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I.  Introduction and Summary 

High angle-of-attack phenomena have been of interest to aero- 

dynamicists, aircraft designers, pilots and control system analysts 

ever since the advent of modern high performance aircraft. Due to 

the concentration of inertia along the fuselage, the modern jet 

fighters are highly susceptible to post-stall departures and spin. 

Extensive wind-tunnel testing and radio-controlled flight testing has 

been done over the last twenty years to gain better understanding of 

the dynamic instabilities at high angles-of-attack. A basic problem 

has existed in interpreting this data and in making predictions of 

aircraft dynamic behavior so as to achieve close agreement with flight 

test data. 

Aircraft dynamic behavior at high angles-of-attack is highly 

nonlinear and, in the past, there has been a lack of suitable techniques 

for analyzing the global behavior of nonlinear systems. Under an on-going 

project with the Office of Haval Research, Scientific Systems, Inc. has 

developed a new approach based on Bifurcation Analysis and Catastrophe 

Theory Methodology (BACTM). The approach has been applied to specific 

jump, hysteresis and limit cycle phenomena such as roll-coupling, pitch- 

up, wing rock, buffeting, departure and divergence. Three different air- 

craft have been considered for comparison purposes, and it has been shown 

how different types of instabilities and families of limit cycles arise 

as the control variables are varied. A complete representation of the 
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aircraft equilibrium and bifurcation surfaces is given in an eight 

dimensional space consisting of roll rate, pitch rate, yaw rate, angle- 

of-attack, sideslip angle, elevator, aileron and rudder deflections. 

Two dimensional projections of the equilibrium and bifurcation surfaces 

provide pictorial representations of the aircraft global stability and 

control behavior at high angles-of-attack. The use of BACTM for spin 

entry, spin prevention, stability augmentation at high angles-of-attack 

and nonlinear system identification are also considered. 

This chapter presents a discussion of the high ang.le-of-attack 

stability problem followed by a brief survey of the previous work in 

this area. The new methodology called BACTM is introduced in section 

1.3 and the significant results obtained during the current study are 

summarized in section 1.4. The last section in this chapter discusses 

the overall organization of the report. 

(1.1) Problem Description. 

Aircraft motion at high angles-of-attack (a) is characterized by 

large deviations in both state and control variables. Linearized analysis 

of aircraft stability and control provides only limited localized informa- 

tion regarding aircraft behavior at high a. There is a conspicuous lack 

of techniques for analyzing global stability and large maneuver 

response of aircraft. Only specialized nonlinear phenomena such as 

roll-coupling and spin have been partially analyzed in an isolated fashion. 

There is a clear need for a unified approach to analyze global aircraft 

behavior at high a in an integrated and systematic manner. 

I 
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A methodology for global stability analysis and control is also 

a first step towards safer piloting procedures, stability augmentation, 

control system design, aircraft model structure determination and design. 

A suitable methodology must contribute towards solutions to these problems 

in addition to simply giving a yes/no type of information regarding 

stability.  In other words, the global stability analysis should also 

provide guidelines for stabilizing an unstable nonlinear system.  Since 

aircraft behavior at high a is known to exhibit discontinuous and limit 

cycle phenomena, the methodology should also be able to predict and explain 

such phenomena. 

(1.2)  Previous Work 

Early work on high a stability and control during the forties and 

fifties, concentrated mainly on qualitative description and understanding 

of the phenomena [1,2,3,4,5]. The study of specific phenomena was 

motivated by observed flight behavior. Attempts were made to understand 

these pheomena and to correct them via changes in aircraft design. 

Conventional analysis techniques based on steady state assumptions and 

linearization were used to obtain quantitative information.  However, 

a lack of suitable experimental facilities, analysis techniques and 

meager computing capabilities hindered progress in this area. The major 

emphasis during the sixties was placed on the establishment of experimental 

facilities such as radio-controlled flights and wind-tunnels for spin 

testing. At the same time, simulation techniques were used to reproduce 

with six degree-of-freedom models behavior typical of high a flights 

[6,7,8]. Again, due to lack of analytical techniques, only limited pro- 

gress has been made using simulation techniques. 

mill' ». ,m    -,««•  aiHHi  _.    - - 
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Recent work in high a areas covers a wide spectrum of subjects 

ranging from basic research in aerodynamics, wind tunnel and flight 

testing [9] to advanced mathematical techniques for stability analysis 

[10] and parameter identification [11]. The highly nonlinear and complex 

nature of aircraft dynamic behavior at high a coupled with poorly under- 

stood aerodynamics has presented formidable difficulties to significant 

progress in this area. 

The motivation for the research effort reported here came from an 

involvement of the principal investigator with a study of the stability 

of chemical reactions using Catastrophe Theory [12,13 ] .  It was con- 

jectured that the discontinuous and limit cycle phenomena at high angles- 

of-attack could be analyzed using results from Topology, Bifurcation 

Analysis and Catastrophe Theory [14,15]. Recent analysis of the roll- 

coupling problem by Schy and Hannah [16] provided further support to 

this conjecture. The results presented here have not only confirmed 

our original conjecture, but have also provided additional insignte 

and revealed new dynamic phenomena that can occur at high a. 

(1.3) New Methodology 

The application of recent abstract mathematical results from 

Topology, Bifurcation Analysis and Catastrophe Theory to the aircraft 

high a stability problem has resulted in the development of a new method- 

ology called BACTM (Bifurcation Analysis and Catastrophe Theory Methodology) 

BACTM is applicable to other nonlinear systems such as submarines, missiles, 

and power systems. The four main theorems on which BACTM is based are 

(i) the Center Manifold Theorem) (ii) Classification Theorem of Elementary 

*****—d^ja**^-***-'*—*~*lfrtir-IW'flllMM    Hi« ----- • ••-^- - ••'••'- -   •   —--• —  ...-.•..,...    ,..--.  
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Catastrophes; (iii) Hopf Bifurcation Theorem; and (iv) Global 

Implicit Function Theorem.  These theorems are discussed in Chapter II 

and Appendix A and their application to the aircraft stability problem 

is discussed in Chapter III. The application of BACTM provides global 

information regarding aircraft dynamic behavior with respect to changes 

in initial state parameters, and control variables. The use of BACTM 

requires advanced computational techniques which are extremely important 

for obtaining quantiative information needed for stability augmentation, 

control, identification and design. 

(1.4)  Summary of Significant Results 

Since detailed quantitative results of the study are presented 

in Chapters II and III, we briefly summarize here, in qualitative terms, 

what are believed to be some of the significant results.  The current 

study is the first phase of a continuing research effort and, therefore, 

represents only a first step in the direction of methodology development 

and potential applicability of BACTM. The contributions of the present 

study may be divided into three general areas; 

(i) A New Methodology for the Analysis of Nonlinear Systems 

Bifurcation Analysis and Catastrophe Theory Methodology (BACTM), 

shown schematically in Fig, 2.8, which is based on several important 

results from Topology, Catastrophe Theory and Bifurcation Analysis, is 

a powerful new tool for the study of nonlinear dynamic systems.  It 

allows one to study the global behavior of nonlinear systems in an 

(n + m) dimensional space where n is the number of state variables and 

m is the number of control variables in the system. A direct outcome 

      ----- •—       ^^.^^^.-^^w-^-^k^. ..^ 
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of applying this methodology is a characterization of the stable 

and unstable regimes, stability boundaries, domains of attraction, 

bifurcation and jump surfaces and the existence of limit cycles. The 

methodology can also be used for model reduction or simplification 

(using the center manifold theorem), feedback control system design 

for producing almost linear behavior for a nonlinear system, model 

structure determination and input design for nonlinear system identifi- 

cation-  It also gives a clear representation of those cases where 

linearization is valid. More importantly, it gives guidelines for 

extending the linearized model so as to make it valid for those cases 

where nonlinear!ties are significant. 

(ii) unified Improved Understanding of Aircraft Stability 

and Control at High Angles-of-Attack. 

The application of Catastrophe Theory and Bifurcation Analysis 

to three different aircraft models has provided an improved understanding 

of the various jump, hysteresis and limit cycle phenomena observed at 

high angles-of-attack. 

The three aircraft are designated as aircraft A, B and H. Their 

physical characteristics are presented in Table 2 of Chapter III. 

(See also Sec. 3.3). Aircraft A is an F100A; aircraft B is a small 

maneuverable single-engined jet, and aircraft H is a swept-wing fighter, 

the F-80A. Even though these models do not represent modern day fighter 

planes, their importance lies in their extensive use in previous work 

(see Chapter III for discussion and references). Use of these models, 

therefore, provides a solid basis for comparison of the BACTN with 
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other techniques, especially analytic results.  BACTM has been 

demonstrated using these models, and it is currently being applied 

to modern fighter planes. 

It has been shown for aircraft B that the bifurcation and 

catastrophe surfaces are of the "butterfly"-type. The projection 

of the bifurcation surface in the control-state space onto the control 

plane results in a pattern which somewhat resembles the shape of a 

butterfly.  See Figs. 2.9, 3.10, and 3.11 for examples.  See also 

Fig. 3.13 and the discussion in Sec. 3.6.1.3 relating to the bifurca- 

tion to an autorotational state for aircraft B as 6e increases from 0° 

to 12°, with 6a = 6r = 0° (the bifurcation occurs at 6e = 9.3°). 

A bifurcation surface divides regions in the control space where 

different numbers of equilibrium states are possible.  Thus, as controls 

vary in such a way as to cross the bifurcation surface, catastrophes in 

the form of sudden "jumps" between equilibrium solutions occur.  The 

solution is said to bifurcate to a new equilibrium branch in state 

space.  The bifurcation surface marks the boundary between the stable 

and unstable equilibrium solutions.  See the discussion of Sec. 2.2, 

and particularly Figs. 2.1 and 2.2 for a better picture of bifurcation 

phenomena.  Note that hysteresis effects are prevalent where 

bifurcations occur; which introduces the possibility that control 

recovery actions, which are effective in stable and/or linear regions 

of the equilibrium state space, may be ineffective or actually enhance 

the destabilizing motions, once a bifurcation has occurred. 

The physical mechanism causing jumps in the case of aircraft B 

can be related to roll-coupling first observed by Phillips in 1948 [6]. 

 —  .. 
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Careful study of time-history motions of aircraft B and H 

indicates that yaw rate behavior is an indicator of an oncoming 

jump.  This is because of coupling effects between roll and yaw motions 

which are enhanced by the peculiar geometry of high performance jet 

aircraft, particularly their small moment of inertia about the roll 

axis.  See the discussion in Sec. 3.6.1.5 and especially 3.6.1.6 for 

more details.  Our analysis, furthermore, predicts several other effects 

such as hysteresis and divergence.  It also indicates coordinated aileron- 

elevator maneuvers that avoid jumps.  See Sec. 3.7 for a discussion of 

this BACTM application. Even the critical roll rates are predicted 

more accurately since the simplifying assumptions used by Phillips [1] 

are avoided. 

We have also examined the physical causes of jumps more closely 

and developed indicators of incipient jump phenomena which can be 

useful to the pilot during flight. One promising indicator of catas- 

trophic, or jump, behavior is total vehicle kinetic energy and its 

time derivative. When monitored during dynamic response studies of 

aircraft B and H, the kinetic energy was observed to experience sudden 

changes - in advance of a similar change of any of the state variables - 

when the controls had moved from a stable to a jump-producing value. 

This was clearly the case for the aircraft B model (See Figures 3.29 

and 3.30);   the presence of oscillatory terms in the aircraft H case 

(Figures 3.92 and 3.93)indicates that low-pass filtering or a more 

sophisticated "jump alarm" criterion than the one which sufficed for 

aircraft B - i.e., change of sign in dE/dt - may be developed. 

D 

D 
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For aircraft H, time history analysis has revealed families of limit 

cycles in a five-dimensional space which have not been obtained 

analytically in any previous study. A time history plot, shown 

in Fig. 3.50, clearly shows limit cycle behavior. This plot is seen 

to be the result of behavior predicted by inspection of the related 

equilibrium surface plots, shown in Figs. 3.48 and 3.49. In these 

plots, both limit cycle amplitude and hysteresis effects are indicated, 

in addition to the specification of the values of control (6a, aileron 

deflection) which will cause limit cycle behavior for aircraft H in 

this flight condition.  See also Figs. 3.87 and 3.88, which show limit 

cycles for aircraft H in the state space (four plots of p vs. (q,r,a,ß)); 

and Fig. 3.90, which shows how a change in 6e from 2° to -2°  causes the 

motion to leave the limit cycle and settle (after some severe transient 

behavior) at a stable equilibrium point. The existence of limit cycle 

phenomena has been postulated previously, but the analysis has generally 

been confined to two-dimensional cases. The existence of Hopf Bifurca- 

tions in aircraft dynamics has been demonstrated for the first time. 

The bifurcation plots shown in Figs, 3.51 and 3.52 are generated 

explicitly by BACTM. They are also related geometrically to the family 

of equilibrium surfaces (Figs. 3.48 and 3.49 being representative 

members), in that the bifurcation surfaces are the projection of the 

equilibrium surfaces onto the control space. The "folds" in the 

equilibrium surfaces cause regions of differing numbers of equilibrium 

solutions to exist; the bifurcation surfaces are the boundaries to these 

regions. The physical mechanisms causing these limit cycles are not 

*•* completely understood except in special cases such as wing-rock and 
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buffeting (even in these cases, there are several physical explanations). 

Other phenomena that are easily analyzed using this methodology 

are "pitch-up", autorotation and divergence. Most of these phenomena 

are not described precisely in the literature and the general conditions 

under which they are observed are not known accurately. Our approach 

gives an exact quantitative representation of these phenomena and reveals 

this dependence on aircraft parameters and control systems.  It is 

possible therefore to study techniques for avoiding these phenomena 

through changes in design or through control strategies. 

(iii)  Implications for Model Structure Determination and Controller 

Design at High Angles-of-Attack. 

A number of areas in which the above improved understanding 

of the high angle-of-attack phenomena can be utilized have been 

investigated. Two common problems in aircraft model identification 

are model structure determination and model validation.  It is easily 

inferred from the Catastrophe Theory generic models that the observed 

bifurcation behavior can be used to identify and validate the structure 

of the model. This has important implications for input design and 

flight testing. The basic idea is that the model structure should be 

chosen in such a way that it is capable of matching the jump and limit 

cycle phenomena observed in flight. At high angles-of-attack, these 

phenomena are dominant and their proper representation by a mathematical 

model is essential.  Such models are also necessary for studying 

entry into spin and for investigating recoveries from spin conditions 

By studying different aircraft and by analyzing the effect of 

feedback, we have shown how bifurcation surfaces can be modified and 

even avoided in certain cases. This has important implications for 

 - . • •  '- •-••••- -  
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aircraft and controller design. The bifurcation surfaces may be 

used directly in the design of stability augmentation systems.  (Refer 

to Sec. 3.7 for more details).  Results there indicate that plots of 

the bifurcation surfaces are a useful tool for defining relationships 

among the control variables which avoid regions where bifurcations 

occur. 

In Sec. 3.7, bifurcation and equilibrium surfaces are used to 

develop an aileron-rudder-interconnect (ARI) control augmentation system 

for use in high angle-of-attack lateral-directional maneuvers.  This 

study was done with the aircraft H model, and time history comparisons 

of ARI vs. non-ARI (6 r = 0°) systems show clearly that ARI not only 

enhances stability but improves performance characteristics. The ARI 

gains developed by BACTM are effective because of their direct reliance 

on the bifurcation surfaces, which contain important stability information. 

A linear ARI model was used in Sec. 3.7 for illustrative purposes; however 

BACTM allows for a more general, global ARI-type relationship which 

explicitly accounts for elevon (6e) deflections as well.  It is possible 

to expand the criteria for the bifurcation loci themselves to develop 

further criteria for the ARI surface in the three dimensional control 

space.  Results presented in this report show that the ARI gains plotted 

as a function of equilibrium angle-of-attack, as derived from the 

bifurcation surfaces, behave in much the same way, with roughly equi- 

valent values, as the ARI gains derived by other, less-global, methods 

[11,15 of Ch. III]. 
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(1.5) Organization of the Report 

The report is organized into two main chapters (II and III) 

supported by two appendices (A and B). Chapter II contains a 

discussion of the Bifurcation Analysis and Catastrophe Theory 

Methodology. Chapter III contains all the aircraft global stability 

and control results for three example aircrafts (A,B and H). The 

study of aircraft H involving nonlinear kinematic and aerodynamic terms 

is most comprehensive representing a complete description of the 

equilibrium and bifurcation surfaces in an eight-dimensional space 

(p,q,r,a,ß,6a,6e,<5r). Conclusions and recommendations are stated 

in Chapter IV. Appendix A contains exact statements of BACTM theorems 

and Appendix B contains detailed algebraic calculations for aircraft 

B and H. A list of symbols and nomenclature is included in Appendix C. 

 an , ....•••.••-•»«t~..l,„ - J ••-    
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II. Bifurcation Analysis and Catastrophe 

Theory Methodology (BACTM) 

OVERVIEW 

In this chapter, we describe from a general system theoretic 

viewpoint, the basic principles and applications of the Bifurcation 

Analysis and Catastrophe Theory Methodology (BACTM). After giving 

a brief historical survey, the terminology of BACTM is introduced 

through an illustrative example. The four main theorems of BACTM 

are discussed thereafter in Section 2.3. The exact statements of the 

main theorems are contained in Appendix A.  The application of BACTM 

to nonlinear dynamic systems is discussed in Section 2.4. Other methods 

for the analysis of nonlinear systems are outlined in Section 2.5 and 

their relationship to BACTM is duscussed.  The specific applications 

of BACTM for Global Stability Analysis, Control System Design and 

Nonlinear System Identification, are described in Section 2.6. 

(2.1) Historical Background 

Nonlinear dynamic systems are extremely rich in their behavior 

and are known to exhibit a wide variety of bifurcation and catastrophe 

jump phenomena [37, 38].  In recent years, several developments in 

differential topology have led to a fairly general classification of 

bifurcation phenomena. Following the publication of the thought-provoking 

book by Thorn [1], various applications of Catastrophe and Bifurcation 

Theory by Zeeman have appeared in the literature [2,3,4]. A number of 

_ 

Certain readers may prefer to go through Chapter 3 before reading this 
chapter.  This process would help in associating various abstract 
quantities and concepts defined here with specific aircraft physical 
variables and phenomena. 
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these applications have been to social and biological systems, 

where the lack of a mathematical model causes serious difficulties in 

the application of the theory. This has led to some recent criticism 

of Zeeman's work on Applied Catastrophe Theory [34]. The engineering 

applications of Catastrophe Theory and Bifurcation Analysis, on the 

other hand, are «tell founded since they are based on physical models 

[5,6,7,28,29]. Perhaps the most common engineering applications of 

Bifurcation Analysis are in the fields of Elastic Stability of Struc- 

tures [39], Nonlinear Circuit Analysis [37] and Chemical Kinetics 

[28,30,35,40]. 

A study of the bifurcation phenomena in ordinary differential 

equations was started by Poincare around 1892 [8] and was extended 

further by Andronov and Pontryagin [10 ]. A new impetus was provided 

in recent years by the theory of singularities of smooth maps [11,12,13,14]. 

A full understanding of these results requires use of advanced concepts 

from differential topology. Our approach here will be to illustrate 

important concepts and results through specific examples, relevant to 

engineering applications. We shall discuss four main theorems that 

are the cornerstones of BACTMt  (i) the Center Manifold or Reduction 

Theorem [7,15]> (ii) the main theorem of Catastrophe Theory due to Thorn 

[1] and Mather [14] ; (ill) the Hopf Bifurcation Theorem [15] ; and 

(iv) the Global Implicit Function Theorem of Palais [17] and its exten- 

sions. For illustrative purposes, a simple example of bifurcations and 

catastrophes is presented first. 0 

n 
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(2.2)  Illustrative Example;  Cusp Catastrophe 

Consider a scalar differnetial equation model of the form 

^ m  - x3 + c.x + c_ (2.1) 
at i    z 

where x denotes state and (c ,c ) denote control variables.  Since 

it is a scalar system, the stable equilibrium points may be represented 

4       2 
as the minima of the potential function <J> = x /4 + c. (x /2) + ex. 

These are shown in Fig. [2.1] for different values of c2 and a fixed 

value of c = -3.  It is clear from Fig. [2.1] that for |c | > 2, only 

one minimum exists whereas for |c | < 2, two minima and one maximum exist. 

The maximum represents an unstable equilibrium point so that the system 

u 

Q- 

0 

0 
can never stay in that state.  Suppose c is varied slowly from -3 to 3 

in such a manner that the system state x reaches an equilibrium value 

for each c . Then the state will stay in the right hand minimum corre- 

sponding to x, till this minimum coalesces with the maximum ate = 2. 

At this point with a small change in c , the state will jump catastro- 

phically from x to x .  If c is now reversed, the system will stay in 

state x until c = -2 and then jump to x  . Thus there is a hysteresis 

effect in that the location of the jump depends on the past history of c. 

We now draw a three-dimensional picture in the (x,c ,c ) space 

2 

J snace 

(see Fig. [2.2 ] ).  The surface of equilibrium points is called N and 

its projection on the control space is denoted by C. Notice that the 

p region in control space over which M is triple-sheeted (i.e., the function 
j / 

f (x,c) • 0 has three roots) is enclosed by a cusp. The boundary between 

regions with different number of equilibrium points is called the 

"l"*,^1**M**4-*^"*"^-  -"• •-* • •—••--"-• - •*-- — ' ' '  —,•-—..   ..  - M(     ...    . ... —.  .....id 
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Bifurcation Surface since the equilibrium solutions separate (or 

bifurcate) from each other at this surface. The equations for the 

Bifurcation Surface are easily derived by setting both f(x,c) and 

3f (x,c)/3x equal to zero, i.e. 

§f = 3x2 • Cl = 0 (2.2) 

f (x,c) - x3 + c.x + c2 = 0 (2.3) 

in other words, the coalescing of a minimum and a maximum creates 

and inflection point at which the first and the second derivatives 

of <f)(x,c) vanish simultaneously. 

Elminating x from Eqs. (2.2) and (2.3), we obtain the equation 

of the bifurcation surface as 

IT ci + 4 C2 " ° (2-4) 

The variable c is called a splitting factor since for c < 0, there 

is no catastrophe (Fig. [2.3 1 ) and for c., > 0, there is a catastrophe 

(Fig. r2.41). 

Having defined some of the terminology, we now discuss the four 

main theorems of BACTM. 

* 
(2.3) Four Main Theorems of BACTM 

(2.3.1) The CMtir Manifold or Reduction Theorem T18,19,201: 

Consider a system described by a differential equation 

x - f(x,c) (2.5) 

where x is n x l vector of state variables and c is m * 1 vector of 

*The exact statements of these theorems are contained in Appendix A. 
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control variables and parameters.  Suppose that for c = 0, the 

system has an equilibrium point at x « 0 (this can be achieved by a 

H x-0,  representing 
c-0 

translation in state space). Assume that F » K^ 

the dynamics of the linearized system, has k eigenvalues on the 

imaginary axis (zeros and purely imaginary eigenvalues being included). 

Out of the remaining (n-k) eigenvalues, let j be in the left half 

plane and £ be in the right half plane. Also, divide the eigenvectors 

of F into three groups corresponding to the imaginary axis, left half 

plane and right half plane eigenvalues respectively. Arrange the eigen- 

vectors of F corresponding to k eigenvalues on the imaginary axis as 

columns of an n x k matrix E .  Similarly define matrices of eigen- 

vectors E_(nxj) and E (nx£) corresponding to the left-half and right- 

half eigenvalues of F. Consider, now, coordinate transformations or 

projections of the state vector x onto the space spanned by the different 

eigenvectors as follows: 

u - E x 
o 

T 
v - Ex 

w » Ex 

(kxl) 

(jxl) 

(txl) 

Then the Center Manifold Theorem states that Eq. (2.5) is locally (i.e., 

for small deviations) equivalent to the following system of equations: 

u • g(u,c) 

v - A_v (2.6) 

w • Aw 

T T 
where A - E FE and A • E FE . 
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The important thing to notice in Eq. (2.6) is that the equations 

for v and w are linear and that the dimension k is generally much 

smaller than n.  In fact, the maximum value of k depends on the 

dimension m of the control vector c.  For example, if m = 1, only 

the cases k = 1 (a single zero eigenvalue) and k = 2 (a pair or purely 

imaginary eigenvalues) are obtained in a "structurally stable" way. 

Other values of k are not structurally stable since a small change in 

the dynamics of the system can move the extra eigenvalues away from 

the imaginary axis. Notice further that a minimum of three control 

variables are required to place two eigenvalues of F simultaneously 

at the origin (alternatively to reduce the rank of F by two). General 

relationships of this type between m and k have been given by Arnold [7]. 

A direct consequence of Eq. (2.6) is that the bifurcational study 

of the original nonlinear system is reduced to a much smaller system 

of dimension k. The theorem also implies that any results that are 

obtained on the u-system may be generalized to higher dimensional systems 

by the process of building on or "suspension" [7] with linear systems 

having eigenvalues with non-zero real parts.  For applications, the most 

significant consequence of the theorem is perhaps the central importance 

of the eigenvalues on the imaginary axis. The nonlinear character of the 

system is essentially unfolded through these eigenvalues.  Therefore, 

the determination of surfaces in the control and parameter space where 

one or more eigenvalues cross the imaginary axis is of paramount impor- 

tance in studying the behavior of nonlinear systems. These surfaces 

may be obtained analytically from models or inferred experimentally 

 Ui HKl • -  ^. 
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It 
for real systems.  In BACTM (see Fig. 2.8), the given equations 

of motion for a system (viz. Eq. (2.5)) are linearized around each 

equilibrium point, either analytically or numerically. The eigenvalues 

of each linearized system are computed to determine the control 

conditions at which the eigenvalues cross the imaginary axis.  There 

are cases (e.g. aircraft B) for which only one eigenvalue crosses the 

imaginary axis. Using the Center Manifold Theorem, we can, therefore, 

study their bifurcation behavior in terms of a single state variable. 

The Center Manifold Theorem essentially generalizes and extends the 

linearization procedure used so commonly in control applications. 

More importantly, it reveals when linearization would break down and 

how the model may be extended to capture the "essential" nonlinear!ties 

of the system. 

We now discuss theorems by Thorn [1] and Hopf [16] that characterize 

the bifurcational behavior for k •> 1,2. The classification for higher 

values of k is still incomplete, but the phenomena exhibited by the 

above two cases is so rich that a large number of applications are 

already possible. 
\ 

(2.3.2) Main Theorem of Elementary Catastrophe Theory [1,14]. 
1 

This theorem provides a complete classification of the bifurca- 

tional behavior of finite dimensional systems of gradient-type for 

m £ 5. Gradient-type systems are such that their dynamics locally 

minimize a potential function. For such systems f(x,c) in Eq. (2.5) 

can be expressed as -JT-$(X,C) where <J>(x,c) is a scalar potential 

function. An important consequence of this assumption is that the 

2   2 
linear part of the dynamic viz. F - 9 $/3x is a symmetric matrix 

0 
s 

a 

! 

—'"-—-—»*—•—•--"--ir -nil nrirmrr irr Hi   ii i      - ••• -   -••••      i   mini iilliiini      iUmi 



_—. _ 

SCIENTIFIC SYSTEMS. INC. "23~ 

Ü 

D 
D 

0 
0 

a 

o 
a 

and therefore has only real eigenvalues.  It can be shown [1,7] that 

for m <_  5, only the cases k = 1 and 2 can be obtained in a structurally 

stable way (or occur in "general position" [7] i.e., a slight change in 

the function (j>(x,c) or the parameters would not eliminate the above 

singularities) whereas higher order singularities of F, i.e., k >^ 3 

do not appear in control space dimension of less than 6 in a structur- 

ally stable way. This can also be seen from the fact that F may be 

decomposed into the product of a non-singular lower triangular matrix 

W with an upper triangular matrix G via Gaussian elimination. Then, 

for a stable rank deficiency of 3 in F, a minimum of six elements in the 

the last three rows of G must be zero [35], which requires having six 

independently varying control parameters.  In some practical applica- 

tions, the special structure of F may lead to stronger results, allowing 

one to narrow down the classification of singularities and the resulting 

bifurcations. 

Based on the above discussion and the Center Manifold Theorem, 

the local classification of bifurcations for all finite dimensional 

gradient type systems for m <c 5 can be reduced to systems of dimension 

one (k = 1) and two (k = 2). However, a complete classification of 

singularities depends further on the nature of higher order terms 

in the Taylor series expansion of the function g(u,c) (cf. E\.   (2.6)). 

The general theorem by Thorn [1] is given in Appendix A. We consider 

here the case of four control variables. 

Table 1 lists the seven catastrophes given by Thorn [1] for the 

case of m = 4. The first four are called cuspoids and correspond to 

the case k = 1, whereas the last three are called umbilics and correspond 

to the case k • 2. 
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Control Space 
Dimension, m 

Reduced 
State Space 
Dimension, k 

Generic 
g(x,c) 

Description 
Name of the 
Catastrophe 

1 1 -<x2-c) FOLD    (2.7) 

2 1 -(x +c x-c ) CUSP     (2.8) 

3 1 
4   2 

-(x +CjX +c2x-c3) SHALLOW TAIL (2.9) 

4 1 / 5A  3^  2A -(x +C.X +C X +C.X- 
12   3 C4) 

BUTTERFLY   (2.10) 

V°lV°2 
1 X2+ClVC3 

HYPERBOLIC 
UMBILIC 

(2.11) 

VX2+ClVC2 

•2X1X2+C1X2-C3 

ELLIPTIC 
UMBILIC 

(2.12) 

'2x,x_+2c,x-c_ 
12  1  2 

X2+C2X2"C4 

PARABOLIC 
UMBILIC 

(2.13) 

Table 1:  Seven Elementary Catastrophes for Control Space Dimension, m = 4. 
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The classification within each of the above two categories is 

based on the codimension of the singularity, which qualitatively is an 

indication of the degeneracy of the singularity. The exact definition 

of the codimension of a singularity may be found in ref. [1], but 

roughly speaking, the codimension may be inferred from the number of 

Taylor series coefficients that vanish in the expansion of g(x,c) 

around a given equilibrium point.  In this sense, all equilibrium 

points [equivalently critical points of <|>(x,c)] around which the lin- 

earized system has no zero eigenvalues are singularities of codimension 

zero. For k = 1, it is clear that at least one (linear) Taylor coeffi- 

cient must vanish in the expansion of g(u,c) [cf. Eq. (2.6)] but higher 

order coefficients may also vanish. The dimension of the control space 

m again limits the number of cases that are to be considered since for 

m = 4 and k = 1, only singularities of codimension d < 4 can occur in 

a structurally stable way.  Similarly, for k = 2, and m = 4, only three 

umbilic types of singularities occur as shown in Table 1. As an 

example, consider the cusp catastrophe of section 2.2.  The function 

g(u,c) takes the form g(u,c) • -1 ü + c u + c_). 

a»2 

At u = 0, the first two derivatives of g(u,c) viz |2- 

vanish, whereas A 
u=0 and 

• -6.  Thorn [1] shows that the above g (•) 

0 
0 
I 
1 _ 

.. , ..     r irr - • 

u=0 3u 

function is representative of the class of smooth functions for which 

the first two partial derivatives are zero.  However, to achieve this 

condition in a "structurally stable" way, at least two independent 

parameters or control variables (m=2) must be available.  The specific 

control values can then be obtained by simply setting the first two 

...—,!, • 
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partial derivatives of g(u,c) equal to zero.  If only one control 

variable is available and the first two partials of g(u,c) happen 

to be zero for a particular value of c, then a slight perturbation 

in the function g(u,c) would destroy this property. 

We now discuss the genericity property of the models listed 

in Table 1 for each catastrophe.  These are the simplest representations 

of equivalence classes of dynamic systems in the sense that all other 

dynamic systems in a given class can be obtained by smooth deformations 

of the generic ones. The exact definition of equivalence is rather 

technical, but should be considered carefully in every application of 

the theorem.  (See Appendix A for this definition). 

The practical importance of the generic representation of Table 1 

in applications derives from the following facts: 

(i) Their global bifurcation behaviors have been studied 

extensively and are well documented in the literature [1,21]. 

(ii)  In system identification problems, one or more model 

structures have to be postulated based on physical con- 

siderations and on the observed qualitative properties of 

the system.  The generic models provide a library with well- 

understood dynamic properties and are, therefore, ideal 

candidates for choosing model structures, 

(iii)  The validity of the generic models for physical systems can 

be extended by use of the building on or the "suspension" 

procedure discussed in Section 2.3.1. 

(iv) The low dimension of the generic models makes them amenable 

for further study in problems of experimental design and 

optimal control (see Section 2.6). 
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For illustrative purposes, we show diagrams of the seven elementary 

catastrophes in Figs. 2.5 and 2.6, Only selected three dimensional 

sections are shown.* We now discuss the nature of equilibrium surfaces 

and phase plane trajectories for the cuspoids (cf Fig. 2.5). 

For a Cusp Catastrophe, the maximum number of equilibrium points 

(stable and unstable) for a given value of the controls c is 3 and 

for a Butterfly, the same number is 5. Each equilibrium corresponds 

to a minimum (stable), maximum (unstable) or inflexion point of the 

potential function. At the inflexion point, the second derivative of 

the potential function vanishes and a bifurcation occurs.  In higher 

dimensions (n > 1), the nature of nonzero eigenvalues modifies the 

state space portrait (see Eq. (2.6)). For example, one can get nodes 

(i.e., all eigenvalues of the same sign), saddles (i.e., eigenvalues 

of opposite signs) and bifurcation points (one or more eigenvalues 

zero). The nodes may be further divided into sources or sinks depending 

on whether they are unstable or stable. The domains of attraction of 

the sinks are defined in terms of separatrices of the saddles. At 

bifurcation points, the determinant of the linearized dynamic matrix F 

vanishes and this provides one method for locating the bifurcation 

surfaces without solving explicitly for eigenvalues of F. 

The discussion in this subsection (2.3.2) has concentrated on the 

case of real eigenvalues crossing the imaginary axis. He now consider 

the case in which a pair of complex eigenvalues of F crosses the 

imaginary axis.  It is shown in the next section that this results in 

bifurcation to a limit cycle known as the Hopf Bifurcation, provided 

certain conditions are satisfied. 

•For detailed representation of these catastrophes, the reader is referred 
to the extensive computer study of Woodstock and Poston [21]. 
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FOLD CUSP 

I 

STABLE 

UNSTABLE 

CONTROL,   C 

SIB^LLOWTAIL 

II 

rig. 2.5» Elaaentary Catastrophes in On« State Variable and One 
or Two Control Variable Space. 
(Cuepoids froa Table 1). 
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PARABOLIC UMBILIC 

ll 
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HYPERBOLIC UMBILIC ELLIPTIC UMBILIC 

Fig. 2.6:  Umbilic Catastrophes in Three-Dimensional Control 

Space (See Table 1). 
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(2.3.3)  Hopf Bifurcation 

Qualitatively, Hopf Bifurcation is very different from the 

elementary bifurcations of equilibrium points considered so far. 

For general autonomous nonlinear systems of the nongradient type, 

equilibrium solutions which are closed orbits can exist.  Such 

solutions are also called Limit Cycles or periodic orbits.  It 

was shown by Hopf [16] that a family of periodic orbits bifurcates 

from a simple equilibrium point as a parameter of the system is 

varied in such a way that a complex pair of eigenvalues of the 

linearized system crosses the imaginary axis with nonzero speed. 

Before discussing the Hopf Bifurcation Theorem, we present a simple 

example. The reader is referred to Ref. [5] for further examples 

of Hopf Bifurcations. 

Consider a two-dimensional system in polar coordinates (r,8), 

2   2   2 -1 X2 
where r » x + x and 8 * tan  — and the system is described by 

e = -l 

2 <2-14> 
r • r(c-r ) 

2 
The equilibrium solutions must satisfy the equation r(c-r ) = 0 

which implies r • 0 and r • Sc  provided c > 0.  For c < 0, only the 

equilibrium solution r = 0 exists and the sign of the linear term 

coefficient i.e. c < 0 indicates that r = 0 is a spiral sink. But 

for c > 0, r • 0 solution becomes unstable (spiral source) and a new 

solution r - /c  emerges. The latter corresponds to a stable limit 

cycle whose radius grows as /c. The point c = 0 is weakly attracting 

and represents a Hopf Bifurcation point.  (See Fig. 2.7). 
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(B) Evolution of Attrootort. 

Limit 
Cycle 

Source +      Limit Cycle 
C*0 

Limit Cycle 

FIG. 2.7:     The Hopf Bifurcation 
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Hopf [16] generalized the above bifurcation to higher dimensions 

and gave conditions for the limit cycles to be stable. Further 

generalizations of Hopfs results are contained in Ref. [5,6,23] and 

Appendix A. Examples of Hopf Bifurcation in five-dimensional air- 

craft dynamics at high angles-of-attack will be presented in Chapter 

III. 

Hopf Bifurcation has been studied mainly for the case of a single 

parameter or control variable i.e. m = 1. Using the Centre-manifold 

theorem, this case can be studied in two dimensions since Jc = 2 

corresponding to a single pair of complex eigenvalues crossing the 

imaginary axis. For m >_ 2, a double pair of complex eigenvalues or 

a single pair plus a real eigenvalue may cross the imaginary axis 

simultaneously. The classification of Hopf Bifurcation for these 

cases is still incomplete. However, the cases discussed by Taken [23] 

and Arnold [7] for m = 1,2 are quite rich in their behavior and their 

uses in Hydrodynamic Stability and flutter have been reported [7,24], 

For the case of a scalar parameter u (m=l), the Hopf Bifurcation 

theorem stated in Appendix A requires that the purely imaginary 

eigenvalues cross the imaginary axis with nonzero velocity at the 

critical value of P i.e. d[Re^V)l >  0 where ReX(y) denotes the 
y=0 

real part of the eigenvalue of F which vanishes at y = 0.  If this 

condition is not satisfied and an even derivative with respect to p 

of ReA(u) is nonvanishing, then depending upon its sign, either two 

families of limit cycles or none may bifurcate at \i  • 0. If an odd 

derivative of ReX(y) is nonzero, then at least locally a one parameter 

family of limit cycles will exist. 
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Another requirement of the Hopf Bifurcation theorem is that the 

rest of the eigenvalues be in the left half plane bounded away from 

the imaginary axis.  It turns out that for the aircraft application 

(Chapter III, aircraft H) this condition is satisfied for all the 

cases of interest since one is mainly interested in those situations 

where stability is lost for the first time. 

(2.3.4) Global Implicit Function Theorem 

It may be seen from the discussion so far that an important 

problem in the application of Bifuraction Analysis and Catastrophe 

Theory is the solution of a set of nonlinear algebraic equations for 

different values of a parameter or control vector c.  In particular, 

the bifurcation and catastrophe behavior is intimately connected with 

the fact that these equations have multiple solutions which bifurcate 

from each other or coalesce as the vector c is varied over  its 

admissible domain.  It is also of interest to determine the conditions 

under which a set of nonlinear algebraic equations has a unique 

solution since this implies the lack of catastrophic or jump behavior. 

The global implicit function theorem of Palais [17] has been 

used extensively in establishing the uniqueness of equilibrium 

solutions in nonlinear networks [25]. Consider the equation 

f(x,c) - 0 (2.17) 

Palais' theorem (or its generalisation by Kuh and Hajj [26]) 

states two conditions for uniqueness of solutions vis. (i) non- 

vanishing of the determinant of P - if/?x for all (x.c), and 

(ii) "growth conditions". 

||f(x,c)|| --as | |i|| -- (2.18) 
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The importance of the first condition is clear from the discussion 

in Sections 2.3.1 and 2.3.2 for systems with real eigenvalues of F 

since the first condition implies precisely the absence of bifur- 

cations.  In Chapter 3, we will use this theorem and certain special 

cases of it to study the effect of feedback control on bifurcation 

surfaces.  In particular, if one is interested in control laws that 

change the structure of a nonlinear system from bifurcational to 

nonbifurcational, then the importance of the global implicit function 

theorems is obvious. Notice, however, that the case of complex 

eigenvalues leading to Hopf Bifurcations needs further study since 

in this case the determinant of F does not vanish. 

(2.4) h.  unified Methodology for Applications- 

Based on the above four theorems, a fairly complete methodology 

has been developed for studying the global stability and control 

characteristics of nonlinear systems. This methodology complements 

and extends previous approaches to nonlinear system stability analysis 

such as Liapunov methods and two-dimensional phase plane methods. 

We describe this methodology here in some detail since it is 

different from other applications of Catastrophe Theory reported in 

the literature. Fig. (2.8) shows the four basic steps involved in 

BACTM which are discussed below. 

(2.4.1) Problem Formulation 

In this step, the variables of interest in the system are 

divided into state variables x and control variables c (this may 

include parameters). The qualitative difference between the two 

types of variables is that the former are fast-varying and the latter 

i 
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FIG. 2.8; Steps in BACTM (Bifurcation Analysis and 
Catastrophe Theory Methodology) 

Parameter 
Values 

Problem Formulation» 
Identification of n state, 

and m  Control   Variables ; 
Differential  Equations and 

Potential Functiondf It exists) 

ik. 
Computation of 

Equilibrium   Surfaces in (n*m) 

Dimensional   Space 

JLHI 

Computation  of   Eigenvalues and 
Bifurcation Surfaces 

Validation   Using 
Numerical   Solutions of 

Differential   Equations 
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are slow-varying. Next, the equations of motion for the state 

variables are written down and conditions for the equilibrium 

state are developed.  If a potential function exists in the 

problem, it is identified and related to the equations of motion. 

The admissible ranges of values for the state and control variables 

are specified.  It is useful, though not essential, to identify 

specific unstable and jump behavior known to exist for the system 

under study. 

(2.4.2)  Computation of Equilibrium Surfaces 

This step, in general, requires solution to a set of nonlinear 

algebraic equations. One may either assume values for the control 

variables and solve for the state variables or vice versa.  The 

second procedure turns out to be simpler in many cases.  For example, 

in the aircraft case, the equilibrium equations are generally linear 

in the control variables but nonlinear in the state variables.  Thus, 

it is easier to obtain the control values necessary to achieve a given 

equilibrium state. The numerical techniques used to solve nonlinear 

algebraic equations may be Newton-Raphson, Quasilinearization or 

Conjugate Gradient methods. An efficient numerical procedure is 

necessary since equilibrium states are to be computed for a large 

number of control values.  Furthermore, for each control value, it 

is necessary to compute all admissible equilibrium points.  For high 

dimensional systems with several constraints, fixed-point techniques 

[36] may prove to be quite useful for the computation of equilibrium 

points.  The above computation becomes quite easy if the quilibrium 

••-"" "••         -       
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equations can be reduced to a single nonlinear equation as will be 

demonstrated in the aircraft B case considered in Section 3*.  In 

addition, if this equation is a polynomial equation, then the 

reduction to one of the canonical models of Catastrophe Theory is 

possible. Since the global behavior of these canonical models is 

well-understood, the equilibrium surfaces and the bifurcation 

surfaces are obtained easily.  In the more general case, it is 

possible to employ Quasilinearization techniques to generate all 

the branches of equilibrium solutions by varying one parameter at 

a time, 

i 

(2.4.3) Computation of Bifurcation Surface 

The surface in the control parameter space of singular equilibrium 

points at which the eigenvalues of the linearized system cross the 

imaginary axis are called Bifurcation Surfaces. At these surfaces, 

equilibrium solutions branch out and either new equilibrium points or 

periodic orbits (limit cycles) are born or are destroyed. Therefore, 

Bifurcation Surfaces represent jump surfaces at which the system may 

jump from one equilibrium state to another.  In systems obeying the 

Delay rule [1], the jumps occur only when the current stable equilibrium 

state disappears by collision with an unstable equilibrium state. 

The analytical calculation of the bifurcation surfaces is possible 

only in simple cases.  Therefore, efficient numerical techniques have 

to be devised to solve the set of nonlinear algebraic equations repre- 

senting the Bifurcation surfaces. Thorn's classification theorem of 

*The justification for this reduction is provided by the Centre 
Manifold Theorem (Section 2.3.1) since for aircraft B only a single 
real eigenvalue crosses the origin under all admissible control 
variations. 
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Catastrophe Theory [1] and Taken's classification theorem on Hopf 

Bifurcations [41] can be used to describe the qualitative behavior 

of the bifurcation surfaces near the singular equilibrium points. 

On the other hand, if the bifurcation surfaces are obtained numer- 

ically or experimentally, then the classification theorems can be 

used for validation of the results. 

The location of singular equilibrium points can be done 

simultaneously with the computation of the equilibrium surface if 

a Newton-type algorithm or Quasilinearization is used.  The extra 

work involved is a calculation of the eigenvalues of the jacobian 

matrix or a check for the location of eigenvalues on the imaginary 

axis.  In fact, starting from one branch of equilibrium points, 

one may generate other branches by proper calculation at the 

singular equilibrium points. The bifuraction to limit cycles, 

however, would require special calculations such as converting the 

equilibrium equations to polar coordinates or the construction of 

Poincare maps [5], 

(2.4.4)  Use of Bifurcation and Equilibrium Surfaces 

An amazing amount of dynamical information is compressed in the 

bifurcation and equilibrium surfaces. The jump phenomena, hysteresis 

effects, divergence properties, limit cycles and domains of attraction 

can all be inferred from these diagrams.  It is also possible to devise 

control laws that will move the system from one equilibrium state to 

another minimizing a certain cost function.  The design of control 

inputs to identify the model structure can also be based on the above 

n 

i~~    .••-  



SCIENTIFIC SYSTEMS. INC. ~39~ 

Ü 

D 

information.  The chief characteristic of these surfaces is that they 

contain global information regarding the system.  It may seem that 

for high dimensional systems, an excessive amount of computation is 

required to obtain these surfaces. On the other hand, the computations 

involved are much less than the numerical solution of the equations 

of motion for a large number of control histories. The latter approach 

is routinely used on most practical systems, but can miss many 

significant phenomena since the number of cases to be considered is 

extremely large.  The case of aircraft dynamics at high angles-of- 

attack is a good example of this situation. 

(2.5)  Relationship to Other Methods for Nonlinear System Analysis 

BACTM may be thought of as an extension of the classical phase 

plane method from two to higher dimensions with special emphasis on 

topological properties of equilibrium and bifurcation surfaces.  Two 

Ö 

D 
[1 

in 

of the other common methods for nonlinear system analysis are (i) 

Liapunov methods and (ii) Describing function methods [44].  Liapunov 

methods (first, second and extensions by Lure, Popov and others [42]), 

are useful for determining whether a given equilibrium point or 

trajectory is stable in the sense of Liapunov Stability.  The main 

difficulty in the use of these methods lies in the construction of 

Liapunov Functions.  Takahashi et al. [43] state that the difficulty 

of finding Liapunov functions is of the same order as that of finding 

analytical solutions to differential equations.  Even if a suitable 

Liapunov function can be found, its use in computing the domain of 

attraction and in control system synthesis may be very limited.  BACTM, 
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on the other hand, does not suffer from any of these deficiencies 

since its use can be reduced to straightforward computational steps. 

In a sense BACTM is more general, since Liapunov theorems and 

extensions can be used as part of BACTM to analyze the stability 

of equilibrium points.  In fact, the First Method of Liapunov is 

used during step 2.4.4 and in those cases where only a single real 

eigenvalue crosses the imaginary axis (e.g. aircraft B, Chapter III), 

the use of BACTM leads to a potential function which can be used to 

construct a suitable Liapunov function. 

The describing function techniques [44] are inherently limited 

due to assumptions of harmonic inputs and specific nonlinearities. 

They cannot be expected to provide the global type of topological 

information which is necessary for a complete understanding of the 

aircraft nonlinear phenomena at high angles-of-attack. 

(2.6)  Applications of BACTM 

As described earlier, BACTM leads directly to an understanding 

of the global stability behavior of nonlinear systems as control and 

system parameters are varied globally.  Two other applications of 

BACTM are (i) input design and model structure determination for 

nonlinear systems and (ii) nonlinear control system design.  These 

are discussed below. 

I 
(2.6.1)  Nonlinear System Identification 

The identification of nonlinear systems of unknown structure is 

of great practical importance, but woefully little has been done in 

this field.  In Section 2.3, we discussed four different theorems, 
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all of which have implications for nonlinear system identification. 

The center manifold theorem allows us to reduce the dimensionality 

of the system and provides guidelines for deciding whether a non- 

linear model is required and of what dimension. For example, 

suppose the unknown system is perturbed around an equilibrium point 

and its linearized dynamics is identified using standard identification 

techniques [33].  If the identified eigenvalues and their standard 

deviations indicate that all the eigenvalues are far removed from 

the imaginary axis, then the identified linearized model can be 

regarded as satisfactory. On the other hand, if the 95% confidence 

limits around the identified eigenvalues enclose the imaginary axis, 

then a need for the addition of nonlinearities is indicated.  (If the 

confidence limits are too wide, one may repeat the experiment and 

collect further data to narrow the confidence limits). The eigenspace 

corresponding to the eigenvalues that are most likely to cross the 

imaginary axis would exhibit the "essential" nonlinearity. 

D 

(2.6.2)  Nonlinear Control System Design 

A standard requirement in control system design is to place the 

poles of the system in the left half plane.  It is clear from the 

theorems of Section 2.3 that, if a control law achieves this requirement 

for a nonlinear system at all points in the state and control space, and 

the "growth condition" is satisfied, then the close-loop would be 

bifurcation-free.  This powerful result which follows almost trivially 

from the above theorems is not widely appreciated in the control 

literature.  It may, however, account for the success of linearized 

techniques that are PC— inly used in control system design. 

"• *•  — -•— --     -*—..-.   ... - .„-.,  ..   
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A more difficult problem to solve is to design controllers that 

do not allow the eigenvalues of the linearized system to cross the 

imaginary axis.  The problem is solved easily for the generic models 

(2.7)-(2.13) since the behavior of these models is we11-understood. 

For example, in the cusp model Eq. (2.8), negative feedback on c viz. 

c- = (-k,x + k ) has the effect of changing c, to (c, + k,).  If c, is 
2       1     O 1       1    i. 1 

negative, then by choosing k > c the bifurcations are eliminated. 

The same effect can be achieved for the "Butterfly" case, Eq. (2.10), 

2     4 
by choosing c = -(k x + k x + k x + k ) and choosing the gains 

(k , k„, k.) in such a way that the case shown at the top of Fig. 2.9 

(unique equilibrium point) is achieved.  For more general models, the 

control parameters (c....c.) are nonlinear functions of the physical 
l   4 

control variables.  In such cases, a feedback law on a physical 

control has the effect of changing more than one control parameter 

in the generic models. The design of bifurcation-free control laws 

is more complicated in these cases.  However, we do have a clear cut 

methodology to proceed and to study the effect of different control 

laws on the bifurcation behavior of the system. 

! 

I 

 -   ••— -—•—"-"•   -- mm iiimi--- 
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FI6 2.9:    The butterfly and false butterfly, partitions of the control 
manifold in the"butterflyM cross sections (ct<o).The vignettes   show the 
schematic cross sections of the behavior set   £ at various   stations 
(for the butterfly, the solid lines represent stable,   observable behavior, 
and  the dotted  lines  represent   unstable, unobservable   behaviour, 
and vice versa   for  the  false   butterfly). 
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CHAPTER III 

Aircraft Global Stability and 

Control at High-Angles-of-Attack 

(3.1) Overview 

This chapter presents detailed numerical results of applying 

BACTM to three aircraft configurations, A, B and H.  (See Section 3.3 

for a description of the characteristics of each of these aircraft). 

Section 3.2 contains a discussion of specific high angle-of-attack 

phenomena providing the  main  motivation for the current study. 

Aircraft characteristics and equations of motion are contained in 

Sections 3.3 and 3.4. Numerical procedures for the solution of equil- 

ibrium equations and for the computation of bifurcation surfaces are 

discussed in Section 3.5.  Specific global stability and control 

results for models of aircrafts A, B and H in the form of two- 

dimensional projections of the equilibrium surface, bifurcation 

surfaces, qualitative dynamics, numerical verifications and physical 

explanations for jumps and limit cycles are contained in Section 3.6. 

(This section contains the major numerical results of the current study) 

Certain control and stability augmentation aspects of the model for 

aircraft B are discussed in Section 3.7. Figure 3.1 defines and shows 

the various forces, moments, angular velocities and angular position 

for an aircraft. 

.!' 
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Lift Vector 

Zw>Zs     J Z>* 

PW» 3.1:    Body system of axes. 
Arrows  indicate  positive  direction of  quantities. 
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(3.2)  High Angle-of-Attack Phenomena 

A large number of the performance requirements expected of today's 

maneuverable jet aircraft lead to flight conditions containing large 

values of angle-of-attack (a). Generally, maneuvers requiring a rapid 

increase in lift, such as rolling pullouts, pullups and turns, require 

not only a high a, but may also require a sudden, large value of roll rate 

(p) to properly orient the lift vector. However, as a increases, many 

destabilizing effects associated with flow separation (such as stalling) 

and diminished control effectiveness become prominent; and, if the flight 

condition is severe enough, these effects can cause loss of control of 

the aircraft. Furthermore, while the streamlining trends in aircraft 

geometry certainly enhance both the speed and the capability to perform 

certain kinds of maneuvers, they also tend to compound the destabilizing 

tendencies of high-a maneuvers. For some aircraft the "destabilizing 

tendencies" at high a are so severe that the airframe and/or control 

surfaces can break apart, particularly for such maneuvers as rolling 

pullouts where inertial and gyroscopic coupling is also prevalent. 

The essential feature of aircraft behavior at high a is that it is 

nonlinear in nature. Predominant nonlinear characteristics are junp and 

limit cycle phenomena. The large-disturbance nature of such motions implies, 

furthermore, the presence of significant coupling between the longitudinal 

and lateral modes.  Hence, separation of modes based on small-disturbance 

linearized theory is no longer valid.  Given a significant roll rate p and 

high angle-of-attack a, the coupling phenomenon produces high sideslip 

... -,, «_ MfcytfMMluitffti   m MMl I I __ i i -- -     .-~. »ini..n .... --, 
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angles (ß) which may generate hinge moments surpassing the structural 

limits of the vertical tail. Whether or not structural integrity remains, 

quite often this condition induces jump and limit cycle behavior which 

leads to departure and subsequent loss of control. 

Prominent features of flight in high a regimes include: 

• Roll Coupling; 

The roll coupling problem is an old one dating back to the intro- 

duction of jet aircraft. Phillips [4J produced his results in 1948, 

and the bulk of the main results, including the high angle-of-attack 

phenomena, were obtained in the middle fifties (see Pinsker [13] and 

Rhoades and Schüler [1], for example). Certain vertical tail failures 

were caused by maneuvers combining a simultaneous roll and pull-up 

(rolling pull-out). Large sideslip angles, generated by the combination 

of roll rate and high angle-of-attack, were responsible. 

Previous work in this area, while quite often very productive, 

has been hampered by the lack of adequate mathematical tools for 

dealing with the nonlinear models which are required to simulate 

the high-a maneuvers. Therefore, the studies tend to be locally 

concentrated, so that at least quasi-linear methods are applicable. 

The risk is, of course, that it is thereby possible to overlook 

regions in the control space in which "catastrophic" phenomena occur. 

For aircraft with a short wing span and having most of their 

weight in the fuselage, and performing rolling maneuvers, their 

"catastrophic" phenomena assume the form of sudden changes in the 

values of the dynamic, or state, variables. Such "jumps" tend to 

occur almost entirely without warning, with very little, if any, 

change in control settings. The roll coupling problem, then, does 
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exhibit many of the properties of those dynamic systems which 

may be dealt with using BACTM.  Later sections of this chapter 

will show that BACTM is a useful tool for analyzing in a global 

manner the nonlinear behavior of aircraft performing high-a, 

rolling maneuvers. 

• Low Rudder Effectiveness; This is a consequence of the vertical 

tail (hence, rudder) descending further into the wing's wake 

as a increases; it can lead to nose slice (see below).  Large 

negative values of a also inhibit rudder control effectiveness. 

Result is weakening of "weathercock stability" moment (C «). 

• Reduced Dihedral Effect:  Related to the reasons for reduced 

rudder effectiveness, in that the tail is in the wing's wake, 

so that its lift due to sideslip 3 is reduced. 

Stall: The stall angle-of-attack, a  TT, is the angle of 

maximum usable lift at a given flight condition.  Beyond this 

a, while there may be greater lift potential, severe longitudinal 

and/or lateral-directional instability will most likely arise, 

with ensuing loss of control. 

Wing Rock;  Unconmanded lateral-directional motions, in the 

form of roll oscillations. 

• Nose Slice; Unconmanded lateral-directional motion, in the 

form of yaw excursions. Also known as "directional divergence" [2]. 

•} 
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•     Spin:     Sustained yaw rate r at angles-of-attack greater than 

Üa .     If a is positive the condition is called "erect spin"; 
STAI4L 

if negative, "inverted spin". 

0 
0 
0 
Ö 

:: 

_A! 

• Departure 1 Aircraft motions immediately following loss of 

control. Many of these motions will shortly be identified 

as "jump phenomena". 

• Post Stall Gyration: Uncontrollable motions about more than 

one body axis following departure, e.g., a rapid roll after 

initial yaw divergence ("roll departure"). 

•  Incipient Spin; In the initial stages of spin, there is often 

insufficient balance of the aerodynamic and inertial moments, 

giving rise to an incipient spin condition. When these moments 

are in balance, the condition is called "developed spin". 

•  Recovery Roll: This is roll rate occuring in the initial 

phase of recovery from spin or departure. As a gets smaller 

during recovery, the residual values of roll and yaw rates 

generate a "pitch up" tendency, delaying the reduction in a. 

• Pre-Stall Buffeting: For a less than aSTALL' buffeting intensifies 

somewhat, and a "nose-rise" tendency develops. This buffeting 

typically does not provide adequate warning of an oncoming stall 

condition. However the BACTM presented here is able to indicate 

beforehand the flight condition(s) under which buffeting type of 

conditions will give rise to "jump" catastrophes. 

- -   - •    •-•  •  • -.^ ,-^-J^^M J 
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Finally, typical of the phenomena less directly due to high 

angle-of-attack, but nonetheless amplified by it, is that of adverse 

aileron yaw, in which the rolling motion of the wings generates an a 

differential along the wing. This Aa produces an (abetting) lift 

differential and a drag differential which induces yawing motion in 

the adverse sense of the rolling motion. 

Not all of the above characteristics of high a flight are hazardous. 

Some are merely bothersome, reducing control effectiveness, while others. 

1 

For "pitch-down" maneuvers (see Etkin,p.153),6e > 0, negative a 
converts to negative ß via the rolling motion.  This makes the dihedral 
destabilizing, so that reduction of the dihedral effect is desirable. 

; 

such as the reduced dihedral effect, may actually aid the p:lot in 

reestablishing solid control of his vehicle, if he has an understanding 

* 
of how to utilize it. 

It will be seen later that many of these phenomena can be categorized, 

predicted, and, ultimately, controlled by utilizing the BACTM methodology, 

presented in this report. 

(3.3)  Aircraft Characteristics 

The aircraft used in this study are identified, respectively, as 

aircraft A, B and H.  In future work, it is hoped to apply the results of 

this study to an aircraft of particular interest to the Navy, such as 

the F-14. 

In general, aircraft A and B are distinguished from aircraft H in 

that the latter is modelled by nonlinear aerodynamic coefficients, while 

aircraft A and B are modelled only with linear coefficients (see Table 2). 

The data available, on aircraft A allowed study of the roll-coupling 

problem for zero values of 6e (elevator angle) and 6r (rudder angle) only. 
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TABLE 2:  CHARACTERISTICS OF EXAMPLE AIRPLANES 

A/C A(Haddad W 

m. slugs 

2 
I , slug - ft 
x 

2 
I , slug - ft 
Y 

I , slug - ft1* 

"y& 

'*P 

Z 

m 'a 

n, 

"*6a 

'*6e 

'*6r 

m<5< 

'n6e 

per radian 

per radian 

per radian 

per radian 

per radian 

pei radian 

per radian 

per radian 

per radian 

per radian 

per radian 

per radian 

per radian 

per radian 

per radian 

per radian 

per radian 

per radian 

_n6r 
q,  lb/ft 

per radian 

2 

A/C B (Etkin   [5],p.447) 

745 186.3 

10976 1700 

12400 57100 

64975 13600 

-0.28 -0.081 

0.34 0. 

0.15 0. 

3.85 4.35 

-0.36 -0.435              | 

-3.5 -9.73 

-1.25 -2.1 

0.057 0.0218 

-0.095 -0.0424 

-0.034 0. 

-0.255 -0.442 

0.09 0.0309 

0.06 -0.081 

-0.044 -0.24 

0. 0. 

0. 

0. 

•• 

-1.07 

0. 0. 

0. 

197 

0. 

297.3 

,      .i      i miili» i  ,i   im. - 11 mi m —•    • - — J 
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v,  ft/sec 

s,  ft2 

c,  ft 

b,   ft 

691 

377 

11.3 

36.6 

500 

216 

6. 

36.0 

AIRCRAFT H     (Ref.   [1]) Mach =  0.9;   h = 20,000 ft. 

i     =   (I     -  I   )/I 1 z        y      x 

il = .727 

yß = -.196 

y6a = 
-.0071 

y6r = 
0. 

z = 
a 

-1. 

Z«e = 
-.168 

m = 
a 

-22.95 

m • 
q 

-.987 

m«5e = ' -28.37 

m* = 
a 

-.173 

ma = 
-23.18 

m = 
q 

-.814 

nß = 5.67 

n j 
aoa 

= 1.132 

n • 
r 

-.235 

*2 = 
(i - i )/i z   x  y 

L2  = .949 

n = 
P 

.002 

n  = 
pa 

-1.578 

n6a = 
-.921 

n6r = -6.51 

£ = 
0 

-9.99 

1   X aoa 
= 63.5 

£ = 
q 

.107 

£ = 
r 

.126 

£ = 
P 

-3.933 

w = -684.4 
I 
ra 

= 8.39 

*6a = 
• -45.83 

kr" • -7.64 

z    = 
q 

-.006 

l3 =   (Iy "  V1. 

i3 =   .716 

:i 
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Control derivatives with respect to both 5a (aileron angle) and 6e 

were available for aircraft B and this allowed a study of the roll coupling, 

autorotation and divergence problems. Aircraft H, taken from Rhoades and 

Schüler [1) and Hacker and Oprisiu [6] contains significant nonlinearities 

in the aerodynamic model, and also gyroscopic effects due to engine rotation 

(Ä. , m , m and m ). Note that "normalized" aero coefficients, such as £ , 
q  p  r     q ß 

which are used by Hacker and Oprisiu, relate to the more conventional, 

"dimensionless" coefficients, say C0 , via the factors F • q S /I for 

coefficients C„ , C-  ; or F = F (b/(2V)), for coefficients such as C 
Äß  x 6a Zp 

and C0 . Phenomena such as bifurcations to limit cycles were predicted and 
*r 

verified for aircraft H. Aircraft A, taken from Haddad [3] , is an F100A. 

Aircraft B is a small jet airplane taken from Etkin [5]. It has been 

used extensively in the literature (see Schy and Hannah [ 7]) and has been 

exhaustively studied here, along with aircraft H. The bifurcational proper- 

ties of aircraft H are studied here for the first time. The aircraft A and 

B are chosen for analysis here because of the amount of study they have 

already been subject to, with regard to roll-coupling and similar phenomena. 

Therefore, it is meaningful to compare the results presented in this report 

with earlier work. With regard to aircraft H, the above is true, as well as 

the fact that it is a more comprehensive model - i.e., more non-linear coupling 

terms are present, with values for the coefficients of these terms specified 

at the appropriate flight conditions. These extra terms for aircraft H 

also introduce limit cycle phenomena which are known to exist in 

modern fighter aircrafts. For aircraft A and B nonlinear 

aerodynamic data was not available to permit similar analysis. 

The algorithms used have been kept general so that the effect of additional 

nonlinearities is easily studied.  In this report, only the effect of 

varying the physical controls (6e,6a,6r) is studied, but the same approach 

<***M'*'    —tJ*m*Jg—•^•-^•••'— -- -    '---•"-«.-•—. •.- 
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can be used for studying the effects of aerodynamic and other aircraft 

parameter variations on the stability properties of the aircraft. 

(3.4) Equations of Motion 

The most general set of equations of motion used in this study is 

for aircraft H.  The equations for aircraft A and B can be derived by 

setting some of the parameters in the aircraft H model to zero. Notation 

and terminology used here is taken from Hacker and Oprisiu [6] and is 

given in Appendix C. The complete system, then, is 

* " V + ^afia**6* + V + V + V* + *rar*+ V ' S* + *6a6a + *6r6r 

(3.1) 

q = mto + mq + i-pr + ""jt-06 " m»pB (3.2) 

steady, straight flight, and that u * v, a = o + to s w/V, and ß S v/V. 

Note, however, that the complete rotational coupling and gravity terms 

such as n >^atLf  etc., introduce coupling terms into the equations.  While 

I 

I 

i 

" = nB3 + "aöa**6* + V + V + npc^° ' i3pq + "öa6* + n6r6r      (3'3) 

a = q - pß + z to + Zfe&e +  (g/V) (cos 9 cos $ - cos 9Q) (3.4) 

B = yßß + p(sin a + to) - r cos OQ + yfia*a + y$r
fir +  <9/V) cos 9 sin <J> 

(3.5) 

i  = p + q tan 9 sin $ + r tan 9 cos $ (3.6) 

9 = q cos <£ - r sin <£ (3.7) 

In eqs. (3.1) to (3.7) the air density, speed and aerodynamic 

coefficients are assumed to be constant. These equations also include 

the usual assumptions that to and 6e are measured from trim settings for 

<tl—•»-fc^--»—'•••• • — •  '-•' '•'  IT        - •••-••—••     | -  ••-••; -   _«. 
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such terms are nonlinear in the variables, the coefficients are assumed 

to be constant over the flight regimes of interest. It is also noted 

that the aircraft principal axes have been used here for convenience 

(one benefit being that inertia products vanish), as opposed to the 

stability axes. The latter are defined as the set of wind axes at a cer- 

tain steady-flight reference condition, most commonly with sideslip angle 

ß = 0. Stability axes are generally the reference axes in which the aero- 

dynamic coefficients (stability derivatives) are derived, using wind tunnel 

data; however, transformations to body principal axes of these coefficients 

are straightforward. 

The complete set of equations includes the x-axis force equation 

and the kinematic equation for yaw angle, t/>.  However, under the assump- 

tion of constant speed, and noting that i|) is not an element in any of the 

other equations save its own kinematic equation, the full system reduces to 

the system of seven equations presented here, which hereafter shall be 

called "complete".  In order to successfully explore the high angle-of-attack 

phenomena described in Section 3.2, it is not possible to introduce the 

usual set of assumptions about the aircraft dynamics which lead to a 

decoupling of the above equations into a longitudinal and lateral set, 

each of which may be separately analyzed.  However, it is often profitable 

to neglect the gravity terms, as is done in the derivation of the equilibrium 

surfaces and in the examination of "jump" phenomena, which are not seen to 

depend appreciably on gravity effects. When this is done, the kinematic 

equations for roll (<J>) and pitch (8) decouple from the five force/moment 

equations for the states (p,w,r,a,3), leaving five differential equations, 

D 
0 
I 

p = A„ß +£  . Aa<5a+ £q + Ä,r + Ä.0ßAa + Ap- i,qr + I, 6a + I, 6r r        ß aoa q r ßa p*       1 öa or 
(3.8) 

q = mAa+mq + i,pr + mx 6e - m»pß (3.9) a q L oe a 

—. _^_^. -*- - —-  • ••—  -             
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r • nJJ + n  * Aaöa + n r + n p + n    pAa - i«pq + nx-6a + n* °*                 (3.10) 

o • q - pß + z Aa + z*6e (3.11) 

6 - y«3 + p(sin a + Aa) - r cos a + y. 6a + y. 6r (3.12) 
p        o            o   oa    or 

The neglected weight effects have an important influence on peak 

) 
responses, so that if high accuracy is desired, the complete set should 

be used in generating time histories (Schy and Hannah [7]).  The qualitative 

properties of the solution may, however, be studied from Eqs. (3.8) to 

(3.12). For either set, the following notation is used: 

ma " ma + ma za (3-13) 

m = m + m* (3.14) 
q   q   a 

h  " (IZ * V'1* (3>15) 

i « (I  - I )I (3.16) 
2    z   x y 

*J " «y * V. (31" 

I 

( 

Also y = Y(g/WV), z - Z(g/WV), I  = L/I , m • M/I , n = N/I .  Dotted 
x        y        z 

symbols denote time derivatives.  The aerodynamic forces are y and z, 

and the aerodynamic moments are I, m, and n.  The notation £.„, say, 

is standard for the expression sr , and implies a linearization of 

the contribution of sideslip to roll rate.  Such linearization, unfortun- 

ately, is necessary due to limited data. Finally, the state vector is 

 .—. .—.— —    . - . • - --          A 
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(p,q,r,0t,ß,9,<|>) or (p,q,r,ot,6), depending on the set used, and the 

control vector is (6e,6a,6r), representing angular deflection commands 

for elevator, aileron, and rudder, respectively. 

(3.5) Solution Procedures ,—.—_ 

In the actual implementation of the BACTM method (see Fig. 2.8) 

computer programs were developed which perform four basic tasks: 

1) evaluationg the equilibrium solutions for the equations of motion 

(Section 3.4); 2) determining the stability of an aircraft at these 

equilibrium solutions; 3) computing the bifurcation surface (control 

values at which a stable equilibrium solution bifurcates from an 

unstable one); and 4) numerical integration of the equations of motion 

with respect to time, for specified control inputs. The last program 

produces a calculated time history of the behavior of an aircraft, and 

is used as a verification of the correctness of the results obtained 

from the first three steps. The BACTM method, programmed as described 

above, has been applied to the three aircraft (A, B and H) described 

in Section 3.3.  See Table 2 for their physical characteristics. The 

programs use the most general set of equations of motion [Section 3.4 

Eqs. (3.1-3.7)] for all the aircraft, typically by setting some of 

the parameters to zero.  In this manner, while doing the time history 

solutions, the influence of force or moment terms of interest may be 

studied, e.g., the effect of gravity on the motions. 

In finding the equilibrium or steady-state solutions for the 

aircraft under study, gravity was ignored (see Section 3.6.1.6 and 

3.6.2.6 for a discussion of the consequences of such an assumption), 

and p, q, r, a, and § were set to zero in Eq. (3.1)-(3.5). The last 

four of the resulting five equations were solved for a, a, q, and r 

respectively  and the expressions obtained «*ere substituted into 

*A bar over a variable denotes its equilibrium value. 
Ü 
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Eq. (3.1), giving rise to an 11th degree polynomial in equilibrium roll 

rate, p, with an additional p " term. The resulting equation has the 

following form: 

f (p,6e,6r)6a4 +  f (p,6e,6r)6a3 + f3(p,6e,6r)6a
2 + f4(p~,6e,6r)6a 

+ f (p,6e,6r) = 0. (3.18) 

Eq. (3.18) is a 4th degree polynomial in 6a.  Solutions to this 

equation may be studied by fixing 6e and 6r, and solving 6a for a wide 

range of values of p.  See Appendix B for definitions of the fj.. 

4 
Since the coefficient of the 6a term is very small for the air- 

craft considered, a simple cubic equation was solved using Newton's 

method.  In solving Eq. (3.3) for a, it was found that the resulting 

expression has a denominator which is a function of 6a and p. Thus 

-  N(6a,6e,6r, p) (3 19) 

D(p, 6a,6e,6r) 

No solution will exist at any point where D is equal to zero.  Such 

points do occur for some values of parameters for aircraft H and 

correspond to more than one eigenvalue crossing the imaginary axis 

simultaneously. The study of these singular points would involve 

umbilics or the Hopf bifurcation. 

When the model for aircraft B is considered (see Etkin [5] and also 

Schy and Hannah [9]), the equations are simplified a great deal since all 

the nonlinear aerodynamic terms are neglected. Eq. (3.18) becomes linear 

in (6a,6e,6r) and the bifurcation surfaces are obtained by solving two 

Neglecting the -i.qr term in Eq. (3.8) results in a cubic equation. On 

the other hand, neglecting n , yields a quadratic equation in 6a. a6a 

     •• - --•      LJU^JH 
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linear equations,  viz    (see Schy  [9]   for details) : 

f4<P#öe,6r)   öa + f5(p~,6e,6r) - 0 (3.20) 

3f4 3f* 
~ 6a + -37- = 0 (3.21) 
dp dp 

It is further observed that Eq. (3.20) is a fifth-degree polynomial 

in p so that the most general catastrophe that can be observed is of 

"butterfly" type.  See Section 2.3.2 and in particualr, Eq. (2.10). 

This fact is verified by solving Eq. (3.2) and (3.21) parametrically in 

p (see Section 3.6.1.3). An eigenvalue analysis around each equilibrium 

point shows that no stable autonomous limit cycles exist in this case. 

The above method for determining the equilibrium surfaces often 

encountered difficulties in that for some values of the controls and 

flight condition the derivation was invalid, and care had to be taken to 

recognize these conditions. Further, for each specific application of the 

program to a different set of equations, the program had to be rewritten, 

after a long and tedious algebraic effort. As a result it was decided to 

solve the set of nonlinear equations numerically for one set of control 

values and continue the solution for the other set of control values in 

terms of a differential equation that uses the length of the arc along a 

solution path as the independent variable.  The details of this technique 

will be provided in a forthcoming report. 

0 
0 
0 
J ^        J 

The linearized stability analysis was used to determine the stability 

of a given equilibrium solution.  If the equations of motion are written as, 

P • f (P,q,r,a,ß,  6a,6e,6r) 
P 

q = f (P,q,r,a,8,  6a,<5e,6r) (3.22) 

§ = f-(p,q,r,a,ß,  6a,6e,6r) 
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then the linearized system matrix F is defined as, 

df     3f    3f    3f   3f 

F = 

3p     3q     3r    da    3ß 

3f 
 c 

3p 

3p 

df 

3ß 

3f 

W 
B 

(3.23) 

where the partials are evaluated at a given equilibrium, or trim, 

setting x = (p, q, r~, q 3). If the real parts of all eigenvalues of 

F are negative, the equilibrium is stable and is indicated by an "S" 

on the equilibrium plots. A real eigenvalue which is positive indicates 

an unstable equilibrium solution and is denoted on plots as "U". 

Finally, complex eigenvalues with a positive real component indicate 

an unstable focus with a possibility of a surrounding limit cycle, 

indicated by "L".  It should be noted that since each equilibrium 

solution has five corresponding eigenvalues it is possible to have a 

combination of the above conditions, leading to points denoted by "UL", 

"UUU", etc. 

Of particular importance is the condition arising when a change 

of control input causes an eigenvalue to change from a negative real 

part (stable) to a positive real part (unstable). The set of control 

values at which such a change occurs (i.e. at least one eigenvalue equals 

zero) constitute the bifurcation surface. This surface is determined by 

solving the following set of six equations obtained from Eqs. (3.1)-(3.5) 

and Eq. (3.23): 

! 
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f (p,q,r,o,ß, 6a,6e,6r) = 0 
P 

f (P#q,r,a,ß, 6a,6e,6r) = 0 
q 

f (Pfq,r,o,ß, 6a,6e,6r) = 0 

(3.24) 

0 

0 

0 

f (p,q,r,a,ß,6a,6e,6r) = 0 
a 

fQ(p,q,r,a,ß,6a,<5e,6r) = 0 
p 

det|P(p,q,r,a,ß,öa,6e,6r)| = 0 

In the (6a,6e) plane, (6r fixed), this means solving a set of six 

equations in seven unknowns, producing a one dimensional surface. 

Finally, the most straightforward task is to numerically 

integrate the equations of motion to produce time histories.  This 

is accomplished using a fourth order Runge-Kutta integration routine. 

The program is written to integrate either the set of five equations 

of motion (gravity neglected) or the complete set of seven equations with 

gravity included.  The presence of gravity couples Eq. (3.6) and (3.7) 

into the Eq. (3.1) to (3.5). 

(3.6)  Discussion of Results 

This section is divided into two main subsections viz. section 3.6.1 

on aircrafts A and B and section 3.6.2 on aircraft H. Each subsection is 

further divided into discussions of equilibrium surfaces (3.6.1.1, 3.6.2.1), 

  - - 
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nonlinear root locus (3.6.1.2, 3.6.2.1), bifurcation surfaces (3.6.1.3, 

3.6.2.2, 3.6.2.3), qualitative dynamics (3.6.1.4, 3.6.2.4), numerical 

verifications (3.6.1.5, 3.6.2.5) and physical explanations (3.6.1.6, 

3.6.2.6).  Figures 3.2 to 3.102, which pertain to Sections (3,6.1) through 

(3.7), appear at the end of Section (3,7), 

(3.6.1)  Aircrafts A and B 

Figures (3.2) through (3.25) pertain to aircraft A and B. We 

describe them in detail below. 

(3.6.1.1)  Equilibrium Surface 

Fig. (3.2) shows the equilibrium roll rate p plotted against the 

aileron angle 6a for aircraft A (F100A).  The other control variables 

(6e,5r) are zero. A maximum of five steady states (3 stable and 

2 unstable) are possible.  It is clear from the figure that once 6a 

increases beyond +8° (approximately) a jump in roll rate will occur since 

the middle stable equilibrium branch disappears. A physical explanation 

for this phenomenon which is related to roll coupling will be given in 

section 3.6. 

Aircraft B;  Figs. (3.3) and (3.4) show the behavior of equilibrium 

roll rate with respect to Sa  for a pitch up elevator (6e = -2°) and a pitch 

down elevator (6e • 2°). A marked difference in equilibrium behavior 

is noticed for the two cases.  For the pitch up elevator, only one stable 

(S) equilibrium state exists for -20° < 6a < 20° so that for all practical 

purposes, the aircraft is stable in pitch up except for very high values 

of |6a|(>20°).  For a pitch down elevator (Fig. 3.4), five equilibrium 

states (3 stable, 2 unstable) exist in the approximate range 4°<6a<4° 

and one stable equilibrium point exists for I 6a|> 9°. As 6a is increased 

The exact critical values for 6a will be given in section 3.6.1.5. 

.1 
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from zero, the roll rate increases almost linearly until 6a % 4 at 

which point a jump occurs to a value on the upper equilibrium branch. 

Figs. (3.5)-(3.8) show the behavior of equilibrium yaw rate r, sideslip 

angle ß, angle-of-attack cT, and pitch rate q versus aileron deflection, 

6a. At 6a % +_ 4 , similar jumps occur in other states and the direction 

and size of the jumps can be easily observed from the above figures.  If 

the direction of 6a is reversed, a second jump would be observed at 

|6a| % 9°, resulting mainly in a reversal of the direction of roll rate. 

Notice that, without changing 6e» it is not possible to bring the roll 

rate back to zero in a smooth fashion.  The other possibility is to pro- 

duce via some control action a large change in the initial state of the 

aircraft so that it lies in the domain of attraction of the inner roll 

rate equilibrium branch. The important point is that after a jump has 

occurred, the hysteresis effect due to separated domains of attraction 

prevents the aircraft from returning to prejump conditions unless a 

coordinated control action is taken or an abrupt reverse change in the 

aircraft state is made by some other means. These aspects of qualitative 

dynamics will be discussed further in sections 3.6.1.4 and 3.6.1.5. 

(3.6.1.2) Nonlinear Root Locus 

Figure 3.9 shows a nonlinear root locus plot obtained by varying 

the equilibrium roll rate from -500 deg/sec to 500 deg/sec and com- 

puting the eigenvalues of the linearized system around different 

equilibrium points for 6e = 2°. It is noticed that a real 

eigenvalue crosses the origin precisely at those points where 

bifurcations occur.  Referring to the Center Manifold Theorem, it can 

be seen that the bifurcation behavior for this case can be studied in 

terms of one state variable.  Me have chosen the roll rate as the single 

variable, but it is possible to choose any other state variable in the 

 ^tH^gia^t^/ttmimt^   mmi\     •• innimm—- -~  
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present case.  The reduction of the bifurcation behavior to one dimension 

is achieved easily for aircraft A and B since their model does not contain 

nonlinear aerodynamic terms. As discussed in Appendix B, if the equilibrium 

equations are solved for q, r, a and ß in terms of p, then the following 

fifth order polynomial equation in p is obtained. 

f/ + f^ + f3P
3 + f4P

2 + f5P + f 6 
(3.25) 

L 

1 

where, for aircraft B, 

f = -21.6 

f - -326.4 6a 

f3 • 50.3 «Se + 358.9 

f.  = 5412.6 6a 
4 

f « 11752.8 6e - 1525.9 

f, = -23015 6a 
6 

Notice that f, is constant, (f-ff.ff.-) depend linearly on 6a and 
1 2  4  6 

(f,,f_) depend linearly on 6e. We can reduce the above equation to the 
3  5 

canonical Butterfly model of Catastrophe Theory [1] by the following 

change of variables: 

b - p - f2/5fl (3.26) 

Eq(3.26) Is derived by using the fact that the only difference between 

Eq(3.25) and Eq(2.10) is that the coefficient of the quartic term is 

zero in the latter case.  When the expression p • b + tjSi^  is substituted 

in Eq(3.25) and binomial series expansions are used, it is found that 

 riiiifrnfflnfniiwwiiii um i n i --- - ---- 



.. 

SCIENTIFIC SYSTEMS, INC. 
-65- 

the coefficients c., c_, c. and c, in Eq(2.10) correspond to 

2    3 
-3f2  3f3 

8f; 
C2 = 25f; 

6f3f2 

5f2 

2f. 

c_ = 

c. = 

-9 
125 

24 
3125 

_9 
25 

6 
125 

V2 3 2 

vä 

6 
5 

f4f2 

6 
5 

f5f2 

3f 

6f. 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

. 

0 
0 

: 

The canonical model has the form: 

c      3      7 
b = 6b + 4c b + 3c b + 2c3b + c^ (3.31) 

(3.6.1.3)  Bifurcation Surface 

The bifurcation plot for Eq. (3.31) is well-known "Butterfly" which 

was shown in Fig. 2.9 using c and c as the control variables. The 

bifurcation plot and the three-dimensional Catastrophe diagram for 

aircraft B using (6a,6e) as the control variables is shown in Figs. 

3.10 and 3.11. Notice the interesting fact that if 6a = 0 and 6e is 

increased from 0 to 12°, one crosses point C corresponding to 6e = 9.3° 

at which the equilibrium state ( 6a • 0, 6r = 0, p • 0, r = 0,ß = 0) becomes 

unstable. This is also shown in Fig. 3.12 which should be compared with 

Figs. 3.3 and 3.4 for 6e = + 2°.  It is clear from Figs. 3.11 and 

3.12 that autorotation and departure would occur at this value of 6e. 

Fig. 3.12 shows that, at 6e = 12°, the central branch has become an 

unstable one, while it is seen to be stable in Figs. 3.3 and 3.4, where 6e = 

An analytical criterion has been developed for the determination of critical 

+ 2". 
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6e at which autorotation would occur and is given in Appendix B 

(section B.2). 

Figure 3.13 shows the behavior of equilibrium roll rate with 

respect to 6e for 6a = 0°. The presence of a bifurcation point at 

6e = 9.3° is demonstrated beautifully, with two solutions branching off 

in opposite directions.  Notice that locally in the neighborhood of 

(p = 0, 6e = 9.3°), there are either 3 or 1 equilibrium solutions, but 

globally there are either 5 or 3 equilibrium solutions. A local bifurca- 

tion analysis would simply indicate a loss of stability at 6e = 9.3°, 

but the global analysis also indicates the resulting autorotation equilibrium 

state after the jump.  In the case of Pig. 3.13, the choice between positive 

and negative roll rates would be almost random depending on the sign of a 

perturbation in roll rate at 6e • 9.3°. 

.1 
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(3.6.1.4)  Qualitative Dynamics for Aircraft A and B 

Having generated the equilibrium and bifurcation surfaces, it 

is now possible to derive from them (Figs. 3.2-3.13 , for example) 

extremely useful information about the aircraft behavior.  Fig. (3.2) 

shows a plot of the equilibrium (or steady state) roll rate p for 

«•    o 
aircraft A as a function of aileron angle, with oe = 0 . Note that 

_     * 
there are values of 6a for which five solutions of p exist.  The 

stability and instability properties of the equilibrium points are 

also indicated in Fig. 3.2.  Starting with a state in the linear region 

of the figure (i.e. around p = 0, 6a = 0), small aileron inputs show 

a (linear) variation of p with 6a. Similar plots of a vs. 6a and ß 

vs. <Sa show that ä   remains near its trim setting and ß remains small, 

for small 6a.  However, it is clear from the figure that at values of 

about + 8° for 6a, the basic solution "disappears", and a "jump" occurs 

from one equilibrium point to another.  The well documented and much 

utilized criterion of Phillips [8] gives a much higher value of critical 

6a of about 15°.  Time histories of p vs. 6a show that the tendency is 

for the state to jump to an "attractor" state - in this case, a jump to 

the upper "S" line, (solution branch (2)) which is a stable equilibrium 

manifold, rather than the "u" unstable solution. However, the new 

stable solution represents a large change in the value of p.  Furthermore, 

the other states will experience jumps, for example a from a small positive 

to large negative value. 

*The presence of the qr term in the set of equilibrium equations would 
generate a ninth order polynomial in p, gravity neglected.  See Section 3.6.2. 

._ -..—. -    
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Other interesting features of plots like Pig. 3.2 will be discussed 

below in conjunction with Etkin's aircraft B [5], which has received much 

more extensive analysis here. 

For aircraft B, the elevator is first set at either +2°, to 

correspond closely with the studies done earlier, e.g. Etkin [5] 

and Schy and Hannah [ 9 ]. When Se =-2° (pitch up) a unique equilibrium 

state exists for a large range of 6a values (+ 20°), as seen in Fig. (3.3). 

A large change in the shape of this curve is noted in Figure (3.4), 

which corresponds to 6e = + 2° (pitch-down).  Here, five possible equilibrium 

values of p exist around 6a = 0°, three of which are stable. This lack 

of symmetry about Se is a result of the nonlinearity of the equations. 

Again, there are no gravity terms, and the (-i qr) term in the roll 

moment equation, Eq. (3.8) is neglected in generating the curves of Fig. (3.3) 

through Fig. (3.4).  The equilibrium solutions of yaw rate, sideslip, 

angle-of-attack, and pitch rate are shown, respectively, in Figs. (3.5,3.6, 

3.7»3.8).  In all these figures, note that there are two sets of equilibrium 

states at which jumps may occur, 6a = +4° and + 9°. For example, the 

motion could begin for 6a = 0° (6e is held at +2°); as |6a| moves beyond 

4°, the equilibrium values of the state will change suddenly to new, larger 

values. The yaw-rate r undergoing a large change in particular (nose slice) 

while a changing sign from negative to positive, are two of the most 

drastic effects, although all five states experience jumps, phenomena 

closely related to departure and post stall gyration phenomena described 

in Rutan, et al. [10]. From this initial jump, the equilibrium states 

* 
The effect of the qr term is found to be negligible , as will be 
demonstrated for the model of aircraft H. 

u 
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Ü 
will vary smoothly with increasing |<5a|, even though the "equlibrium" 

state, with its high values, is hardly a physically desirable situation, 

being characterized by severe coupling on all axes.  If |6a| is then 

reduced to 0°, it will be noted that there is no smooth mechanism to 

return the equilibrium solutions to their original linear, small-value 

* 
condition by using 6a alone.  That is, one expects a hysteresis condition, 

resulting in an autorotational state (sustained rolling motion for 6a = 0°) 

Results presented in Sec. 3.6.1.5 will indeed confrm this and other 

observations. 

An asymptotically stable autorotational steady state is actually 

dangerous if the stationary value of at least one other variable than p 

is high. This would then induce either large angles of attack or sideslip 

or high rates of pitch or yaw. To continue changing |6a| in the same 

direction, increasing it to 9°, will initiate the second jump condition. 

The change in values for this jump are even more severe than for the 

inner jump ( |6a| = 4°). 

Figure (3.9) shows a locus of the eigenvalues of the linearized 

system, plotted as a function of p. Critical roll rates (i.e, where 

jumps occur) correspond to values at which an eigenvalue crosses the 

imaginary axis. Note especially that only a real eigenvalue moves over 

to the right half plane in Fig. (3.9). Therefore, only elementary 

catastrophes, i.e., jumps from one equilibrium point to another, are 

observed. More generally (see discussion of aircraft H in Sec. 3.6.2), 

bifurcations to limit cycles may occur when a complex pair of eigenvalues 

crosses the imaginary axis. 

* 
It is possible to force the aircraft out of this equilibrium state, 
but this would require a large transient or external force to cross 
the domain of attraction. 
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* 
The bifurcation plot, shown in Fig. (3.10)  for aircraft B in 

the (6a,6e) control plane indicates that instability is possible for 

6a = 0 and 6e increased beyond 9°.  The phenomenon here is auto- 

rotation and departure, and Figs. 3.11 and 3.12 amplify this prediction. 

Based on an analytical criterion, the 6e at which departure occurs in 

this case is 9.3°, which corresponds to an a of -16.3°.  The analytical 

criterion is very ea^y to apply and involves the solution of at most 

a quadratic equation in 6e. (See Appendix B) 

(3.6.1.5)  Numerical Verification. 

Time history plots obtained by the integration of differential 

equations (3.8) to (3.12) for aircraft B are shown in Fig. (3.14). Also 

given are the (6a,6e) control histories (this model does not contain 

rudder derivatives so that 6r = 0 is implied). The state variables have 

initial values of zero. Over the first 20 seconds, 6e was fixed at 2° 

(pitch down) and <$a varied in steps from 0° to 10°, and back to 0°.  These 

inputs were chosen to verify the jump and hysteresis phenomena predicted 

from Figs. (3.4) to (3.8). Note that the steady state variables jump 

shortly after 6a changes to 10° and reach values which closely correspond 

to those predicted by the equilibrium surface plots of Figs. (3.4) to 

(3.8)-  Furthermore, the return of 6a to 0° at t = 10 seconds does not 

return p to zero, but results in a rather severe autorotational condition, 

a clear example of hysteresis.  Changing 6e properly can induce recovery 

from this autorotation involving the roll axis.  The strategy for 6e may 

I 

* 
The numbers on the figure indicate the number of possible equilibrium 
solutions in that region. 

1 
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be derived from Fig. (3.10); i.e., to move the control point out of the 

Butterfly pocket, where the states are multi-valued, to the single-valued 

region of small motions, set 6e = 0°. This was done, at t = 20 seconds, 

in Pig. (3.14), and the variables do indeed jump toward the initial state 

at t = 0.  It should be obvious that the (global) surface of Fig. (3.11) 

can be used as a starting point to derive control strategies which will 

transfer the aircraft from one equilibrium state to another without jumps. 

In order to investigate more closely the physical nature of the 

jump phenomenon (see next section), several time histories were run in 

the "inner jump" region ( | 6 a | %  4°) of the well-treated pitch down case 

(6e = 2°), and some of these are shown in Figs. (3.15) to (3.24).  For 

all of these cases, the initial value of the state variables is zero. 

Figure (3.15) shows how the state variables respond to step 

variations in 6a, for a fixed 6e (=2°). Each setting of 6a is held for 

3 seconds, to allow the system to reach its equilibrium state. As can 

be seen, there is a definite jump, occurring betwen t = 6 and t = 9 sec. 

The jump is especially sharp for the variables r and a, and in all cases 

these time histories reflect exceptionally well the behavior predicted 

by their respective equilibrium curves (Figs.[3.4] to [3. 8 ]). Note how 

$, q and r decrease in magnitude after the jump, and note how a changes 

sign from negative to positive, as Fig. (3.7) predicts.  (This particular 

feature must be especially disconcerting to the unsuspecting pilot, who 

initially commanded a pitch down mode). There is no evidence either in 

the equilibrium plots or in the time histories of self-induced buffeting 

phenomena or wing rocx (a more complicated model, A/C H, does exhibit these 

I 

.— ... 
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and other limit cycle motions - see Sec. 3.6.2); however, Fig. (3.15) 

does evidence many of the phenomena typical of the high angle-of-attack 

regime described in Sec, (3.2) and extensively elsewhere, including 

reduced rudder effectiveness, nose slice and departure.  Noteworthy is 

the observation that it is possible to exploit the excellent correspondence 

between the equilibrium curves and the time histories by using the 

equilibrium plots, which have the advantage both of being relatively 

inexpensive to generate and of being global in nature.  It is also 

possible to identify the flight conditions and control settings which 

lead to harmful high-a motions. 

The yaw rate curve of Fig. (3.15) seems particularly sensitive 

to incipient jump conditions (the reasons for this will be given in 

the next section), and it provides a clue that, while the jump has 

clearly been initiated by the time 6a = 6°, nevertheless an inspection 

of smaller values of 6a might prove fruitful. 

Figures (3.16) to (3.18) each show time history plots for one 

setting of 6a per solution, again with zero initial conditions.  For 

6a = 3° (Fig. [3.16]), there is no jump, although it takes upwards of 

8 to 9 sec. to bring the system to steady state. Then, as is quite 

accurately predicted by the corresponding equilibrium curves (Figs. 

[3.4 ] to [3.8 ]), a jump occurs for 6a = 4° at about 6 sec. into the 

solution (Fig.13.17]). Yaw rate is the cleanest, and also the earliest, 

indicator of the jump situation. Pitch rate experiences a marked 

increase in amplitude as early as 1.5 sec; however, the same thing happens 
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in the (stable) 6a = 3° case, except that q manages to return to a 

value in the steady state somewhat close to its "first plateau" value 

prior to t = 1.5 sec.  The mechanism, then, influencing this pre-jump 

behavior in q is not related to conditions causing the jump, but is 

a result of the (nonlinear) lateral-longitudinal coupling in the equations. 

In the jump case, yaw rate changes sign (neglecting the cross-over 

at about 1.5 sec. due to Dutch roll transients), upsetting the moment 

balance in the pitch moment equation, which forces q to keep growing. 

Since r manages to stay positive at 6a = 3°, the coupling influence 

on q is a stabilizing one.  Similarly, none of the jump changes in the 

other variables precedes the change in r. 

Finally, the case 6a = 5° is presented in Fig. (3.18) to show 

that a more extreme jump setting will cause the jump to begin sooner. 

The jump does not come to completion noticeably quicker, however. 

The above observations indicate strongly that the region in 

control space for which a jump will occur is separated from the stable 

region by a distinct boundary (in fact, the bifurcation line of Fig. 

[3.10]).  There is no intermediate region in which a jump may or may 

not occur.  One can expect, then, the highly nonlinear situation of one 

value of 6a producing well-behaved, stable, motions, yet a value 

(6a + e) causing a jump. Bifurcation Theory implies this, the above 

observations support the contention, and the plots of Figs. (3.19) - 

(3.22) tend to verify it.  For example, 6a = 3.7° (Fig. [3.20]) is clearly 

stable while 6a = 3.9° is not (Fig. [3.22]).  As before, the initial 

value of all state variables is zero.  From the data which generated the 
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blfurcation surface of Fig. (3.10), the critical value of 6a Is 

given as 3.828°.  This is in close agreement with the results presented 

below, considering the effect of nonlinearities in Liapunov's First Method 

would slightly reduce the stability limits. 

While the examination of time history plots adds much insight to 

the understanding of jump phenomena, there are pitfalls; it is possible 

to overlook conditions which indicate an incipient jump.  This is 

illustrated by the 6a = 3.8° case, Fig. (3.21).  Through t = 12 sec, 

everything seems to be well-behaved, although a sharp-eyed observer might 

detect that, unlike the 6a * 3.6, 3.7° cases, a steady state has not been 

reached.  Compare in particular the A and R (a and r) plots in each of 

Figs. 3.20 (6a = 3.7°) and 3.21 (6a • 3.8°).  Note that they have achieved 

a steady state condition in the 3.7° case while there is (barely 1) noticeable 

oscillation still occurring for 6a • 3.8°. Note also in the 3.8° case that 

the Q and B (g and 3) plots continue to move away from the origin, which 

is not the case when 6a = 3.7°. Further, r has gone negative at around 

10.5 sec, and the previous discussion indicates, therefore, that the 

problem may have reached an incipient jump condition. 

Therefore, the 6a = 3.8° solution was run for 24 seconds and 

Fig. (3.23) shows clearly that a jump has occurred.  Besides showing 

that as little as a 0.1° change in 6a can produce significantly greater 

changes in the aircraft's behavior, due to bifurcation phenomena, there 

is also manifested a definite "caveat" against relying too heavily on time 

histories to define the stability behavior.  The expense of generating these 

runs (compounded, of course, as the model becomes more complex) and the 

fact that only a point-by-point examination over the control space is 

possible, preclude exclusive use of the time histories for a definitive 

evaluation of high-a performance, even though useful insight may be derived 

.-..,,«.„.„— 
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from solutions taken at selected points of interest. The problem with 

using time histories to define the globa bifurcation surface is 

compounded further by two facts:  (1) the search procedure is iterative 

in nature, since one is wise to initiate it with a "coarser" grid of 

control settings (Figs. [3.16] to [3.18J), and then proceed to a "finer" 

grid (Figs. [3.19] to [3.22]); (2) as is evident by the 6a = 3.8° example, 

the closer one is to the bifurcation surface, the longer it takes for the 

jump to initiate; which, if nothing else, adds to the computational require- 

ments. 

The next section attempts to explain what is happening physically 

during a jump, and will report on initial investigations into a formulation 

whose implementation has the potential of providing the pilot (or auto- 

pilot) with on-board real-time warning of incipient jump. 

(3.6.1.6) Physical Explanation. 

In the previous section, predictions derived from an inspection of 

the global equilibrium and bifurcation surfaces, regarding the behavior 

of a jet aircraft (B) in high angle-of-attack regimes, were seen to be 

readily verified by integrating the system equations (3.8) to (3.12). 

The detail of these verifications resulted in some further insight as to 

the mechanism causing a jump condition, and in Sec. 3.6.1.5 some of 

the observed kinematics were described - specifically:  (1) the sensitivity 

of yaw rate r to jump conditions ("jump conditions" being the change in 

the control settings for a particular equilibrium solution in a direction 

which would cause the equilibrium solution to "jump" to a different branch. 

See, for example, Fig. 3.4, where a jump condition exists if 6a increases 

from some value less than about 4° to a value greater than 4°).  (2) the 

importance of coupling as a mechanism for either stabilizing or destabilizing 

_LarfilHkliawajlliggHIBHBi^^Hi^HliMkk^- -    i     MI mi 
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the notion; (3) the manner in which the coupling mechanism and the 

change of sign in r interact to bring about incipient jump (and nose slice). 

The computer runs which generated the time history plots presented 

in the previous section were modified to provide time history plots of 

roll and yaw moment terms which comprise the right-hand side of 

equations (3.8) to (3.12).  Note the absence of gravity terms in these 

equations.  The terms are clustered into groups for plotting, as follows 

(Notation is for aircraft H, which is a more complete formulation): 

Roll (Eq. 3.8) 

Aerodynamic terms 

A - ft ß + ID + ft r 
ß    p    r 

Control terms 

C = ft*a6a + A5rör 

Inertia term 

Yaw (Eq. 3.10) 

Aerodynamic terms 

A - n 8 + nfr + n P 

Control terms 

C " n6a6a + n6r6r 

•""* 
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Inertia terms 

I = -i3pq 

Nonlinear terms 

N = n . <x6a + N pa 
aoa     pa 

Each of these four terms, together with its respective moment 

(p or r), is plotted against time.  ([p or r] = A+C+I+N) It should be 

noted that N=0 in both roll and yaw for aircraft B.  These terms, however, 

do appear in the results for aircraft H.  A typical plot, the roll equation, 

is shown in Fig. 3.24.  This plot represents the case:  aircraft B, 

6a = 3.7°, Se = 2°, 6r = 0°; the companion state variable time history 

is given in Fig. 3.20.  In Fig. 3.24, all terms are converted to units 

2 
of deg/sec . Also, the roll axis I-term is scaled by a factor of 100 in 

order to detect its behavior.  This term has little effect on the presence 

and magnitude of jumps, obviously, but is presented for completeness. 

A run made with i,=0 produced essentially the same results, as discussed 

below. The yaw axis I-term, however, is most emphatically not insignif- 

icant. 

An inspection of a set of these plots for aircraft B in the flight 

conditions depicted by Figs. 3,20 and 3,23 (the 6a=3.7° and 3,8° cases 

respectively) leads to the following conclusion (Figs, 3,24 to 3,27); 

The mechanism of the jump is related directly to the inertia 

properties of the aircraft, the particular flight condition and the 

degree of control surface deflection. As Rhoades and Schüler [1] aptly 

state it, the "real villains" are the (i~pr) and (-i,pq) inertia coupling 

 •  •*•— '••'"• —•  • •* -•-- - * 
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terms which appear, respectively, in the pitch and yaw moment equations. 

To a certain degree, the relationship between inertia coupling and jump 

phenomena has also received widespread recognition among other investigators 

(e.g., Phillips [4], Etkin[5], Pinsker[13], and Schy and Hannah [9]). 

The flight condition and degree of control surface deflection are also 

important factors, however.  Along with the vehicle geometry, these factors 

determine whether the state of the vehicle is in a region of incipient jump, 

or whether it evolves to a stable steady state. 

Further, for the specific case of aircraft B initiating a roll 

maneuver in a pitch-down elevator setting, the lateral-directional 

stability is seen to be the most fragile. This means that the (-i3pq) 

term in the yaw rate equation is the chief mechanism for inducing the jump. 

The following observations with regard to this flight situation are supple- 

mented by referencing the relevant equilibrium and bifurcation surfaces, as 

presented in Sections 3,6.1.1 and 3,6.1.3, and as discussed there and in 

Sections 3.6.1,4 and 3.6.1.5. 

The yaw rate inertia coupling term (-i.pq) is destabilizing in the 

sense that it tries to drive r negative, and this has been observed, by the 

mechanism of coupling, to induce rapid changes (i.e., jumps) in the values 

of the other state variables. The factors most responsible for causing the 

jump, then, are most completely present in the term Hi,pq), The positive 

elevon deflection (+2°) causes pitch down, q negative; positive aileron 

similarly generates negative roll rate p; with i > 0, the coupling term, 

then, is also negative. Also, aircraft which are most susceptible to jump 

phenomena, svrh  as aircraft B, are members of the class of so-called high- 

performance aircraft.  Their geometry is characterized by thin, stubby wings, 

i 

J 
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which means low aspect ratio, and, critically, low I . The relatively 

lower values of I makes i , i and i larger, thereby enhancing greatly 

UL 

the (destabilizing) effect of the yaw rate inertial coupling term.  Another 

effect is that the roll damping term, which involves C» , is related 

directly to wing size. As this and similar terms grow smaller, the 

system's ability to dissipate energy diminishes. 

The sequence in which the magnitudes (and sign) of the important 

force and moment terms change is also significant.  The principal agent 

for this is, again, coupling, as will be seen following a detailed descrip- 

tion of the history of each of the moment terms which make up the roll (p) 

and yaw (r) equations. 

Five terms comprise the roll moment equation: command (£» 6a), damping 

(£. p), dihedral (£03), cross derivative (i  r), and inertia coupling (-i.qr). 
p P r 1 

Of these terms, for the flight condition under discussion, the damping, 

inertia and cross derivative terms are seen as "stabilizing"; that is, 

balancing the moments due to the command and the dihedral term.  In this 

condition, the dihedral effect is destabilizing - the rolling moment 

generated by the command deflection, 6a, is enhanced by the dihedral term. 

In the context here, "destabilizing" terms - after transients have decayed, 

at t - 2 seconds - are negative, and the "stabilizing" ones are positive. 

Refer again to Figs. 3.24 to 3.27. 

For the 6a = 3.7° case (stable), after transient decay at about 

t = 2.0 sec, the stabilizing terms, which contribute the greatest to the 

value of the A-term, and include the I-term, in roll (Fig. 3.24), achieve 

a balance with the destabilizing terms (the dihedral term in A and the 

C-term.  In the yaw axis, the critical I-term is destabilizing, but, for 

- — mini HI i •• —     -— • 



AO-A051 850 

UNCLASSIFIED 

SCIENTIFIC SYSTEMS INC  CAMBRIDGE MA F/6 1/3 
GLOBAL STABILITY AND CONTROL ANALYSIS OF AIRCRAFT AT HIGH ANGLE—ETC(U) 
JUN 77  R K MEHR A. W C KESSEL» J V CARROLL      N00014-76-C-0780 

SSI-TR-77-1 0NR-CR215-2«*8-l NL 

2°F3 
AD 
AO5I850 

/[ 



1.0 %m 

I.I 

3.2 

u m 

1.8 

L25 II U. il.6 

MICROCOPY  RESOLUTION  TEST   CHART 

NATIONAL   BUREAU   OF   STANDARDS 196S-* 



WM"    '     -' 

SCIENTIFIC SYSTEMS, INC.  _80. 

D 
D 

the stable control setting, it is seen to begin to decay (Fig. 3.26). This 

decay again maintains a balance among the yaw moment terms, so that f 

rapidly damps to 0.0. 

For the 6a = 3.8° case (unstable), shown in Figs. 3.25 (roll) and 

3.27 (yaw), 6a, by directly affecting p in the yaw I-term, causes enough 

of an increase in magnitude of this (destabilizing) term so as to disrupt 

the balance.  Fig.3.27 shows this critical I-term failing to decay at all 

(until after 15 sec, after the jump has occurred). As a result of this, 

r goes negative, starting just after the I-term, at about 9 sec. This 

changes the sign of r, which is a coupling "agent" into the roll axis (and 

also the pitch axis).  The most direct effect in the roll axis as a result 

of this jump condition is seen in the I-term, Fig. 3.25. The effect on p, 

however, is quite small (recall that I for roll is blown up in the figures),        -i 

Figure 3.23 shows that the p history reflects this. The behavior of r, as 

induced by the yaw I-term, is most noticeable in the yaw and pitch axis, 

as the histories of q and r (and a and (J) in Fig. 3,23 show.  Although 

the roll I-term plays no major role in inducing the jump, it nonetheless 

may be useful as an indicator, or a detector, of an incipient jump (A more 

"natural" indicator, vehicle kinetic energy, is introduced and discussed 

below). The terms mostly affected by the jump are seen to undergo tran- 

sitions to new, and much different, steady state values following the jump, 

as Figs. 3.25 and 3.27 show. 

It should be emphasized here that these greatly divergent results arise 

from a difference in the value of 6a of only 0.1°, One value, 6a « 3,7°, 

lies barely on the stable side of the bifurcation locus in the control 

space, while the value 6a - 3.8' lies barely outside the stable region. 

• --  -        - -  
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An analogy to this situation of the control state being in the neighborhood 

of the bifurcation line is illustrated by the "Catastrophe Machine" of 

E.C. Zeeman (See Reference [4] of Chapter II).  The machine consists of a 

cardboard disk pivoted about its center, with two rubber bands fixed to a 

point on the disk near its perimeter. The other end of one of these is 

fixed to the mounting board and the "machine" is operated by moving the 

other rubber band, whose free end location may be considered as a control 

point. The angle formed by the fixed point, the pivot of the disk and the 

common point of attachment to the disk, is a measure of the behavior of the 

machine.  It is not hard to visualize that many movements of the control 

point cause a smooth rotation of the disk. However, when the control point 

is at a bifurcation point, the disk will suddenly swing with large amplitude. 

Near this point, on the stable side of the bifurcation point, there is 

basically a balance between "stabilizing" and "destabilizing" moments 

produced by the rubber bands attached to the fixed point and to the control 

point, respectively. This is analogous to the 6a = 3.7° case described 

above. At this point, on the verge of a catastrophe, only a minor distur- 

bance is necessary to induce a jump. The balance between the two roughly 

equal and opposite moments, near the bifurcation point, is a precarious one. 

The value of 5a which is just large enough to force r to go negative (in 

this particular flight regime), as dictated by the yaw I-term, will be 

that value which causes a jump. 

The above discussion is not intended to minimize the importance of the 

dihedral term on roll behavior.  Indeed, a common simplification is to neglect 

totally one of the roll rate jump-indicator terms, (-i qr). Runs made first 

with i, • 0, and then with both i, and I    = 0, both show a jump occurring 
1 1     r 

  



*A run with only i. • 0 still produces a jump for 6e • 2',  6a near 4*, 

6r - 0°. 
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near 6a = 4° (6 = 2°, 6r • 0°), same initial conditions as before.* This 

justifies the simplification. Again,  the principal importance of the r-terms 

with regard to roll behavior lies in their role as indicators of a jump 

condition. 

A study was also done on the effect of adding the gravity terms to the 

system equations. A run made with the same control history and initial con- 

ditions as the one depicted in Fig. (3.14), except for the addition of the 

gravity terms, shows very similar behavior, as Fig. (3.28) indicates.  This 

result agrees with observations made by Schy and Hannah [9], 

A question now arises as to whether or not there may exist a more general 

dynamic indicator of incipient jump conditions.  This is an important concern, 

insofar as the time history of a jump situation manifests only very subtle 

differences, prior to the jump, compared to a neighboring non-jump control 

setting.  If the pilot had a reliable, real-time, on-board dynamic indicator 

of incipient jump conditions, he would then have a much better chance of 

taking the proper action to return to stable control settings.  Providing 

such information to an autopilot obviously has similar benefits.  The studies 

done with aircraft B seem to indicate that monitoring the rate of change of 

total vehicle kinematic energy might very well play an important role in 

creating a general control strategy for avoiding jump phenomena.  In any 

event, it adds useful insight. 

Consider 

E = jmV2+jlÜ»W (3.32) 

where £ is the vehicle total kinetic energy, m is the vehicle mass, V the 

velocity, I the inertia tensor, and u> is the vehicle angular velocity, 

coordinatized in a body-fixed frame consistent with I. 

D 
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E » mV   (aä + ß$)   +  I pp +  I qq +  I rr (3.33) 

where E is the time rate of change of E and the other terms have been 

identified elsewhere. 

Eq. (3.33) was computed for the 6a • 3.7° and 3.8° runs with 

aircraft B, 6e = 2°, and the preliminary results (see Pigs. 3.29 and 

3.30) show that, for stable 6a (3.7°), E is positive and increases during 

the transient period, but then decreases and changes sign shortly there- 

after, then decays negatively towards zero.  For the jump situation, 

however, there is an inflection point in E as it decreases towards 

zero, and it again starts increasing. This inflection point occurs in 

time just before the point that yaw rate goes negative (about 4.5 sec). 

The resultant buildup in E because of E's failure to go negative in a 

jump situation, until the jump is completed, is interpreted as imparting 

the vehicle with enough energy to jump the energy barrier separating 

the current state from a new equilibrium state of higher energy. Once 

the jump has occurred, there is a higher level of energy, and E does 

decay to the origin.  Fig. 3.30 shows this for the 6a • 3.8° jump setting. 

The jump is well underway at about t = 15 sec.  (see also Fig, (3.23) 

for a time history of this case), where E is a local maximum. There- 

after, E falls off in magnitude towards zero. 

The connection between the behavior of the vehicle's kinetic 

energy and jump phenomena is not mere coincidence.  The equilibrium 

•ill 1L. liMianm Mi •   .... .-—..u   - 
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values of any of the state variables, for aircraft B, may be Interpreted 

as local extrema of a potential, or Liapunov, function _£ . For 

example, if equations (3.8-3.12) are solved for equilibrium values of the 

state variables, the algebraic system reduces to a scalar, polynomial 

equation of ninth order for p, in the form (see Appendix B) 

f (p, 6a,6e,6 r) - 0        (3.34) 
P        e 

0 
after q, "r,ci, and "ß have been eliminated using equations (3.8-3.11) 

[A fifth order polynomial in p results if the (-i qr) term in Eq. (3.12) 
i I 

is neglected]. Prom this equation, the Liapunov or potential function . ) 

is defined as 

3$ 

w -f 
p 

p-p 

Thus, J may be easily generated numerically by integrating {-f ) over p, 

with the control variables fixed. J(p) will typically have maxima and 

minima. The extrema of T correspond to the equilibrium points, and the 

expression ~Z—2  will determine whether the extremum in question is a 

maximum or minimum. Since _± * - "75, this is equivalent to saying 
3P2    * . 

that the minima of IS  (stable points) occur where *g- < 0, and conversely x 3P 
for the maxima (unstable points). This is consistent with the results 

of linearization, which require the eigenvalues of the Jacobian matrix j 

to have negative real parts for stable behavior in the neighborhood of 

an equilibrium solution. J changes shape as the controls vary, and the 

point(s) in the control space where the number of extrema ofJ changes 

A potential function can be defined for the case in which the equilibrium 
equations can be reduced to a single equation, as is shown in Appendix B. 

......     ^ _-..... .  -..•^-., .„..,.,• 
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D \ 
(as one or more extrema become inflection points) are bifurcation 

points, and their locus generates the bifurcation surface. A system 

state which is at a local minimum of J which disappears in this way 

(as, say, 6a increases) then "jumps" to a surviving local minimum. 

The family of local minima of J, in the state space are called "attractors". 

For fixed controls, the initial conditions determine which equilibrium 

state is attained by the system as is seen in Fig. 3.31 for a representa- 

tive situation. As initial conditions vary over the p-q space (controls 

fixed) in Fig. 3.31, the solution may or may not diverge. The x's are 

equilibrium points, [extrema of a Liapunov (potential) function J (p,q)]. 

S means the point is a stable node, U, unstable saddles. 

From this viewpoint, j£ is seen to generate a potential energy field, 

with "barriers" and "sinks". Changing the controls, say 6a, is then seen 

as changing the potential energy field of the system. Referring to 

Fig. (3.31), if the solution is in the vicinity of S and 5a changes so 

that U moved toward S,, then a jump occurs for that 6a at which u, merges 

ii__ 

with s , cancelling the extrema. 

Notice that the sum of potential and kinetic energies (or Hamiltonian) 

of the system stays constant.  When the equilibrium state is unstable 

corresponding to a maximum of the potential function, any disturbance will 

generate an exchange of kinetic and potential energies, viz., an increase 

in the kinetic energy and a decrease in the potential energy of the system. 

Fig. 3.30 shows this increase in kinetic energy during a jump condition. 

After the jump, the exchange between kinetic and potential energies is 

completed and the system settles to a new stable equilibrium point. 

"•"'—  --   -      ••—-. - -  
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(3.6.2)    Aircraft H. 

(3.6.2.1) Equilibrium Surface and Nonlinear Root Locus. 

The equilibrium surface for aircraft H is a 3-dimensional surface in 

an eight dimensional space consisting of five state variables (p,q,r,ot,ß) and 

three control variables (6a,6e,<5r).  We present here projections of the 

equilibrium surface on different planes formed by pairs of state and 

control variables.  Following the approach taken for aircraft A and B, 

first the equilibrium roll rate p versus 6a curves are shown for different 

values of (6e,6r).  (Figs. 3.32-3.42). A comparison with similar figures 

for aircraft B (Figs. 3.3 and 3.4) reveals that for aircraft H, up to 9 

equilibrium points may exist. A linearized stability analysis around each 

equilibrium point reveals that unstable equilibrium points may have one 

or more complex eigenvalues with real parts in addition to positive real 

eigenvalues. Points denoted by letter L have one pair of complex eigen- 

values with positive real part whereas points denoted by E have in addi- 

tion a real eigenvalue in the right half plane. Interestingly enough, in 

most of the cases, only one equilibrium point is str ,'*    sea Figs. 3.32 to 

3.41) for a fixed value of the control variable.  :/ .-ve., an examination 

of the root locus plot (Fig. 3.47) shows stability is • .^nerally lost by 

a pair of complex eigenvalues crossing the imaginary axis. Based on 

the discussions in Chapter II, this indicates possibility of Hopf Bifurca- 

tions to limit cycles. A complete representation of limit cycles requires 

a minimum of two state dimensions cho&en to span the eigenspace of the 

purely imaginary eigenvalues. For this reason, limit cycles, which 

are nothing but equilibrium orbits cannot be represented on figures such 

as 3.33. In the next four sections, we would show limit cycles in terms 

of time histories and phase plane plots. We complete our discussion of 

;i 
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the equilibrium plots here by referring to Figs. 3.43-3.46, which 

show the remaining state variables (q,r,ct,3) versus 6a for 6e = 6r = 0° 

and to Figs. 3.59-3.63 which show equilibrium states with respect to 6e 

and 6r. The effect of neglecting different terms in Eqs.(3.8)-(3.12) for 

aircraft H on the equilibrium surface can be seen from Figs. 3.64-3.66.  A 

comparison of Figs. 3.69, 3.65 and the corresponding figure with (-i^qr) 

neglected (not shown here) reveals that there is virtually no difference 

between these three cases. However, Fig. 3.66 shows that neglecting all 

the nonlinear aerodynamic terms for aircraft H has a serious effect, 

particularly on the minor branches of the equilibrium surface.  It is 

interesting to note that for |6a| < 10° the shxpe of the p vs. 6a 

curve is quite similar in all the cases. 

(3.6.2.2)  Hopf Bifurcation to Limit Cycles 

Figures 3.48 and 3.49 show the projection of limit cycles on the 

p-axis for different values of 6a obtained by solutions to Eqs.(3.8)-(3.12). 

A comparison of the two figures shows the hysteresis phenomena, which is a 

consequence of the finite domains of attraction surrounding limit cycles. 

It is seen from Fig. 3.48 that when 6a is decreased from zero to negative 

values, limit cycles appear at 6a fy  -12° when the equilibrium point changes 

from an S to L-type (representing the crossing of a complex pair of eigen- 

values into the right half plane) . The limit cycle first grows and then 

decays in amplitude, finally disappearing around 6a fy -30°. A stable 

limit cycle generally disappears by collision with an unstable limit 

cycle.  Figs. 3.48 and 3.49 only show the stable limit cycles obtained 

by solving the equations of motion. 
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»hen 6a is increased from negative to positive values, Figs. 3.49 

shows that limit cycles exist for 6a values up to -2°. In fact for 

6a • -2°, 6e • 2°, the state portrait consists of at least 5 equilibrium 

points (one stable, 4 unstable) and 2 equilibrium orbits or limit cycles 

(1 stable, 1 unstable). The stable equilibrium point is surrounded by 

an unstable limit cycle which in trun is surrounded by a stable limit 

cycle. Therefore, depending on the initial state, the aircraft trajec- 

tories may either converge to the stable equilibrium point (Fig. 3.48) 

or to the limit cycle (Fig. 3.49). Actual phase plane plots showing 

this phenomena will be presented in section 3.6.2.5. The existence of two 

stable limit cycles for a particular value of 6a will also be demonstrated. 

To complete our discussion of Hopf Bifurcation, we show in Fig. 3.50 time 

history plots where 6a is increased in steps from -10° to -20°. The 

development and growth of limit cycles is seen clearly in this figure. 

(3.6.2.3)  Bifurcation Surface 

Figs. 3.51, 3.52 and 3.53 show the bifurcation surface in the 

control space. Compared to the Butterfly bifurcation surface for 

I aircraft B (Fig. 3.10), the bifurcation surface for aircraft H is much 

more complicated. A three or higher dimensional visualization of the 

equilibrium surface can be obtained by combining Figs. 3.51-3.53 with 

Figs. 3.32-3.42.  The presence of an umbilic (possibly parabolic type 

[14]) is indicated by the shape of curves around N and N'. These regions 

correspond to the case where two distinct eigenvalues of the linearized 

system go to zero simultaneously. The dotted branches (1,1', J,J', K,K', 

L and L') on Fig. 3.51a represent (6a, 6e) points at which a pair of 

complex eigenvalues crosses the imaginary axis, resulting in Hopf 

im»*»~.~^-—^-~- --^^•^M^***lä*M"*^^a*-*^    -• *-•  •-••••••— - ••..-.. • -—I,-  I,, •„,*;*! 
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Bifurcations to limit cycles. 

The bifurcation branches (solid lines) separate each plane into 

a group of individual regions.  Each point (corresponding to a specific 

control setting) in any specific region has the same number of equilibrium 

solutions as any other point in the same region, and the number of such 

solutions is indicated by the number which appears in the region. Catas- 

trophic behavior can occur when the controls are varied so as to cross 

one of the bifurcation branches to a region with a fewer number of 

equilibrium solutions, as some of the stable solutions disappear. 

The bifurcation behavior around M and M' (see also Fig. 3.42) in Fig. 3.51a 

requires further study. A proper representation of this behavior would 

require the use of two behavior or state variables corresponding to the 

case of an umbilic catastrophe.  Further computations are also needed 

to obtain the limit cycle bifurcation boundaries in the (6e,6r) and 

(6a,Or) planes.  Both the above computations, however, are straightforward 

and are not expected to present any additional complications. 

(3.6.2.4)  Qualitative Dynamics for Aircraft H 

Dynamically, the added complexity of the aircraft H model vis-a-vis 

aircraft A and B tends to produce more periodic motions and even tighter 

coupling than the simpler models which describe these aircraft. As a 

consequence of this, one expects to observe some of the phenomena which are 

oscillatory in nature, and which have not been observed in aircraft A 

and B. These would include limit cycle phenomena, buffeting and wing 

rock, in addition to the phenomena which have characterized the high-u 

behavior of the aircraft discussed in Sec. 3.6.1. 
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The basic maneuver to be investigated is similar to the maneuver 

applied to aircraft B; i.e., a pitch down (6e = 2°), with a commanded 

aileron deflection near the stability surface.  For this condition, the 

equilibrium surface plot of (steady state) roll rate p vs 6a (Fig. [3.33]) 

shows the usual linear behavior in the small control deflection region 

which is one of five possible solutions for small 6a. While this plot has 

most of the traits of the corresponding one for aircraft B (Fig. [3.4]), 

there are extra curves for high |6a| which reflect the increased order 

of the equilibrium equation for p.  The 6e = 0° plot shows this even more 

convincingly, as these "extra curves" have moved to the small |6a| region, 

providing nine possible solutions for p (Fig. [3.32]). 

Returning to Fig. [3.33], a linearized stability analysis at selected 

points along the equilibrium reveals whether the equilibrium point has 

stable (S), unstable because of real positive roots (U), or unstable 

because of right-half complex roots (L), eigenvalues.  The L surfaces were 

not present in earlier studies (Sec. 3.6.1), and they indicate regions 

of possible limit cycles.  Refer also to the root locus plot of the 

eigenvalues with p as the parameter, given in Sec. 3.6.2.2 (Fig. [3.47]). 

In Fig. [3.33], the main equilibrium branch starting from (p = 0, 

6a • 0) becomes unstable around |6a| • 14°, when a pair of complex 

roots crosses the imaginary axis (see also Fig. [3.47]).  If the aircraft 

is excited at 6a = -12°, there are five possible equilibrium points, but 

f\l  of them are unstable. The Hopf Bifurcation Theorem predicts the 

possible existence of a family of stable limit cycles. Results which 

confirm these predictions will be presented in following sections. 

If 6a starts from 0° and increases, the solution will begin to 

approach the limits of the linear region of steady state solutions. Just 

prior to the jump, at stable 6a % + 12°, p % + 120°/sec. (Fig. [3.33]), 
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there is observed a small region where stable limit cycle behavior is 

experienced. At this point, one expects oscillations in all axes to 

develop, somewhat like pre-stall buffeting. As 6a increases to a jump 

setting, the equilibrium states jump to limit cycle solutions. Here, 

if |6a| were decreased, there would again result a hysteresis effect, 

culminating in an autorotational limit cycle when |6a| decreases to 0.0°. 

On the other hand, a further increase in |6a| would result in the equilibrium 

solutions entering a region characterized by stable equilibrium points. 

(3.6.2.5) Numerical Verification 

The verification of the limit cycles, predicted in the previous 

section as a result of analysis of the equilibrium surface plots (e.g., 

Fig. [3.33]), is done first by solving the equations of motion 

numerically for different values of 6a from -12° to -40°, and 6e = 2°. 

The results shown in Fig. [3.50] are again in general agreement with 

the equilibrium plot for this case (Fig. [3.32]). The significance of 

these results is that the family of limit cycle oscillations shown are 

believed to be the first case of five-dimensional limit cycles shown 

to exist for an aircraft. The appearance, growth, decay, and extinction 

of these limit cycles is typical of Hopf Bifurcations; and this has 

also been conjectured to play an important role in the onset of tur- 

bulence (see Ruelle and Takens [12]. 

As in the case of aircraft B (Sec. 3.6.1), time history runs were 

made to study the behavior of aircraft H in the vicinity of its "inner" 

jump control setting for 6e = 2° viz. 6a % 12°. Refer to the roll rate 

equilibrium plot (Fig. [3.33]) for a global perspective of behavior in 

this region. Time history plots for aileron values equal to 8,10,11,12, 

14 and 16- are shown, respectively, in Figs. [3.67 - 3.72]). For 6a • 8,10 

•Hi    
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and 11°, the time response is linear, and the steady state values for each 

value of 6a behave as indicated by the corresponding equilibrium surface 

plots. There is, however, a noticeable tendency towards increasing oscilla- 

tory response as 6a increases in this linear region. At 6a • 12°, just 

beyond the bifurcation value, the jump is quite obvious at t = 3 sec., 

and the post jump trajectory grows to a limit cycle. This behavior is 

quite accurately predicted by Fig. [3.33], since Hopf Bifurcations to 

limit cycles occur when a pair of complex eigenvalues crosses the imaginary 

axis from the left half plane. The final two figures in the sequence 

(Fig. [3.71,3.72]) show that the limit cycle amplitude decreases and finally 

vanishes with increasing 6a. This behavior is also in agreement with Fig. 

[3.33], as there one notices the stable (S) region of the upper equilibrium 

branch which exists for high values of |6a|. Except where noted, gravity 

is neglected in these and subsequent runs. 

The hysteresis phenomenon was adequately discussed and verified 

for the simpler models of Sec. 3.6.1, and thus will not be repeated here. 

There is a clear hysteresis situation for aircraft H as well, setting 

up an autorotational state. Figs. [3.73] and [3.74] show the hysteresis 

behavior of aircraft H, with multiple solutions for a = 11.2° and 

6e = 2°. The initial conditions for Fig. [3.73] are p = -80 deg/sec, 

q = -8.1 deg/sec, r = 2.5 deg/sec, ot«= -2.5°, $ • 3.80°; and for 

Fig. [3.74], p • -310 deg/sec, q • -23.69 deg/sec, r • -38.56 deg/sec, 

a = 6.92°, ß = 6.14°. For both cases 6a was set to 11.2 "at t = 2 sec, 

from an initial setting of 6° (Fig. [3.73]) and 13.5  (Fig. I3.74J). 

This is not an autorotational situation, but the figures do show great 

differences in behavior. There is nearly limit cycle behavior in Fig. 

[3.73], with much less severe amplitude and frequency than is seen in 

Fig. [3.74], where limit cycle behavior is very much evident. 
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The distinguishing characteristic of the aircraft H model, with its non- 

linear aerodynamic coefficients, is the existence of limit cycles in the 

motion, over large portions of the flight regime.  BACTM provides a sys- 

tematic approach for predicting the existence of limit cycle behavior, 

exhibited by time histories such as shown in Figs. [3.50] and [3.741. 

As further validation, a "finer grid" study of the response of air- 

craft H was conducted for 6e = 2° and 6a in the neighborhood of the bifurca- 

tion point 6a = 12°. A family of plots for 6a = 11.4, 11.46, 11.48, 11.5 

and 11.6° is presented, respectively, in Figs. [3.75] to [3.79]. The 

initial conditions for these runs are p(0) =-80. deg., q(0) = -8.1(deg/sec., 

r(0) = 2.5 deg/sec, p(0) = -2.5°, 0(0) = 3.8°.  From these plots, it can 

be deduced that the critical value of 6a at which damping of an oscillatory 

mode is zero lies between 11.46 and 11.48°. For values of 6a just short of 

the critical value (Figs. [3.69, 3.75  3.76]), there is excitation of steady 

amplitude and frequency oscillations of very low damping. The case 6a = 

11.46 (Fig. [3.76]) was run for 64 sec, much longer than the aircraft 

characteristic times, and there is only a mild decay in amplitude. There- 

fore this value for 6a is the critical value, for all practical purposes. 

Once the jump has occurred, for 6a = 11.48° and 11.50° cases, there 

is no question that growth to a limit cycle is the predominant phenomenon. 

Again, the state space plots of Sec. 3.6.2.6 (Figs. [3.87] and [3.88]) 

amplify this result. Observe also that the limit cycle magnitude is greater 

for the smaller value of 6a. Fig. [3.80] also shows this tendency, as it 

presents a time history for 4 different values of 6a, 13.5, 12., 11.4 and 

11.2°, with 6e = 2° and 6r • 0°, as usual and the state initial conditions 

on the post-jump equilibrium branch. Figs.[3.87] and [3.88], plotting p vs. 

the other state variables, runs for 72 sec, by which time the limit cycle 

<n*>litude is dearly established. The time history shown in Fig. [3.80] 

  — 
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runs for t - 32 sec, stopping shortly before this steady state amplitude 

is reached. 

(3.6.2.6) Physical Explanation 

The distinguishing feature of the model for aircraft H is that the 

added nonlinear aerodynamic terms enhance the overall nonlinear!ty and, 

specifically, cause limit cycle behavior over large regions of the control 

space.  Even though, physically, limit cycles are very different from 

equilibrium points compared to the non-oscillatory jump phenomena observed 

for aircraft B, their sudden appearance may be thought of as an oscillatory 

jump. 

As before, the roll and yaw moment equation will be examined as being 

typical of the remaining state variables. For aircraft H, there are four extra 

moment-generating terms: the pitch cross derivative, (l  q), and three 

terms linear in ß, r and 6a, with the coefficient being proportional to 

ct, (£ ra), (l    aß), and (i „ 6a).  The inclusion of such terms obviously 
ret      ßa aoa 

makes the aircraft H model more realistic in high-a regions. The added 

terms are all nonlinear, and they tend to make the behavior generally 

more oscillatory. However, the basic conclusions of Sec. 3,6.1 remain 

valid here also. As before, yaw rate is the variable most sensitive to 

the mechanisms which create a jump situation; i.e., i~, which is large 

when I is small (as it is for high performance aircraft) and p and q, 

which respond directly to the control settings 6a and 6e. For 6e fixed 

at a pitch down setting (2°), and for increasing 6a, the yaw moment term 
i 

(-i_pq), will eventually force the secular part of r to remain below zero 

(see Fig. [3.77]). Thus, as before, an imbalance between the aero- 

dynamic and inertia moment terms, produced by the large values of 6a 

and i- in the latter, causes the jump to occur. Figs. 3.83 to 3.86 show the 

~   — - •-T--I - • • 
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roll and yaw moment time histories for a non-jump (6a = 10°) and jump 

(6a = 11.6°) control setting.  See Section (3.6.1.6) for definitions 

of the A, C, I and N terms; and Figs. 3.68 and 3.79 for the state 

variable time histories. The time history initial conditions for these runs 

are p = -80°/sec, q = -8.1°/sec, r = 2.5°/sec, a = -2.5°, 3 = 3.8°. 

Fig. 3.79 shows that, for 6a = 11.6°, the jump is underway by about 

t = 6.0 sec. However, the roll I-term's behavior (Fig, 3.84) is seen 

to begin to diverge from the stable (6a = 10°, Fig. 3.83) I-term by 

5.0 sec. As explained for the aircraft B case, this term is not involved 

in producing the jump, but seems to indicate well, if magnified enough, 

the presence of an incipient jump. Note also, particularly in the 

stable r plot, Fig. 3.85, that the nonlinear (N) terms play a notice- 

able role in the motion. Further, note that the yaw I-term is greater 

in magnitude than the control (C) -term. The yaw I-term for the unstable 

6a, 11.6°, Fig. 3.86, begins to diverge in behavior from the stable I-term, 

Fig. 3.85, at about 5.0 sec. As was observed with aircraft B, this 

term's behavior for aircraft H is similarly the main catalyst for 

inducing the jump.  This is clear in Fig. 3.86 as the I-term's growth 

preceeds that of the other terms. As before, this causes r to assume 

consistently negative values, and the coupling effect in pitch and the 

other variables is obvious from Fig. 3.79. 

Will II  ~—«—...          •-• • •••  --- 
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A study was made to compare the effect of gravity terms on the 

dynamics of aircraft H. Time history plots for dynamics without, and 

with, gravity terms are presented, respectively, in Pigs. [3.81], and 

[3.82]. The initial conditions for both runs at 6a • 2° are p = 0.40 

deg/sec, q = -2.80 deg/sec, r = -.16 deg/sec, a • -2.35°, ß = 0.18°. 

The elevator setting is 6e = 2° throughout. As for the aircraft B study, 

the results are quite comparable, the most noticeable difference here 

being the smoothing of peaks near the jump region when gravity is 

included. The jump consequently does not occur until 6a = 14°, slightly 

higher than the critical value of ja when gravity is neglected. 

A limit cycle is a self-sustained oscillation in a dynamic 

system.  The amplitude of this oscillation is not dependent on the initial 

conditions of the - roblem, as is the case for linear systems, 'it it 

depends on the nonlinear nature of the system model itself.  See Figs. 

[3.74] and p.77] for examples of limit cycles. 

Hopf has shown that a limit cycle always exists under certain 

mild conditions when a pair of roots of the linearized system is purely 

imaginary.  The Liapunov Center Theorem is one consequence of Hopfs 

results, and the Liapunov stability analysis of the equilibrium solutions 

- in  l - --       - •—-       •- --  - - -   
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for aircraft H have shown that the conditions are present for bifurcations 

to limit cycles.  Time histories of several flight conditions (see, 

for example, Figs. [3.77J, [3.78], 13.81], and [3.82^) have 

verified this behavior. 

Phase plane plots of the state variable p (roll rate) vs. the 

remaining variables (q,r,a,ß) demonstrate the evolution of limit cycles. 

An entire set of such plots is presented in Figs. [3.871 and [3.88]. 

These plots represent a run made with aircraft H with 6e = 2°, 6r = 0°, 

öa = 11.46°, and initial conditions p = -310 deg/sec, q = -23.7 deg/ 

sec, r * -38.6 deg/sec, a - 6.92°, and ß = 6.14°.  Due to scaling 

within the plot algorithm, portions of the large amplitude limit cycles 

have been cut.  The initial conditions place the equilibrium state on 

the "outer" solution branch of Fig. [3.33]. A very similar time history, 

also on this equilibrium branch, but with time as the independent variable 

is given in Sec. 3.6.2.5, Fig. [3.74 ].  The major differences are that 

in Fig. [3.74 ], the control settings are 6a • 13.5°, and then 11.2° 

for 30 sec, whereas in Figs. [3.87] and [3.88], 6a = 11.46° is used for 

72 seconds to allow the limit cycle amplitude to reach a steady state 

value. 

If the above run is repeated, except that the initial conditions 

are on the "inner" equilibrium solution branch - i.e., p = -80 deg/sec, 

q » -8.1 deg/sec, r - 2.5 deg/sec, a • -.25° and $ • 3.8°, the solu- 

tion is "attracted" to a completely different region, as Fig. [3.89] 

(p vs. q) shows, in comparison to Fig. [3.87]. Figure [3.76] is the 

companion plot to Fig. [3.89], showing time as the independent variable. 

A more complete series of time history runs, varying the intial conditions, 

 --  -• • — 
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would define the barriers between attract regions in, for example, 

the p-q plane. However, the equilibrium surfaces themselves perform 

this function far more efficiently. 

Fig. [3.90] shows how a change in elevator setting to a value 

outside of the "Butterfly» region of the bifurcation surface affects 

the subsequent motion. The run is the same one as that which generated 

Fig. [3.88], except that the initial conditions were right on the 

Fig. [3. 8] limit cycle, and, at t «= 8 sec, 6e was changed to -2°. 

As can be seen, there is very erratic behavior (plots of the other state 

variables are similar, due to coupling) in the course of transition 

from the limit cycle to a stable, steady state solution. The 

equilibrium surface predicts the results, but not the transient behavior 

very much in evidence in Fig. [3.90] • 

Finally, runs were made from the same initial conditions as 

the runs started from the "inner" equilibrium branch «e - 2*,    r = 0°; 

however, 6a was set to 10.6°, a non-jump value, for one run, and then 

to 13.5°, which forces a jump. Plots of p vs. 0 for both cases are shown 

in Fig. [3.91], which shows the effect of the "disappearance" of an 

"attractor" equilibrium solution, as it merges with an unstable equilibrium 

solution for changing 6a. 

As with aircraft B, the behavior of kinetic energy of aircraft H under 

jump and non-jump conditions was studied, and Figs. 3.92 and 3.93 show E and E 

vs. time for 6a - 10° (no jump ) and 6a = 11.6° (jump) settings of a 

run with 6e - 2°, 6r - 0°, and zero initial conditions. The results 

indicate large exhanges of kinetic and potential energy typical of limit 
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cycle motions.  Note the smoothness of the (decaying) oscillations of E 

in the stable case, Fig.[3.92], as opposed to the behavior of E in Fig.[3.93]. 

Table 6 and Fig. [3.79] also show non-sinusoidal inflections in E at 6.5 

and 7.5 seconds, hinting of a jump, which does occur at about 8 seconds. 

Unlike aircraft B, E, the energy, does not asymptotically approach a new, 

higher value.  This is due to the limit cycle nature of the jump state.  The 

time history of the 6a = 10° run is shown in Fig. [3.68]. 

(3.7)  Control and Stability Augmentation (A/C B) 

The effect of feedback controls on the bifurcation behavior may 

be studied by using Eqs. (3.26)-(3.31).  It is seen from Fig. 2.9 that 

large positive values of c produce unique stable equilibrium solutions. 

Consider a negative feedback on 6a from roll rate viz. 6a = -K.p + K 

where K. > 0.  This has the effect of changing all the f's, but for 

simplicity, let us concentrate on the change in f' and f'.  The new 

values, denoted by ft  and f' would be: 

f'  = 326.7^ - 21.64 

f"  = 11752.78 6e + 23015K - 1525.9 

(3.34) 

(3.35) 

Thus, negative feedback (K > 0) increases the values of f' and 

f"   and by a proper choice of K , both can be made positive.  The effect 
5 1 

on c is seen from the last term in Eq. (3.16).  It is seen that for 

K = 0 and 6e > .13 rad, this term is negative and increases with 

6e. The net-effect is a decrease in c. which eventually results in 

unstable behavior for (6a = 0, p = 0). With K > 0, this problem can 

be avoided and c can be increased to a v&lue for which the stable region 

around (6a = 0, p = 0) is considerably enlarged.  The effect of more 

complicated feedback laws can also be studied in similar fashion. 

•    - •  
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Control and Stability Augmentation (A/C H). 

Bifurcation and equilibrium surfaces can be of great help in 

deriving stability augmentation systems or feedback control laws, 

which need not necessarily be linear. An example involving the 

aircraft H model will now be considered. More detailed analysis will 

be presented in forthcoming reports. 

A combat-type maneuver of basic interest is the rolling pullout. 

This maneuver typically calls for coordinated deflections of all three 

controls (6a,6e,6r).  Lateral response is often enhanced by the addition 

of the aileron-rudder-interconnect (ARI) and stability-axis yaw damper 

command augmentation systems [11,15]. The ARI system causes the rudder 

(6r) to deflect in conjunction with roll control inputs (5a) so as to 

eliminate adverse yaw due to these surfaces, and to improve roll response 

in general. Typically, the ARI gain(s) are scheduled with angle-of-attack. 

In implementation, more and more rudder deflection results from a lateral 

control stick movement, and less and less aileron deflection, as angle- 

of -attack increases. The stability axis yaw damper deflects the rudder 

(6r) in response to a signal proportional to (r-pa). The purpose of this 

feedback is to reduce sideslip excursions during rolling maneuvers at 

high angles-of-attack, and to improve lateral-directional damping in 

general. 

Equivalent lateral stability augmentors can be derived from the 

bifurcation surfaces for aircraft H. The example given here shows results for 

relatively small deflections of 6e. The ARI law may be written as 

6r - k(6e)6a (3.36) 

: 

i / 
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In Eq. (3.36), while 6r is linear in 6a, the gain k is actually 

a parameter varying with 6e setting, as will be seen below. This 

law can be rather straightforwardly extended to a more general form 

of the type 

6r = f(6a,6e) (3.37) 

Details of this extension will appear in future reports. 

The form of Eq. (3.36) may be ascertained directly from the 

bifurcation surface, of which Fig. [3.53] is a typical example. 

Fig. [3.53] shows the bifurcation surface in the (6a,or) control plane, 

with 6e = 0°.  In this figure, bifurcations in the form of jumps occur 

when a (6a,6r) locus crosses one of the branch lines. The branches 

A and B are of particular interest because they are associated with 

lower values of equilibrium roll rate, p; hence, these branches would 

mark the first jump encountered as (6a,6r) move away from the linear 

(trim) region, which is centered at the origin. 

If 6r is fixed during a roll maneuver (6a varies), then the 

(6a,6r) locus in Fig. [3.53] is a horizontal line.  If 6r = 0°, this 

line intersects branches A and Bat |6a| =11.5°.  The corresponding 

equilibrium plot, p vs. 6a for 6e = 6r = 0°(Fig. [3.32]), confirms 

that jumps will occur at these settings, when the problem starts near 

6a » 0°. Thus, the "non-jump" region for 6e - 0° and 6r • 0° is |6a| < 

11.5*.  However, this region can obviously be expanded by relating 6a 

and 6r so that their locus passes through the points N and N' in 

Fig. [3.53]. The simplest locus is a line of form (3.36), with k • 

-0.152. Fig. [3.94] shows the p vs. 6a plot for this case. Notice 
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that the trim (basic) stability region has been expanded to 15a|£ 17° 

from • 11.5° for the 6r • 0° case. Time histories for the 6r = 0° case and 

the  ARI  case are compared in Figs. [3.95 and 3.96], respectively. 

It is obvious that ARI aids not only in stability, but in performance as 

well. Note that ARI causes decoupling, even for the large 6a values. 

In order to excite the instability at 6a = 18.5°, it was necessary to 

hold that setting for much longer than the 8 sec. shown in Pig. [3.96a]. 

Fig. [3.96b] shows that when 6a * 18.5° for an extended time, a very mild 

divergence ensues.   Thus, for ARI when 5e = 0°, the effective range of 6a 

is increased upwards to |6a| =36°.  It is therefore obvious, from the time 

histories shown, that stability augmentation control laws can rather easily 

be derived from the bifurcation plots. 

If k is not the value which intersects the points N and N', the 

results are seen to be less than optimal. Fig. [3.97] shows the 6e - 0* 

case with k * +0.152 (the "optimum" value of k for this case is -0.152). 

The plot is p vs. 6a. Note how the stable region for 6a has shrunk to 

+ 8°.  (Other equilibrium branches are not shown for the purposes of 

clarity). 

When elevon is nonzero, the use of the equilibrium plots becomes 

more important, as well as the bifurcation plots. This is because limit 

cycle behavior enters the major branch. Fig. [3.98] demonstrates this, 

showing a pitch down case, 6e = 5°. Thus, for combined longitudinal- 

lateral maneuvers, where elevon as well as rudder-aileron deflections 

become prominent, there are two kinds of stability criteria that must be 

considered: the first, seen already for the 6e - 0" case, is the j«p in 

There is one unstable root at this value of 6a, which has a time constant 
of 14.8 sec. 
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stability, indicated by the bifurcation loci; the second is the entry into 

a limit cycle region, which is seen to occur for magnitudes of 6a which 

are less than values at which jumps occur.  In Fig. [3.98 ] , the jumps 

occur at |6a| - 35°, while limit cycle behavior may be expected to begin 

at around + 20°. This figure, for the particular case 5e = 5°, was plotted 

using the AM relationship (3.36), with the "optimum" k being used (k = 

-0.250). As for the 6e • 0s case, the value of k is determined as the slope 

of the line which connects the points N and N' on the relevant bifurcation 

surface. Fig. [3.99].  It is worthwhile to consider the "optimum" gain k 

as the slope of the line which connects two points which are on loci 

marking the onset of limit cycle behavior. The two points would be selected 

so as to maximize the stable range of da. 

In Fig. [3.99], only the major bifurcation branches are plotted. 

Note that, for je • 5°, the non-jump region of 5a is generally quite 

insensitive to variations in k (the ARI gain). But it turns out for this 

case that the non-limit-cycle range of 5a is greatest for the value of 

k (-0.250 here) which connects the points N and N'. More work is being 

completed in this area, viz., the effect of the ARI gain k on both stability 

ranges for 5a: limit cycle and jump (roll departure). The results will 

appear in forthcoming reports. 

Time history results for the pitch-down roll maneuver case are 

presented in Fig. [100a].  It can be seen that there is limit cycle behavior 

both at the pre-jump aileron setting of 24°, as well as the post-jump value 

of 40*.  The jump occurs at around 17 sec, just after 5a is changed to 40*. 

These results are consistent with the predictions of Fig. [3.98]. 

^  -*——•——*~—^—     -.   — — . - 



"MBHMWHHHHiBiMMBHaiHMHHHHBRnraMHi^nnRnnv - •'    .. 'nmmmmmms 

SCIENTIFIC SYSTEMS, INC.  

The studies conducted thus far show that definite Improvement in 

performance results from doing control system design using the bifurcation 

surfaces. Even for the most simple situation, a control law of the form 

(3.36), there are significant improvements. For the above pitch-down case, 

the ARI p vs. 5a plot, Fig. [3.98], shows that limit cycle behavior will 

be avoided if |6a| <18°.  If there is no ARI (or - 0°; see Fig. [3.34]), this 

region is only + 13°.  In this case (and also for the fie • -5° case, pre- 

sented below), the jump stability region is not particularly sensitive to 

k, as Fig. [3.99] indicates. However, for smaller values of 6e, as noted 

earlier, jump stability is particularly sensitive to It (for smaller values 

of 6e, i.e., |6e|£4°, limit cycle behavior is not predominant on the major 

equilibrium branches). Time histories are compared in Fig. [3.10°lfor the 

6e - 5° case. For the same 6a history, there is a noticeable Improvement 

in response when ARI is active (Fig. [3.100a])»as opposed to no ARI 

(fir - 0° Fig. [3.100b]). Note especially the reduced amplitudes for all 

of the fia settings, and the lack of oscillation, after transients, at 

5a - 12°. The rolling pullout maneuver is a combined pitch-up (fie < 0°) 

and roll, executed together.     For the case fie - -5°, the "optimum" 

ARI gain k - 0.118. This gain is optimum in the sense that the rudder 

control is specified by Eq. 3.36, and in the sense that k has a value which 

is the slope of the line connecting the N-N' points in the relative bifurca- 

tion surface. 

The equilibrium plot, p vs. fia, for aircraft H in a rolling pullout 

maneuver is given for the ARI (k - 0.118) and non-ARI (k - 0°; fir - 0°) 

cases in Figs. [3.101 and 3.40], respectively. As for the fie - 5° case, 

i 

1 
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a comparison of these figures clearly shows that limit cycles cure 

avoided over a much larger 6a range (+32°) with ARI than without (+20°). 

Additionally, time history comparisons of the ARI and non-ARI systems 

(Fig. [3.102]),as for the 0 and 5° settings of 6e, show improved response 

over all of the values of 6a.  Note particularly that (X does not change 

sign when 6a moves to 30° from 12°, and longitudinal buffeting (a oscilla- 

tions) is greatly reduced at this setting of 6a.  Furthermore, roll rate 

p has a lower average value at 6a = 30° for the ARI case, as can be veri- 

fied by comparing the respective histories of roll angle, $.  Note further, 

for 6a = 30°,  that the frequencies of oscillation are reduced with ARI, 

and that there is a tendency for the oscillations to dampen out. Fig. 

[3.102b]shows the damping out of the variables more clearly, as 6a is 

held to 30° for 16 sec. This tendency is not evident in the non-ARI case; 

indeed, 6a = 30° is a setting for possible limit cycle activity, according 

to Fig. [3.40].  The time history Fig.[3.102c]at 6a = 30° certainly 

supports the results of Fig. [3.40]. 

_ 
Plots of the ARI gain k versus equilibrium angl^-of-attack a show 

nonlinear behavior in the ot < 10° region; however, the values of k as 

derived from the bifurcation surfaces are in the neighborhood of the ARI 

gain values presented in [11].  Results of a comparison of the BACTM ARI 

gain with others [11,15] will be presented in a later report. At this 

time, it seems that BACTM is fully capable of deriving satisfactory 

U command augmentation schemes, as the above example indicates. 

Ü 
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Notation for Figs. 3.2 - 3.102 

p,p = Equilibrium Roll rate ~ Deg/Sec 

DR, 6r = Rudder Angle ~ Deg 

DA,6a = Aileron Angle ~ Deg 

DE,Se = Elevator Angle ~ Deg 

S = Stable 

U = Unstable with one real positive eigenvalue 

A = Unstable with two real positive eigenvalues 

B = Unstable with three real positive eigenvalues 

C = Unstable with four real positive eigenvalues 

D = Unstable with five real positive eigenvalues 

L • Unstable with  one pair of complex eigenvalues 

E • Unstable with one real and one pair complex eigenvalues 

F • Unstable with two real and one pair complex eigenvalues 

G = Unstable with three real and one pair complex eigenvalues 

H = Unstable with two pairs of complex eigenvalues 

I = Unstable with one real eigenvalue and two pairs of complex 
eigenvalues 

Q  • Equilibrium pitch rate ^ deg/sec. 

R = Equilibrium yaw rate ^ deg/sec. 

A = Equilibrium angle-of-attack ^ deg. 

B = Equlibrium side-slip angle ^ deg. 
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Horizontol 

FIG 3.11:    Efftct of increasing oltvotor angl« 6% from A toB on aircraft 
roll-rat«; autorotation and  doparturt  occur at C. 
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       Flg.   3.21t    A/C B    6e - 2*,     or - 0°. 
Time history for    6a - 3.8°. 
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Fig. 3.31; Relation between stable« 
'"" unstable equilibrium points and 

attractor regions in p-q space. 
(Qualitative Representation). 
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A/c H 6e • 2°,  <Sr = 0°, 6a = 11.46° 
Phase plot, p vs q, for initial conditions 
on linear equilibrium branch (t = 25 sec) 
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Fig. 3.94:  Equilibrium surface, aircraft H; 
_        6e = 0°, ARI gain k « -0.152. 
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Fig. 3. 96; Time history, aircraft H; 
6e • 0°, ART gain k = -0.152. 

Part (a):  Roll response with ARI active. 
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Fig. 3.99;  Bifurcation locus in (<Sa, <Sr) plane (units, deg.). 
A/C H; 6e = 5°.  Only the major branches are shown. 
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Fig.  3.100a:     Time history,  A/C H; 
6e - 5°. 

Part   (a):    ARI gain k - -0.250. 
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Fjg.   3.100b; 

Part   (b):    No ARI,   6r - 0* 
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Pig. 3.102a: Time history, A/C H. 

Part   (a): API gain k • 0.118. U 
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Pig. 3.102b:  Ti»e history, A/C Hj 

Part (b): AM gain K - 0.118; transient 
response at 5a • 30*. 
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Fig.   3.102c:      Time history,  A/C H. 
Part   (c)»    No ART,   6r • 0°. 
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IV.  Conclusions and Recommendations for Further Research 

(4.1)  Conclusions 

Based on the analysis of nonlinear models for aircraft A, B and 

H, we can conclude that 

(i) A large number of unstable, jump and limit cycle phenomena 

occurring at high angles-of-attack, can be analyzed in 

a unified fashion by using BACTM (Bifurcation Analysis and 

Catastrophe Theory Methodology). 

. (ii) BACTM provides a global representation of the equilibrium 

and bifurcation surfaces for nonlinear dynamic systems.  The 

qualitative dynamics of the system for different initial 

conditions, controls and system parameters can be obtained 

easily from the equilibrium and bifurcation surfaces.  In 

particular, the control and parameter values for which jumps 

and limit cycles appear as well as domains of attraction are 

obtained directly from the equilibrium and bifurcation surfaces. 

BACTM also provides insights into the control and identification 

problems for nonlinear dynamic systems, 

(iii) Five degree-of-freedom nonlinear aircraft models in terms 

of roll rate p, yaw rate r, pitch rate q, angle-of-attack a 

and sidelip angle ß with three control surface deflections 

(<5a,6e,6r), when analyzed using BACTM, reveal the presence of a 

large number of limit cycle and jump phenomena which encompass 

  -•    --•••- n-, ,        ,            ,.  .._-••• :..,.:...,       ^.--.-.. 
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roll coupling, directional divergence, wing rock, buffeting 

and other phenomena known to occur at high angles-of-attack. 

(iv) For aircraft A and B represented using linear aerodynamics 

effects only, the five degree-of-freedom model can be reduced 

to a scalar fifth order polynomial model which is diffeomorphic 

to a "Butterfly" catastrophe. The stability and control properties 

of this model reveal two sets of jumps, hysteresis effects and 

autorotation for high values of elevator deflection. An analytical 

criterion is developed to predict the critical elevator deflection 

or angle-of-attack for autorotation. The effect of feedback 

control on bifurcation behavior is studied and it is shown that 

a control law which keeps the eigenvalues of the linearized 

system in the left half plane leads to bifurcation-free behavior. 

The results predicted by BACTM are in close agreement with the 

results obtained by numerical integration of the equations of 

motion, including the effects of gravity. Physical explanations 

are given for the bifurcations and jumps and it is shown that 

changes in yaw rate are an indicator of an incimpient jump condition, 

(v) The five degree-of-freedom model for aircraft H involving 

several nonlinear aerodynamic effects exhibits Hopf Bifurcations 

to limit cycles. Several families of limit cycles are shown to 

exist and depending on the initial state and the control settings, 

the system trajectories converge either to one of the stable limit 

cycles or to a stable equilibrium point. The limit cycles them- 

selves increase and decrease in magnitude and may correspond to 

phenomena such as wing rock, pre-stall buffeting and divergent 

oscillations towards spin conditions. A physical explanation in 

M—ill  
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texms of the exchange of kinetic and potential energies 

is developed for jump and limit cycle behavior. The extreme 

sensitivity observed at high angles-of-attack to minor design 

changes is also easily demonstrated in terms of the bifurcation 

and equilibrium surfaces. 

(vi) Results on Mleron-Rudder Interconnects  In Sec. 3.7, the 

use of BACTM to synthesize a command augmentation system 

which schedules the rudder as a linear function of the 

aileron, the gain being a nonlinear function of elevon, 

has been demonstrated.  The values of the ARI (aileron- 

rudder-interconnect) gains were derived directly from the 

plots of the bifurcation surfaces. These gains were seen 

to be nonlinear functions of angle-of-attack, when computed 

under the criterion of maximizing the range of aileron values 

which avoid jump or limit cycle behavior. Time history com- 

parisons show significant improvement in dynamic response and 

performance using the BACTM ARI gain, as opposed to nulling 

the rudder. The results indicate that scheduling rudder as 

a general nonlinear function of both aileron and elevon would 

enhance globally the aircraft performance at high angles-of-attack. 

(4.2)  Recommendations for Future Research 

The next step in the application of BACTM to high angle-of-attack 

phenomena is to use six deqree -of-freedom equations and study spin 

entry, prevention and recovery. 

The aircraft departure into spin followed by aircraft loss 

in several cases is a very serious problem.  The methodology developed 
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under the current project provides a suitable tool for a complete 

analysis of this phenomenon. Certain dynamical jump behavior for 

aircraft B and H has already been observed which has similarities to 

departure into spin. An exact verification of this fact would require 

solving the spin equations of motion and relating the two sets of 

equilibirium points. A first step would be to use the spin equations 

used by previous investigators [1,2] and solve them for equilibrium 

surfaces and bifurcations using BACTM. By considering the most general 

set of equations, it would be possible to obtain spinning as well as 

nonspinning equilibrium states, including others that may not have 

been identified before. This will lead to a study of the post-stall 

departure phnomenon and entry into spin.  Since the equilibrium and 

bifurcation surfaces will be obtained for different control values, 

techniques for spin prevention and recovery would be investigated easily. 

It would also be possible to explore the use of feedback laws, 

stability augmentation techniques and different aircraft configurations 

on the bifurcation surfaces. Notice that the characterization of 

bifurcation surfaces would make the concepts of incipient spin, stability 

margins, etc. much more exact compared to current heuristic methods for 

defining these variables. 

Another direction for future research would be to consider 

applications of BACTM to other dynamic vehicles such as ships, sub- 

marines and missiles.  Similar types of jumps and instabilities are 

known to occur in these vehicles.  The use of BACTM for nonlinear control 

design, model structure determination and experimental design also 

needs further investigation. 
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APPENDIX A:  MAIN THEOREMS OF BACTM 

A.l Center Manifold Theorem or Reduction Theorem, 

[18,19,20,24];* 

Suppose that a set of n Ordinary Differential Equations can be written as: 

u = Au + f_ (u,v,w) (A.l) 
A 

v = Bv + f  (u,v,w) 
B 

w = Cw + f  (u,v,w) 

where A,B,C are square matrices of orders j,k,£ respectively 

(j + k +i-n)  whose eigenvalues have their real parts 

r 
<0, = 0, >0 resp.  The nonlinear functions f , f , f are C 

ABC 

differentiate (r>2) and vanish along with their derivatives, 

r-1 *** 
at (u,v,w) = 0. Then there is a c   submanifold M, of 

dimension k, which passes through (u,v,w) = 0, is tangent 

there to u = 0, w = 0, and which is invariant under the above 

equations (i.e., is composed of solution curves of those 

equations). 

Proposition [20]: Suppose there is a curve (u(y), v(JJ) , w(p)) depending on a 

parameter or control vector y such that (u(0), v(0), w(0)) = 0 and for each 

He R , [u(p), v(y), w(y)J is a fixed point for Eq. (A.l).  Then for all 

sufficiently small y, [u(y), v(y), w(y)] lies in any center manifold M. 

A.2 Main Theorem of Elementary Castrophe Theory [1,2,3]; 

Let x£Rn and c£R .  Then f(x,c) * 0 is an i dimensional 

manifold M in R  .  Define the projection map X: M • C where C 

is the space of control variables. 

* Reference numbers same as for Chapter II 

•***>•—i*~—«t~--  .        ..•••• 
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Let P denote the space of c°° -functions on Ii 

with the Whitney c00-topology. 

1 

Theorem;  If m<5, there is an open dense set P,fP which is the 

set of generic functions.  If <j> is generic, then 

1) The manifold M. is an m-manifold; 

2) Any singularity of the projection map X. is equivalent to one 

of a finite number of types called elementary catastrophes; 

3) XJ. is stable under small perturbations of $.  The number of 

elementary catastrophes depends only upon m, the dimension of 

control space, as follows: 

m       1 1 1 2 3 1  4 5  1 6 
Elementary     12 
Catastrophes  ' 

5 I  7 11 J» 

u 
Ü 

D 

Here equivalence implies: two maps X*''***0* «n* * :Mg"*°g 

are equivalent if there exist diffeomorphisms h and k such 

that the following diagram is commutative. 

h 

If X. and X have singularities at x.eM. and x eM , 
•    g • •    9 g 

respectively, then the singularities are equivalent if the 

above definition holds locally with hx «x . Stable means that 
t 9 

X. is equivalent to X for all g in a neighborhood of * in P. 
? 9 

..-n..  J 
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2 
A.3 The Hopf Theorem in R i  [5] 

The following theorem is essentially due to Andronov 

(1930) and Hopf (1942) and was suggested in the work of 

Poincare (1892). For detailed discussion see Ref. 15]. 

k 2 
Theorem:  Let X be a C  (k>4) vector field on R such that 

X (0) = 0 for all y and X = (X ,0) is also C .  Let dX  (0,0) denoting the 

linear part of X have two distinct, complex conjugate eigenvalues A(M) and 

>0 
y=0 

Then: 

X(yT such that for u>0,Re X(y)>0. Also let d(Re
d^

}) 

a 
a 
a 
D 

(a) There is a Ck~ function y:(-e,e)+R such that (xj^O^tx^) 

is on a closed orbit of period ^2TT/| A(0) I and radius growing like 

/\T  of X for x-40  and such that u(0)=0. 

3 
(b) There is a neighborhood U of (0,0,0) in R such that any 

closed orbit in U is one of those above. Furthermore, if 0 is 

a "vague attractor" for XQ, then 

(c) u(x )>0 for all x.*0 and the orbits are attracting. 

The Hopf Theorem in R 

Theorem: Let X be a C + , k>4, vector field on R°, with all the 

assumptions of the above Theorem holding except that we assume that 

the rest of the spectrum is distinct from the two assumed simple 

eigenvalues A(u),X(U). Then conclusion (a) is true. Conclusion 

(b) is true if the rest of the spectrum remains in the left half 

plane as u crosses zero. Conclusion (c) is true if, relative 

to X(M),X(vÖ", 0 is a "vague attractor" and if when coordinates are 

*—•'"•"•" ' ' «fci-m•. - • r-n-TTi  • -run   il J 
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chosen so that: 

dXQ(0) 

0 |X(0)| 

-|X(0)|       0 

0 0 

ä3x1(o) 
d3x2(0) 

d3x3(0) 

, AtOJ^atd^  (0)) 

[i.e.A (0) does not belong to the spectrum of d X (0)]. 

A.4 Global Implicit Function Theorems [26,27]; 

The following are extensions of Palais Theorem [17]: 

Theorem 1:  Let f be a continuously differentiate mapping 

of Em x En into E•.  There then exists a unique continuously 

differentiable mapping g of Em x E° into E1" with the property 

that g(y,u)=x for all x,y£En satisfying f(x,u)=y, provided 

that i) det[3f/3x]=0 at each point in E• x E , and ii) 

for each ueEn, | |f(x,u) | \** as (\x\ \-*°>. 

,  n, let J, denote the matrix 
k 

Theorem 2: Let f be a continuously differentiable mapping of 

E into E .  For k=l, . 

consisting of the elements in the first k rows and first k 

columns of the Jacobian matrix. Suppose there exist a positive 

constant e such that 

for all xeEn. Then there exist a unique solution of xeE for 

each yeE . 

') 

n 

D 
1 
1 

k^i  - -  _    ... ... „__^.„ __^ ,—^._^_— . *m 
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Appendix B 

0 
0 
D 
0 
0 
D 
D 
0 
0 
0 
0 
D 
0 
Ö 

-i^qr + Ä.5a6a + A^Sr - f  (ß,ct,p,q,r,$a,6r) (B.5) 

Setting all time derivatives to zero  (i.e.,  fg,  f  ,  f  ,f  ,f 

I 
i 
I 

Derivations of Equilibrium Equations and Analytic 

Stability Criterion for Autorotation 

In this appendix, further details of the derivations of 

the equilibrium equations in terms of the roll rate and the critical 

elevator angle for autorotation are given (cf. Chapter III). 

B.l Derivation of Equlibrium Equation in Terms of Roll Rate, p. 

Starting with the five equations of motion (gravity ignored): (a 
denotes deviation from trim). 

ß * yßß + p(sina + a) - r cos a + y fi 6a + y » 6r « 

fß(ß,a,P,r,6a,6r) (B.l) 

a « q - pB+ z a + zK  6e = f (ß,a,p,q,6e) (B.2) 

q = maa + m q + i^r + n^Se - m^ß = 

f_(ß,a,p,q,r,6e) (B.3) 

r = nß3    + na6aa6a + nrr + npP + "pa9" _ 13pq 

+ n6ft6a + nfir6r = fr(ß,a,p,q,r,6a,6r) (B-4> 

P = V + W6a + V + V + V + W + ^ra• 

P  0)' 

five equations in five unknowns are obtained.  Equation B.2, correspondingly 

J~-      - --• — •      • • "•'^J~'    .....,,Mi 
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is then solved for q: 

q - pß - «ao- *j$« • f (B,a,p ,6e) (B.6) 

Substituting into the remaining four equations gives 

0 - fg(ß,a,P,r,öa,6e,6r)   (fron B.l) 

0 - f (ß,a,p,r,6a,6e,6r)   (from B.3) 

0 - ff(ß,a,p,p ,r,6a,6e,6r)  (from B.4) 

0 - f (ß,a,p,r,6a,6e,6r)    (from B.5) 

(B.7) 

(B.8) 

(B.9) 

(B.10) 

U 

B.7 is then solved for r and substituted into the others, leaving: 

0 - f (ß,a,p,p ,6a,6e,6r)    (from B.3) 
«I 

0 - fr<ß,a,p,p ,6a,6e,6r)    (from B.4) 

2   2   2 
0 - f (ß, ß ,a,a ,p,p ,6a,6e,6r)  (from B.5) 

P 

(B.ll) 

(B.12) 

(B.13) 

Next, B.ll is solved for ß and substituted into B.12 and B.13. 

0 - fr(a,p,p
2,p3,p ~*,6a,6e,6x)       (from B.4)     (B.14) 

2   2 3-1 
0 • f (a,a ,p,p ,p ,p   ,6a,6e,6r)(from B.5)      (B.15) 
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Finally, B.14 is solved for a: 

2 3 —1 
f ,(p,p ,p #P ,6a,6e,6r) 

o - —  

f 2^p'p ,P~  »öa»5e,6r) 
(B.16) 

This is substituted into B.15, leaving: 

0 • f (p,p ,p ...p ,p ,6a,6e,6r) (B.17) 
P 

or 

0 • f (p,p ...p ,6a,6e,6r) (B.18) 
P 

Equation B.18 is a quartic in 6a [cf. Eq. (B.3)].  It simplifies to 

a cubic if -i.qr tern is negelected in Eq. (B.5) and to a quadratic 

if n*    is set to zero in Eq. (B.4). Finally, if all the nonlinear 

dynamic terms and -i.qr are neglected, a fifth order polynomial in p 

is obtained (cf. Aircraft B, section 3.6.1). 

B.2 Analytic Stability Criterion for Autorotation. 

In this section, we derive an analytic expression for critical <$e 

at which the equilibrium point (p • 0, r = 0, 3=0, 6a = 0, 6r <* 0) 

becomes unstable in the sense that a real eigenvalue crosses the origin 

from the left half plane. First, the equilibrium equations corresponding 

to q - 0 and a  = 0 [Eqs. (B.2) and (B.3)] are solved for d and q in terms 

of 6e. 

m z. — m> q oe   oe 

m  - m z_ 
a   q a 

6e - K 6e (B.19) 
a 

**t**MMMiaMM^*,~^**^M'*^*^' '^•^'"•""•'-'•^••r-lr-'-ln 1'MililliiliMMM—ll liilMWWl I      n III     n   ••• --   --"MM 
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I -. • •    T* Vto • "«A 

V« 
<Se - K 6e 

9 
(B.20) 

We now linearize the aquations of aotion (B.1-B.5) around 

(p . r • | - 0, Ö, q) and sat the determinant of the jacobian to 

zero. This leads to the following aquation for critical 6a (neglecting 

a6e + boe + c - 0 

where 

* - KqVKßq %  + Krq *«> + H**  V + *«* *«•> 

q ßq ß   rq r    a pa ß   rO r 

• •» v * ** V 

C-K6£ß+Kr    lr+lp 

(B.21) 

(B.22) 

(B.23) 

(B.24) 
D 

and 

ßq      nß + n^ß 

n. • n 
ic     - -    P"       r 

0o nB • nryß 

-n 

I        np ^ 

• v 
rq *- " VBq 

"ft   "   "«ft r        .  _E EEL 
ra      n« + n 6 + Ve 

Kr - Ve 

•MMaaaMManMHMni —  -- —Thtiiii^—" 
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u 
u 
I. 

u 
Ü 

Ü 

Ü 

0 

0 

u 
Ü 

:: 

D 
D 
:: 

i 

Por the aircraft B model, Eq. (B.21) simplifies further since a = 0. 

*    c 
Thus the critical elevator angle, o = - — = 9.3 deg. See Fig. 3.13. 

Por aircraft H, two flight conditions from Rhoades and Schüler [1, 

Chapter III] were examined and for both these conditions, Eq. (B.21) 

was found to have imaginary roots. Thus, aircraft H model indicates 

that autorotation is not possible for 6a = ör = 0.  See Pig. 3.48 for 

confirmation of this observation. 

The above analytical results are confirmed by the numerical 

simulation results given in section 3.6 of this report. 

'"-  '"'•'     '• .,.--,..,  .....   •  ...   . : *^**^.= „..   .... . .     -..          .....   -,..   ,._..,, _^ 
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Appendlx C 

Nomenclature for Chapter 3 

The orientation of the aircraft body axes H^Y^t  «b) in pi9- 3.1] 

with respect to inertial space, or earth-fixed axes, is defined by the 

following Euler angles, in sequence from reference to body axes: 

i/)(yaw), 6(pitch) and 4>(roll). The orientation of wind axes (Xw,Yw,Zw), 

stability axes (X ,Y ,Z ), and body axes and the conventions for linear 
S   S   S 

velocities (u,v,w), angular velocities (p,q,r), forces (X,Y,Z), moments 

(L,M,N), and control surface deflections (6a,6e,5r) are all shown in 

Fig .3.1. The symbols and definitions used in this report are in as much 

agreement with convention as clarity allows. The body axes are oriented 

so as to align with the stability axes for straight and level flight in 

the reference flight condition. 

l|>, 8, + orientation (Euler) angles of reference to body axes. 

90 reference value of 6 

ß angle of sideslip 

a angle-of-attack 

a reference value of a o 

6a       aileron command deflection 

6e       elevator en—und deflection 

or       rudder command deflection 

body axis components of linear velocity u,v,w       *      ^ 

body axis components of angular velocity 

to       vector of angular velocity components, (p,q,r) 

X,Y,Z 

L,M,N 

body axis components of force 

body axis components of moment 

.1 

^^^.—_ .  i^-^Mi*^iMMMM*^'*a'--""  """- -*.••-.-•  -      ---^"»*••• 

I 
0 

J. 
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I ,1 ,1 x y z 

E 

V 

c 

b 

S 

9 

P 

q 

i 

m 

n 

y 

mass (context distinguishes this from pitching 

moment per I„ ,m) . 

time 

moments of inertia 

matrix (or tensor) of moments of inertia 

*1 = (Iz " Iy)/Ix 

*2 " **z ~ *x  y > Non-dimensional Inertia Coefficients 

S " (Iy - V^z 
vehicle kinetic energy 

2    2    2 
total aircraft velocity • (u + v + w ) 

1 
7 

wing mean aerodynamic chord 

wing span 

lifting surface area 

acceleration of gravity («9.8, metric, 32.2, Eng.) 

air density 

1 2 
dynamic pressure, rpV ; equilibrium pitch rate (distinguished by 

context from dynamic pressure) 
rolling moment per I 

pitching moment per I 

yawing moment per I 
z 

side force (over aircraft mass and speed) 

z        aerodynamic force along Z axis (over mass and speed) 

C    - Y/(qS) 

C„,C ,C - L/(qSb), M/(qSc),  N/(qSb) 
£ m n 

   L-,»-...^^ . ,, .-•  .  ....     . ,.,,.. ,. .,   •^•—^" j 
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Super8cripts 

equilibrium, or steady state, value 

•    time derivative in inertial, or earth-fixed, coordinates 

0    reference value 

Subscripts 

a,ß,a,p,q,r, 6a,6e,6r denote partial derivatives with respect 

to the relevant quantity (viz, C , C0, C , C for aircraft A and B; 
y  x  m  n 

and y,z,£,m,n for aircraft H). Thus, for example, 

32A 
*o6a " 3a3"73äT 

and 

c  • —- 

Special Definitions 

»a -»a + niza 

m  • m + m* 
q    q   a 

J 
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