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Optimal replacement policies for systems subject to randomly occurring

Abstract:

shocks are obtained. The models discussed include cumulative and maximum

damage models with emphasis on systems with random thresholds.

1. Introduction:

The problem of the optimal replacement of an item which fails by
degradation caused by cumulative damage has attracted the attention of a
number of authors. A good summary of this literature is given in Taylor i
(1975) and the references contained therein. Taylor discusses a cumulative ;
damage model where shoeks of a random size arrive according to a Poisson ]
Process. The item under attack can fail only at a shock arrival time and
the probability of surviving a shock which brings the total damage level
to x is h(x). It is more costly to replace a failed item than one which
is still working and the problem is to find an optimal replacement strategy
which balances these costs and results in a minimum long-run average cost
per unit time. The solution is given by Taylor and, in the special case
where h(x) = 1 for 0<x<K and 0 otherwise (the fixed threshold case),
Nakagawa (1976) independently determined another form of the solution using
a simpler approach but allowing the arrival process to be renewal. Feldman
(1976) extended the model to the case of a Markov Renewal shock process.

Feldman and Nakagawa approach the problem in the same spirit. Our goal

is to extend the existing results to the case of a raﬁdom threshold; the

method of attack is in the same vein as that of Feldman and Nakagawa.




2. Maximum Shock Threshold Model.

We consider a device which is subject to failure. Shocks occur to the

device according to a renewal process {Xi; iz}} with inter-renewal
distribution F. The i-th shock causes an amount of damage Wi where the
random variables {Wi; 13;} are independent with common distribution
function G. The device fails whenever an arriving shock exceeds the
level K. When the device fails it is immediately replaced by a similar
device. However we have open to us the possibility of replacing the
device before it fails. A cost C1 is incurred whenever a failed item

is replaced whereas a smaller cost 02 is incurred if a device is replaced
before failure. The policy sought is one which minimizes the long-run
expected cost per unit time over an infinite horizon. The class of
policies considered, what Feldman calls control limit policies, are

those which replace the device whenever a shock of magnitude greater

than some fixed level k occurs (k < K). If a cycle denotes the time span

between two consecutive replacements then, as is well know, the long-run

average cost per unit time is

= E[cost/eycle]/E[length of the cycle]

(a) The fixed threshold case.
In this section the threshold level K is some fixed, non-negative

number. By '"policy k" we mean the policy which replaces a working device

whenever a shock of level greater than k occurs. Let C(k) denote the total

expected cost per cycle using policy k. It is not very hard to show that

Ck) = Mc, [1-G(R)] + C,[G(K)-G(k)]} where % = E(X,).
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Then as k increases, C(k) decreases and the optimal policy is to run the
device to breakdown each time. This is clearly the intuitive solution to

the problem.

(b) Random Threshold Model.

In this section we assume that the threshold K is a random variable
with distribution function H. All of the other model assumptions are as
before (w.l.o0.g. we can assume A = 1).

Letting M(x) = I [G(x)]j we have,
i i |

C{H(K) + C, [144(K)] f: [1-6(x)dR(x) + C,[14M4(K)] f: [ G(x)-G(k)dH(x)

ck) = -
1+ fo [1-H(x)]dM(x)

To derive this we simply condition with respect to K.

Now let,

L) = BOOUE LS 4 ¢xy 57 =@ H),
H(k) H(x)

where H(x) = 1-H(x), G(x) = 1-G(x).

Lemma (2.1). L(k) <O for all k>0 and

L(0) = 0.

Proof: L(0) = 0 is obvious. We have,

f‘[1+u(x) J4H(x) f511-G(x) 1dH(x)
= 1lim fk[1+M(x)]dH(x) fb G(x)dH(x)
b

1in [14m(E,)JB(K) G(E,) [H(B)-H(K)] where 0E, <k, k)b,

£t

- 1in HK) . [1-6(E.)][H(b)-H(K)] < H(K) BX), b > k.
1-G(E,) 2

the result follows at once.
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We will now assume that all our distribution functions are absolutely con-

tinuous.

Theorem (2.2)

For the maximum shock model under the assumption of a random threshold,

the optimal policy is to replace only on failure.

Proof:

Differentiating (1) and setting the derivitive equal to zero we get,

C
2
L(k) = =
But by assumption C, >C, and by the above lemma L(k)<0. Hence C'(k)<0

L 2
for all k>0 and the optimal policy is to run the device to breakdown.

3. Cumulative Damage Model with a Random Threshold.

Again we assume that shocks arrive according to a renewal process with
inter-renewal distribution F having mean 1. The shocks are independent

random variables, Wi, which have a common distribution function G.

Let N(t) denote the number of shocks which arrive in (0,t]; the

cumulative damage process, W(t), is given by,

N(t)
w(t) = I wi’
i=1

The device fails only when W(t) exceeds a certain level K, which is assumed

t >0.

to be a random variable with distribution function H. The time to failure
is

Te = inf{t- W(t) > K}
Using policy k we have that the replacement time of a working device is

T, = inf{t: W(t) > k}.

k
Then the length of a cycle, TC is given by

TC = min(Tk,Tf).
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The cost structure is the same as in section 2 and our goal is to find a
policy k which will minimize the long-run average cost per unit time.

Now, by conditioning on K, we have that, using policy k,
E(cost/cycle) = C, + (Cl-Cz){H(k) + f:[?;(B) + flg G (B-u)dM(u)1dH(B)}

1 0 *4
where M(x) = I G(X)
* =1
and G(x) is the j-fold convolution of G with itself. We also have,
E(Tg) = [14M(k) JHG) + S5 [14M(8) JH(B).

Finally, if C(k) denotes the expected cost per cycle,

C, + (C;=C,){H() + A(Kk,0) + f‘éA(k,u)du(u)}
2) Ck) =

1+ flgﬁ(x)dM(x)
where,

A(k,u) = f: G(x-u)dH(x).
Two extreme cases are when k=0 and «. Then,

€(0) = ¢, {1-E[6(K)]} + C, E[G(K)]
c
C(@) = ——-1_
1+EM(K)
To obtain the optimal policy we introduce the function L(k) defined by,

A(k,k) [1+J‘5ﬁ(x)du(x)] - H(k) [n(k)+A(k,0)+.r'gA(k,u)du(u)

L(k) = -
(k)

Again we will assume that all distribution functione are absolutely continuous.

The next lemma describes some properties of L(k).

Lemma (3.1) L(0)=0. Under the assumption that H is Decreasing Failure
Rate or that the failure rate is bounded by some finite constant,

lim L(k) = EM(K).

k=

Proof: Clearly L(0)=0. We can write

L0 = [1+/ERGaMe0 ] AEED L [ra+AG, 0)+/5AGK, w)aM(w)].
(k)
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The second term on the right goes to 1 as k+~. Also,
Lin[1+/§EG)AMG) ] = E[144(K)],

Finally

lin 2060 & g 14y g2 SOCOBLOME
k+o H(k) k>

where h(x) is the density function corresponding to H. But

SRS ¢ £ oo e
H(x)

and, under the assumption of the lemma

limM'l

k>  H(k)

The result now follows.

Theorem (3.2)
Under the assumptions of Lemma 3.1 and the additional assumption that
L(k) is monotonically increasing then

(1) If EM(K) > CZ/CI_CZ’ there exists an optimum policy k* which

satisfies
C
2
L(k) =
@
Cy
(i1) 1If EM(K)‘i'E—:E—-then the optimal policy is to replace only after
L2
failure.

Proof: Differentiating (2) with respect to k, setting equal to O and using
Lemma 3.1 gives the desired result. We next consider an example where the
shock process is Poisson and the threshold is Exponential. Due to the lack
of memory property of the exponential we would expect the optimal policy

in this case to replace only on failure; this is shown to be so.
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Example:

Suppose now that,

0 x <0
H(x) =

l-e-'>‘x x>0

0 x<0
G(x) = !

17 E 250

Then we can evaluate A(k,u) explicitly

Al = o) ¢ () gk

and we then get,

L(k) =0 k>0.
So, we see immeidately that C(k) is decreasing for all k and here the
optimal policy is to replace only on failure. We note in conclusion that
Nakagawa's results can be obtained by letting H be degenerate at some level

K.
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