Glass/Epoxy

(0/±45/O)~ 39 59.2~

Notes:
1. Recall K

Q “~
/~~kQ

.

2. Values are computed but are not considered the true notch
toughness because mode of failure was by interply separa-
tion with lack of uniform crack path.

3. Values are computed but are not considered the true notch
toughness because specimens exhibited longitudinal crack-
ing and finally failed as a tension specimen having a
reduced cross section.

(reciprocal stiffness) was determined for the given crack length. The
load was increased until crack extension occurred. Thenthe crack typically
arrested due to load drop-off assoicated with fixed grip conditions. The
new crack length was measured and the specimen was unloaded and reloaded
to obtain a new compliance for the new crack length. This process was
continued until the crack had propagated approximately 807. of the dis-
tance across the specimen.
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TABLE 10. PROPERTIES OF LAZIINATES TESTED [25]

E1 E2 C12 v12
2 6 Fiber

Material (lb/in. X 10 ) Volume (7.)

1002 S-glass/epoxy

Unidirectional 6.9 2.3 1.0 0.28
Cross Ply 4.7 4.7 1.1 0.14

MOD 1-5208 graphite/epoxy

Unidirectional 19.9 1.11 0.93 0.32 
40Cross Ply 12.0 12.0 0.93 0.021

MOD 11-5208 graphite/epoxy 
-

Unidirectional 19.5 0.96 1.02 0.32 60Cross Ply 12.1 12.1 0.95 0.035

The strain energy release rate can be determined in terms of the
compliance, C, 125]:

2B da

where F is the load, B is the thickness and a is the crack length. The
critical value, 

~~~ 
is the value at which the crack grows unstable before

being arrested . This occurs at a load value, F , which was taken to be

- - the maximum load in the cycle of crack growth. 
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The compliance results were interesting. In Figure 44 for the
unidirectional S-glass/epoxy, the experimental compliance (open circles)
is compared with results from a finite element program (dashed lines).
The e7~erimental compliance is considerably lower (specimen stiffer)
than the analytical results indicate. The apparent reason for this is
that the unidirectional specimens exhibited fiber bridging behind the
advancing crack tip, hold ing the fracture surfaces together somewhat
and increasing the stiffness. To study this effect, Sleptz and Carlson
125] machined away these fibers after each cycle of crack growth in tests
on several S-glass specimens. The compliance values for the machined
cracks are shown in Figure 44 as solid circles. The values for the
machined cracks are higher than the finite element results.

The compliance for the graphite cross-ply specimens is shown in
Figure 45. In contrast to the unidirectional specimens, the finite
element compliance values were considerably below those observed experi-
mentally . Slepetz and Carlson [25] suggest that some splitting and
delamination of the cross plies may have increased the compliance in
Figure 45. In view of the wide variance of the finite element solution
with the experimental compliance, the decision was made to use the
experimental compliance in finding 

~~~
The fracture toughness values for the unidirectional S-glass/epoxy

are shown in Figure 46 for the case of tX 900 (fibers parallel
to the crack). The values obtained from the specimens with natural
cracks depend upon the crack length up to approximately 30°L of
the specimen width. After that, g levels off at a mean value
of approximately 7.6 lb/in. The variation with length is believed to
have been due to the fiber bridging action already discussed. Though
considerab le scatter is present, the values obtained with the machined
cracks indicate no dependency upon crack length. The average for the
machined crack was 3.18 lb/in. The results for the natural crack are
considerab ly higher than for the machined crack indicating that the fiber
bridging contributed significantly to the toughness.

The unidirectional results for both types of graphite/epoxy are
shown in Figure 47, for a — 0 and a — 90°. The values for cx 00 could
be obtained only by cutting a deep side groove in a cross-ply specimen
such that only two plies remain. These two plies were normal to the
plane of the crack. The mean value for cx — 0 was approximately 355 lb/in.
This is more than two orders of magnitude larger than for a 90°. The
value is also considerably higher (factor of two) than the value of 117
lb/in, in Table 6, obtained by Konish et al. (7] . The a — 90° specimens
exhibit a great deal of scatter but no significant variation with crack
length. The averages of values for the Mod I and II materials, respectively,
were 2.30 lb/in, and 1.88 lb/in., aga in roughly twice the value of 0.943 lb/in.
found by Konish et al. (7]. Though the materials used by Konish,et al. [7]
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Figure 44. Compliance versus crack length curves for
S-glass/epoxy specimens with machined and natural
cracks [25].

and Slepetz and Carlson [25] were both graphite epoxies, they may
exhibit different fracture toughness values because of fiber volume
ratios, etc.

The cross-ply results (plies at 0° and 900) for graphite are shown
in Figure 47. The mean values of were 124 lb/in, and 117 lb/in, for

Mod I and Mod II, respectively. For the cross plies oriented at
45°, g~ values were not found because the crack propagated along 450

lines in a zig-zag fashion making the compliance technique questionable.
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Figure 45. Compliance versus crack length curves for Mod I
and Mod II cross-ply specimens (a 0 and 9 00)  (25].

The S-glass cross plies proved to be so tough that no crack could
be made to propagate . Instead , a system of superficial cracks developed
over a broad area of the notch tip and the load displacement curve
became highly nonlinear in a way characteristic of gross plastic deforina-
tion of a metal. -

The tests on the unidirectional materials for a 300
, 45°, 60°, and

900 could not be analyzed by the compliance technique because the crack

- - 
propagated along the fibers under a combined mode condition .
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4.5 Toughness of Aluminum Matrix Composites

Thus far, the discussion of epoxy matrix composites has indicated
that the critical value of K is a material constant. Perhaps it has
been implied that this might be true for aluminum matrix materials as
well as for epoxy ones. One very strong difference in the behavior of
the two materials is the ductility exhibited by the aluminum. Thus, it
becomes necessary to inquire to what extent, in general, the toughness
will depend upon such things as the matrix yield strength, fiber diameter,
and fiber volume ratio. Some aluminum matrix materials are included in
the survey by Chang [38]. Recently, Wright at al. (39, 40] investigated
the R-curve and J-integral approaches to fracture toughness for boron-
aluminum. The bulk of the discussion here will reet on work carried out
by Hoover [41]. He addressed the preceding questions by conducting a
test program on two series of unidirectional boron-aluminum (B-Al) com-
posites. To investigate the effects of fiber volume fraction and fiber
diameter , three composites with an 1100 Aluminum (Al) matrix were used.
The parameters of the three were 20 v/o 5.6 mil B-llOO Al, 48 yb 5.6
mu B-llOO Al and 49 yb 8.0 mil B-ll0O Al. The properties are given
in Table 11.

TABLE 11. FOUR-POI NT BEND TEST* RESULTS FOR B-llOO AL COMPOSITES [41]

20 yb 48 yb 49 yb
5.6 oil B—ll0O Al 5.6 oil B-ll00 Al 8.- s oil F-h OD

Composite Yield Strength
(kit) 13.6 23.2 21.9
Standard Deviation (kit) 1.23 0.53 1.86

T Composite Ultimate Strength
(kit) 88.4 221.3 199.7
Standard Deviation (kit) 7.9 18.8 11.8

Elastic Modulus (psi) 16.15 )( 10~ 30.4 X 106 28.7 x io6

Strain-to-Fracture (%) 0.875 0.90 0.84
Standard Deviation (

~) 0.05 0.04 0.01

*All tests were conducted on specimens 0.400 in. wide and 0.203 in. thick with a
minor span of 3.0 in. and a major span of 7.5 in. The strain was measured with
a strain gage on the tensile surface. A mintmto~ of three samples of each mate-
rial vera tested.
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A second series of tests was run on specimens taken from a plate of
48 yb B-6061 Al and subjected to three different heat treatments. The
resulting specimen had three different matrix and composite yield
strengths. Properties are given in Table J2. These were used then -

TABLE 12. FOUR-POINT BEN!) TEST* RESULTS FOR B-606l AL COMPOSITES [41]

48 yb 48 yb 48 yb

- 

- B-6061-01 B—6061—F2 B—6061—T63

Composite Yield Strength
(kei) 17.1 37.2 99.0

Standard Deviation (ksi) 0.52 6.5 2.9

Composite Ultimate Strength
(ksi) 228 235 244.3

Standard Deviation (ksi) 10.4 4.6 10.0

Strain-to-Fracture (7.) 0.94 0.98 0.97

Standard Deviation (°L) 0.04 0.01 0.01

*All tests were conducted on specimens 0.400 in. wide and 0.208 in.
thick with a minor span of 3.0 in. and a major span of 7.5 in.
The strain was measured with a strain gage on the tensile surface.
A minimum of three samples of each condition were tested.

1. Annealed for 2 hours at 420° C and furnace cooled.
2. As fabricated condition.
3. Solution treated for 30 mm .  at 490°C, ice-water quenched

and aged for 18 hours at 155°C.

to investigate the effect of matrix yeild strength on toughness. Hoover
(41) used the rule of mixtures to calculate the effective yield strengths
for the three materials. Matrix yield strengths were: 5.7 ksi for the
0 condition, 12.4 ksi for the F condition, and 33.0 Itsi for the T6 condi- 

-tion.

The specimens were loaded in four-point bending. The specimens were -

0.400 in. deep, 0.200 in. thick with a span of 1.57 in. The starter notch
varied from 0.120 to 0.330 in. The notch root radius varied from 0.0005
to 0.005 in. The fibers were normal to the notch.
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Figure 48 shows a load-deflection curve for the 5.6 inil B-llOO Al. 4

The curves exhibited substantial nonlinearity and a pop-in load value,
characterized by a small dip in the curve. The pop—in load P0 was

used to calculate K
Q~ using the formula for isotropic materials. It

should be noted that the pop—in load is considerably higher than the
critical load which would be found from the graphical method of ASTM.
Using the pop-in value for all tests, however, should lead to a - nt
consistent comparison for evaluating the effects of matrix ductility,3
etc. Table 13 shows the K

Q 
values found by Hoover for various crack

lengths in the B-llOO Al composites. It can be s~~n that 
: 

-

90
80 —~c~~ 5.68—1100AI

0 0.02 0.04 0.06 0.08 0.10
MID—SPAN DEFLECTION (in.)

Figure 48. Typical load-deflection behavior of a
5.6 mu B-llOO Al composite (41].

K
Q 
has a constant value for all crack lengths except for a ~ 0.32 in.

For that case, the width of the uncracked portion of the beam was only
0.08 in., i.e., a free boundary was very close to the crack tip. The
values of K

Q 
found for the smallest crack length, a~~ 0.12 in., were

in agreement with the others. That such small crack lengths would yield
a constant value of K is surprising. For metals, ASTI4 requires that the

crack length and specimen thickness both exceed 2.5 (K~~/ci~~) where
is the critical stress intensity factor and 

~ys is the yield strength.
In the present case, if this criterion is evaluated using the composite —

yield strength from Table 11 then a crack length and specimen thickness
of several inches results. This criterion appears unrealistic for B-Al
composites, since Hoover found constant KQ values for all crack lengths

except the longest. Recent tests by Adsit and Waszczak [42] indicate
also that K

Q 
for B—Al is a constant. Their results, based primarily on

two specimens (a tensile specimen with a center hole and a DEC specimen),
indicate a minimum required flaw size considerably higher than Hoover’s.
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TABLE 13. TOUGHNESS DA~A FOR B-llOO AL COMPOSITES (41)

- Fracture Toughness
Crack Length Craók Length to K ‘kSample a, (in.) Width Ratio, a/v ~~ ~ n.

20 yb 5.6 m u  B-llOO Al

H 1 0.115 0.288 16.1
2 0.123 0.308 16.5

3 0.199 0.498 17.8
- - 

- 
4 0.247 0.618 17.3
5 0.279 0.698 18.4

6 0.315 0.788 11.1

48v/o5.6 eilB-llOO Al

1 0.118 0.295 28.8

2 0.156 0.390 25.9

3 0.198 0.495 29.0

4 0.238 0.595 28.0

5 0.281 0.703 29.5
6 0.318 0.795 22.4

49 yb 8.0 mu B-l100 Al

1 0.115 0.288 27.6

2 0.158 0.395 27.2
3 0.195 0.488 28.6
4 0.242 0.605 30.3
5 0.276 0.690 28.1

— 
- 

6 0.324 0.810 24.2

Their curve shown in Figure 49 monotonically approaches a constant value of
at a flaw size of approximately 0.3 in. as contrasted with Hoover’s

minimum crack size of approximately 0.12 in. Their curve contains the
cou~ ined influence of two specimens— one with a hole and one with DEC.From the viewpoint of fracture toughness testing, a hole does not .imu-
late a crack. Thus , the hole specimen may have unduly influenced the
variation of IC

Q 
with flaw size. The main point is that K

Q 
for
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Figure 49. K
Q 
of unidirectional boron/aluminum as a function

of flaw size [ 42) .

unidirectional B-Al does appear to be a material constant independent of
crack size and specimen dimensions.

Table 13 shows the influence of the fiber volume fraction. The

toughness for the 48 yb (approximately 28 ksi/in)”2) is approximately

607. greater than the 20 yb (approximately 17 ksi-in.~’~
2). The effect

of fiber diameter is also shown in Tab le 13. There is no apparent
difference in the toughness of the’5.6— and 8.0—mu materials.

The effect of crack tip plasticity as influenced by heat treatment
of the B 6061 Al is shown in the load-deflection curves of Figure 50.
Both the annealed (0 condition) material and the as-fabricated (F condi-
tion) material exhibit considerable nonlinearity prior to the pop-in
load , as is usually characteristic of metals with substantial crack tip
plasticity. The T6 material has a higher pop-in load and a more nearly
linear load-displacement curve. The T6 heat treatment increases the
yield strength, thus decreasing the extent of crack tip plasticity so
that more nearly linear behavior results. The heat treatment did not
appear to change the value of deflection at which pop-in occurred.
The resulting fracture toughness values for the three heat treatments is shown
in Table 14.

Hoover points out that when the load is applied to the composite ,
work is required at the crack tip to stretch the fibers elastically and
to deform the Al matrix elastically and plastically. The crack-tip work
is thus partitioned between the fibers and matrix. The yield strength
of the matrix influences the partitioning bet~ieen the fibers and matrix.
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Figure 50. The effect of heat treatment on the load-deflection
response of B-6061 Al composite [41].

Because the matrix yield strength did not affect the deflection at which
crack initiation occurred , the difference in toughness is due to the
difference in energy partitioning at the crack tip. The material with
the highest yield strength (T6 treatment) absorbs more energy to the
matrix, resulting in a higher toughness.

Hancock and Swanson [43] have reported a fracture toughness value
of 33,7 ksi—in.1”2 for 30 yb , 4 mil, B-606l-T6, Al. As already noted for a
higher volume fraction, the toughness should be greater. The value in
Table 15 for a volume fraction of 48 is, in fact, larger by approximately
30L Adsit and Waszczak [42] reported a toughness value for 5.6 mu ,
B-606l,Al in F condition; the fiber volume fraction was not reported.
The toughness reported by them of 106.7 ksi_mn)~

’2 seems too high in -

comparison with the value of approximately 34 ksi-in)”~ in Table 14for the F condition material.
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TABLE 14. TOUGHNESS DATA FOR 48 yb 5.6 NIL B-6061 AL COMPOSITES (41]

Fracture Toughness
Crack Length Crack Length to K (ki in )Sample a, (in.) Width Ratio, a/v c

B-606l- 0—1 0.109 0.273 25.6

0-2 0.141 0.353 27.5
0—3 0.191 0.478 27.6

— 0-4 0.237 0.593 28.5

0—5 0 271 0.678 26.0
0-6 0.313 0.783 18.9

B-606l- F—i 0.120 0.300 33.5

F-2 0.158 0.395 - 33.9
F-3 0.197 0.493 36.7
F-4 0.242 0.605 34.3
F-5 0.265 0.66r’ 30.3

F—6 0.325 0.813 - 21.1

B—606l— T6-l 0.116 0.290 45.0

T6-2 0.150 0.375 45.1

T6-3 0.192 0.480 43.6

T6—4 0.226 0.565 44.2

T6-5 0.293 0.733 44.2

T6—6 0.311 0.778 25.9
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Chapter 5. FRACTURE OF COMPOSITES CONTAINING STRESS CONCENTRATIONS

The application of fracture mechanics to a structural component
of a given material requires a knowledge of that material’s fracture
toughness, whether obtained from the literature or from a fracture tough-
ness testing program as discussed in Chapter 4. This chapter also
discusses fracture toughness, but in light of three very specific appli-
cations relating to composites containing various stress concentrations.

Certain fiber composites with notches display peculiar fatigue
behavior: surviving specimens of a fatigue test may show a residual
strength equal to or greater than a specimen which has not been fatigue
loaded. Moreover, the tensile static strength of laminated composites
containing circular holes depends upon the hole size. This is not pre-
dicted by the classical stress concentration factor. These two features
will be considered in this chapter.

5.1 Inherent Flaw Model

The behavior of fiber composites with stress raisers presents a
marked contrast with that of metals. Typically, fatigue loading of
notched specimens fails to produce fatigue cracks . The residual strength
of the notched survivors of a fatigue test is almost the same as for
unnotched specimens. Moreover, the fracture of such specimens, in the
absence of a distinct fatigue crack, is nonetheless brittle. Furthermore,
static tests of specimens with circular holes have shown that the laminate
strength varies with hole size, even though the stress concentration
factor does not. Waddoups et al. [44] presented the data in Table 15,
which show the residual strength of notched, graphite/epoxy laminates
after fatigue loading. The residual strength of the notched laminates
is nearly the same as the unnotched laminate. The residual strength of
the notched , fatigued laminates exceeded the static strength of those
not fatigued.

Tables 16 and 17 present data by Waddoups et al. (44] based on
tests performed at General Dynamics . These tables show the effect
of hole size on laminate strength . As hole size increases, the static
strength decreases.

F Waddoups [44] introduced a model to explain the preceding behavior.
The model consists of a hole from which two intense energy regions
radiate (Figure 51) . The intense energy regions are modeled as cracks
which have a small but finite length a. The length a is taken to be the
characteristic length of an inherent flaw. If it is now assumed that
the isotropic stress intensity factor applies to the geometry of Fig-
ure 51, then the Bowie solution [1] or [3] for cracks emanating from -
a hole can be used . The Bowie solution is written as

K1 a~/~~ f ( ~~) (63)
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TABLE 15. ( 0/901 
~ 

GRAPHITE/EPOXY FAIIGUE* [44]

Average Residual StrengthSpecimen** Average Static Strength 
6Diameter (in.) (psi) After 5X10 cycles (psi)

No stress concentration 83,500 77,200
0.063 Hole 68,900 77 ,700

0.063 Hole +
0.018 X 0.004 Notch 72,200 74,300

0.063 Hole +
0.078 X 0.004 Notch 58,300 79 ,400

*This study was conducted under an in-house experimental program at
General Dynamics Convair Aerospace Division Fort Worth Operation by
E. L. McKague and R. J. Stout.

**Coupon specimens 1.0 in. wide and 9.0 in. long.

TABLE 16. SMALL HOLE DATA SUMMARY (44]

Specimen** Hole
Diameter (in.) Static Strength (psi)

Control 67,240
0.062 45,000

0.031 51,500
0.015 60,900

*This work was sponsored by the Air Force
Materials Laboratory under Contract F336l5-
69-C- 1494.

**Coupon specimens were 1.0 in. wide and
9.0 in. long.

where f (a/R) is a correction factor accounting for the hole boundary.
Let critical conditions apply, k1 

-. kQJ and ~ .-
~ 

a~, where k
Q 
Is the

critical stress intensity factor and is the critical stress: j
k
Q 

— . (64)
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TABLE 17. LARGE HOLE DATA SUMMARY* [44]

Static Strength (psi)Specimen** Hole ________ ___________________________

Diameter (in.) Actual Corrected for Finite Width

Control 76 ,000 76 ,000
1.0 26,600 27 ,900
2.5 15,900 22 ,800
3.0 13,250 23,000

•!cThis work was sponsored by the Air Force Mater ials
Laboratory under Contract F33615-69-C-1494.

**Coupon specimens were 5.0 in. wide and 38.0 in. long.

C,
INTENSE
ENERGY
REGION

a - CHARACTERISTIC
all’-. DIMENSION OF ThE

INTENSE ENERGY
REGION

4
,

a

Figure 51. Fracture model of Waddoups et al. [44].

The stress intensity factor for a specimen with no hole, but only an
inherent flaw of length a, is

(65)
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Because a is assumed to be small , the free edge correction factor is unity.
Assuming that KQ is a material constant , the control specimen failed at

a critical stress of a so that

kQ — a~J~~ . (66)

From Equations (64) and (66)

— f(~) 
; (67)

thus, the ratio of the failure stress a0 of a control specimen and the
fa i lure  stress of a ’notched specimen is given by the Bowie correction
factor if a, the inherent flaw length, is known. Figure 52 shows the
ratio aJ in terms of the hole radius R for four assumed values of a.

5.0

1O - .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
R
~~

HITE E
~~

XY
~
O/±!2S

0 i i i i i i , i  I i I i i 1 1 1 1 1  I i i i i  I ii I I I I I I i i i
0.001 0.01 0.1 1.0 10.0

HOLE RADIUS R (ii.)

Figure 52. Parametric study of critical stress and flaw length [44] .

The failurestresses froinTables l6 and l7are also plotted there . It c a n be
seen that a value of a ~ 0.04 in. fits both sets of data points with reasonable
accuracy.
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Based on the strength of a control specimen and a notched specimen
with the Waddoups model it is possible to predict the strength of other
notched laminates of similar geometry. The method is a two—parameter
one; the two parameters are K

Q 
and a. Equation (67) is used to find the

function f(a/R). With f(a/R) known, the Bowie solution is used to find
the ratio aIR. For. the notched test specimen, R is known and with a/R
known, the inherent flaw length a can be calculated. With a known, then
either Equation (64) or Equation (66) can be used to find K

Q~ 
the critical

stress intensity factor. With K
Q 

and a known , Equation (64) can be used
to predict the critical stress a of other notched laminates. A numerical

C
example will clarify the procedure. If the data for hole radii less than
0.5 in. in Table 16 are considered and the strengths of the first two specimens
are substituted specimens into Equation (67), the result is

fA\ — .~2 67.240 
— 1 495

\RJ ac 45,000

From Bowie’s results [1) or [3]

* 0.89

so that,

a 0.89R — 0.89 (0162) — 0.0276 in.
KQ can now be determined from Equation (64):

ICQ — ac~/~~ f(~) — 45,OOO./i~(.O276) 1.495

K
Q 

— 19,800 psi_in.h/2 
-

Knowing K
Q 
and a, the inherent flaw length, the static strength of the

other two notched specimens can be determined. From Equation (64)

K
(68)

C J ~~~~~~f(a
)

The specimen with the 0.031 in. diameter hole is considered: -

R 0.031 
— 0.0155
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A — 
0.0276 

— 1 78R 0.0155

and from the Bowie solution,

1.24

(Note: Some of the numbers here differ  slightly from those inReference 44.)
From Equation (68) :

- 54,200 psi

This agrees reasonab ly well with the measured value of 51,500 psi. For
the specimen with a hole of 0.015 in., a

~ 
is found to be 60,200 psi as

compared to the measured value of 60,900 psi.

The data in Table 17 are now considered for hole diameters of
1.0 to 3.0 in. Using a for the control specimen and for the 1-in.
hole,

f(A\ — 

U0 76,000 
— 2 72tR I  a 27 ,900

‘,  C

from the Bowie solution

~~~~0.l00

so that

a — 0.100 (
~

) — 0.0500 in.

and from Equation (64)

K
Q 

— 30,100

For the specimen with the 2.50-in, hole,

— — 0.040
and 

f(~)
3.13 ,

then — 24,300 psi .
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which compares well with the measured value of 22,800 psi. Similarly,
for the laminate with a 3.0-in, hole, ac 

is found to be 23,900 psi as

compared to a measured value of 23,000 psi.

The values found for the inherent flaw lengths of 0.0276 and 0.0500 in.
bracket the nominal value of 0.0400 in. noted before from Figure 52.

The physical basis for an inherent flaw, a, has been enforced some-
what by Cruse [27]. Cruse modeled circular notches with equivalent ideal
cracks. The equivalent crack length was obtained by calculating stress
intensity factors for the notches based on the similarity, over a given
region of the transverse stresses ahead of a notch and a crack. The
equivalent half-crack length was greater than the hole radius by an
amount which was close to the inherent flaw length. The inherent flaw
length calculated from Equation (63), was near ly the same for the two
laminates (0

4
/±45) and (01±45). This implied the possibility that the

inherent flaw size is real and relatable to the microstructure.

The Waddoups model has been discussed 1w Brinson and Yeow 145] who
compared the model stresses with measured failure stresses on several
graphite epoxy laminates containing holes. The comparison was not direct;
it was necessary to adjust the data for the finite—width plates before
comparison with the theory which is for infinitely wide plates . The cor-
relation between theory and experiment was better for unidirectional
laminates than for angle ply laminates.

It has been pointed out by Kanninen et al. [46] from a philosophical
viewpoint that the Waddoups model is essentially empirical, a two param-
eter empirical, correlation of limited test data. Nevertheless, the
model may afford a useful method of predicting the strength of notched
structural components. It needs further verification for a number of
laminate materials and configurations .

5.2 Stress Fracture Criteria for Notched Laminates

The fracture of laminates containing holes has been investigated by
Whitney and Nuismer [47, 48] using two stress criteria. While it is not
a fracture mechanics approach, their method assumes the existence of an
inherent flaw. By applying their criteria to the case of a crack , they-
derive a basic relationship for the effect of crack length on fracture
toughness.

A hole of radius R in an orthotropic laminate subjected to a remote
stress of a parallel to the y-axia is considered. The normal stress

along the x-axis in front of the hole is

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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X > R  (69)

where 4° is the orthotropic stress concentration factor for an infinite
plate and is determined from -

4° 
— 1 ~~~ (~~11~22 - 

~12 + 
c
il

c
:2

_ c
~2)  

. (70)

The constants C1,~ are the in-plane laminate stiffness coefficients of

Equation (12). In terms of the effective elastic moduli for the laminate
which are the same form as Equations (3), but indicated by an overline
here, Equa tion (70) becomes ,

(71)

For the isotropic case K — 3, Equation (69) reduces to the first three

terms which are the exact isotropic distribution.

—

~~~~~ 

- 1 + ‘ (R)2 + ~~(!)4 (72)

For the sake of simplicity, the remaining discussion will be based on this
equation for an isotropic or quasi-isotropic laminate rather than the more
comp lex expression in Equation (69) . If Equa tion (72) is plotted in the
usual manner as a function of the nondimensional variable, x/R, then the
results obviously are independent of the hole size. In terms of physical
distance from the edge of the hole (x-R), however , the distribu tion will
be different for different hole sizes. For example, Figure 53 shows the
distribution for two cases: R — 1.0 and R — 0.1. It seems reasonable
that the strength of the laminate with the larger hole would be lower.
For the larger hole , a greater volume of material is subjected to high
stress, increasing the probability that an inherent flaw will exist in
a region of high stress, thus lowering the strength of the plate. From
Figure 53 it also appears that the smaller hole has a better opportunity
to redistribute the stress resulting in a higher strength for the plate
with the small hole. These two observations suggested to Whitney and
Nuismer that a criterion based on the stress magnitude at a point — in-this
instance, the edge of the hole—was not reasonable and that the stress
distribution over some characteristic length must be considered .
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Figure 53. Stress distribution for a hole in an infinite isotropic
plate [47].

They chose two models , each involving a characteristic length
denoted by d0 and ad The firs t model assume s that fa ilure occurs when
the normal stress at a fixed distance, d , from the edge of the hole
reaches a value of a

0, the unnotched tensile streng th of the laminate.
The distance d

0 
is assumed to be a material constant; it represents

- ‘ the distance over which the material must be highly stressed to find
a flaw sufficiently large to initiate fracture. The criterion in
equation form is

(o , x) x — R + d0 
— U , - (73)

Using Equation (72) results in the ratio of the notched to unnotch strength

- 

(2 
+ ~~~+ 3I~

) 

(74)

where UN 
is the notched strength and 

~ 1 
— R/(R + d0) .  For small holes,

—~~ 0 and UN/Uo 
—~ 1 and Equation (74) predicts no strength reduction;

whereas for large holes , —, 1 and cy~/a0 -+ 1/3, so that the strength

reduction is governed by the class ical stress concentra tion fac tor . Thus
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Equation (74) gives the correct limits. The appropriate value of d0
must be determined from test data. Whitney and Nuismer [471 compared
Equation (74) using varying values of d0 to test data on a quasi-isotropic -

glass/epoxy of different hole radii. Their results are shown in Figure 54.
The values of d are the same as those found by Waddoups [ 44] for

boron/epoxy using the Bowie crack model: 0.03 in. fits the small hole
data, 0.05 in. fits the large hole data, and 0.04 in. is a good compromise
value to represent all data with reasonable accuracy.

d0 0.O3 j n.

— 
t . .~t~~~

—
~- (X—R)

0

I I I
0.01 0.025 0.05 0.1 0.25 0.5 10

R~in.)

Figure 54. Stress reduction in quasi-isotropic glass/epoxy
laminates due to the presence of a circular hole , point
stress criterion [47] .

A second approach developed by Whitney and Nuisiner [473 requires
cal culating the average stress over some distance a0, also taken to be
a mater ial cons tant independent of laminate construct ion and stress
distribution. Physically, this distance is assumed to represent a length
over which failure has occurred with subsequent stress redistribution.
Failure is assumed to occur when the average stress reaches the unnotched
tens ile streng th , a0. In equation form,

R+a
1 ° a~~ (x , o)dx — a0 . (75)

Substituting Equation (72) into Equation (75) and doing the integration
results in
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where 
~2 = R/ ( R + a 0) .  Equation(76) is compared with glass/epoxy data

in Figure 55. The values of a
0 
shown are 0.1, 0.15, and 0.2 in., with

the value of 0.15 in. giving the best comparison with data.

0
O4~~~~~~~~~~~~~~~~~~a:%

- 

(~f~
;:.___ 

(X—R) a:
0.01 0.025 0.05 0.1 0.25 0.5 1.0

- R Un.)

Figure 55. Stress reduction in quasi-isotropic glass/epoxy laminates
due to the presence of holes, average stress criteria [473.

The data in Figures 54 and 55 are too limited to conclude whether
the point stress or the average stress criteria is most accurate. Nuisiner
and Whitney [473 have compared the two models for a number of laminate
configurations of both glass/epoxies and graphite/epoxies. The compari-
son, based on the general anisotrop ic results in Equation (69),was incon-
clusive due to data scatter. Brinson and Yeow [45] compared the two
models with test data on several graphite epoxy laminates. After adjust-
ing the finite-plate data to the infinite plate case , the comparison
was r ather inconclus ive. As a design tool, either of the two models
seems reasonably accurate.

The two models of Whitney and Nuismer (47] also provide insight
into the question of K

Q 
dependency on crack length. A straight crack

of length 2a, in an infinite anisotropic plate loaded remotely by a
stress normal to the crack surface is considered. If the origin of the
x-y coordinate system is located at the crack center, the normal stress

ahead of the crack tip is approximated by
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(77)
“ J2ic(x - a)

This is the usual fracture mechanics stress. For this case, K1 
— aJ~~

.
Equation (77) is accurate at points within, say, sIlO of the crack tip.
Obv iously for shor t crack s, small a, the reg ion of applicabil ity is very
narrow. Therefore, Whitney and Nuismer proposed using the exact expression

a — — _______ 
. (78)

J,Ca(x~ - a2) J~
2 

- a2

Equations (77) and (78) are compared in Figure 56 for a 0.1 and 1.0 in.
The stress in Equation (77) as a function of (x - a), is independ ent of
the crack length and gives the same curve for both crack lengths; this is shown

8

6

I — — — E o n

-‘ 4 -
.0.l in.

o

2 —

• a 1.0 in.

_ _ _ _  
I I I I

0.02 0.04 0.06 0.08 0.1
I.I...... • ø~~~ (x.-.) (~~

)

Figure 56. Stress distribution for a crack in an infinite
anisot’ropic plate.

as a dashed line. Equation (78) shows a considerable difference in the
stress for the two crack lengths. For the long crack, the approximate
and exact expressions,Equations (77) and (78), show good agreement. It
is apparent that if failure is assoicated with a fixed characteristic
length such as d

0 
or a

0, constant for all crack lengths; then for short

cracks , Equation (78) should be used.
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Now the exact stress Equation (78) is used in both failure criteria

(changing R to a) in Equations (73) and (75). For the point stress and
average stress criteria, respectively, results are

UN ~ 2

— 
~— J l  — (79)

where

— 
a

~3 a+ d
0

and

UN Ii~~~~
U
0 Jl +~~4 

(80)

where

a

~4 a + a

Equations (79) and (80) give the strength reduct ion for a crack accord ing
to each failure criteria. Both indicate no strength reduction for short
cracks and vanishing strength as a becomes large.

To observe the crack length size effect on fracture toughness, K
Q~

it is noted that K
Q 

a~~
/
~~ and Equations (79) and (80) are rewritten as

KQ a0~ha (1 - (81)

- 
for the point stress criteria and

fta(l -

KQ = cv0J (1 + ~
-y-- (82)

for the average stress criteria. For long crack lengths, Equa tions (81)
and (82) asymptotically approach the respective constant values of

K
Q 

— (83)
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and

K
Q 

— aJ ~~ (84)

which result from the approximate stress given by Equation (77).
Figures 57 and 58 show the crack length effect for both criteria cam-
pared with graphite/epoxy data. The figures show that no constant value
of K

Q 
should be expected below a crack length, a, of approximately 0.4 in.

This compares well with the recommended minimum crack size noted in
- Chapter 4 based on Figure 40.

EQ (83)
T~’
( 

~.
#
~ VY * 130015208

10 — 
~~
.*— a 

(0.±45),

- 
w

0 I I I
02 0.4 0.6 0.8 1.0

a (in.)

Figure 57. Critical stress intensity factor as a function of crack
length for graphit~~epoxy laminates, point stress criterion [47].

5.3 Fracture Due to Ballistic Impact -

The hazard of ballistic impact is one which must be considered in
the design of military aircraft. Two quantities are of immediate inter-
est: the threshold strength and the residual strength. The threshold
strength is the applied load at which the structure will inm~ediat~ ly
fail upon impact by a given type of projectile impact. The residual
strength refers to the maximum load the structure will still sustain
subsequent to projectile damage. Analytically, the determination of
threshold strength is a dynamic problem influenced by time dependent
material response and the nature of the target-projectile interaction.
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Figure 58. Critical stress intensity factor as a function of crack
length for grap hite’~/~poxy laminates, average stress criterion [47].

On the other hand , the determination of residual strength of a damaged
component is normally a btatic problem, involving only the fracture
toughness of the material and a characterization of the projectile
damage .

For a number of lay-ups of both graphite/epoxy and boron/epoxy,
Ols ter and Woodb ury ( 22] exper imentally determined the threshold strength and
resi dual strength of panels subjected to 30—caliber (0.30—in, diameter)
armor piercing projectile impact. Figure 59 schematically shows the loaded
specimens in the experimental setup. The measured residual strengths of
graphite/epoxy panels for various lay-ups varied from approximately
617. to 737. of the true ultimate tensile strength. The threshold strengths
were slightly lower, varying from approximately 51% to 657. of the tensile
strength. For boron/epoxy, the residual strength varied from approxi-
mately 527. to 657. of the tensile strength. Again, the threshold strength
was only slightly less, approximately 927 of the residual strength. The
measured residual strengths for the various lay—ups are shown in Table 18.

Because the threshold strength appears to be only slightly less than
the residual strength, predictions of the residual strength also provide
a rough approximation to the threshold strength. The advantage of this
observation is that residual strength predictions are much easier to
make than are threshold predictions. To make residual strength calcula-
tions, the character of the expected damage and the fracture toughness
of the material must be known.
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- Figure 59. Fracture mechanics model of a laminate panel damaged by
ballistic impact of a 30-caliber armor piercing projectile.

TABLE 18. COMPARISON OF THE PREDIC1~ED AND MEASURED RESIDUAL
STRENGTH OF A BALLISTICALLY DAMA~GED PANEL

Residual Strength
Fracture 

Predicted MeasuredToughness - Percent of
Laminate kc 

a~— 
kc Measured True Ultimate

Configuration (ksi .JT~ .) Y(a) ‘ (ksi) Strength

Boron Epoxy
(0/±45/0) 21.1 46.8 44.8 52.6

(0~/±45/0/9 0)~ 32.6 72.6 74.9 65.6

(01±60
2/0) 18.2 40.5 41.2 60.6

Graphite Epoxy

(0/±45/O)~ 21.6* 48.0 51.9 73.0

(O2/±45/90)~ 13.5 * 30.0 36.0 -63.1

(0
2
/±60

3/02)T 
17.4* 38.6 32.9 61.4

*At onset of failure.
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Olster and Woodbury [ 22] , in their experiments, characterized the

projectile damage as a hole from which cracks radiate. The hole diameter
is approximately the same as the bullet diameter. The hole-edge cracks
were measured (although somewhat crudely) -to be approximately 0.04 in.
in length . They used the same crack length for both boron and graphite.
Now this problem (Figure 59) is the same as the Waddoups [44] model.
In fact, it is interesting to note that the crack length is the same
as the inherent flaw length assumed by Waddoups.

Although some of the values are suspect, the fracture toughness for
the subject laminates determined by Oister and Woodbury (22] were already
discussed and are shown in Table 9; the appropriate values are repeated
here in Table 18. The stress intensity factor solution needed for the
problem is

— yaa~
/
~ (85)

where the values of Y are given by Figure 22 for the various laminates.
However, for a crack length of 0.04 in., the isotropic solution gives a
good approximation to all of the laminates. Therefore, Y 2.24 is used
80 that

= 2.24 aa~~
’2 (86)

It should be noted that the def inition of ~~ being used here is
— K1/4J~. In Equation (86) let k

1 assume its critical value for each
respective laminate and a — 0.04 in.; then a, the residual strength,
is easily calculated.

These calculated values of residual strength are compared with the
measured residual strength in Table 18. There is good agreement for
boron/epoxy. The agreement for graphite/epoxy is fair. It must be
explained that different definitions of fracture toughness were used for
the two materials. Two sets of values were given in Table 9, one [22]
corresponds to the fracture toughness; the other corresponds to
the value of k at the onset of fracture. These two definitions
were used for boron and graphite, respectively. This is ~n - -
unfortunate ambiguity caused by the lack ot a working definition of
exactly what constitutes fracture (i.e., a definition in terms of load
displacement behavior such as that for metals) during a toughness test.
To contrast the behavior of the two materials under discussion here, it
was noted [22] that during the toughness tests the boron materials frac-
tured in a manner characteristic of a valid test with very little delami-
nation whereas the graphite materials suffered considerable crack-tip
delamination before final fracture. Although the vigor of this example
is compromised by the ambiguous use of the fracture toughness values, it
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nevertheless serves to illustrate methods of strength calculations and
the potential usefulness of making residual strength predictions.

I

111



- -  —~~~-————— -.-- ~~~~~~~~~~~~~~~~~~ ~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— —.——- — - - — - - - -

1

LIST OF SYMBOLS

a Crack length, half crack length

a0 Distance over which average stress is computed

a11, ~i2~ 
Compliance coefficients for an anisotropic laminate,

et Equation (15)a16, c.

A Area

A11, A12, Stiffness coefficients for an anisotropic laminate,

A et Equation (9)
16’ c.

b Half plate width; semiminor axis of an ellipse

B Laminate thickness

C Compliance of fracture specimen

C’ Constant

C11, C12, Stiffness coefficients for an anisotropic laminate,

c etc Equation (12)
16’

d
0 Distance from edge of hole at which a characteristic

stress occurs

E Young ’8 modulus for isotropic material

E11, E22 Young ’s moduli in material’s principal directions for
orthotropic plate

E11, E22 Effective Young ’s moduli in material’s principal direc-
tion ’s for orthotropic laminate

E , E Young ’s moduli in x and y directions for orthotropic
— 

~
‘ plate, Figures 15, 17, and 18

f (a/R) Isotropic correction factor for the stress intensity for
cracks emanating from the edge of a hole

F Force

g Strain energy release rate

Critical value of the strain energy release rate
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a
gQ Candidate critical value of g

g1, 
~11 

Strain energy release rate for Mode I and Mode II loading

G Shear modulus for an isotropic material

C 12 Shear modulus for orthotropic plate

G12 Effective shear modulus for an orthotropic laminate

G Shear modulus for orthotropic plate, Figures 15 , 17 ,my and l8

h Half average clear spacing between fibers

h1, h2 Ply thickness

h3, etc.

H Anisotropic correction factor to isotropic solution,
Equation (30)

k, K Stress intensity factors, K .J
~ 
k

k
~
, JC

~ 
Critical stress intensity factors, K J~ 

kc

kQ~ KQ Candidate values of fracture toughness, KQ /~ kQ
Mode I stress intensity factors, K.1 ..~,/ k1

Mode II stress intensity factors, ~~~~~~ ~~

~IC~ 
Kic Mode I fracture toughness, Ki~ 

‘J~ ~~~
‘~ ~~~~~~ Ki~~ 

Mode II fracture toughness, ~~~ —
K,1~ Orthotropic stress concentration factor for a hole

I Length of end tabs

If Distance between crack tip and a free edge

L Plate length

m Slope of straight line

N , N , N In—plane stress resultants
• ; X 

~ 
my

Pj, q~ 
Combination of certain elastic properties, Equation (20)

113 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-. -~~~~~~~~~~ — ~~~~~~~~~~~ ~~~~
--

~~~~~— -— -— 
- — - - - - 

-

P Load

Critical value of load in fracture test

qj, Pj Combination of certain elaitic properties, Equation (20)

p11’ ~12~ 
Stiffness coefficients for anisotropic plate Equation (1)

etc.

, , Stiffness coefficients for orthotropic plate referred
_ll 12 to arbitrary in-plane coordinate axes, Equation (6)etc .

r, 9 Crack-tip polar coordinates

r Radius of core region, Figure 31; radius of damage zone,
° Equation (62)

R Hole radius; fiber radius

S Strain energy density factor -

S Critical value of S with 9 — 9.c

a ll’ S12, Compliance coefficients for orthotropic plate,

~ etc Equation (4)
16’

S 11, s12, Compliance coefficients for orthotropic plate referred

etc to arbitrary in-plane coordinate axes, Equation (8)
16’

u, v Displacement components in the x and y directions,
respectively

vf 
Fiber volume fraction, VI/VT

VR Volume of fibers

VT Total volume of matrix and fiber

W Plate width; strain energy

x, y Rectangular coordinates

Y Anisotropic free edge correction factor

y* Isotropic free edge correction factor

a Fiber angle
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1
a11, a12, a22 Coefficients in the expression for S , Equation (51)

Angle of crack with load, Figure 32

~ ~2 
Combinations of elastic constants, Equation (32)

€l~ 
£2~ ~12 

Strain components referred to orthotropic plate’s principal
axes

~~ ~~~ Strain components

9 Transformation angle between principal axes and arbitrary
axes

9 Direction of maximum value of S
0

9, r Crack—tip polar coordinates

~l’ ~2’ 
Roots of characteristic equation, Equation (17)

IL
3~ 14

v Poisson ’s ratio for an isotropic material

v12, v21 Poisson’s ratios for an orthotropic material

Effective Poisson’s ratio for an orthotropic laminate

v , v Poisson’s ratio for orthotropic plate Figures 15, 17,
my and I8

Equal to B/(R + d0)

Equal to R/(R + a )

Equal to a/(a + d)’

Equal to a/(a + a)

a Normal stress, usually remote load

Critical value of stress at fracture

Failure stress of an unnotched control specimen

aN 
Failure Stress of a notched specimen

115



- ~~~~~~~ -•‘-. ~~~~~~~~~~~~~~~~~ ‘ ‘ ~~~~‘ ‘~~~~~~‘ -~~~ ‘ -“ ~~~~-~~~~‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.~~~~ ——-

a Yield stress

Ultimate stress in fiber dtrection

2 ~12 
Stress components referred to orthotropic plate’s
principal axes

a~~, U~~ 
Stress components

a , a , .r
xy Laminate average stress components, Equation (11)

Shearing stress, usually rembte load

•(l), 9r(l) Solutions to Fredhola integral equations
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