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“Vig:l sults on the remainder terms are related to those of
a Jureckovd and Puri (1975) , Bergstrém and Puri (1977), and
oS Huskovd (1977).
O
"LLJ l. Preliminaries
==
bk 2 (1) (P) i
Let xNi (XN1""' Xﬁl =l,...,N be a sequence of
=
=

Asymptotic Multinormality and Remainder Terms D D C
of Linear Rank Vectors Under Alternatives

by
Madan L. Puri and Navaratna S. Rajaram
Indiana University and Kent State University

Summary

Asymptotic multinormality of linear rank statistics r
based on independent vector valued random variables

is obtained. Under suitable assumptions, weak esti-

mates for the remainder terms for convergence to normality
are also obtalned. Results on asymptotic normality are re-
lated to Hajek (1968) and Puri and Sen (1969). Re-

independent p-variate (p 2 1) random vectors having con-

tinuous cumulative distribution functions (cdf) F (x).

L4
X = (x(l)....,x(p)), i=l,...,N respectively. Consider

now the random matrix gN corresponding to (KNI""'KNN)' i.e.,

X = ((xN 2 S )&gi),...,xn))' | f

i=1,...,N;
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- and observe that each row of p. . is composed of N inde-
pendent univariate random variables. Let RNi) be the

rank of xA(I: among (le ""'xlfn\;)) for each v=1,...,pP.

Then corresponding to the observation matrix Xy we have

e

a rank collection matrix Ry where

(V) 1
gtk B = (B i—l....N-

\Fl,-oolp'

X N 1) T A 3 A T T AT A AT

(v)
Ni

generated by known functions ch: (0,1) =~ R in either of

Consider now p sets of scores (a_.. , 1 €i £N), 1 £y s P

the following ways:

(1.3) a:‘;) = ”v (i/(N+1), i=1,...,N; vel,.c.op
. e al¥ erp @), 4=, ve,.p

where Uh(:i)is the itM order statistic in a random sample of

size N from the uniform distribution over (0,1). Consider

now the simple linear rank vector S

Sn corresponding to ﬁq

(or EN) where

: - gty 9y ot o §otv (v)
1 (1.5) “N (S ....,SN ) '] SN lle (% ), l < ") < p
and where (c("), l £i $N), 1 €£v<pare p-sets of known
NTIS © White Section
(regression) constants. boc Buff Section 3
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In the next section we establish the asymptotic normality
of §N by following the methods of Chernoff-Savage (1958) and

Puri-Sen (1971). For a different approach, see H&jek (1968)
and Puri-Sen (1969). 1In Section 3 we obtain the estimates for

the order of normal approximation for §N' This constitutes the gen-

eralizations of the results of Jurekovi-Puri (1975), Bergstrom-Puri
(1977), Puri-Rajaram (1977), and HuSkovd (1977b), where the prablems
are treated in the univariate set-ups. The multivariate extensions
in the generality of our paper do not appear to exist in the litera-

ture so far. (For a rather special multivariate case, the reader
is referred to Huskovd (1977a)).

2. Asymptotic Normality of §N‘ We now establish the asymptotic

normality of §N defined in (1.5). We make the following

assumptions:
6% 8 -3/2
(2.1) lo (0)] skl (1-t)] : lepv (0| s kit (1-t)} : 0<t<l
v
(2.2) max |C;i)|
1<isN
- O(N_%). l<,5p
3
v
where
(2.3) 82 = Var Sé'\)), l = \ = P g
5 gl - sto)
For eonvenience we shall take S_ = ( —!',....—E— ) ., where
~N 81 SP
the sv's are given by (2.3).
We then have the following theorem.
Theorem 2.1 Let the scores ar(l\:[) , lsy<p be defined by (1.3).
Then, under the assumptions (2.1) and (2.2), for every vector ﬁ
p ' - ‘y %
A in RT, AU (S 4/ V) has asymptotically (as N4 =)

the n(0,1) distribution where Uy and vy are defined by




b —

5
(2.4) wy = (ub‘,“,...,u‘p’) S T Iw @™ yarfy) 1805 p
i= l
(2.5) w8V (x) = B G0y By 0 = pxY e, 15y sp
i= l
3
v
(2.6)  vg=((F)) . 1swvser
4 ~ MoV
and
1
2 {7 SR ) DO
(2.7) suv Cov (SN - SN Y:;: 1 sy, v 5p,
Furthermore, the theorem remains true, if 8 " in (2.7)
are given by l
W ) W) A0 ()
(2.8) .HV l’l_"-lCOV (A (X ). A Ni (xNi Y ) 5
where
(v) o (V) _ o(v)y F ( ) (v) .
(2.9) Ay (x) =g Jzl(c w3 - Cni ) ) Txeyym Fyi D) olH () |
( )
dFygy (¥)
and
I(x<y) =1 if xsy, and 0 otherwise
Proof:
Let (0'1'0‘2' ...,o.p) be a set of fixed but arbitrary constants.
By the Cramer-Wold criterion, it suffices to show that
sV
N
(2.10) % c'v = UN' say is asymptotically normal.
v=1 ~
We introduce the following representation for Sh(zv)'
Let
(v) -1 N (v)
(2.11) (x) =N T I( < x) ,
n" i-1 }S“'
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)

H(v (x) is already defined. (See (2.4) above.)

(v) v (v) (v)
(2.12) CN (x) = Nl I (xNi < (x))
i= 1
(v) I (v) (v) 5 (v)
(2.13) (x) = z ch Fyi (x) Erc (x)]

i=1

We shall adhere to the convention of denoting stochastic variables
v v
( )' c( ))

(v)
(HN ‘

Céy)) with subscripts and non-random functions (H

without subscripts, although depending upon N.

Then the following inequalities are immediate:

an je el s B et o)
‘ (V)(x)| =N T e (v)‘ gt )(x), e

We shall use the representation.

(v) _ (v) (v) = () (v) (v) (V)
(2.36) 5. -j cp(N+1 L ()) g’ (m) = w80 4B, +JE1D3N

where “;v) is given by (2.3).

Bl = [0, @™y a M - ™M ey

]

(2.17)

218 B = [T @M - 1™ cp\', @™ x)) ac™ (x) ]

(V) - =k (v) ' (\)) i
(2.09) By = i J B (x) o) (B V) (x)) dc(x) |
4 (2.20) ;::) =[* = “”( y - 8™ (%)) o, @™ (x)) d(C:‘v) x) - c¢™ (x))

(v) gV

N+1 N

(v)
dcg

2.21) oY) = [* (o (g B 0)- o 8™ - (3 8 0™ )

3N +1

(x)
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T
Substituting (2.16) in (2.10), we have

p a >
B Sy 1 v} (v) (v) (v)
(2.22) U = vgl . g ¥ (51N * Bon ) + jEl Dj;

The proof will be accomplished if we show the following:

(a) ub(IV) is finite.

o, (o5 * 2w

Bt ¥ A
(B) ¢ is asymptotically normal.
p G 3
(€) I, “;L ,21 D;:’) + 0 in probability.
V= j=
v

Proof of (A): Observe that

O (v}
< N max |C ¥ (H "(x)) aH
dcich ¥ | '[. v

(v) (x) < +» for each N

by assumptions (2.1) and (2.15).
Proof of (B): For a fixed v , we shall verify the Liapunov crite

rion for the normality of (g{;“- eég)) g:’]' and then do the same

\

p i
for the sum T ¢ (a(v) (;)) s:)l , by an extension of the. cr-

LT
w1
inequality.
In fact we do so se (V) -1 (v) =1
parately for BN Sv and BoN 8\: and use the
Cr-:l.nequality.

Since we are considering a fixed  , we can drop the indexing

variable  and simplify our notation substantially.
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Consider (2.18)

=J' (HN(x) -H(x)) ¢'(H(x)) dC(x)

Integration by parts yields,

+e0 C
(2.23) 8,0 = BB G -HE}| - [ B @@ () -HE))

where
X

(2.24) B(x) =~r ' (H(x)) dc(x) , xo arbitrary but H(xo) > 0" .
X
0

We shall later prove that the first term in (2.23) is
& 8 =g .
= ) o

The second term of the same can be written as

(2.25) f B(x) d(HN(x) ~H(x)) N-l 1§1 B(x ) - EI‘I(XNi)}

We shall show that

2+e

y(2te) Z Eleu&] )-EB(JSI )] , as N-+o for some ¢>0.

i=

(2.26) (8N)

In fact, it suffices to verify,

2+¢

(2.27) (a) (%€ $ E|B(Xg,) | 20

i=1
which by the Cr and Jensen inequalities implies (2..26).
Next, choose an ¢>0 such that (2+¢)(8-%)> -1 for the

8 given by the constraints on ¢ . Then,




2 2+ (2+4e) N 2+¢
(2.28) (@ * 3 1oy ) 17¢ = (@7 F ogaex,)|
=(2+¢) N 2+¢ ke o 6T
< (8N) T N max |c.| h J' o' (H(y)) aH(y) | dF, (x
i=1 l<igN Ni o e 1
i 0
3 (2+¢€) N .® 2+4€
= tmax [Blo, (1 B [ {lomeni+jomegi} ey
-€ 2+€
= O(N / ) f {lcp(H(x))I + | (H(x ))[} dH(x)~ 0,

- -}

because (2+€)(8 -%) > -1 and cp(H(x )) is a constant.

|C 2+e
that we have used the fact max 2111 = O(N-l-e/z) 5
l<icN g
It remains to be shown that in (2.23),
8x), . _ B(x) i
X = B(x e -
- '... = =508 (x) H(x)})_. o, (1) .
B (x) 1 < ;
|5g | = J/N[H(x) -H(x) | JNS|[ o' (H(y)) cH(y)|
%
0
X
< ,,/NIHN(X) -H(x)|0(1)] ! @' (H(y))dH (y)|
X
0

< K ¢ N|Hg(x) -B(x)| {Hx) @ -H(x))}a-;’

2+¢

. (x)
1

as N4o .

Observe

)




=G

. since ¢(H(xo)) is a constant.

By Puri-Sen (1971), given any ¢, §' positive, there is a

constant C(e¢,8') independent of N such that, with proba-
bility > 1l-¢ ,
;5 ¢ ¢ %-6

N7 [H (%) ~H{x)| = C(e,8") {H(x) (1-H(x)} :

Thus,

1 e

13te(x) | = K{H(x)(l—H(x))} C(e,6') 0

as X-++o , by choosing 0<§'<§ .

The verification of the Liapunov condition for EiBlN is

similar, in fact, easier and is therefore not given here. The

Cr-inequality yields the Liapunov condition for §1(31N )

T Bon

Consider next the normalized sum,

P (v) , (V)
\)El a\) (Bm + BZN ) .

We need to verify the Liapunov condition for the above
expression.

2 (v) (v)
Let = Var z s ( )
o ( JE1 o By(By * By )

We shall assume that 02 is bounded away from zero for all N .

(If not, the sum is trivially degenerate normal as N+ +o .)

(v)
RIN

(vi_ N (v)
2N = ;I Bn

Write + g




3} % where eé;) are independent random variables (as already done

earlier). We have to show

2+¢

(v)
Bni ol

1 % 3 4
v

-e2 N
£ +€)2

(2.29) lim o
No

P
E|lx
\)=

We have already shown that

N

(2.30) 1lim (8 TE|B
Noy @ i=1

2+¢

)—(2+€) 2l
Vv

(\)) I
Ni

(2.29) follows from (2.30) upon necting that there is a constant

C(p.,€) , depending only upon p and € such that

B(v) 2+e
p i P +
EI 5 Q _Ni ' < c(pte) T la /5 ‘2 € E‘ab(IY) 12+€
v=l Vv 8 v=1 v v 1
Y

(Generalized Cr—inequality.)

This establishes (B). We note that ¢ depends only upon §

and hence the same choice of € works for all V .

Proof of (C): Recall that we have to establish

P -t 3
§ a5 ULy
{ i VYV §ar N P

Clearly, it suffices to prove for a particular VvV since we have

a finite sum (1, ..., p) . Again, we shall drop the index .

consider, |§'D | = [~(w17rd | [ By o' (EG) acy () |

=1 1 N
<(8N) "z | o' (HXg))1|Cu| = § '21 iy
i=



T —

o ¢,

where

-1 3
;) 8 B ,

v i > ‘w'(H(XN Ni

N

To prove ' ;

N
¥ V.. » 0 in probability,
Gt e

it suffices to show that

¥ =a
T N E\VNi
i=1

la< +o , for all N, for some a , O<g<l .

(By particular case e page 241, Loéve (1963)).
Take q = 2/3 :

§2/3 N /3 _ -2/3N  Cyi 2/3 (5-3/2)

2 Ni
I, E| V| <KN £ | g~ | EJHX) A -HX )
1/3 1 2/3N ,*® 23 =
< N max (8 Jc.. 1) "¢ H(x) (1 -H(x)) dF_. (x)
1<i<N L i=1 ‘L { } pel

)

® -1
=x-o() | {H(x)(l-a(x))}3 QH(x) < +o 3
-
where we have used the fact that

max |§1c .12/3—0(N“1/3)

teial

Consider next,

Doy = | (Hg(x) ~H)g' (H(x)) d(Cy(x) ~C(x)) .

-
By Puri-Sen (1971), given any ¢>0 , 0<g§'<% , there is a

constant C(e¢,8') , independent of N such that with

probability > l1-¢ ,




» ol
N7 [Hy(x) ~Hx)| < Cle,s') {H(x) (1-H(x))}

Thus with probability > 1l-¢ ,
% 6*-1
|l-5q(x) -H(x)|p' (H(x))| < KC(e, 8') N {H(x) (1 -H(x))}

taking 8'<$ and setting &* = § -5

It suffices to show that

i & 8*-1
Slﬁ;’[ {H(x) (1 —H(x))} d(CN(x) -C(x)) -0 in probability.

We shall use the Liapunov criterion for degenerate convergence

(page 275, Loeve (1963)).

§lﬁ;5 J‘“ {H(x) (1 -H(x))}s*-l dCN(x)

—c0

*

-1-% N 6 -1

= ¥R L ocy {H(xNi)u-H(xNi))}

*%*
_ kel £ i
Vg " gy {H(xui) v H(xNi))}

Then,

*
=1=k N 6 -1 .1 N
- =N
i 151 cNi{H(xNi)(l H(xNi))} 5_21 VNi

-1 N
It remains to prove, N1 £ (V,, -EV_..) » 0 in probability.
i=1 Ni Ni
This will be accomplished if we can show that for some q>0 ,




P ] S

L T ——
13 %

N
(2.31) N Iy E|Vgl™ =0 .

Choose o >0 such that , (l+a)(s*-1) >
*

O<o,<—'°— « Then,

1-5*

1 H that is'

=(l+a) N 14a
N
i§1 B ‘ VNiI

J N max |c 4o

2x 1y
=1(1+a) l<isN N.
=B : |2, E{EGg) -, )

(14a)(8%-1)

(1+a) (8*-1)

=0(1)N® f {n(x) (1 -H(x))}

dH(x) = 0(N %)

which proves (2.31).

Next consider

® NH_(x) N HN(X) ]

=% =1 N :
8, = L {o(Fe1) - o) - (i - o' G }ac () .
We have to show that 8-1 D3§¥‘° in probability.

The following substitution will simplify the proof. Let

D
3N
2.32) ¢ 88 S
( 3N sJN
Then it suffices to prove CBN = Op(l;]!)

C
Observe that, since max |-ﬁ| = O(l-l) ]
lcigN VN8

we have
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(2.33) |cg]

> N N Hy(x)
< 0(1)| (oF,T Hy(®)) - o H&) - (57 - H(x)) o' (H(x) |aH(x)
The proof that the right hand side of (2.36) is OP(N-%) can

be found in Puri-Sen (1971), pages 401-405.
This proves Theorem 2.1.
For a different approach, as well as the derivation of some

tests for linear hypothesis based on SN , See Puri-Sen (1969).

Compuytation of VN : It is clear that the variance

contribution is from the term B{;) + 5;;) . It is easy

to check that

(v) (vy _ K y (W7o (v) (V) (V)
238 St Bam " 50 (xui ) -EA'gy (Xwi )}
where

0 TR W S T TR N g (v)
Ani (x) N j5;‘1(CNi - ch )‘[ ® (H Y (y) dFRj (y) : X, arbitrary.
X

0

Centering A;u(.\’)(x) at its expectations, we note that

N
am o o uly - E A0

where

i el e




o e T p——

S,
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(v ¢ (v) v e (W) (v)
- ey [ {1txsy) -y )}y @Y (v argY ()

—an
which yields the desired approximation (2.7).
We next give a corollary which extends these results to the
case when the scores are generated according to (1.7) (b) .
Corollary 2.2: Let

®y
function. Let §,; be the linear rank vector defined as in (1.8)

but with the scores generated according to (1.4) . Then, under
the conditions of Theorem 2.1, S g is agmgtoticallz' multinormal

~N

<

ith the same parameters My and V.

Proof: Let

*(1) * (p)
* SN SN
(2.36) ‘§N = S 9 oece .
P

Clearly, it suffices to »rove

mEN) Lol o
(2.37) Sy sN" -OP(sv) » lsysp

which then entails '§N - ~S'N + O in probability.
Again, since y is fixed, ls<vs<p , we shall drop this index.
We define
(2.38) ¢, (t) = [gt](c (i) - g, (i-1)), G, ,(0) =0, O<t<l ,
N i=1 N N N

where (@] is the greatest integer not exceeding a .

It is easy to check that
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NH (x)
(2.39) I u(n+1) ag (=) .

The proof of Corollary 2.2 will be accomplished if we prove

the following:

Lemma 2.3: Under the hypotheses of Theorem 2.1 and

Corollary 2.2, we have

(i) 1lim cpN(t) = p(t)
N+ +o

;s N_ e Jo. i i
1 | {oy(my By = oy Byo0)jacyt| = o )
Proof of Lemma 2.3: We shall only prove (ii) since the

proof of (i) can be found in pages 408-409 of Puri-Sen (1971).

By inequality (2.14), we have

NH_(x) NH_(x)
N N
i |r {°P\I(N+1 )'q’( N+1 )} d Cylx) |

i
< max |C ‘z: Jpgi e | =~ b
1<igN Ni i=1 N(N+1) N+l)
Hence it follows that %
_Ni ' i
(2.41) max | £ Juglis=) - q,(——‘)l
1cich 8 ' 4=1 N \N+1> \N+1,

- N a1
=0(1) N % igﬂ%m‘) ~ \N+ \l = A , say




M v e PP

But, 1lim A _ =0 , by Puri-Sen (1971), pages 409-411.

N
N a4+ S -S*

This immediately entails _E?;_N.* 0 in probability, which

TR

proves Corollary 2.2.

A consequence of Corollary 2.2 is that in many cases of
practical interest (such as the normal scores), asymptotic
normality holds with the same centering sequence HN , whether
the scores are given by (1.3) or (1.4) . Thus theorem 2.1
and corollary 2.2 serve to unify the results of Héjek (1968)
and Roeffding (1973), and also to some extent simplify the

results of the latter paper.

3. Remainder Terms of §N : In this section, we obtain
an estimate for the remainder in the normal approximation to S 3

Recall that we can write

(3.1) Sy~Hy = igl éNi(xni) + BN ;
where
(3.2) A (x.) = (A!(‘i) (xﬁ),..., Aé‘i’) "‘fzf))'

By = (le'”,..., Dtgp))'

o5 o sy oo . aeves |

Normalization by sv is of no consequence and was introduced

! there merely to simplify the details of the proof. We shall not
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use it here.

We shall simplify the notation somewhat and also express
it in a form so that we can use Corollary 17.2, page 165 of
Bhattacharya-Ranga Rao (1976).

We can write,

oo =
{(3.3) .SNi =N ANi(xNi) ‘ Vi = CovCQNi) .

Then,

A N
(3.4) S_=N %y o . +p_ .

Let

-1 N
(3.5) V =N .2 V. .
i=1 1

Comparing (3.5) to (2.7) and (2.8), it is clear that the

elements of V are § .
MV

it

Let, for x = s x(p)) '

& (3 (1) (1) (p)_  (p) (p)
(3.6) FN(g) P(SN My @ s X, ....SN My X ) .

We then have the following theorem:
Theorem: Let the conditions of Theorem 2.1 be satisfied.
Let in addition,

(3.7) Sup |g' ()| = g l<*+> , 1lsys<p,
Ostgl ¥ o

and V be positive definite.




Then, there exists a constant , independent of N ,

such that,

/2
P3

=X

-3
(3.8) Supp|FN(35) - Qo'v(g)\ < C(p) N *+ 4

ZER :

where

(3.9) $ (x) is the distribution function (p-variate) of

| A

a Gaussian random vector with mean O and dispersion matrix V ;

(3.10) ) = smallest eigenvalue of V ;

% E E[lTNiﬁ3 » the norm being the euclidean norm;

i=1

(3.11) Py

and AN + 0 pointwise.

Furthermore

P w N
(3.12) N!’AN - OP(\,Zl lle, 1 3\,1[121 cx‘q\i))‘])

Remark. Since AN-»O, it would be of interest to have an estimate
for the fluctuations of Ay - But in view of the generality of the
situation and the fact that we are dealing with the multivariate
set up, it is not easy to secure a purely numerical estimate.
(3.12) gives a probabilistic bound. The problem of obtaining a
sharp bound remains open.

N

Proof: Writing T =N-;’ T

, Wwe have
N i=1 Ni

(3.13) §¢ = po = Tg + D -

Let GN be the distribution function (p-variate) of SN' Then

(3.14) Fy(x) = GN(E - D) -

Hence,




(A S it

(3.15) IFN(gg) - Qo'v(g,t)l < |6ys~-Dy) - &, ,(x -~ D]

o,v ~N

g% " Byt Ry s .
We estimate the two quantities on the right hand side

separately.
First, an application of Corollary 17.2 (page 172) of

Bhattacharya-Ranga Rao (1976) yields,

3/2 -%

(3.16) |G (x - Do) - &, ,(x - D) < C(p) % - py N

o,v
uniformly in x , wherein all the quantities have already been
defined. |o'l| <+e ensures the existence of Py -

Estimating the second term is rather more involved.

However, since 3 is continuous, the convergence of the

o,v

distribution functions is uniform and hence

(3.17) sup |&, (x-D) -3  (x)| = &
semp O,v~ ~N O,v ‘

converges to zero pointwise. We only need to obtain (3.12).
Note that, by the Mean Value Theorem (in 155 , there is

and X such that

a point 5 on the Line segment joining x - BN

(3.18) (#) - 85 ,(x - D) = By L(g)

8, v 0,v

where L(i) is the differential of 60 - at ¢ .

Next, for the right hand side of (3.18), we have

' B ostvi 2
10 BN T A s T Yo

(x) |
e ¢




e

Further, for each v, 1lsys<sp , it is easy to check that

68

|—'g‘(%) | is dominated by the - marginal density .

& x

5 @ A
Hence, |—'%‘\;—| < 8”1 (2n) s .
<V v

Consequently,

%

Y™V (2m)7¥

Py

: P &

(3.19) Jayl = T 8
v=1 V

Thus, (3.12) will be established if we show that for each Vv ,

(v)

v, N (v)
(3.20) JND " = Op("cpv“ 121 ICes IV -

Again, we shall drop the index y in the rest of the proof.

Rearranging terms of D_ , we get,

N

(3.21) Dy = [{o(Fy B®)) ~ @)} ac (x)

-“
p :
- [ w0 - Bx)e (H(x) actx) .
-0
In order to simplify the proof, we shall drop the factor
N+l - I view of the fact that ¢' is bounded, the conclusion
will not be affected.

Consider cp(HN(x)) ~ @o(H(x)) . By the Mean Value Theorem,

$(H (X)) = @(H(x)) = (Ho(x) - H(x)) ¢’ (g(x))

for some guo') .




22

Hence,

(3.22) /N [ (B () - Hx)g (gex))dcy(x) |

< lo'll [ VN[E G - HE |ale]| ()

Let e¢>0 be given. Then by Puri-Sen (1971), there is a

constant C(e¢) independent of N such that with probability >1-¢
JN|H (X)) - Hx)| < cle) .

Thus in (3.22), with probability > l1-¢ ,

N
(3.23) |[yN (B (x) -HE)g' (gg(x))dCy (x)| = Cle) o'l iil\cm‘ X

The proof of

™ N
(3.24) | N (Hy(x) ~H(x))g' (H(x))dC(x)| = Cle)o'| Zy 1%y

-ao
in probability is identical.

(3.23) and (3.24) establish (3.20) and (3.19), which in turn

entail (3.12). The proof is completed.

Remark: From the expressions for suV and svz , it is

clear that ) is extremely hard to compute. Recall that \ is
the smallest eigenvalue of the dispersion matrix V . However,

if the components xéz) of the vectors X . satisfy the




condition of "weak dependence" in the sense

2
(3025) 8 = E lg .|>0 '] V=l'ooo'p i
v *ul (A1§]

M=
the classical Grischgorin theorem (cf. Dahlquist-Bjorek, (1974)),
permits us to replace )\ by much simpler expression (3.25) ,
assuming without loss of generality, ) >0 . If one is prepared

to work numerically, much better estimates for )\ can be obtained

(op.cit. Dahlquist—Bjarck).
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