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Abstract, A parallel (multiprocessor)
system processing fault-tolerant programs was
developed in [4,5]. The system performance
is evaluated in this paper, using an analytic
approach based on stochastic models. The
analysis confirms the high effectiveness of a
parallel system, under all practical circum-
stances, in reducing the program execution
time increase due to run-time validation and
system state saving. It also shows how the
system performance is affected by various
program characteristics.

1. Introduction

A system architecture for parallel exe-
cution of fault-tolerant programs (i.e., pro-
grams containing redundancy for the tolerance
of residual program errors and/or hardware
faults [7]) was developed in [4,5]. The system
was designed to execute block-structured
fault-tolerant programs developed by Horning
et al. [3]. A fault-tolerant block or recovery
block is the kasic component containing re-
dundancy in these programs and has the fol-
lowing structure: ensure T by O; else-by O;
else-by ... else-by O, else-error, where T
denotes the validation test, O; the primary
object block, and Oy (1<k<n) the alternate
object blocks. All of the object blocks in a
fault-tolerant block F compute the same or
approximately the same objective function.
The validation test T is executed on exit from
an object block to confirm that the object
block has performed acceptably. The exe-
cution of a validation test results in either
an acceptance (i.e., confirmation) or a re-
jection. If accepted, control exits from the
fault-tolerant block. If the result produced by
an object block is r=jected, the next alternate
is entered. After the alternate object block
finishes its computation, the validation test is
repeated. Before an alternate object block is
entered, the system state is restored to the
state that existed just before entry to the pri-
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To enable this,
a state vector that contains the values of all
the variables (that may be changed by the
object blocks) is saved on entry to a fault-
tolerant block.

!
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The goal of the parallel execution is to
overlap, as much as possible, execution of
object blocks with the validation and system
state saving. In this paper, we evaluate the
performance of the parallel system. The
approach used in this paper for performance
evaluation is of an analytic nature and is
based on stochastic models for both the parallel
system and the sequential system (i.e., one
in which the execution of an object block is
not overlapped with the execution of a validation
test). The evaluation shows the performance
gain by parallel execution over sequential
execution. ———

In the next section major characteristics
of both an efficient sequential system and a
parallel system are compared. Section 3.1
deals with the evaluation of the sequential
system. Performance of the parallel system
is evaluated in Section 3.2 and compared with
the performance of the sequential system in
Section 3. 3.

2. Distinguishing Characteristics
of a Sequential System and a Parallel System

In this section two systems, a ssquential
system using a memory organization called a
recovery cache [1,3] and a parallel system
using a duplex -memory [4,5], are briefly
sketched. y

The essence of the recovery cache
scheme is to save the '‘original value' of each
non-local variable W together with its logical
address right before the variable is modified
for the first time in a new object block. The
original values are thus saved in a compact

+ This work was supported in part by the Joint Service Electronics Program under Air Force

Contract F44620-76-~c-0061.
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table structure. For illustration, the fault-
tolerant program in Figure la is used.

Figure lb shows a snapshot of the re-
covery cache taken when primary object block
02.1 is in execution. As shown, there is a
stack, called the cache stack, used for saving
the original values. Similar to the main
stack, the cache stack is also divided into
regions, one region for each nested fault-
tolerant block in the ''active'' state (i.e., a
fault-tolerant block that has been entered but
not exited). The top region of the cache stack
in Figure lb contains previous values of non-
local variables together with their names (re-
presenting logical addresses), i.e., Y2, X1,
X2, which have been modified during execution
of the current object block O, ;. Similarly,
the bottom region of the cache stack contains
the previous value of non-local variable X1
which had been modified by execution of object
block O; ; before O, , was entered. Figure
1b also shows a flag field in the main stack.
The flag attached to a variable indicates
whether the original value of the variable has
already been saved since the current object
block was entered. Thus the flags attached to
Y2, X1, X2 in the main stack are currently set.,

If the result produced by execution of
021 fails the validation test V,, then the top
region C, of the cache stack can be used to
-reset the main stack to the state that existed
on entry to fault-tolerant block F,. If it
passes the test, execution of F, is complete
and C, is merged into C; so that the result
will contain previous values of those variables
which are non-local to O and have been
modified since O; ; was entered. Thus the
result will be a single region containing (X1, 9)
and (X2,2). Flags in the main stack are also
adjusted such that only flags of X1 and X2 are
set. Therefore, the combination of the main
and cache stacks usually contains information
with which several old state vectors can be
reconstructed.

In the case of parallel execution at least
two processors are used, a main processor
for object block execution and a VR-(validation
and recovery) processor or audit processor
for execution related to validation and recovery.
It is necessary to save a state vector on exit
from an object block since the state vector is
used by both the main processor and the VR-
processor. This is accomplished by simul-
taneously storing the operand of each WRITE
operation into two locations, one in the main
stack and the other in the VR-store. When
the main processor enters a fault-tolerant
block F, a VR-store-segment is created to
keep an execution image which consists of
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records of assignments made by an object
block in F. A VR-store-segment consists of
two sections, the L-(local variable) section
for keeping records of assignments to variables
local to the object block in execution and the
N-(non-local variable) section for assignment
records of non-local variables. A variable
local to the object block being entered is
allocated one location in the main stack and
one location in the L-section of a VR-store-
segment. New values assigned to variables
that are non-local to the object block in exe-
cution are recorded together with the logical
addresses (of the variables) in a table struc-
ture in the N-section of a VR-store-segment.

For illustration, Figure lc shows the
content of the VR-store at an instant during
execution of the program in Figure la by a
parallel system using a duplex memory.

When the main processor entered the program
(i.e., the outermost block), VR-store-segment
Sy was created to keep assignment records

of local variables X1 and X2. Since there are
no variables non-local to the outermost block,
So does not contain a N-section. When the
main processor entered Fl' VR -store-segment
S} was created. When non-local variable X1
was assigned the value '""8'" during execution of
object block Oj, ], a table entry (XI,8) was
made in SIN' Similarly, S, was created when
the main processor entered F, and was filled
by execution of object block O, ;. The content
of the main stack in a duplex memory is that
in a recovery cache minus the flag field.

On completion of Op ;, the main pro-
cessor proceeds to the execution of F3 (which
will be imaged in a new VR-store-segment S3)
while the VR-processor starts examining the
execution image in S, by execution of V,. If
the result produced by execution of O, ; (kept
in Sz) fails the validation test V,, then the
non-local variables recorded in Sy (and S3y.»
if not empty) are those which need to be reset.
Segments S, and S; contain the values of the
variables that existed when the main processor
entered fault-tolerant block F and their values
may be used to reset the main stack. A
duplex memory may be implemented such that
the previous value can be obtained in a single
content-addressable memory (CAM) cycle [4,5].
If the result of O, | passes V,, Spp is dis-
carded and S

2N is merged into S) so that the
result contains the assignment records, of the
variables addressable in O; ;, made since Sectton

Section (3

Oj,) was entered. This will result in S,y
containing ''1'',"5" and "3" for Y1, Y2, Y3,
respectively and S, containing (X1,7) and
(X2, 8).
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Let us now compare the characteristics
of the recovery cache scheme for sequential
execution with the characteristics of the duplex
memory scheme for parallel execution.

1. In both schemes, content-addressable
memory modules are needed to obtain an
acceptable level of performance in program
execution and in the rest of this paper, the
use of CAM modules is assumed.

2. The duplex memory takes more space
than the recovery cache.

3. The WRITE operation into a non-local
variable W involves two steps with the recovery
cache, the first step being used for fetrching
the original value or the flag, while the WRITE
operation takes one step (CAM cycle) with the
duplex memory. Therefore, the execution of
an object block is slower with the recovery
cache than with the duplex memory.

4. Overall, it is expected that the re-
covery cache takes less merging time than the
duplex memory. During the execution of a
program in which no fault-tolerant block is
nested within another fault-tolerant block, there
is no merging involved with the recovery cache.

5. The parallel system is slower in re-
covery because (a) recovery of a variable takes
more steps with the duplex memory than with
the recovery cache and (b) there are more
variables that need to be recovered in the
parallel system because while an execution
image is being validated, the main processor
normally proceeds to the successor block(s).

In summary, the parallel system largely
trades recovery time increase for the reduction
of total program execution time. There are
cases, though highly impractical, where the
performance of the parallel system is inferior
to the performance of the sequential system.
Let o denote the reliability of an object block,
i.e., the probability of an average object block
producing an accepted execution image. Then
there is a lower bound a; for @ such that when
a>@; , the parallel system performs more
efficiently than the sequential system. This
lower bound is one of the values of interest
examined in subsequent sections.

3. Performance Evaluation

Given a fault-tolerant program, the aver-
age execution time of a fault-tolerant block is
defined as the execution time of the program
divided by the number of fault-tolerant blocks
executed during the program execution. T4 and
T_ denote the average execution time of a fault-
tolerant block by the sequential system and by
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the parallel system, respectively. The system
throughput is defined as the number of fault-
tolerant blocks completed per unit time and is
given by the inverse of the average execution
time of a fault-tolerant block. We denote the
sequential system throughput and the parallel
system throughput by THRg and THR_, res-
pectively. Throughputs are used in Fhil section
as measures of the performance of the se-
quential system and of the parallel system.

For mathematical tractibility, the following
set of global assumptions have been adopted
throughout the performance evaluation,

Assumption G

G.1 The programs considered in this analysis
are of the type in which no fault-tolerant block
is nested within another fault-tolerant block and
whose execution becomes a sequential chain of

fault-tolerant block executions (Figure 2).

G.2 Primary and alternate object blocks take
the same average execution time.

G.3 Each fault-tolerant block contains an un-
limited number of alternate object blocks (to
eliminate the case of program failure).

In executing a program satisfying assump-
tion G.1, the sequential system does not involve
assignment record merging, as mentioned in
Section 2. This assumption G.1 is adopted
because of the difficulties in (1) dealing with—a -
large spectrum of legitimate program structures,
(2) keeping accounts of various execution times
during execution of a general program (i.e.,

a program in which fault-tolerant blocks are
nested one within another), etc. However, it
is conjectured that results in this paper of
performance comparison between two systems
for programs satisfying G.1 will not be far
different from the results for general programs.

3.1 Throughput Evaluation for the Sequential
System

The behavior of the sequential system
during execution of a fault-tolerant block is
depicted in Figure 3a. The system first enters
the '"object block execution'' state s, in which
the processor executes an object block within
the current fault-tolerant block. On completion
of an object block, the system enters the
''validation" state s, in which the processor
executes the validation test. If the validation
results in a rejection, the system enters the
''recovery'' state S, and on completion of the
recovery, the system again enters s, in which
the processor executes an alternate object block.
If the validation results in an acceptance, the
system proceeds to the execution of the succes-

sor fault-tolerant block and repeats the above
behavior,




T —————

During execution of fault-tolerant programs
satisfying assumption G, the sequential system
continuously repeats the process depicted in
Figure 3a. We thus model the system behavior
by the following stochastic process for the pur-
pose of evaluating THRg.

Model S

S.1 There are three states which the sequen-
tial system may enter: s, - object block exe-
cution, s, - validation, and s, - recovery.

(Due to assumption G.! there is no merging
state. )

S.2 The time during which the system is in
any state is exponentially distributed.

S.2.1 When the system is in state Sy the
rate gs of generating an execution image (i.e.,
the probability of the system completing the
execution of an object block within an infinite-
simal time interval At is gs™at), is gs= 1/t
where t denotes the mean object block exe-
cution time in the sequential system. gs is
called the generation rate.

S.2.2 When the system is in state s, the
rate v of completing the validation, called the
validation rate, is v=1/t, where t, denotes the
mean validation time.

S.2.3 When the system is in state Sy, the rate
rs of completing the recovery, called the re-
covery rate, is rs=1/t;5 where t_g denotes
the mean recovery time in the sequential system.

S.3 The probability of the system entering
state s, after leaving state s, is o, while the

probability of entering state s_ is a'=1 - a,

Figure 3b depicts Model S. Let Po+ Py
P, denote the equilibrium probabilities [6] of
the system being in S+ Sy, 8., respectively,
The steady-state behavior of the system is
expressed by the following equilibrium equations.

po- gs = pr- rs + pv° Ve a
Po™ ¥ & Pac 8 (1)
p°+ pv+ " 1 (normalizing equation).

Solving Eq. 1, we obtain

> rl'v/(gs-v'a"k rs-v + gs-rs)
P, = rs-gs/(g:-v-a‘+ rssv+gsers) (2)

P.= gs-v-a',l(gs-v-a'+ rs-v + gs-rs).

By definition systermn throughput is equal to the
number of execution images accepted per unit
time. Throughput THR4 and its inverse T, can
thus be obtained as follows.
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THR_ = p -v-«
s v :
= rs-gs-v.a/(gs veu frscvigs-rs)

( 33

g
u

I/THRS

'
=(gs vex + TSV + gs-rs)/(rs.gs-v.x}

(May(t 4t )+ (@' /mt__. ( 35)

rs

3.2 Throughput Evaluation for the Parallcl

System

In most cases the main processor reed
not be synchrounized with the VR-processor.

. However, when the next fault-tolerant block tc

be executed specifies irreversible zcticre of
critical nature, the main processcr waits until
the VR-processor accepts all the execution
images in the queuve (i.e., the execution images
of the predecessor fault-tolerant blocks) {4, 3].
An execution image gererated immediately he-
fore a block specifying an irreversitle action
is entered, is a ''synchronizing' execution
image (or for short, S-image). The other

execution images are ''normal'' execution imajes

(or N-images).

An abstract representatica of the parallel
system with unbounded queue is shown in
Figure 4. The main prccessor continucusiy
constructs execution images and puts the com-
pleted execution images into the queue of exe-
cution images except when (1) the VR-processor
stops it on rejection of an execution image and
enters the recovery state, or (2) the main pro-
cessor has generated a synchronizing execution
image and put it into the queue. The VR-
processor validates execution images in the
order of their arrival. When it accepts an
execution image, it enters the '"merging'' state.
On completion of merging, it checks if another
execution image is waiting in the queue. If an
execution image is rejected, the main processor
is stopped and recovery is initiated. Recovery
involves a sequence of assignment reversals
using the assignment records in the execution
images and thus can be thought of as a process
of ""erasing" the execution images in the gueue.
On completion of the recovery, the queue is
empty and the main processor is restarted.
The parallel system is thus modeled by the
following stochastic process.

Model P

P.1 The state of the system at any instant is
characterized by (1) the state of the VR-pro-
cessor which may be in wait, validation,
merging or recovery, and (2) the number and
types of execution images in the queue. The
state of the main processor is busy or waiting




and is determined by the state of the VR-pro-
cessor and the state of the queue. Thus each
system state is denoted by

sVl?(-procese:or state, queue state ’

where (1) VR-processor state = w (wait), v
(validation), m (merging), or r (recovery), and
(2) queue state = @ (empty), N (one normal
execution image), S (one synchronizing execution
image), $ (=N or S), NN, NS, $N, $S, NNN,
NNS, $NN, $NS, ... .

Some possible states of the system are
shown in Figure 5, where some possible state
transitions are also indicated. For example,

v N is the state where the queue contains one
normal execution image which the VR-processor
is validating. There are four states which the
system may enter from Sy,N' Sy,NN which is
entered if the main processor generates another
normal execution image; s v, NS which is entered
if the main processor generates a synchronizing
execution image; s, $ which is entered if the
VR-processor accepts the normal execution
image in the queue; and s, N which is entered
if the VR-processor rejects the normal exe-
cution image in the queue. In s N the system
erases the normal execution xmage in the queue
and thereafter enters state Sr,p in which the
system erases the partially constructed exe-
cution image contained within the main proces-
sor. Note that the type of the first image in
the queue is not distinguished in some states
(e.g8., Sm, $N)' This is because once an
execution image is accepted, the system's
future behavior is independent of the type of
the execution image just accepted.

P.2 The time during which either processor
is in a particular state is exponentially dis-
tributed.

P.2.1 When the main processor is in a busy
state, the generation rate gp is gp=1/t,
where t,, represents the mean object block
execution time (which is different from t,g).

P.2.2 When the VR-processor is in a valida-
tion state, the validation rate v is v=1/t,,
where t, represents the mean validation time.

P.2.3 When the VR-processor is in a merging
state, the rate mp of completing the merging,
called the merging rate, is mp= l/tmp where
tmp Fepresents the mean merging time.

P.2.4 When the system is in a recovery state
other than s, ,p» the rate rp of erasing an
execution xmage. called the recovery rate, is
rp=1/t., where trp represents the mean time
for crugng an execution image.

P.2.5 The size of the partially constructed
execution image remaining within the main
processor when the system enters a recovery
state is assumed to be proportional to the
amount of time that the main processor has
spent in construction of that execution image.
Borrowing a result in the renewal theory, the
mean size of the execution image partially con-
structed (when the system enters a recovery
state from a state where the main processor is
busy), is the same as the mean size of a com-
pleted execution image [6]. Thus when the
system is in Sy p° the rate of moving from
Sr. 9 to Sw, 9 is also rp.

P.3 The probability of a validation resulting
in an acceptance is o as before, while the
probability of a rejection is @'=1-a

P.4 The probability of a newly generated
execution image being an N-image is n, while
that for being an S-image is n'= 1-7n.

Figure 5 depicts Model P. It also shows

‘the notation for the equilibrium probability of

the system being in each state s; j. The pro-
babilities are denoted by I (for Sw,p)» J (for

Sm, 5), 2Z)c » Yk » Xk » Wi » Ug (for Sr, 0)'“k‘ and )
where k=1, 2,... except that there does not

exist y; nor x;. The subscript k indicates the
number of execution images present in the queue.
The steady-state behavior of the system is then
expressed by the following equilibrium equations.

(a) I*gp=J-mp+uo-rp+q}-rp

(b) J-(gp+mp) = (z)+ W) v a

(¢) z)-(gptv)=I-gp-mt+y,-mp

(d) zk-(gp+v)=zk_l-gp-n+yk+l-mp£or k=2, 35400

(¢) y, (gp+mp) =J-gp-n+z,-v-a

&) vy, (gp+mp) =y, ,°gP-N+2 -v-& for
k=3,4,...

(8) X,mp=J-gp'n+w, v-q

(h) ﬁ‘-mp=yk_l-gp-n'+wk-v-a£or k=3,4,...

(i) wl-vzl-gp-n'+xz-mp

() wyevs= zk_l-gp-n'+xk+l-mp for k=2,3,...

(k) uytrp = u,- rp

(1) u.k-rp=zk-v~q'+uk”~rp for k=1,2,...

(m) qk"'P=Wk'V-a'+qk“'rp for k=1,2,...

-
(n) I+J+ ug+ k§l (zk+ Vet 5t wk+ wt qk) =1
(normalizing equation) (4)

Solving this system of equations, we can obtain
the quilibrium probabilities. This system can
be solved in closed form, but the solution pro-

B A TP T T




P Y Yy s

cedure is not described here. Since the sys-
tem throughput THRP was defined as the num-
ber of acceptances made per unit time, 'I‘HRp
and Tp can be obtained by

THRP=VQ(Ez +]3::lw)

= l/(v a- (kElz + kzlwk)) (5)

Another measure of interest is the expected
queue-length E(QL).

EQL)=J+ Z (k- (Z Y QAW ta +q)))
k=1

whex‘eyl=x =0 . (6)

1
Figure 6 depicts the expected queue-
1ength E(QL) for various values of ,n,t,/t,
/top, /tmp+ In examining Figures 6 and
7 we are mostly interested in the cases where
a is greater than 0.9. Since fault-tolerant
programs dealt with here are supposed to have
undergone a testing phase before being put into
operation, one or more erroneous object blocks
out of ten seems highly improbable. On the
other hand, n is application-dependent and may
not be very close to 1. For example, n=0.999
implies that only one among 1000 execution
images generated is an S-image. In this eva-
luation, nis set mostly within the range of
0.9-0.95 and the most frequently used values
are 0.9 for n and 0.95 for . The following
practical constraints were also adopted.
t <t
v op

t <t
mpesop

rp/thSI.S . (7)

As expected, E(QL) becomes larger as g
or n increases. Furthermore, comparison of
curve 3 in Figure 6a (which is a result of
changing a when n=0.95) with curve 2' (a result
of changing n when o=0.95) indicates that
E(QL) is more sensitive to the change of n than
to the change of ¢. This is also shown by a
comparison of curve 2 (a result of changing «
when n=0.9) with curve 145 (a result of changing
n when 2=0.9). Figure 6b shows that E(QL)
increases as mean validation time t, or mean
merging time t . increases. When ty+t,,

E(QL) is generally smaller than 5. ‘Iphe
daga obtained but not plotted in Figure 6 in-
dicated that mean recovery time t.,  affects
E(QL) to a negligible extent. This is because
(1) when « is large, the system rarely enters

123

a recovery state and (2) when ¢ is small, the
system rarely enters a state where the queue-
length is large.

3.3 Performance Comparison Between the
Sejuential System and the Parallel System

A simple way of assessing the perform-
ance of the parallel system is to compare the
throughput THRp with the throughput THRg of
the sequential system. THR,/THRg is then
the throughput ratio and is a function of @, n,
ty/top, /top, p/tmp: tos/top. and tp /trs.
Here to,/t,‘-_,p represents the Lbject block exe-
cution time ratio while trp/trs represents the
recovery time ratio. These parameters are
within the following ranges (cf. Section 2 or
[5] for more details).

<t /[t <<'2
os op

1<trp/t“<l.5. (8)

Figure 7 depicts the throughput ratio for
various values of parameters subject to the
constraints in Eqs. (7) and (8). First, Figure
7a discloses that variation of recovery time
ratio t.,/t.g within a practical range has
little effect on the throughput ratio. This is
again because (1) when « is large, the system
rarely gets into a recovery state, and (2) when
@ is small, E(QL) becomes small and thus a
recovery involves mostly a small number of
execution images. Figure 7b indicates that
the throughput ratio is not much affected by the
change of typ/t,,, for @ within a practical
range, whxle 1t is significantly affected by
object block execution time ratio t,g/t,
Object block execution time ratio tos/top' re-
covery time ratio trp /trs and t. /tm are
machine charactenstxcs while otger parameters
represent program characteristics.

Figure 7c shows that the throughput ratio
decreases as merging time tmp (more precisely
tmp/top) increases. The obvious reason is
because under assumption G.! merging is in-
volved only in parallel execution. It also shows
that increase of t, causes a throughput ratio
increase approximately until t, +t,5 surpasses

but further increase of t, does not change
(actually slightly decreases) the throughput ratio.
This can be explained as follows. As ty+tmg
becomes larger than top» E(QL) becomes large
and thus, each time a synchronizing execution
image is generated, the queue contains a large
number of execution images. The validation
and merging of these are not overlapped with
object block execution. Figure 7d confirms
the expectation that as n increases, the through-
put ratio increases.




In summary, (1) for a practical @, the
performance improvement by parallel execution
is most sensitive to object block execution time
ratio tos/top and tmp/top, less sensitive to
ty/ty, and the least sensitive to t, /tmp and
recovery time ratio t,p/trs, and (2) the
throughpat ratio ranged over 1.02. 1.45 (or
2-65% gain) for ¥=0.95 and for the values of
other paramsters plotted in Figure 7.

Figure 7a also displays the existence of
oy, (defined in Section 2 as the lower bound of
a to make the performance of the parallel
system superior to that of the sequential sys-
tem). The data obtained but not fully plotted
in Figure 7 showed that in all the cases de-
picted in Figure 7, ap did not exceed 0.87 and
rarely went above 0.6. It can conservatively
be said that the practical range of g is far
above aj .

4, Summary

The analysis made in this paper confirmed

that parallel execution can reduce the execution
time increase inherent in fault-tolerant pro-
grams. The analysis demonstrated largely two

points. First, under all practical circumstances

the paralle! system showed good performance.
The performance was particularly good when o
was above 0.9 or 0.95. It is believed that .
would always be in suck a range for programs
which have undergcne a reasonable degree of
testing before being put into operation. Second,
it showed how the effectiveness of parallel
execution was affected by various program
characteristics. Although no real statistics on
various program characteristics are available,
it is believed that our examination covered a
broad range of reasonable values for each
parameter, Availability of a parallel system
may influence the program characteristics to
some extent.

In short, the parallel execution approach
allows the incorporation of extensive validation
and recovery facilities without associated ex-
pensive execution time overhead. The price
paid is the increased hardware requirement.
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