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CHAPTER 7

SPECIAL TYPES 01’ ACCEPTORS

Chapters 3-6 dealt ~ ith Turing and cellular acceptors

for strings and arrays. This chapter discusses three

specialized acceptor models:

Pebble acceptors, which cannot rewrite their input,

but can make marks on it, with the restriction that

only a bounded number of these marks can exist at

any given time.

,b1 Pushdown acceptors, which cannot rewrite their input,

but can store a string of symbols in such a way that

only the last syinboi in the string can be read (so

that to retrieve a given symbol from - the string ,

all the symbols beyond it must first be discarded).

Parallel/sequential acceptors , which are one—

dimensional cellular acceptors that read one row

of a rectangular input array at a time, and move

up and down to scan the array .
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1. Pebble acceptors

In Chapters 3 and 4 we discussed finite-state string

and array acceptors, which can read and move around on their

inputs, but cannot rewrite any input symbols. Their inability

to write makes these acceptors quite weak. In this section

we consider a class of acceptors, called “pebble acceptors”,

which have limited writing ability. Such an acceptor, A ,

can make marks on its input, but only a bounded number of

these marks can exist at any given time. We can think of

the marks as “pebbles” which A puts down in specified

positions. If A wants to make a mark mj that has already

been made, it must first find and erase the existing instance

of m~ before it can create a new instance. (Informally: if

A has already put down pebble m1, and wants to put it down

elsewhere, A must first go to the position of m1 and “pick

it up”.)

Formally, we can define a k-pebble acceptor A~~ as a

tape-bounded acceptor whose state set Q and vocabulary V

are of the special forms

Q = Q1 x{O,l}k

V = (V’ x{O ,l}k) u{*}

and whose transition function 6 satisfies the following

restrictions: If state (q1Dct11,...,cz1~) and symbol

~~~~~~~~~~~~~~ 
give rise to state (q2D ct21l...,a2~) and

symbol (x2,821,...,$2k), where each Ct and 8 is 0 or 1, then 

~~---~~~— - - •-~~~~~~~~~~~~~~~~~~~~~~~~~



x2 = x1, and for each i, 1~i~k, only the following combin-

ations of (a11~B11~a2~ .82~) are possible: (0,0,0,0), +

(0,1,0,1), (0,1,1,0), (1,0,1,0), and (1,0,0,1). These

conditions can be interpreted as follows: the a’s indicate

which pebbles are currently being “carried” by A (k), while

the B’s indicate which of them have been put down at the

position of the current symbol (l’s indicate the presence

of pebbles, and 0’s indicate their absence). The five

permissible combinations have the following interpretations:

~~~~~~~~~~~~~~~~ Meaning

(0,0,0,0) A (k) was not carrying the ith pebble,

and it was not at the current position;

hence after the transition, A~~ cannot

have picked it up or put it down.

(0,1,0,1) The ith pebble was at the current posi-

tion, but A~~ did not pick it up.

(0,1,1,0) The ith pebble was at the current posi-

tion, and A~~ did pick it up.

(1,0,1,0) A~~ was carrying the ith pebble, and

did not put it down.

(1,0,0,1) A (k) was carrying the ith pebble, and

did put it down.

We assume that the initial state is (q0 1,...,l), meaning

that is initially carrying all the pebbles. Readily,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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-~ the above conditions guarantee that, in any given configura—

- tion, for each i, either = 1 or there exists exactly one

-
~ position at which = 1. The requirement that x2 =

means that A~~ cannot rewrite symbols except in the sense

of picking up and putting down pebbles.

H Pebble acceptors on strings and arrays have been studied

by Blum et al. [1-2], Mylopoulos [3], and Shah [4]; the

material in this section is based on these references.

‘r i  - •

-

~

— - --—-_-~~~- -—----— _ _



- - 

- 
- - - - - -~- -~~~~ ~~~~~ ~~~-- -~~~~~~~~~ --~~-- — - — ~~~~~~~ -

1.1 Pebble string acceptors

A one-dimensional acceptor having a single pebble (k=l)

is no stronger than a finite-state acceptor. This can be

proved (see El] , T~ieorem 7) by an argument analogous, in

part, to that used to show that in one dimension, one-way

acceptors are as strong as two-way acceptors (see Section

3.3 of Chapter 3). The details will not be given here.

A two—pebble string acceptor , on the other hand, is

stronger than an FSA. For example, a two-pebble acceptor

can accept the set of strings {am bm lm= l,2,...} by

operating as follows: A~
2
~ initially puts its pebb1’~s at

opposite ends of its input string a, and verifies that the

symbols at these ends are a and b, respectively . A~
2
~ then

moves repeatedly back and forth , and each time it reaches

a pebble, it “pushes ” that pebble one position closer to

the center of a (i.e., it picks up the pebble , moves one

position closer , and puts the pebble down again), also

verifying that the symbols in these positions are still a

and b, respectively. If these conditions remain true until

the pebbles reach adjacent positions (just on opposite sides

of the center of a), then a must be of the desired form, and
L 

• (2)A can accept it.

For any k , it can be shown that there exists an 2, > k

such that 2.—pebble acceptors are strictly stronger than

k-pebble acceptors (see, e.g., [1] and [5]).
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It should be mentioned that, as an alternative to

pebble acceptors, one can consider “multihead” acceptors

which have a bounded number of independently movable, read—

only heads. Readily, a k—pebble acceptor can simulate a

k-head acceptor, by using the pebbles to mark the heads’

positions , and internally representing their states; while

a (k+l)-head acceptor can simulate a k-pebble acceptor by

allowing all but one of its heads to behave like passive

pebbles. Multihead acceptors will not be treated further

here; see, e.g., [5—6]. 

~~~~~~~~~~~~~ --- ~~~~~~ -•-~~--- ~~~~~~~~~~~~~~~~~~~ --- ~~~~~~~~~~~ ~~~~~~-~~~-
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1.2 Pebble rectangular-array acceptors

In two dimensions , a one-pebble acceptor is stronger

than an FSA. For example, a deterministic , tape-bounded

one—pebble PSA A~
1
~ can determine whether the center symbol

in a square, odd-side-length array ~ of 0 ’ s and l’s is 0 or

1, which cannot be done without the pebble (Theorem 3.4 of

Chapter 4). To do this, A~
1
~ starts at the upper left

corner of E and moves down the main diagonal (rightward and

downward). At each point, it puts down its pebble, memorizes

the symbol at that position, and moves rightward and upward.

If it reaches the upper right corner , and the memorized

symbol is 1, it accepts. If it does not reach the upper

right corner , it moves back (leftward and downward) to the

main diagonal (which it can detect by the presence of the

pebble), and resumes moving down the main diagonal.

Theorem 1.1. A deterministic , tape-bounded one-pebble acceptor

can determine whether or not the set of l’s in a rectanqular

array E of 0’s and l’s is connected. ‘

Proof (see (1], Theorem 4): The acceptor A first checks

whether or not the rows of ~ that contain l’s form a single

run of consecutive rows. This does not require the use of

a pebble; A need only scan E row by row, and determine

whether there exists a run of rows that do contain l’s,

followed by a run of rows that do not, followed by a row that

does. If so, the l’s in E are evidently disconnected . If

the rows with l’s do form a single run, A proceeds to the 

—~~~~~ -~~~~~- - --—~~~.-~ ~~-—— —~~~~~ - . - -_ - - - _ -  - . - - -
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next step, which is to check whether the l’s in each row

are all connected.

To check this for a given row , A scans the row from

left to right. In general the row consists of runs of l’s

separated by runs of 0 ’s. It evidently suffices to check

that any two consecutive runs of l’s are connected. Let

P and Q be the last point of a run and the first point of

the next run, respectively . If P and Q belong to the same

connected component C of lt s, they must lie on the same

border of C, since the same component of 0’s is adjacent

to both of them. Thus when A reaches P, it puts down the

pebble and follows the border B defined by P and the 0

immediately succeeding it. At each move around B, if A is

at a point Q ’ that has 0’ s on its left, it scans leftward

until it hits a 1 (or reaches the border of E). If this 1

has the pebble on it, then Q ’ is Q, so that Q is connected

to P, and A can pick up the pebble and go on to check the

next run end pair on that row. Otherwise , A returns to Q’

and resumes border following. If A succeeds in following

the border completely around until it reaches the pebble at

P again, it knows that Q is not connected to P, so that the

l’s in E are not connected .

Suppose that A has found that the rows containing l’s

form a single run, and that the l’s in each row are all

connected. It then remains only to show that the l’s in

each two consecutive rows r1,r2 are connected to each other.
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If a run of l’s in r1 is adjacent to a run of l’s in r2,
this is immediate ; hence we may assume that these runs are

interleaved. In particular , there exists a run P1 of l’s

in r1, followed (or preceded) by a run of 0 ’s which is

adjacent to a run p
2 of l’s in r2. Let P be the last point

: of p1 and Q the f i rst point of p2; then just as in the pre-

ceding paragraph, if P and Q are connected , they must lie

on the same border. A can thus put the pebble at P and

follow this border; at each point Q’ that has 0’s on its

lef t, it scans leftward through that run of 0 ’s and checks

whether any of them has the pebble above it. If so, Q ’ is

Q, and A has verified that the l’s in r1 are connected to

those in r2. If not, A returns to Q’ and resumes border

following. If it gets back to P without finding Q, it h~~

verified that the l’s in r1 are not connected to those in

r2, so that the l’s in ~ are not connected . If A succeeds

in verifying that the l’s in each pair of consecutive rows

are connected, it has confirmed that all the l’s in ~ are

connected, and can accept E.//

It is not known whether an FSA can determine connected-

ness of the l’s in its input array.

- - Corollary 1.2. A one-pebble acceptor can determine whether

or not the set of l’s in E is simply-connected.

Proof: A checks that the l’s are connected, and analogously

checks whether the 0’s are connected. (If the border of E

L~A
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does not Consist entirely of U’s, the latter check is carried

out as if there were an additional row or column of 0 ’s at

each edge of Z.) If the 0’s are connected, the l’s have no

holes.!!

It is shown in [1] (Theorem 5) that a one—pebble acceptor

cannot determine whether or not two simply—connected corn—

ponents of l’s C1 and C2 are congruent (i.e., differ only by

a translation). On the other hand, a two—pebble acceptor

can determine congruence even for two arbitrary components

of l’s ([1], Theorem 6). [The proofs of these results will

not be given here.] Hence two-pebble acceptors on rectangular

arrays are strictly stronger than one-pebble acceptors. This

also follows immediately from the one-dimensional result, if

we consider one—row rectangular arrays. 

~~~~~~~~~~ -~~~~~ _~~~-- -  --~~ --~~~~~~~- - - ----- ~~~~~- ---- - - - - - -
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1.3 Pebble connected-array acceptors

We saw in Section 4.2 of Chapter 4 that no FSA, A , can

accept just those connected input arrays that fail to contain

a given symbol; or, equivalently,  that no such A can accept

its input array Z only after A has visited all of E. Our

principal goal in this section is to show that an FSA A~
4
~

with four pebbles can do these things. All acceptors in

this section are deterministic and tape—bounded .

Proposition 1.3. A three-pebble acceptor A~
3
~ can f ind the

outer border of its input array ~~~.

Proof: A~
3
~ moves upward whenever possible. If it hits a

#,  say just above P, it drops the first pebble (a1) at P

and moves along the border B defined by P and the * above

it, using a2 to mark its current position , and moving ct3

back and forth along B to keep count of its net number n

of upward or downward moves from P. If n > 0, and there is

a non-# above ~~~~~ it picks up the pebbles and moves upward

again. If this never happens until A~
3
~ returns to P, there

is no point of B higher up than P. This implies that P is

on the outer border , since if P were a hole border point

with #s above it, there would have to exist a point higher

than P on the same hole border .!!

(This is essentially the same as the first part of the

proof of Theorem 4.5 in Chapter 4. Compare the proof in

[4 ], Lemma 3.1.1.)
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Theorem 1.4 ([4], Theorem 6). A three—pebble acceptor A~
3
~

can f ind the “upper left corner ” (=leftmost _f the upper-

most points) of its input array E.

Proof: A~
3
~ first f inds the outer border of E as in Proposi-

tion 1.3. In the process of doing this, it finds an upper-

most point of this border (whenever n > 0, take the current

position as the new P). This point belongs to a run of

uppermost point of E; let Q be the leftmost point of this

run. A~
3
~ now marks Q with a1 and follows the border again,

starting out lef tward, and using a2 to mark its current

position and a~ to keep count of its net number n of down-

ward moves. Let Q ’ be the position of A~
3
~ the first time

that n=0. If Q’=Q, this is the only uppermost point of E ,

and we are done. Otherwise , if Q is not the upper left

corner of E , it is easily seen that Q ’ must belong to a

run of uppermost points of E that lies to the left of Q.

To check this, A~
3
~ marks Q ’ with a2, returns to Q, picking

up a
3 and a1, and follows the border again from Q to Q ’ ,

using the relative positions of a1 and a3 to determine its

net number m of leftward and rightward moves. [This is •

done as follows: Each time a1 is moved one step along the

border, a2 is moved

two steps , if a1 made a rightward move

one step, if a1 made neither a rightward nor a leftware

move

no steps , if a1 made a leftward move.
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Thus the number of steps that a3 is ahead of a1 along the

- 

- border is the number m of rightward moves made by 
~l.] When

a1 reaches Q’ , if m < 0, Q’ is to the left of Q. ~~~~ can

then pick up the pebbles , move to the left end of the run

of uppermost points containing Q ’ , take ~ .: - is roint as the

new Q, and repeat the process. Eventually it must turn out

that Q’ is not to the left of Q, which means that Q was the

upper left corner. In that case A~
3
~ follows the border

back from Q’, using the pebbles to keep track of its net

number n of downward moves; the first time that n=0,

has returned to Q, which is the upper left corner. !!

(This proof uses fewer marks than the last part of the

proof of Theorem 4.5 in Chapter 4.)

Theorem 1.5 ([2]; compare [4], , Theorem 7): A four—pebble

acceptor A~
4
~ can systematically scan its input array E ,

row by row.

Proof: We can assume by Theorem 1.4 that A~
4
~ starts at a

point on the uppermost row of E. We shall show below that

if A~
4
~ is on any given row r of E it can visit all the

points of I on r. After having done so, A~
4
~ can find a

point of I on r that has a point of I below it, and thus
- • move to the row below r and repeat the process ; or A~

4
~ can

determine that no such point on r exists , in which case r

is the lowest row of I and the scan is complete.

~Je shall now show that, starting at any P ~ I lir , A~
4
~ can

visit the part of I h r  to the right of P (say). To do this, 

-
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A~
4
~ moves rightward on r until it hits a #, say just to

the right of Q. It then follows the border B defined by

Q and this #, using pebble a1 to mark its current position ;

- - the positions of pebbles a2 and a3 relative to a1 to keep

count of its net horizontal and vertical displacements m

and n relative to Q; and the position of pebble a4 relative

to a1 to keep track of the minimum positive value of m at

those steps when n=0. (Q itself is not marked.)

The shifting of a2 and a3 along B is as described in

the proof of Theorem 1.4. The first time a3 reaches the

same point of B as a1 (i.e., n=0), if a2 is also at that

point (m=0), A~
4
~ has returned to Q, which must thus be the

sole point of r, so that the scan of r is complete. If

m < 0, A~
4
~ is to the left of Q, and we continue to move a1

around b. If m > 0 , we drop a4 at the position of a2, since

this is the minimum positive value of m so far found, and

during border following we maintain a4 at a constant dis-

tance from a1. At subsequent times when n=0,

a) If m=O, we are back at Q, so that a4’s distance

from a1 is the desired minimum positive m. We then 
—

follow B again, using a1, a2 and a3 as before , but

now keeping a4 at a fixed distance from a1. When

we reach the point Q’ at which n=0 and a2 is at the

same position as a4 , we know that we are at the

first point of I hr to the right of Q, and we can

now resume the rightward scan.

~
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: 1
b) If m < 0 , we continue following B.

c) If m > 0 , and a2 is farther from a1 than a4 is , we
t

continue following B, s ince the current m is not

the m inimum.

d) If m > 0 , and a4 is farther from a1 than a2 is , we

move a~ to the current position of a2,  since its

old position was not the minimum; we then resume

following B.

It is evident that this process is guaranteed to find the

first point of 1 hr to the right of Q. Thus by using this

process repeatedly , we can scan all of I flr to the right of

P. If a4 is never dropped , there are no points of 1 hr to

the right of Q, so that the rightward scan of 1 hr is

complete.!!

Corollary 1.6. There exists a four-pebble acceptor that

accepts I if f. 1 does not contain (or contains) a specified

symbol.!!

If I is known to be simply—connected , an FSA can scan

I by operating as follows : A moves until it reaches a border

B, which must be the outer border of I; it then follows B,

and at each point P , moves rightward (if possible) until it

hits a #, then back again until it hits a * (which must put

it at P), then resumes following B. Since from every point

of I, if we move left through non-#s, we must hit B, this

process must visit every point of I. Note that A cannot

LA - _ __  
_ _ _ _ _ _ _ _  _ _ _ _
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know when the scan is complete, since it cannot know when

it has finished following B. However, if we give A one

pebble a, it can use a to mark its starting point on B, and

accept when it reaches a again ([4), Theorem 1). These

remarks imply

Proposition 1.7. If I is simply-connected , there exists an

FSA that accepts I if f. it contains a specified symbol. —

Proposition 1.8. If I is simply-connected , there exists a

one—pebble acceptor that accepts I if f. it fails to contain

a specified symbol.

Theorem 1.9 ((4], Theorem 3). There exists a one—pebble

acceptor that accepts I if f. it is not simply—connected .

Proof: It is easily seen that I is multiply connected if f.,

on each border B of I, there exists at least one point P,

say at the end of a horizontal run p of non-#s, such that

the other end Q of p is on a border of I other than B.

Based on this fact, A (U operates as follows: It moves (say)

rightward until it hits a border B of I, say at P, and puts

down a at P. A~
1
~ now moves to the left end,P’ , of the

horizontal run p of non-#s containing P; this P’ is on some

border B’ of I (possibly the same as B). A(U follows B’ ; •
.

at each step:

a) If AW f inds a , then P and P’ are on the same

border (i.e., B=B ’). In this case no conclusion

can be reached as yet about the simple-connectedness 

-—- ----—S - —-~~--- -—---—— - -
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of I. A~
1
~ picks up a, moves along B, and repeats

the entire process. [Note that if I is simply-

connected, it will always be the case that B B’ , so

that A will repeat the process indefinitely with-

out ever accepting.] If AW is at a right end

of a run of non-#s and does not find a, it continues

following B’ .

b) If A~
1
~ is at the left end of a run of non—*s, it

moves to the right end of the run. If it does not

find a there , it moves back to the left end and

continues following B’. If it finds a there, it

has followed B’ completely around and returned to

P ’ . If this happens, A~
1
~ cannot have found a

while following B’ (i.e., case (a) could not have

occurred), so B’ must be different from B. Thus

now knows that I is not simply-connected , and

can accept.

By the assertion in the first sentence of the proof ,

accepts if f. I is not simply connected.!!

Theorem 1.10 ([4], Theorem 4). There exists a two-pebble

acceptor A~
2
~ that accepts I if f. it is simply-connected .

Proof: A~
2
~ operates as in the proof of Theorem 1.9, except

that it marks its st~rting point P on B with its other pebble

B. If case (b) never occurs, A~
2
~ will follow B completely

around, verifying at each stage (where applicable) that B’

- - -~~~~~~~- - - --~~~~~- -- - --—-—- --- -- —-~~—— —.-~~~~ - —— — -_ -~~~~--
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is the same as B, until it finds B again. When this happens,

knows that I is simply-connected, and can accept. If

case (b) occurs , A~
2
~ halts in a non—accepting state.!!

By Theorem 4.3 of Chapter 4, there is no FSA that

accepts just those l’s that are not simply-connected . Indeed,

such an FSA would accept , in particular , all the hollow

rectangles ; but as we have seen, any (tape-bounded) FSA that

accepts these rectangles also accepts some sufficiently

large rectangular spiral , which is simply-connected .

_ _ _ _ _ _ _ _ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~
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2. Pushdown acceptors

One—dimensional pushdown acceptors (PDA ’s) have been

widely studied because of their well-known relationship to

context-free grammars ([7], Chapter 5 and 12). Two-dimensional

PDA ’s have not been widely studied ; our main result about

them is taken from [8] (Theorem 7.1).

A pushdown acceptor can be regarded as an “FSA” A with

an infini te state set of the form Q = Q ’ X U* , where U is a

finite set called the stack vocabulary, and U~ denotes the

set of all strings (including the null string) composed of

symbols in U. The transition function ~ of A must sati s fy

the following conditions: if (q1,x1.. ~
Xm) gives rise to

(q2,y1_ 
~
‘n~ 

under ~, where q1, q2 are in Q ’ and x1.. •Xm~

~
‘l~~ 

47n are in tJ~ , then one of (a-c) must hold :

a) n=m+l and Yl•••Yn...l =X l•••Xm • In this case we say

that A has pushed symbol y~ onto the top of its

stack.

b) n=m and Yl•~~•Yn
=X l~~••Xm • In this case the stack

is unaffected by the transition.

c) n=m-l and y1. ••Yn =X l•••Xm_l• In this case A is

said to have popped symbol X
m 

from the top of its

stack .

F Moreover , q2 (and y~ , in case (a)), and the move made by A ,

are allowed to depend only on q1, Xm (the topmost stack

symbol), and the current input symbol (as well as on A ’ s

~
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previous move) ; they cannot depend on (A can

also tell whether its stack is empty.) In other words , in

• making transitions, A has no access to the information con—

tam ed below the top of its stack. (In the state (q1~x1...x~)~

is called the internal state of A , and Xl • • • X m constitutes

A’ s stack contents.] In all of the above, A can be either . -

one-way or two-way.

_ _ _  ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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2.1 String PDA ’s

To illus trate the operation of PDA ’s in one dimension ,

we give a few simple examples of pushdown languages:

1) The set of strings {aT%m lm= l,2,.. .} is accepted by a

one-way deterministic PDA A that operates as follows:

Starting. at the left end of its input string a, A

moves rightward. When A reads an “a” , it pushes a

symbol u onto the top of its stack , so that af ter

reading k a ’s, its stack contains the string uk. When

A reads a “b” , it pops a u from the top of its stack.

Unless A reads a succession of a ’s followed by a

succession of b ’s, it halts in a non—accepting state.

If it reaches the right end of a without halting , and

its stack has just then become empty , it knows that

the number of b’s is equal to the number of a ’s, and

accepts a. This example shows that one-way deterministic

PDA ’s are strictly stronger than FSA ’s.

2) The set of symmetric strings (“palindromes”)

where w is any string on (a ,b } (say), and denotes

the reversal of t , is accepted by a one-way nondetermin—

istic PDA A that operates as follows : Starting at the

left end of a , A moves rightward ; when it reads an a

or b, it pushes an a or b on top of its stack. At some

point, nondeterministically chosen , A stops pushing

symbols onto its stack . Instead , at each rightward

L_ — -.—--- ~~~~~~~~~~~~~~~~~~~~~~~~ 
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move, it pops the symbol from the top of its stack and

compares it with the symbol of  a in its current position.

If they differ , A halts in a non-accepting state. If

A reaches the right end of a without halting, and its

stack has just then become empty, we know that the point

at which it stopped pushing and started popping was the

midpoint of a, and that a is symmetric . It can be shown

( [ 7 ] ,  p. 187 , Problem 12.6) that this set of strings is

not accepted by any one-way deterministic PDA; hence

for one—way PDA ’s , nondeterministic are strictly stronger

than deterministic . It is well—known ([7], pp. 74-78)

that the one-way nondeterministic PDA ’s accept exactly

the context-free languages (see Section 1.2 of Chapter 8 ) .

3) Two-way deterministic PDA ’s can accept languages that

are not context—free , and so are stronger than one—way

nondeterministic PDA ’s. For example , consider the set

of strings {a%mcm lm= 1,2,...}, which is not context-free

( [ 7 ] ,  p. 66 , Problem 4 .15) .  To accept this set , A f i rs t

verifies that the numbers of a ’s and b ’ s are equal, as

in (1) ; it then moves back to the beginning of the b’s,

and verifies in the same way that the numbers of b ’ s

and c’s are equal.

A two-way PDA can f ind the midpoint of its input

string a , e .g . ,  by moving rightward from the left  end

of a and pushing u ’ s onto its stack at every second

move , then moving leftward and popping u ’s from the

_ _
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stack at every move ; when the stack is empty , the PDA

is at the midpoint of a. As an application of this ,

we show how a two-way PDA , A , can accept the set of

repeated strings a=w~i , where w is any string of a ’s and

b’ s (say). A first finds the midpoint of a, then moves

leftward . pushing the symbols that it reads onto its

stack ; when it reaches the left end , its stack contains

the first half of a, with the first symbol on top. A

then finds the midpoint again and moves rightward ,

popping the a’s and b’s from its stack and comparing

them with the succession of symbols in the right half

of a. If a difference is found at any point, A halts

and does not accept; if A reaches the right end of a

without halting , it accepts. An analogous construction

can be used by a two—way deterministic PDA to recognize

palindromes.

V
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2 .2  Array PDA’ s

The ability of PDA ’s to find midpoints , check symmetry

and periodicity, etc. can be used in two dimensions to define

PDA acceptors for a variety of rectangular array languages;

the details are straightforward. Our main result in this

section deals with deterministic PDA ’s on simply-connected

arrays. [Array PDA ’s will always be assumed to be “4-way” ,

i.e., able to move in any direction.] Specifically , we shall

prove 
-

Theorem 2.1. There exists a PDA that accepts any simply-

connected input array I after it has scanned all of I.

Corollary 2.2 .  If 1 is simply-connected , there exists a PDA

that accepts I if f. it fails to contain a specified symbol.

(Compare Propositions 1.7-8.)

The proof of Theorem 2.1 is by induction on the number of

points in I; it makes use of the fact that any simply-

connected I contains simple points (see Proposition 5.4 of

Chapter 2), and that the operation of the PDA remains valid

when a simple point is added or deleted. The details of

the proof will not be given here; they can be found in (8].

In the remainder of this section we present the definition 
. -

of the desired PDA, and illustrate its operation by example.

A has six stack symbols , d , e , u , v , 2. , and r , which

are interpreted as follows:

_____________
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Symbol Interpretation

d downward concavity detected while scan-

ning a run of non—#s

- 
— 

e downward concavity detected while

following the border of I

u - upward concavity detected while scan-

ning a run of non—#s

v upward concavity detected while

following the border of I

2. lef t end of a run visited

r right end of a run visited

A operates by following the border of I counterclock-

wise , starting at a left run end with an initially empty

stack. Suppose A is at the left end of run p. It first

scans the points of p from left to right and examines their

upper neighbors. Every change of upper neighbors from non—#

to # to non-# indicates that an upward concavity has been

detected . Each time this happens , if the top symbol on A’s

stack is v, A pops the v; otherwise , A pushes a u. A then

returns to the left and of p, and if there is an r on top

of its stack it pops the r; otherwise , it pushes an 2..

Next , A scans p from le f t  to right again , examining lower

neighbors. For each change from non-# to * to non-#, it

pops an e from the top of its stack , or if there is none , it

pushes a d. A then resumes following the border of I. 

~~~-- —-—•~~~~~~---~~~~~~~~~ ~~ --~~~ - -—~~~~~~ -~~~~~~
-- -_ - ----- ~~—- - -- --~~~- - — -— ---~~~~~ _ - - -~~~--——-
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Whenever it reaches the right end of a run of non—*s , it

pops an 2. from the top of its stack , or if there is none, it

pushes an r. Whenever it visits an upward concavity (moving

downward from a left run end , then back upward to a right

run end), it pops a u, or if there is none, pushes a v; and

whenever it visits a downward concavity (moving upward from

a right run end , then back downward to a left  run end) , it

pops a d , or if there is none , pushes an e.

It can be shown that A’ s stack becomes empty again if f .

I is simply—connected and A has returned to its starting

point. On the other hand , if I is not simply-connected, the

stack does not become empty when the border has been completely

followed. These situations are illustrated by the following

simple examples :

Example 1. Let I be l-’XXXX4- 6
2+X X+5
3÷XXXX~-4

Point(s) Current stack Event
1 empty .2.
1 £ d
2 2.d 2.
3 2.d2. u
3 £d&u £
4 2.d2.uR, r
5 2.d9.u r
6 2.d9,ur r
1 9..d2.urr 2.

In this case the stack is not empty when A returns to point 1.

As A follows the border repeatedly , the string in the stack

continues to grow and A never accepts .

_____________________ __________
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Example 2. Let 1 be l-’-xx÷20
8-~XXXX XXX~-7 2÷xx÷l9
9÷Xi-lO ll+Xi-6 5+X-’-4 3~ XX~-l8

1 2-’XXXXXXXXXXXXXXX÷l 7
l3÷XX~-l4 l5÷XX~l6

The following table indicates the events that occur

at successive points of the border of I (starting from poin..

1), or between pairs of border points.

Point(s) Current stack Event

1 empty 2,
2 £ 2.
3 2.9. 2,

(3,4) 2, 9.2. v
4 2.2.9.v r
5 2.2.9.vr 2.

(5,6) £R.9.v V
6 2.9.2.vv r
7 2. 9.9.vvr r
8 2.2,2.vvrr 9..
8 2.9..2.vvr d
9 2.2.9..vvrd 2.
10 9.9.9.vvrd9. r

(10,11) £2.2.vvrd e
11 2..2..2.vvr 9.
12 2..9. 2.vv uu
12 9.9.2.. 2.
12 9.2.2.2. d
13 2 .2 .2 . .Zd £
14 £2.2. .2..d9.. r

(14,15) £2.2-2.d e
15 2.2.2.2. 9,
16 2.2 .2 .9 .2 .  r
17 2.9.9.2. r
18 9.9 _9.. r
19 2.2. r
20 9.. r
1 empty 2.

A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -...-- -- -~~ --- - -— - -~~~~~~~~~- -—--~~-•- - - -- -•--- --~~ --— -~~-.. 
-
~~~~~~~
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3. Parallel—sequential acceptors

This section describes a special type of rectangular

array acceptor that represents a compromise between tape—

bounded (sequential) and bounded cellular (parallel)

acceptors. The former require large amounts of time (order

(array area)) for acceptance , while the latter require large

amounts of hardware (order (array area) cells). The proposed

“parallel !sequential” acceptor is a one—dimensional cellular

acceptor that reads one row of its rectangular input array

at a time , and moves up and down to scan the array. It thus

uses a greatly reduced amount of hardware (order (array

width) cells),but is still able to perform some tasks quickly

(in order (array diamater) time).

Acceptors of this type were first introduced in [9];

however , they violated several of the finiteness restrictions

that are usually imposed on acceptors. In particular , each

cell accepted inputs from all of the others , rather than

from a neighborhood of bounded size. Moreover , acceptance

was defined using a counter that summed the cell outputs on

each row , and that could count modulo M, where M could grow

with the input size. A more conventional definition of this

type of acceptor was used in [10], on which most of the

material in this section is based.

Formally , a parallel!sequential acceptor (for brevity:

PSA) is a 9—tuple A= (Q,qØ,Q~ ,#,V,#~~,#~~,6,~1), where
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Q is a finite , nonempty set of states

q0tQ is the initial state

QA
S_Q is the set of accepting states

#EQ is the blank state

V is a f inite , nonempty set of symbols called the
: tape vocabulary

.- 
and #b are blank symbols in V

- 
- -

.- 6: Q X Q X Q X V -+- 2 ’ is the state transition function

U: QXV -~ 2~~~~’°’~~ is the move function

The opera tion of A on a rectangular array I can be described

as follows : A consists of a string of cells A11...1 A~ whose

length is equal to the width of I, together with two special

“cells ” A0 and An+l that are regarded as permanently in the

* state. I has a row of #~~‘s just above its top row and

a row of #b ’s just below its bottom row. Initially , A is

on the top row of I with every cell in state q0. At any

given step, each cell A
~ 

reads the symbol v in its position,

senses the states q1,q2 of its neighbors A~+1, 
and can go

into any new state q ’ and write any new symbol v ’ such that

- 
.
. (q’,v’) ~ ô(q,q1,q21 v), where q was the current state of A1.

The move function depends only on the (new) state of and

symbol read by the distinguished cell A1 (which is the only

cell having a * on its left): 0 € ~i means that A can stay

where it is; 1 € ~.i means that A can move down; -l € U means

it can move up. It is required that U (q~#~ )=l and

L 
~~- -~~~~~~~~~~~ - - - - — - - - -  “.~~~- - —~~- ----~~—- ~~~~~~
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for all q; in other words , A , bounces downward from and

upward from #b. (It is understood that and tb can never

be rewritten: (q’,v’) E S  (q~q1,q2~ #~ or b~ 
implies V = f ~~ or b’

respectively.) If A1 ever enters a state in we say that

A has accepted 1. [A formal description of the operation

of A on I can be given by introducing the concept of a con—

figuration ; the details will not be given here.] The set of

arrays accepted by A is called the language of A , and is

denoted by L(A).

To illustrate acceptance of an array by a PSA, consider

the set of arrays that contain a specific symbol x. An A

that accepts this set is defined as follows: A starts on

the top row of I and moves downward. If any cell A~ sees

an x, it goes into state g~~€Q~ . If any cell has its right

neighbor in state if goes into state 
~~~~~~ 

Evidently, if

1 contains an x (and only then), cell A1 goes into state

after at most h+w time steps, where h and w are the height

and width of I (h steps are needed for A to scan I from top

to bottom, and at most w steps for the 
~~ 

signal to reach A1).

Theorem 3.1. The set of languages accepted by PSA’s is the

same as that accepted by BCA ’s.

Proof: A BCA, C, can simulate a PSA , A , as follows: Initi-

ally, the cells of C are in the array of states I. At the

first step, the top row of cells go into the states (q0,v1), H

where the vi’s were their initial states. The top row then 

~~~~~~~~~~~~~~~~~~~~~~ ---~~~~~~~~~~~ ~~~~~ 
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simulates the first transition of A; each cell goes into a

state of the form (q,v,0). If this transition causes A to

move , the leftmost cell of the row initiates a synchroniza-

tion process (see Section 4.1 of Chapter 3) which causes

all the cells to s imultaneously change the third terms of

their states to ±1 (+ for a downward move, -l for an upward).

At the next step, each such cell goes into state v, while

the cell below it (for +1, or above it for -1) goes into

state (q,u) (where u was its previous state). The next

transition of A can now be simulated. If the leftmost cell

of the “active” row (having pairs or triples as states) has

first term in an acceptance signal is sent up the left

column to the upper left cell of C, which then accepts.

Note that this s imulation requires on the order of w times

real time (where w is the width of I), since 0(w) steps are

required for the synchronizations between simulations of

transitions of A. [The simulation can also be done in 0(w)

times real time by a TBA , using I to record the states of

A’ s cells.]

Conversely , a PSA, A , can simulate a SCA, C, by recording

the states of C ’s cells on I. To simulate a transition of C,

A scans I from top to bottom. On each row, A remembers the

states recorded on the two previous rows, computes the new

states of the cells on the row above (compare the proof of

Theorem 4.5 in Chapter 3), and records them on that row.

(The next transition is simulated using a- scan from bottom

_ _ _ _ _ _  ~~~~~~ -
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• to top, which shifts the recorded new states back to their

proper positions.] When computing the new state of the

upper left cell of C, if A1 finds that C has accepted, it

accepts.!! Note that in Theorem 3.1, if A is deterministic,

so is C, and vice versa.

In the remainder of this section we consider two re-

strictions on PSA ’s: not allowing them to rewrite the symbols

in I, and not allowing them to move upward . We use the pre—

fixes D, N, and 0 to denote “deterministic ” , “non—writing ” ,

and “one—way” PSA’s, respectively. The set of languages

accepted by (D) (N) (O)P SA’ s will be denoted by L CD) (N) (o)Ps~
Thus Theorem 3.1 can be restated as: L (D)p5 L (D)BC

We first show that non-writing PSA ’s are strictly

stronger than FSA ’s, but strictly weaker than BCS’s.

Theorem 3.2. L (D)FS 
c L (D)NpS ~

Proof: An NPSA, A , can simulate an FSA by having one of its

cells , in a distinguished state , designate the position and

state of the FSA. When the FSA moves right or left, the

distinguished state is passed to the right or left by A;

when the FSA moves up or down, A moves up or down (note that

the special cell must send a signal to A1 in order for A to

do this). When the FSA accepts, the special cell sends a

signal to A, which accepts. Thus NPSA ’s can accept all the - -

FSA languages. Conversely , on a one-row array, an NPSA can

evidently simulate a one-dimensional BCA, and so can accept 

——~~~~~~—-— ~~-- - -
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non-FS languages; thus FSA ’s cannot accept all the NPSA

• languages. These results remain valid if the acceptors in

question are assumed to be deterministic.

A BCA can simulate an NPSA , as in the first part of the

proof of Theorem 3.1; thus BCA ’s can accept all the NPSA

languages. Conversely , on a one-column array, an NPSA can

evidently be simulated by a one-dimensional FSA ; thus NPSA ’s

cannot accept all the Cone-dimensional) BC languages. These

results too remain valid for deterministic acceptors.!!

For one-way PSA’s, the ability to write provides no

advantage (compare Section 3.3 of Chapter 3 on one—way TA’s

and TBA ’ s ) .  In the following two theorems we establish some

proper inclusion relations on the classes of languages

accepted by (deterministic) non-writing one-way PSA ’s (we

omit the “N” prefix):

Theorem 3.3. L (D)Ops c L (D ) p S .

Proof: Let L be the set of 2n (rows) by n(columns) arrays

of a ’s and b’ s whose top and bottom halves are identical .

[The fact that an array is twice as high as it is wide can

• be verified by a DOPSA, A , e.g., by moving a marker one step

to the right whenever A moves downward , until it reaches

then moving it one step to the left per downward move of A ,

and verifying that the marker returns to A1 just as A reaches

the bottom row.] To see that L E LDPS, note that A can check

that I has the defining property of L one column at a time 
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by moving halfway down I (when the marker reaches As),

storing the top half of the given column in its row of

cells; A then moves the rest of the way down, comparing the

stored top half with the bottom half of the same column.

This can be done repeatedly until all columns have been

checked.

We now show that L~~ L0~5. Suppose A were an OPSA that

accepts L. For any top half I, let be the set of n-tuples

of states that A could be in after scanning I, and that can

lead to acceptance after the bottom half (I again) is scanned .

Then if I~~I’, we must have Q1flQ1, = 0- -  for , if an n-tuple

a were in both, there would exist some bottom half 1” for

which the initial n-tuple a can lead to acceptance , and I”

must be the same as both I and I’, contradiction. Thus each

of the 2~ top halves must give rise to a noneznpty set

and these Q ’s are pairwise disjoint. But the number of pair—

wise disjoint nonempty subsets of the QI~ possible n-tuples

of states cannot exceed 1Q 1 fl , which is less than 2n ,

contradiction.!!

Theorem 3.4. LDOPS c L0ps.

Proof: Let L’ be the set of 2n by n arrays of a’s and b’s

in which some row occurs in both the top and bottom halves.

A nondeterininistic OPS can accept L’ by memorizing an

arbitrary row in the top half and comparing it with an

arbitrary row in the bottom half , and accepting if they are 

-~~~~~~~~~~~~~—--- ------- - -~~~~~~~- --- ~~~•- - -- --~~~~~~~~ - -
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equal. [It can tell the top half from the bottom half , and

can check that I is 2n by n, by moving a marker as in the

proof of Theorem 3.3.]

Suppose that L’ were accepted by a DOPSA , A. When it

leaves the top half of its input array , A must be in one

of the 1Q 1
fl 
possible state combinations. Now the number of

possible sets of rows that can occur in the top half is

(
~~~~

)÷ (2
2
f l)÷~~

• .÷(
~~

) (depending on how many of these rows are

distinct). For large n, this number is greater the 1Q~~T~ ,

so that two of the sets, S and ~ must yield the same state com-

bination a. Let p be a row in S but not in T (say), and let

the bottom half of the array consist entirely of p ’s. When

A scans n p ’s, starting in state combination a, it either

accepts or does not accept. In the former case, A accepts

top half T (not containing p) followed by n p ’s, which is

incorrect; in the latter case , A does not accept top half S

(containing p) followed by n p ’s, which is incorrect. !!

It is an open question whether L C L . The relation- —DPS~~ PS

ships between L (D)opS and L (D)FS are also open. We conclude

this section by showing that a DOPSA can recognize connected-

ness (compare Theorem 1.1), which is an open question for

FSA ’ s.

Theorem 3.5. A DOPSA can determine whether or not the set

of l’s in a rec tangular array I of 0 ’ s and l’s is connected .

_ _ _ _ _  _  _
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Proof: Let rk denote the kth row, and the top k rows ,

of I. We shall describe how a DOPSA, A , when it is on rk,
- - can construct a string of parentheses that indicates how the

runs of l’s in rk are connected in Rk. Specifically , for

each component C of l’s in we put a left parenthesis at

the leftmost point (if any) in which C meets rk ,  and a right

parenthesis at the rightmost point. (If C meets rk in only

one point, we put a pair of parentheses at that point.) This

parenthesization is trivial to construct for k l , since

we simply put a left parenthesis at the left end of

each run of l’s, and a right parenthesis at the right end.

We now show how , given the parenthesization for rk ,  A

can construct the parenthesization for rk+l. Suppose that

A can determine which runs in rk belong to the same component

of l’s in Rk. A can then move to rk+l , having memorized rk
and its parenthesization , and examine the components of

l’s in rk Lir
k+l; from this information A can easily deter-

mine which runs in rk+l belong to the same component of l’s

in and can thus construct the parenthesization of rk+l.

For any run p of l’s in rk, as we move leftward from

p, let L~ be the first left parenthesis for which the count

of lefts exceeds the count of rights. (If p has a left ‘

parenthesis at its left endpoint, this itself is L
a
.) We

claim that L~ is just the left parenthesis at the leftmost

point of C~ flrk, where C~ is the component of l’s in

that contains p. Indeed, suppose that some other component 

-~~~ --- --- -- - - - - - -- --- - - ---- ----~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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D meets rk between L~ and p (this is the only way that other

parentheses can occur between L~ and p). If a pair of runs

in D urk separated a pair of runs in C~ f l r k ,  the paths of l’ s

in R.~ joining these pairs would have to cross, contradicting

the fact that D ~ C~ . Hence all of D flrk must lie between

L~ and p, so that D contributes a pair of parentheses to

the count. Thus the first excess left parenthesis found

while moving left f rom p cannot come from any other component

D; it must come from C~ itself.

It follows that, given any two runs p1,p2 of l’s in rk.

A can tell whether or not they belong to the same component

in Rk by checking whether or not L 
= L . As indicated

p
1 

p
2

above , this allows A to construct the parenthesization of

rk+l, gi~’en that of rk. In particular, A can tell whether

a component of l’ s that met rk fails to meet rk+l. A can

also tell when a component of l’s reaches the bottom row of

I. If exactly one of these events occurs , the l’s in I are

connected; if more than one occurs , they are not. !! 
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