AD=A051 850 SCIENTIFIC SYSTEMS INC CAMBRIDGE MA F/6 1/3 |
6LOBAL STABILITY AND CONTROL ANALYSIS OF AIRCRAFT AT HIGH ANGLE--ETC(U) '
JUN 77 R K MEHRA» W C KESSEL» J V CARROLL NOOOI“-76-C'0780
UNCLASSIFIED SSI=-TR=77-1 ONR=CR215=-248-1

./  ENEEESEEEE
EEECECCECCEEEE
BERRCEEGEEE0ER
EEBNEEEEACREER
BEEECEQEOHGEEAN




Jllo ¢ i

— Y58 3.2

=i
Pl P

rr
[
e

=
=Ty

.

.

I
O
=

o

MICROCOPY RESOLUTION TEST CHART
NATIONAL® BUREAU OF STANDARDS-1963-%







S T e S VI Y . P N

P Y N TRy Wy S

st it

b A R L et s he et b BE B o

o emm ey BTy

REPORT DOCUMENTATION PAGE el

-r_R-E'PORT_NUMI / 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
R-215~248-1

ne

Aircraft at High Angles-of~Attack , 1 JunSREN76 - 31 May 7

- TL L Efand-bubiivioy
Global Stability and Control Analysis of I Annual MEchnicaT AeiEit -
/

5/ =TR-77-1

7. AUTHOM NT NUM a)

) yddf‘u-ve-c-,d?a&w»

e ——————w
10. PROGRAM ELEMENT, PROJECT, TASK

William C. /KesSsel
James V./Carroll

Scientific Systems, Inc./ .
1640 Massachusetts Avenue

7
Y

11. CONTROLLING OFFICE NAME AND ADORESS
The Office of Naval ResearchV

Technology Projects Division, Code 211

| GAElington, Virginia 22217 241
. MONITORING AGENCY NAME & ADORESS(tf different from Controlitng Office) 1S. SECURITY CLASS. (of thte report)

Unclassified
8, DECE ASSIFICATION/ DOWNGRADING
SCHEOULE

16. OISTRIBUTION STATEMENT (of thia Report)

Approved for public release: Distribution unlimited

. DISTRIBUTION STATEMENT (of the sbetrect entered in Block 20, if differant from Repp

]

18. SUPPLEMENTARY NOTES " L N W ) G

19. KEY WORDS (Continue on reveres elde if neceesary and identity by block number)

Aircraft Stability and Control, Bifurcation Analysis, Catastrophe Theory,
Atmospheric Flight Mechanics, Nonlinear Systems, High Angle-of-Attack
Phenomena.

»gj ABSTRACT (Continue on reveree eide If necessary and identify by block number)

Aircraft dynamic behavior at high angles-~of~attack is highly non-linear and,
in the past, there has been a lack of suitable techniques for analyzing the
global behavior of nonlinear systems., This report describes a new approach
based on Bifurcation Analysis and Catastrophe Theory Methodology (BACTM).
The approach has been applied to specific jump, hysteresis and limit cycle

phenomena such as roll-coupling, pitch-up, wing rock, buffeting, departure -

DD “m 73 J473  EoiTion oF 1 nOv 6313 OBSOLE TR
$/N 0102-014° 6601 |




T — ™ el i Lo L il bl

LLLURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20, cont'd L]

~>ka.nd divergence, Three different aircraft have been considered for comparison
purposes, and it has been shown how different types of instabilities and
families of limit cycles arise as the control variables are varied, A
complete representation of the aircraft equilibrium and bifurcation surfaces ;
is given in an eight dimensional space consisting of roll rate, pitch rate, - —a
yaw rate, angle-of-attack, sideslip angle, elevator, aileron and rudder 3
deflections. Two dimensional projections of the equilibrium and bifurcation

surfaces provide pictorial representations of the aircraft global stability i
and control behavior at high angles-of-attack, The use of BACTM for spin '
entry, spin prevention, stability augmentation at high angles-of-attack and ’].

nonlinear system identification are also considered, 7\

m White Section X

NTIS auf Section O
u]

pont
uummmmﬁa _
NSEmnml L F

Bl b e L
4

L s i i e e

£

Ladiies ot
_—

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

T I O ) T PRID SERY IOy LI GUPRL v




]
|
j

PREFACE

This investigation was conducted by Scientific
Systems, Inc., Cambridge, Mass. from June 1, 1976 under

Contract NO0O0l4-76-C-0780 for the Office of Naval Research,

Washington, D.C. This report is the first annual technical

report and includes results through 31 May, 1977. The
sponsoring office was the Vehicle Technology Pfogram headed
by Mr. David Siegel, CDR. P:R. "Bob" Hite served as the
Navy Technical Monitor for the Program.

The principal invesfigator for the study was Dr.
Raman K. Mehra. He was assisted by Mr. William C. Kessel
and Dr. James V. Carroll. A.C. Mulholland typed the final

report.

it i i e e i i i it it

it L oo

Sl giie




b o aaalXa

M. s e e B S

SCIENTIFIC SYSTEMS, iNC. (ii)

Table of Contents

Page:
Preface (i)
List of Figures (v)
List of Tables (xiii)
I. Introduction and Summary 1
1.1 Problem Description 2
1.2 Previous Work 3
1.3 New Methodology 4
1.4 Summary of Significant Results S
1.5 Organization of fhe Report 12
II. Bifurcation Analysis and Catastrophe Theory Methodology
(BACTM) =
Overview 13
2.1 Historical Background 13
2.2 IXllustrative Example (Cusp Catastrophe) 15
2.3 Four Main Theorems of BACTM 19
2.3.1 Center Manifold (or Reduction) Theorem 19
2.3.2 Thom's Classification Theorem for Elementary 22
Catastrophes
25353 ‘Hopf's Theorem for Bifurcations to Limit Cycles 30
2.3.4 Global Implicit Function Theorems 33
' 2.4 A Unified Methodology for Applications 34
2.4.1 Problem Formulation 34
2.4.2 Computation of Equilibrium Surfaces 36
2.4.3 Computation of Bifurcation Surfaces 37
. 2.4.4 Use of Bifurcation and Equilibrium Surfaces 38

N




I

e

sl

SCIENTIFIC SYSTEMS, INC. (iii)

III.

2.5

2.6

Relationship to Other Methods for Nonlinear
System Analysis

Applications of BACTM
2.6.1 Nonlinear System Identification

2.6.2 Nonlinear Control System Design

Aircraft Stability and Control at High Angles-of-Attack

3.1

3.2

3.3

3.4

3.5

3.6

Overview

High Angle-of-Attack Phenomena

Aircraft Characteristics

Equations of Motion

Solution Procedure

Discussion of Results

3.6.1 Aircrafts A and B
3.6.1.1 =Equilibrium Surfaces
3.6.1.2 Nonlinear Root F-icus
3.6.1.3 Bifurcation ¢. sfz.e
3.6.1.4 Qualitative . rnami:zs
3.6.1.5 Numerical Verification
3.6.1.6 Physical Explanation

3.6.2 Aircraft H

3.6.2.1 Equilibrium Surfaces and Nonlinear
Root Locus

3.6.2.2 Hopf Bifurcation to Limit Cycles
3.6.2.3 Bifurcation Surface

3.6.2.4 Qualitative Dynamics

3.6.2.5 Numerical Verification

3.6.2.6 Physical Explanation

s S T e m e b ey e o 4 2 PO T O

Page:

39

40
40

41

44

46
50
54
57
61
62
62
63
65
67
70
75

86

86
87
88
89
91

94




T T P T T P TN S TRy
. bl S

(iv)

SCIENTIFIC SYSTEMS INC.

3.7 Control and Stability Augmentation (A/C B)

IV. Conclusions and Recommendations for Further Research
4.1 Conclusions

4.2 Recommendations for Further Research

References
Appendix A: Main Theorems of BACTM

Appendix B: Derivation of Roll Rate Equilibrium

Equation and Analytic Stability Criterion

for Autorotation

Appendix C: List of Symbols

Distribution List

Liadiiias dbuicail b

Page:
99

215
215

217

219

227

231

236

239,

T I

4 1
L

e
el

-




e g

R ey

e

LI

I
1

il

g,
J

-

ey
S

~y

i
{

SCIENTIFIC SYSTEMS, INC. (v)

List of Figures

Chapter 1I

2.1 Potential function ¢(x,c) for different values of

2.2

2.4

2.5

2.6

2.7

2.8

2.9

c, and c, = =3,

2 1

Qualitative Representation of Cusp Catastrophe

Cusp Behavior for ¢ < 0.

Cusp Catastrophe for < > 0.

Page

16

17

18

18

‘Elementary Catastrophes in One State Variable and One or Two

Control Variable Space. (Cuspoids from Table 1)

Umbilic Catastrophes in Three Dimensional Control

Space (see Table 1)

The Hopf Bifurcation

28

29

31

Steps in BACTM (Bifurcation Analysis and Catastrophe

Theory Methodology)

The Butterfly and False Butterfly

Chapter III

3.1 Aircraft Axes and Notation

3.2 Equilibrium Roll Rate p vs. Aileron Angle 8a for

‘Adrcraft A (e = 0°)

35

43

44

45

107

3.3 Equilibrium Roll Rate vs. 8a for Aircraft B, fe = -2°,

8r = 0°.

ot ki et s it sl i

108

S PSS AN T OC, SO

dtiicisien P - RSN A RSt e Fe




(vi)

SCIENTIFIC SYSTEMS, INC.

Page:

3.4 Equilibrium Roll Rate p vs. 8a for Aircraft B,

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

6e = 2°, &r = 0°.
T vs. 8a, A/C B, 8e = 2°, 8r = 0°.
B vs. 8a, A/C B, Se = 2°, 6r = 0°.

a vs. §a, A/C B, 8e = 2°, 8r = 0°.

2°, 6r = 0°.

q vs. 8a, A/C B, §e

Nonlinear Root locus Plot (Numbers along'the Locus

Denote Equilibrium Roll Rate, p).

A/C B, Bifurcation Surface in (6a,8e) Plane. The numbers

in each region indicate number equilibrium points; 8r = 0°.

Effect of Increasing Elevator Angle Se from A to B on

Aircraft Roll-Rate; Autorotation and -Departure Occur at C.
A/C B, 8e = 12°, 8xr = 0°; Equilibrium Roll’'Rate vs. Sa.

A/C B, Equilibrium Roll Rate vs. Se; 8a = 0°,
6

r = Q°,

A/C B; Time History Plots Showing Hysteresis and Jump

Behavior.

A/C B, 8e = 2°, 6r = 0°; Time History for fa

10°, 12°, 14°, 1le6°.

A/C B, 8e = 2°, §r = 0°; Time History for fa = 3°.
A/C B, 8e = 2°, 8r = 0°; Time History for Sa = 4°,
A/C B, 8e = 2°, 8r = 0°; Time History for 8a = 5°.

saabikbcadurid e b e e it et oY Sl il i A i

2°, 4°, 6°, 8°0

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

-




SCIENTIFIC SYSTEMS, INC.
ul (vii)

;1 Page:

, 3.19 A/C B, e = 2°, 6r = 0°; Time History for Sa = 3.6°. 124

i; 3.20 A/C B, §e = 2°, 8r = 0°; Time History for 6a = 3.7°. 125

. 3 3.21 A/C B, §e = 2°, 6r = 0°; Time History for 8a = 3.8°. 126
i3 3.22 A/C B, 8e = 2°, 8r = 0°; Time History for 8a = 3.9°. 127 |
3.23 A/C B, Se = 2°, 8r = 0°; Time History for 8a = 3.8°. 128 ‘

| ~i 3.24 a/C B, §e = 2°, 6r = 0°; p-terms time history, 8a = 3.7°. 129
3.25 A/C B, Se = 2°, 8r = 0°; p-terms time history, 6a = 3.8°. 130 '
3.26 A/C B, 8e = 2°, 8r = 0°; f-terms time history, 8a = 3.7°. 131 l
- 3.27 a/c B, 8e = 2°, 8r = 0°; .r-terms time history, fa = 3.8°. 132 E
3.28 A/C B, 6r = 0°. Time History for 8a = 0°; 8e = 2°; %
| ': Gravity Terms Included (see Fig. 3.14). 133 h
{ 3.29 A/C B, Se = 2°, 6r = 0°; E, E historie; for Sa = 3.7°. 134 ?
3.30 A/C B, e = 2°, &r = 0°; E, E histories for 8a = 3.8°. 135 t
I 1 3.31 Relation Between Stable, Unstable Equiiibrium Points and ﬁ

Attractor Regions in p-q Space. (Qualitative Representation) 136
3.32 Equilibrium Surface, A/C H; Roll Rate vs. Aileron Angle,

e = 0°, &r = 0°. ! 137

3.33 Equilibrium Surface, A/C H; Roll Rate vs. Aileron Angle,
e = 2°, 6r = 0°. 138
3.34 Equilibrium Surface, A/C H; Roll Rate vs. Aileron Angle,

de = 5°, &r = 0°. 139 |

3.35 Equilibrium Surface, A/C H; Roll Rate vs. Aileron Angle,

Se = 10°, 6r = 0°.

e = 20°, O6r = 0°.

T
&
l ' Equilibrium Surface, Roll Rate vs. Aileron




SCIENTIFIC SYSTEMS, INC.

Page:
3.37 Equilibrium Surface, A/C H; Roll Rate vs. Aileron,
e = 2°, &r = 5°, 142
3.38 Equilibrium Surface, A/C H; Roll Rate vs. Aileron,
Se = 2°, 6r = 10°. 143
3.39 Equilibrium Surface, A/C H; Roll Rate vs. Aileron,
i e = -2°, 6r = 0°. 144
3.40 Equilibrium Surface, A/C H; Roll Rate vs. Aileron,
i be = -5°, &r = 0°. 145
3.41 Equilibrium Surface, A/C H; Roll Rate vs. Aileron,
de = -10°, 6r = 0°. 146
3.42 A/C H: Major Branch of the p vs. 8a plot;
6r = 0°, 8e = -0.6°. Looped Area M Indicates Presence }
of Umbilics Involving Two Zero Eigenvalues for the }’
Linearized'System. 147
3.43 Equilibrium Surface, A/C H; Yaw Rate vs. Aileron, .31
Se = 0°, 6r = 0°, 148
3.44 Equilibrium Surface, A/C H; Pitch Rate vs. Aileron, !:
Se = 0°, 6r = 0°. 149 }
3.45 Equilibrium Surface, A/C H; Angle-of-Attack vs. Aileron, |
Se = 0°, 6r = 0°, 150 >}l
3.46 Equilib;;um Surface, A/C H; Sideslip Angle vs. Aileron, -
Se = 0°, ér = 0°. ]
3.47 Nonlinear Root-Locus Plot, A/C H; e = 2°, 8r = 0°;
5 varied from -500 deg/sec to 500 deg/sec.
3.48 Equilibrium Surface and Limit Cycles, A/C H;
Alleron Decreased from 40° to -40° by 2° Increments.
I —— b b i e i d e S G S e e -

(viii)




(ix)

Aileron Increased from -40° to 40° by 2° Increments.

Time History Plots Showing the Development of an Expanding

Bifurcation Locus in (6a,8e) Plane, 8r = 0°; A/C H.

R

(8e,6r) Plane, 8a = 0°, A/C H.

Locus in (8a,8r) Plane, A/C H, 8e = 0°.

s s i

el g

Roll Rate vs. Elevator,

Yaw Rate vs. Elevator,

Pitch Rate vs. Elevator,

Angle-of-Attack vs. Elevator,

Sideslip Angle vs. Elevator,

Roll Rate vs. PRudder Angle;

Yaw Rate vs. Rudder,

Pitch Rate vs. Rudder,

SCIENTIFIC SYSTEMS, INC.
3 3.49 Equilibrium Surface and Limit Cycles, A/C H;
: {
. 3.50
| Limit Cycle for Aircraft H.
t LJ 3.51a
3.51b
! 3.51c (8a,8e) Plots with Different &r Values.
3.514
3.52 Bifurcation Locus in
= 3.53 Bifurcation
3.54 Equilibrium Surface, A/C H;
) 8a = 0°, 6r = 0°.
‘ 3.55 Equilibrium Surface, A/C H;
h 8a = 0°, 8r = 0°.
; 3.56 Equilibrium Surface, A/C H;
i
f - §a = 0°, &r = o°.
f I 3.57 Equilibrium Surface, A/C H;
] da = 0°, 6r = O°.
i e
, -~ 3.58 Equilibrium Surface, A/C H;
| . e = 0°, 6a = 0°.
1 3.59 Equilibrium Surface, A/C H;
o de = 0°, ba = 0°.
f. 3.60 Equilibrium Surface, A/C H;
A
= e = 0°, Sa = O°.
g <s 3.61 Equilibrium Surface, A/C H;
k 1* e = 0°, Sa = 0°.
i t 01

a2 e i e o e

Page:

154

155

156
157
158
159

160

l6l

162

163

le4

165

166

167

168

169

i




SCIENTIFIC SYSTEMS, INC.

(x)

3.62

3.64

3.65

T

3.66

B vt e bt e e

3.67

3.68

 Lolaa b dnd s aaaac

3.69

3.70

3.71

3.72

3.73

3.75

3.76

Equilibrium Surface, A/C H; Angle-of-Attack vs. Rudder,
e = 0°, 6a = 0°.

Equilibrium Surface, A/C H; Sideslip Angle vs. Rudder,
e = 0°, 6a = 0°.

A/C H; Ekact p vs. 8a Plot without Neglecting qr;

e = 1°, 6r = 0°.

A/C H; p vs. 8a Plot with NySa Term Neglected;

e = 1°, 6r = 0°,

A/C H; p vs. 8a Plot with all Nonlinear Aerodynamic Terms
Neglected; e = 1°, 8e = 0°.

A/C H; 8e = 2°, 8r = 0°; Time History for Sa = 8°.

A/C H; 8e = 2°, 8r = 0°; Time History for 6a = 10°.
A/C H; 8e = 2°, 8r = 0°; Time History for 6a = 11°.

12°.

A/C H; 8e = 2°, 6r = 0°; Time History for Sa
A/C H; 8e = 2°, 8r = 0°; Time History for 8a = 14°.
A/C H; 8e = 2°, 8r = 0°; Time History for Sa = 16°.
A/C H; 8e = 2°, 8r = 0°; Time History with Initial
Conditions on Linear Equilibrium Branch;

da = 6°, 11.2°,

A/C H; 8e = 2°, 8r = 0°; Time History with Initial
Conditions on Outer Equilibrium Branch;

fa = 13.5°, 11.2°.

A/C H; 8e = 2°, Or = 0°; Time History for fa = 11,4°,

A/C H; 8e = 2°, 8r = 0°; Time History for 8a = 11.46°.

i b et N i i

Page:

170

171

172

173

174
175
176
177
178
179

180

181

182

183

184

W ) N pomtmag WO imam] WO rromrarg P o) :.‘f.'g___r.—;.._r-'x__hr"'.__;t_)

|yt P ms |

T e




SCIENTIFIC SYSTEMS, INC. (xi)

|
f
|
!
\ Page:
4 [ 3.77 A/C H, e = 2°, 8r = 0°; Time History for Sa = 11.48°, 185
g 3.78 A/C H, 8e = 2°, 8r = 0°; Time History for 8a = 11,5°. 186
[ 3.79 A/C H, e = 2°, &r = 0°; Time History for 6a = 11.6°. 187

3.80 ‘A/C H, 8e = 2°, 6r = 0°; Time History for

6a = 0°, 12°, 11.4°, 11.2°. 188

S o A e RN S o e e e el

e

3.81 A/C H, 8e = 2°, 8r = 0°; Time History for

)
6a = 0° to 16°, No Gravity. 189 3
3

3.82 A/C H, 8e = 2°, 8r = 0°; Gravity Terms Included,

6a = 0° to 16°. 190

3.83 A/C H, 8§e = 2°, 6r = 0°; p~-terms time history for a = 10°. 191

. Gt e Rrw o i e U e —
.

3.84 A/C H, e = 2°, 6r

0°; p-terms time history for fa = 11.6°. 192

| 3.85 A/C H, 8e = 2°, 6r = 0°; i-terms time history for 6a = 10°. 193 :

I 3.86 A/C H, 8e = 2°, 6r = 0°; r-terms time history for 8a = 11.6°. 194
3.87 A/C H, 8e = 2°, 6r = 0°, 6a = 11.46°; Phase Plots, p vs. q,

| and p vs. r, for Initial Conditions on Outer Equilibrium
! Branch, Showing Limit Cycles (tf = 72 sec). 195
| . 3.88 A/C H, e = 2°, 8r = 0°, 8a = 11.46%; Phase Plots p vs. O

and p vs, B, for Initial Conditions on Outer Equilibrium

Branch, Showing Limit Cycles (tf = 72 sec). 196

3,89 A/C H, e = 2°, 8r = 0°, 8a = 11.46°; Phase Plots p vs. q,

for Initial Conditions on Linear Equilibrium Branch
4 (tf = 25 sec). 197
- 3.90 A/C H, 6r = 0%, Sa = 11.46°; Phase Plot, p vs. B,

Initial Conditions on Outer Equilibrium Branch,

i tf = 64 sec.; Se = 2° then -2® at t = 8 sec. . 198




FEa s A

S R Bt a e s o A s o it s b e b e e o

SCIENTIFIC SYSTEMS, INC. (xii)

3.91 A/C H, 8e = 2°, &r = 0°; Phase

Plots p vs. B, for

Initial Conditions on Linear Equilibrium Branch,

t. = 64 sec. for (a) 8a = 10.6°

, (b) 8a = 13,5°.

3.92 A/C H, e = 2°, 6r = 0°; E, E histories for 6a = 10°.

3.93 A/C H, 8e = 2°, 8r = 0°; E, E histories for 6a = 11.6".

3.94 Equilibrium Surface, Aircraft H; Se = 0°, ARI gain k = -0.152.

3.95 Time History, Aircraft H; Se =

3.96a Time History, Aircraft H; Se =

0°, no ARI (6r = 0°).

"

|
o
.
[
(5
N
L]

o°, ART Gain k

Part (a): Roll Response with ARI Active.

3.96b Effect of Small Positive Root at 8a = 18.5°.

3.97 Equilibrium Surface, A/C H; e

3.98 Equilibrium Surface, A/C H; be

= 0°, ARI Gain k = +0.152.

= 5%, ARI Gain k = -0.250.

3.99 Bifurcation Locus in (6a,8r) Plane (units, deg.) A/C H;

8e = 5°. oOnly the Major Branches are Shown.

3.100a Time History, A/C H; 8e = 5°.
3.100b Time History, A/C H; e = 5°.
3.101 Equilibrium Surface, A/C H; fe
3.102a Time History, A/C H. Part (a):
3.102b Time History, A/C H. Part (b):
Transient Response at 8a = 30°.

3.102c Time History, A/C H, Part (c):

Part (a): ARI Gain k = -0.250.
Part (b): No ARI, 8r = 0°.

= -5; ARI Gain k = 0.118.
ARI Gain k = -,118.

ARI Gain k = 0,118;

No ARI, Or = 0°,

il i e b i it b i el et s kiRt i e ok o S

Page:

199
200
201
202

203

204
205
206

207

208
209
210
211

212

213

214




g e g

L3 50 CT e T

=

o, gy = e !
b d | S | rEE | L,,a 4 R

4
“ihapr §

e
[

SCIENTIFIC SYSTEMS, INC.

List of Tables

Table 1 Seven Elementary Catastrophes for Control Space

Dimension, m = 4.

Table 2 Characteristics of Example Aircrafts.

|

Page:
24 3
51 ‘




SCIENTIFIC SYSTEMS, INC. 4

1 [ I. Introduction and Summary

T T e W TR R

High angle-of-attack phenomena have been of interest to aero-

R

- e e o

il

1) dynamicists, aircraft designers, pilots and control system analysts ;

TR

o ever since the advent of modern high performance aircraft. Due to

the concentration of inertia along the fuselage, the modern jet

AT
4

fighters are highly susceptible to post-stall departures and spin. i
Extensive wind-tunnel testing and radio-controlled flight testing has
been done over the last twenty years to gain better understanding of
e the dynamic instabilities at high gngles—of-attack. A basic problem

b has existed in interpreting this data and in making predictions of §

TP RPN (P NS T
L
.

aircraft dynamic behavior so as to achieve close agreement with flight

T
»
L]
Z

test data.

Aircraft dynamic behavior at high angles-of-attack is highly

g T

nonlinear and, in the past, there has been a lack of suitable techniques
for analyzing the global behavior of nonlinear systems. Under an on-going
project wiﬁh the Office of Naval Research, Scientific Systems, Inc. has
developed a new approach based on Bifurcation Analysis and Catastrophe

Theory Methodology (BACTM). The approach has been applied to specific

i i

jump, hysteresis and limit cycle phenomena such as roll-coupling, pitch-

up, wing rock, buffeting, departure and divergence. Three different air-

craft have been considered for comparison purposes, and it has been shown

ki

how different types of instabilities and families of limit cycles arise

as the control variables are varied. A complete representation of the

e at  t d  a e e
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aircraft equilibrium and bifurcation surfaces is given in an eight
dimensional space consisting of roll rate, pitch rate, yaw rate, angle- |1
of—atéack, sideslip angle, elevafor, aileron and rudder deflections. E

Two dimensional projections of the equilibrium and bifurcation surfaces

e

provide pictorial representations of the aircraft global stability and

control behavior at high angles-of-attack. The use of BACTM for spin

entry, spin prevention, stability augmentation at high angles-of-attack

and nonlinear system identification are also considered. g
This chapter presents a discussion of the high angle-of-attack :

stability problem followed by a brief survey of the previous work in

this area. The new methodology called BACTM is introduced in section

1.3 and the significant results obtained during the current study are

summarized in section 1.4. The last section in this chapter discusses

the overall organization of the report. I

(1.1) Problem Description.

!
I
Aircraft motion at high angles-of~attack (a) is characterized by :
large deviations in both state and control variables. Linearized analysis ,L
of aircraft stability and control provides only limitedllocalized informa-
tion regarding aircraft behavior at high a. There is a conspicuous lack
of techniques for analyzing global stability and large maneuver '3"
response of aircraft. Only specialized nonlinear phenomena such as :
roll-céupling and spin have been partially analyzed in an isolated fashion. ~}

There is a clear need for a unified approach to analyze global aircraft -l"

behavior at high o in an integrated and systematic manner, 5
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A methodology for global stability analysis and control is also
a first step towards safer piloting procedures, stability augmentation,
control system design, aircraft model structure determination and design.
A suitable methodology must contribute towards solutions to these problems
in addition to simply giving a yes/no type of information regarding

stability. In other words, the global stability analysis should also

provide guidelines for stabilizing an unstable nonlinear system. Since

aircraft behavior at high & is known to exhibit discontinuous and limit
cycle phenomena, the methodology should also be able to predict and explain

such phenomena.

(1.2) Previous Work

Early work on high a stability and control during the forties and
fifties, concentrated mainly on qualitative deséription and understanding
of the phenomena [1,2,3,4,5]. The study of specific phenomena was
motivated by observed flight behavior. Attempts were made to understand
these pheomena and to correct them via changes in aircraft design.
Conventional analysis techniques based on steady state assumptions and
linearization were used to obtain quantitative information. However,

a lack of suitable experimental facilities, analysis techniques and

meager computing capabilities hindered progress in this area. The major
emphasis during the sixties was placed on the establishment of experimental
facilities such as radio-controlled flights and wina>tunnels for spin
testing. At the same time, simulation techniques wégg used to reproduce
with six degree-of-freedom models behavior typical of high a flights
[6,7,8]). Again, due to lack of analytical techniques, only limited pro-

gress has been made using simulation technidues.
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Recent work in high a@ areas covers a wide spectrum of s_ubjects
ranging from basic research in aerodynamics, wind tunnel and flight
testing [9] to advanced mathematical techniques for stability analysis
[10] and parameter identification [11]. The highly nonlinear and complex
nature of aircraft dynamic behavior at high o coupled with poorly under-~
stood aerodynamics has presented formidable difficulties to significant
progress in this area.

The motivation for the research effort reported here came from an
involvement of the principal investigator with a study of the stability
of chemical reactions using Catastrophe Theory [12,13] . It was con-
jectured that the discontinuous and limit cycle phenomena at high angles-
of~attack could be analyzed using results from Topology, Bifurcation
Analysis and Catastrophe Theory [14,15], Recent analysis of the roll-
coupling problem by Schy and Hannah [16] provided further support to
this conjecture. The results presented here have not only confirmed
our original conjecture, but have also provided additional insighte

and revealed new dynamic phenomena that can occur at high q.

(1.3) New Methodology

The application of recent abstract mathematical results from
Topology, Bifurcation Analysis and Catastrophe Theory to the aircraft

high a stability problem has resulted in the development of a new method-

ology called BACTM (Bifurcation ﬁnalysis and Catastrophe Theory y_ethodology) 3

BACTM is applicable to other nonlinear systems such as sulmarines, missiles,
and power systems. The four main theorems on which BACTM is based are

(i) the Center Manifold Theorem; (ii) Classification Theorem of Elementary
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[
Catastrophes; (iii) Hopf Bifurcation Theorem; and (iv) Global

Implicit Function Theorem. These theorems are discussed in Chapter II
and Appendix A and their application to the aircraft stability problem

L is discussed in Chapter III. The application of BACTM provides global

S ———
, .}
) '

information regarding aircraft dynamic behavior with respect to changes 2
in initial state parameters, and control variables. The use of BACTM
requires advanced computational techniques which are extremely important ]
for obtaining quantiative information needed for stability augmentation,

e} control, identification and design.

(1.4) Summary of Significant Results

Since detailed quantitative results of the study are presented
in Chapters II and III, we briefly summarize.here, in qualitative temrms,
what are believed to be some of the significant results. The current
study is the first phase of a continuing research effort and, therefore,
represents only a first step in the direction of methodology development
and potential applicability of BACTM. The contributions of the present ;

study may be divided into three general areas:

i

(1) A New Methodology for the Analysis of Nonlinear Systems

PRRI

Bifurcation Analysis and Catastrophe Theory Methodology (BACTM),
shown schematically in Fig, 2.8, which is based on several important
results from Topology, Catastrophe Theory and Bifurcation Analysis, is
a powerful new tool for the study of nonlinear dynamic systems. It

l ) allows one to study the global behavior of nonlinear systems in an
(n + m) dimensional space where n is the number of state variables and

m is the number of control variables in the system. A direct outcome
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of applying this methodology is a characterization of the stable

and unstable regimes, stability boundaries, domains of attraction,
bifurcation and jump surfaces and the existence of limit cycles. The
methodology can also be used for model reduction or simplification
(using the center manifold theorem), feedback control system design
for producing almost linear behavior for a nonlinear system, model
structure determination and input design for nonlinear system identifi-
cation. It also gives a clear representation of those casés where
linearization is valid. More importantly, it gives guidelines for
extending the linearized model so as to make it valid for those cases

where nonlinearities are significant.

(ii) Unified Improved Understanding of Aircraft Stability

and Control at High Angles-of-Attack.

The application of Catastrophe Theory and Bifurcation Analysis
to three different ajircraft models has provided an improved understanding
of the various jump, hysteresis and limit cycle phenomena observed at
high angles-of-attack.

The three aircraft are designated as aircraft A, B and H. Their
physical characteristics are presented in Table 2 of Chapter III.
(See also Sec. 3.3). Aircraft A is an F100A; aircraft B is a small
maneuverable single-engined jet, and aircraft H is a swept-wing fighter,
the F-80A. Even though these models do not represent modern day fighter
planes, their importance lies in their extensive use in previous work
(see Chapter III for discussion and references). Use of these models,

therefore, provides a solid basis for comparison of the BACTM with

e S et e e el
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other techniques, especially analytic results. BACTM has been
demonstrated using these models, and it is currently being applied
to modern fighter planes.

It has been shown for aircraft B that the bifurcation and
catastrophe surfaces are of the "butterfly"-type. The projection
of the bifurcation surface in the control-state space onto the control
plane results in a pattern which somewhat resembles the shape of a
butterfly. See Figs. 2.9, 3.10, and 3.11 for examples. See also
Fig. 3.13 and the discussion in Sec. 3.6.1.3 relating to the bifurca-
tion to an autorotational state for aircraft B as Se increases from 0°
to 12°, with a = 6r = 0° (the bifurcation occurs at 8e = 9.3°).

A bifurcation surface divides regions in the control space where
different numbers of equilibrium states are possible. Thus, as controls
vary in such a way as to cross the bifurcation surface, catastrophes in
the form of sudden "jumps" between equilibrium solutions occur. The
solution is said to bifurcate to a new equilibrium branch in state
space. The bifurcation surface marks the boundary between the stable
and unstable equilibrium solutions. See the discussion of Sec. 2.2,
and particuiarly Figs. 2.1 and 2.2 for a better picture of bifurcation
phenomena. Note that hysteresis effects are prevalent where
bifurcations occur; which introduces the possibility that control
recovery actions, which are effective in stable and/or linear regions
of the equilibrium state space, may be ineffective or actually enhance
the destabilizing motions, once a bifurcation has occurred.

The physical mechanism causing jumps in the case of aircraft B

can be related to roll-coupling first observed by Phillips in 1948 [6].
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Careful study of time-history motions of aircraft B and H

indicates that yaw rate behavior is an indicator of an oncoming

(S s A i vl

jump. This is because of coupling effects between roll and yaw motions

iy

bt

which are enhanced by the peculiar geometry of high performance jet
aircraft, particularly their small moment of inertia about the roll

axis. See the discussion in Sec. 3.6.1.5 and especially 3.6.1.6 for

S ki

more details. Our analysis, furthermore, predicts several other effects

o

such as hysteresis and divergence. It also indicates coordinated aileron-

elevator maneuvers that avoid jumps. See Sec. 3.7 for a discussion of

s i i

this BACTM application. Even the critical roll rates are predicted
more accurately since the simplifying assumptions used by Phillips [1]
are avoided.

We have also examined the physical causes of jumps more closely
and developed indicators of incipient jump phenomena which can be
useful to the pilot during flight. One promising indicator of catas-
trophic, or jump, behavior is total vehicle kinetic energy and its
time derivative. When monitored during dynamic response studies of
aircraft B and H, the kinetic energy was observed to experience sudden
changes - in advance of a similar change of any of the state variables -
when the controls had moved from a stable to a jump-producing value.
This was clearly the case for the aircraft B model (See Figures 3.29
and 3.30); the presence of oscillatory terms in the aircraft H case
(Pigures 3.92 and 3.93)indicates that low-pass filtering or a more
sophisticated "jump alarm" criterion than the one which sufficed for

aircraft B - i.e., change of sign in 4dE/dt - may be developed.
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For aircraft H, time history analysis has revealed families of limit
cycles in a five-dimensional space which have not been obtained
analytically in any previous study. A time history plot, shown
in Fig. 3.50, clearly shows limit cycle behavior. This plot is seen
to be the result of behavior predicted by inspection of the related
equilibrium surface plots, shown in Figs. 3.48 and 3.49. In these
plots, both limit cycle amplitude and hysteresis effects are indicated,
in addition to the specification of the values of control (§a, aileron
deflection) which will cause limit cycle behavior for aircraft H in
this flight condition. See also Figs. 3.87 and 3.88, which show limit
cycles for aircraft H in the state space (four plots of p vs. (q,r,a,B8));
and Fig. 3.90, which shows how a change in 8e from 2° to -2° causes the
motion to leave the limit cycle and settle (after some severe transient
behavior) at a stable equilibrium point. The existence of limit cycle
phenomena has been postulated previously, but the analysis has generally

been confined to two-dimensional cases. The existence of Hopf Bifurca-

tions in aircraft dynamics has been demonstrated for the first time.
The bifurcation plots shown in Figs, 3.51 and 3.52 are generated
explicitly by BACTM. They are also related geometrically to the family
of equilibrium surfaces (Figs. 3.48 and 3.49 being representative
members), in that the bifurcation surfaces are the projection of the
equilibrium surfaces onto the control space. The "folds" in the

equilibrium surfaces cause regions of differing numbers of equilibrium

solutions to exist; the bifurcation surfaces are the boundaries to these
regions. The physical mechanisms causing these limit cycles are not

completely understood except in special cases such as wing-rock and
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buffeting (even in these cases, there are several physical explanations).
Other phenomena that are easily analyzed using this methodology

are "pitch-up", autorotation and divergence. Most of these phenomena

are not described precisely in the literature and the general conditions

under which they are observed are not known accurately. Our approach

gives an exact quantitative representation of these phenomena and reveals

this dependence on aircraft parameters and control systems. It is

possible therefore to study techniques for avoiding these phenomena

through changes in design or through control strategies.

(iii) Implications for Model Structure Determination and Controller

Pesign at High Angles-of~Attack.

A number of areas in which the above improved understanding
of the high angle-of-attack phenomena can be utilized have been
investigated. Two common problems in aircraft model identification
are model structure determination and model validation. It is easily
inferred from the Catastrophe Theory generic models that the observed
bifurcation behavior can be used to identify and validate the structure
of the model. This has important implications for input design and
flight testing. The basic idea is that the model structure should be
chosen in such a way that it is capable of matching the jump and limit
cycle phenomena observed in flight. At high angles~of-attack, these
phenomena are dominant and their proper representation by a mathematical
model is essential. Such models are also necessary for studying
entry into spin and for investigating recoveries from spin conditions.

By studying different aircraft and by analyzing the effect of
feedback, we have shown how bifurcation surfaces can be modified and

even avoided in certain cases. This has important implications for
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aircraft and controller design. The bifurcation surfaces may be

used directly in the design of stability augmentation systems. (Refer
to Sec. 3.7 for more details). Results there indicate that plots of j
the bifurcation surfaces are a useful tool for defining relationships
among the control variables which avoid regions where bifurcations
occur.

In Sec. 3.7, bifurcation and equilibrium surfaces are used to
develop an aileron-rudder-interconnect (ARI) control augmentation system
for use in high angle-of-attack lateral-directional maneuvers. This
study was done with the aircraft H model, and time history comparisons

of ARI vs. non-ARI (§r = 0°) systems show clearly that ARI not only

- I O T -

enhances stability but improves performance characteristics. The ARI
gains developed by BACTM are effective because of their direct reliance
on the bifurcation surfaces, which contain important stability information.

A linear ARI model was used in Sec. 3.7 for illustrative purposes; however

By AR AT R T AT T

BACTM allows for a more general, global ARI-type relationship which

explicitly accounts for elevon (8e) deflections as well. It is possible

to expand the criteria for the bifurcation loci themselves to develop
further criteria for the ARI surface in the three dimensional control

space. Results presented in this report show that the ARI gains plotted

as a function of equilibrium angle-of-attack, as derived from the
bifurcation surfaces, behave in much the same way, with roughly equi-

valent values, as the ARI gains derived by other, less-global, methods

{11,15 of Ch. III],
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(1.5) Organization of the Report

The report is organized into two main chapters (II and III)
supported by two appendices (A and B). Chapter II contains a
discussion of the Bifurcation Analysis and Catastrophe Theory
Methodology. Chapter III contains all the aircraft global stability
and control results for three example aircrafts (A,B and H). The
study of aircraft H involving nonlinear kinematic and aerodynamic temms
is most comprehensive representing a complete description of the
equilibrium and bifurcation surfaces in an eight~dimensional space
(p,q,x,a,8,8a,8e,8r). Conclusions and recommendations are stated
in Chapter IV. Appendix A contains exact statements of BACTM theorems
and Appendix B contains detailed algebraic calculations for aircraft

B and H. A list of symbols and nomenclature is included in Appendix C.
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II. Bifurcation Analysis and Catastrophe

| \ Theory Methodology (BACTM)*

QOVERVIEW

In this chapter, we describe from a general system theoretic
viewpoint, the basic principles and applications of the Bifurcation
; Analysis and Catastrophe Theory Methodology (BACTM). After giving
a brief historical survey, the terminology of BACTM is introduced
through an illustrative example. The four main theorems of BACTM
are discussed thereafter in Section 2.3. The exact statements of the
main theorems are contained in Appendix A. The application of BACTM
to nonlinear dynamic systems is discussed in Section 2.4. Other methods
for the analysis of nonlinear systems are outlined in Section 2.5 and
their relationship to BACTM is duscussed. The specific applications
of BACTM for Global Stability Analysis, Control System Design and

Nonlinear System Identification, are described in Section 2.6.

(2.1) Historical Background

Nonlinear dynamic systems are extremely rich in their behavior

and are known to exhibit a wide variety of bifurcation and catastrophe

jump phenomena [37, 38]. In recent years, several developments in

el e vac e

differential topology have led to a fairly general classification of

bifurcation phenomena. Following the publication of the thought-provoking

i e it

book by Thom [1], various applications of Catastrophe and Bifurcation

Theory by Zeeman have appeared in the literature [2,3,4]. A number of

*Certain readers may prefer to go through Chapter 3 before reading this
chapter. This process would help in associating various abstract
quantities and concepts defined here with specific aircraft physical
variables and phenomena.
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these applications have been to social and biological systems,

where the lack of a mathematical model causes serious difficulties in
the application of the theory. This has led to some recent criticism
of Zeeman's work on Applied Catastrophe Theory [34]. The engineering
applications of Catastrophe Theory and Bifurcation Analysis, on the
other hand, are well founded since they are based on physical models
[5.6,7,28,29]. Perhaps the most common engineering applications of
Bifurcation Analysis are in the fields of Elastic Stability of Struc-
tures [39], Nonlinear Circuit Analysis [37] and Chemical Kinetics
[28,30,35,40].

A study of the bifurcation phenomena in ordinary differential
equations was started by Poincare around 1892 [8] and was extended
further by Andronov and Pontryagin [10 ]. A new impetus was provided
in recent years by the theory of singularities of smooth maps [11,12,13,14].
A full understanding of these results requires use of advanced concepts
from differential topology. Our approach here will be to illustrate
important concepts and results through specific examples, relevant to
engineering applications. We shall discuss four main theorems that
are the cornerstones of BACTM: (i) the Center Manifold or Reduction
Theorem [7,15); (ii) the main theorem of Catastrophe Theory due to Thom 1
[1] and Mather [14] ; (iii) the Hopf Bifurcation Theorem [15] ; and
(iv) the Global Implicit Function Theorem of Palais [17] and its exten-

sions. PFor illustrative purposes, a simple example of bifurcations and 1) ]

4
e
e

catastrophes is presented first.
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(2.2) Illustrative Example: Cusp Catastrophe

Consider a scalar differnetial equation model of the form

dx 3
i i X + clx + c2 (2.1)

where x denotes state and (cl,cz) denote control variables. .Since

it is a scalar system, the stable equilibrium points may be represented
as the minima of the potential function ¢ = x4/4 + cl(x2/2) + c X.

These are shown in Fig. [2.1] for different values of c, and a fixed
value of c = -3. It is clear from Fig. [2.1] that for |c2| > 2, only
one minimum exists whereas for |c2| < 2, two minima and one maximum exist.
The maximum represents an unstable equilibrium point so that the system

can never stay in that state. Suppose c_ is varied slowly from -3 to 3

2

in such a manner that the system state x reaches an equilibrium value

for each cz. Then the state will stay in the right hand minimum corre-

sponding toix1 till this minimum coalesces with the maximum at c, = 2.

At this point with a small change in Cye the state will jump catastro-

phically from x1 to xz. If c2 is now revexsed, the system will stay in

state x2 until c2 = =2 and then jump to x1 . Thus there is a hysteresis

effect in that the location of the jump depends on the past history of c,e
We now draw a three-~dimensional picture in the (x,cl,cz) space

(see Fig. [2.2] ). The surface of equilibrium points is called M and

its projection on the control space is denoted by C. Notice that the

region in control space over which M is triple-sheeted (i.e., the function

f£(x,c) = 0 has three roots) is enclosed by a cusp. The boundary between

regions with different number of equilibrium points is called the
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E16. 2.2: QUALITATIVE REPRESENTATION OF

Cusp CATASTROPHE
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Bifurcation Surface since the equilibrium solutions separate (or

bifurcate) from each other at this surface. The equations for the
Bifurcation Surface are easily derived by setting both f(x,c) and

9f (x,c)/3x equal to zero, i.e.

of * 2
i 3x° + c, = 0 (2.2)
3
f(x,c) = x" + clx + c2 =0 (2.3)

In other words, the coalescing of a minimum and a maximum creates
and inflection point at which the first and the second derivatives
of ¢ (x,c) vanish simultaneously.

Elminating x from Eqs. (2.2) and (2.3), we obtain the equation

of the bifurcation surface as

1 c3 r 1

o, f g5 = 0 (2.4)

The variable ¢, is called a splitting factor since for c, < 0, there

1

is no catastrophe (Fig. [2.3]) and for ¢, > 0, there is a catastrophe

1
(Fig. [2.4)).
Having defined some of the terminology, we now discuss the four

main theorems of BACTM.

*
(2.3) Four Main Theorems of BACTM

(2.3.1) The Center Manifold or Reduction Theorem [18,19,20]:

Consider a system described by a differential equation
x = £(x,c) (2.5)

where x is n X 1 vector of state variables and ¢ is m X 1 vector of

*The exact statements of these theorems are contained in Appendix A.
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control variables and parameters, Suppose that for ¢ = 0, the 5
system has an equilibrium point at x = 0 (this can be achieved by a
translation in state space). Assume that F = g—:— :cz:g, representing

the dynamics of the linearized system, has k eigenvalues on the
imaginary axis (zeros and purely imaginary eigenvalues being included).
Out of the remaining (n-k) eigenvalues, let j be in the left half ‘
plane and £ be in the right half plane. Also, divide the eigenvectors
of F into three groups corresponding to the imaginary axis, left half
plane and right half plane eigenvalues respectively. Arrange the eigen-

vectors of P corresponding to k eigenvalues on the imaginary axis as

columns of an n X k matrix Eo' Similarly define matrices of eigen-
vectors E_(nxj) and E +(nxL) corresponding to the left-half and right-
half eigenvalues of F. Consider, now, coordinate transformations or |
projections of the state vector x onto the space spanned by the different
eigenvectors as follows:

s E:x (k x 1)

(]

veEX (3 x1)

(]

we=EX (Lx1)

+

Then the Center Manifold Theorem states that Eq. (2.5) is locally (i.e., i

for small deviations) equivalent to the following system of equations: N E
‘; = g(u,c) - >
veAv (2.6) ! | ;
. 5
W= A +w

T T
where A= z_n_ and A+ - E+!E+.
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The important thing to notice in Eq. (2.6) is that the equations

for v and w are linear and that the dimension k is generally much

smaller than n. In fact, the maximum value of k depends on the

dimension m of the control vector c. For example, if m = 1, only

the cases k = 1 (a single zero eigenvalue) and k = 2 (a pair or purely

imaginary eigenvalues) are obtained in a "structurally stable" way.

Other values of k are not structurally stable since a small change in

the dynamics of the system can move the extra eigenvalues away from

the imaginary axis. Notice further that a minimum of three control

variables are required to place two eigenvalues of F simultaneously

at the origin (alternatively to reduce the rank of F by two). General

relationships of this type between m and k have been given by Arnold [7].
A direct consequence of Eq. (2.6) is that the bifurcational study

of the original nonlinear system is reduced to a much smaller system

of dimension k. The theorem also implies that any results that are

obtained on the u-system may be generalized to higher dimensional systems

by the process of building on or "suspension" [7] with linear systems

having eigenvalues with non-zero real parts. For applications, the most

significant coﬂsequence of the theorem is perhaps the central importance

of the eigenvalues on the imaginary axis. The nonlinear character of the

system is essentially unfolded through these eigenvalues. Therefore,

the determination of surfaces in the control and parameter space where

one or more eigenvalues cross the imaginary axis is of paramount impor-

tance in studying the behavior of nonlinear systems. These surfaces

may be obtained analytically from models or inferred experimentally
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for real systems. In BACTM (see Fig. 2.8), the given equations
of motion for a system (viz. Eg. (2.5)) are linearized around each
equilibrium point, either analytically or numerically. The eigenvalues
of each linearized system are computed to determine the control
conditions at which the eigenvalues cross the imaginary axis. There
are cases (e.g. aircraft B) for which only one eigenvalue crosses the
imaginary axis. Using the Center Manifold Theorem, we can, therefore,
siudy their bifurcation behavior in terms of a single state variable.
The Center Manifold Theorem essentially generalizes and extends the
linearization procedure used so commonly in control applicafions.
More importantly, it reveals when linearization would break down and
how the model may be extended to capture the "essential"” nonlinearities
of the system.

We now discuss theorems by Thom [1] and Hopf [16] that characterize

the bifurcational behavior for k = 1,2. The classification for higher

values of k is still incomplete, but the phenomena exhibited by the
above two cases is so rich that a large number of applications are

already possible.

(2.3.2) Main Theorem of Elementary Catastrophe Theory [1,14].

This theorem provides a complete classification of the bifurca-

tional behavior of finite dimensional systems of gradient-type for

m < 5. Gradient-type systems are such that their dynamics locally
minimize a potential function. For such systems f(x,c) in Eq. (2.5)
can be expressed as %2¢(x,c) where ¢(x,c) is a scalar potential
function. An important consequence of this assumption is that the

linear part of the dynamic viz. F = 32¢/3x2 is a symmetric matrix
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and therefore has only real eigenvalues. It can be shown [1,7] that
for m < 5, only the cases k = 1 and 2 can be obtained in a structurally
stable way (or occur in "general position" [7] i.e., a slight change in
the function ¢ (x,c) or the parameters would not eliminate the above
singularities) whereas higher order singularities of F, i.e., k > 3
do not appear in control space dimension of less than 6 in a structur-
ally stable way. This can also be seen from the fact that F may be
decomposed into the product of a non-singular lower triangular matrix
W with an upper triangular matrix G via Gaussian elimination. Then,
for a stable rank deficiency of 3 in F, a minimum of six elements in the
the last three rows of G must be zero [35], which requires having six
independently varying control parameters. In some practical applica-
tions, the special structure of F may lead to stronger results, allowing
one to narrow down the classification of simgularities and the resulting
bifurcations.

Based on the above discussion and the Center Manifold Theorem,
the local classification of bifurcations for all finite dimensional
gradient type systems for m < 5 can be reduced to systems of dimension
one (k = 1) and two (k = 2). However, a complete classification of
sinqularities depends further on the nature of higher order terms
in the Taylor series expansion of the function g(u,c) (cf. E3. (2.6)).
The general theorem by Thom [1] is given in Appendix A. We consider
here the case of four control variables,

Table 1 lists the seven catastrophes given by Thom [1] for the
case of m = 4, The first four are called cuspoids and correspond to
the case k = 1, whereas the last three are called umbilics and correspond

to the case k = 2,
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4 2
-(x +c1x +c2x c3)

= (x5+c x3+c2x2+c

1

Control Space State Space Generic Description
Dimension, m Dimension, k g(x,c) Name of the
Catastrophe
2
-(x"~c) FOLD (2.7)
3
-(x"+c cusp (2.8)

SWALLOW TAIL (2.9)

BUTTERFLY (2.10)

T

T T

- + -
2xlx2 Cc.X."C

-2x x_.+2c, xX~Cc

1

HYPERBOLIC

UMBILIC o

ELLIPTIC

UMBILIC (2.12)

PARABOLIC
UMBILIC (2.13)

Seven Elementary Catastrophes for Control Space Dimension, m = 4.
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The classification within each of the above two categories is
based on the codimension of the singularity, which qualitatively is an
indication of the degeneracy of the singularity. The exact definition
of the codimension of a singularity may be found in ref. [1], but
roughly speaking, the codimension may be inferred from the number of
Taylor series coefficients that vanish in the expansion of g(x,c)
around a given equilibrium point. 1In this sense, all equilibrium

points [equivalently critical points of ¢(x,c)] around which the lin-

earized system has no zero eigenvalues are singularities of codimension
zero. For k = 1, it is clear that at least one (linear) Taylor coeffi-
cient must vanish in the expansion of g(u,c) [cf. Eq. (2.6)] but higher

order coefficients may also vanish. The dimension of the control space

m again limits the number of cases that are to be considered since for

m = 4 and k = 1, only singularities of codimension d < 4 can occur in

a structurally stable way. Similarly, for k = 2, and m = 4, only three

umbilic types of singularities occur as shown in Table 1. As an
example, consider the cusp catastrophe of section 2.2. The function

g(u,c) takes the form g(u,c) = -(ﬁ3 + cu+ c2).

1

At u = 0, the first two derivatives of g(u,c) viz g%- 0 and
2 3

é—g- vanish, whereas é—% = -6. Thom [1] shows that the above g (°)
" |u=0 du

function is representative of the class of smooth functions for which
the first two partial derivatives are zero. However, to achieve this
condition in a "structurally stable" way, at least two independent

parameters or control variables (m=2) must be available. The specific

control values can then be obtained by simply setting the first two

=
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partial derivatives of g(u,c) equal to zero. If only one control

a.
E: |
-

variable is available and the first two partials of g(u,c) happen
to be zero for a particular value of ¢, then a slight perturbation
in the function g(u,c) would destroy this property.
We now discuss the genericity property of the models listed
in Table 1 for each catastrophe. These are the simplest representations
of equivalence classes of dynamic systems in the sense that all other
dynamic systems in a given class can be obtained by smooth deformations
of the generic ones. The exact definition of equivalence is rather
technical, but should be considered carefully in every application of
the theorem. (See Appendix A for this definition).
The practical importance of the generic representation of Table 1
in applications derives from the following facts:
(i) Their global bifurcation behaviors have been studied
extensively and are well documented in the literature [1,21].
(ii) 1In system identification problems, one or more model
structures have to be postulated based on physical con-
siderations and on the observed qualitative properties of
the system. The generic models provide a library with well-
understood dynamic properties and are, therefore, ideal
candidates for choosing model structures.
(iii) The validity of the generic models for physical systems can
be extended by use of the building on or the "suspension"
procedure discussed in Section 2.3.1.
(iv) The low dimension of the generic models makes them amenable
for further study in problems of experimental design and

optimal control (see Section 2.6).
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For illustrative purposes, we show diagrams of the seven elementary
catastrophes in Figs. 2.5 and 2.6, Only selected three dimensional
sections are shown.* We now discuss the nature of equilibrium surfaces ;
and phase plane trajectories for the cuspoids (cf Fig. 2.5).

For a Cusp Catastrophe, the maximum number of equilibrium points
(stable and unstable) for a given value of the controls c is 3 and
for a Butterfly, the same number is 5. Each equilibrium corresponds 4
b to a minimum (stable), maximum (unstable) or inflexion point of the \
potential function. At the inflexion point, the second derivative of
the potential function vanishes and a bifurcation occurs. 1In higher 1

dimensions (n > 1), the nature of nonzero eigenvalues modifies the

ik

state space portrait (see Eq. (2.6)). For example, one can get nodes
(i.e., all eigenvalues of the same sign), saddles (i.e., eigenvalues
of opposite signs) and bifurcation points (one or more eigenvalues
zero). The nodes may be further divided into sources or sinks depending
on whether they are unstable or stable. The domains of attraction of
the sinks are defined in terms of separatrices of the saddles. At

E ia bifurcation points, the determinant of the linearized dynamic matrix F

! &3 vanishes and this provides one method for locating the bifurcation %

surfaces without solving explicitly for eigenvalues of F.

The discussion in this subsection (2.3.2) has concentrated on the ]
case of real eigenvalues crossing the imaginary axis. We now consider
the case in which a pair of complex eigenvalues of F crosses the 1

imaginary axis. It is shown in the next section that this results in

bifurcation to a limit cycle known as the Hopf Bifurcation, provided

certain conditions are satisfied.

*For detailed representation of these catastrophes, the reader is referred
to the extensive computer study of Woodstock and Poston [21].
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POLD cusp SWALLOWTAIL

N STARLE

STATE, U

i ity ebeine

Pig. 2.5: Elementary Catastrophes in One State Variable and One
or Two Control Variable Space.

(Cuspoids from Table 1).

[# e it et it i et




: } SCIENTIFIC SYSTEMS, INC.

tJ

PARABOLIC UMBILIC

HYPERBOLIC UMBILIC - ELLIPTIC UMBILIC

i i T S e

Fig. 2.6: Umbilic Catastrophes in Three-Dimensional Control
Space (See Table 1).
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(2.3.3) Hopf Bifurcation

Qualitatively, Hopf Bifurcation is very different from the
elementary bifurcations of equilibrium points considered so far.
For general autonomous nonlinear systems of the nongradient type,
equilibrium solutions which are closed orbits can exist. Such
solutions are also called Limit Cycles or periodic orbits. It
was shown by Hopf [16] that a family of periodic orbits bifurcates
from a simple equilibrium point as a parameter of the system is
varied in such a way that a complex pair of eigenvalues of the
linearized syétem crosses the imaginary axis with nonzero speed.
Before discussing the Hopf Bifurcation Theorem, we present a simple
example. The reader is referred to Ref. [5] for further examples
of Hopf Bifurcations.

Consider a two-dimensional system in polar coordinates (r,9),

X
where r2 = xi + xg and 6 = t:an-1 ;g-and the system is described by
1

8 = -1
(2.14)

. 2

r =r(c-r)
The equilibrium solutions must satisfy the equation r(c-rz) =0
which implies r = 0 and r = /E'provided c > 0. For c < 0, only the
equilibrium solution r = 0 exists and the sign of the linear term
coefficient i.e. ¢ < 0 indicates that r = 0 is a spiral sink. But
for ¢ > 0, r = 0 solution becomes unstable (spiral source) and a new
solution r = /c emerges. The latter corresponds to a stable limit

cycle whose radius grows as /c. The point ¢ = 0 is weakly attracting

and represents a Hopf Bifurcation point. (See Fig. 2.7).
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Sink Centre Source + | Limit Cycle
C«<0 C=0 C>0
(A) Vectorfields. y
A

Limit Cycle

Source

>C

(B) Evolution of Attractors.

Fig, 2.7: The Hopf Bifurcation
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Hopf [16] generalized the above bifurcation to higher dimensions
and gave conditions for the limit cycles to be stable. Further |
generalizations of Hopf's results are contained in Ref. [5,6,23] and
Appendix A. Examples of Hopf Bifurcation in five-dimensional air-
craft dynamics at high angles-of-attack will be presented in Chapter I*
II1I. |

Hopf Bifurcation has been studied mainly for the case of a single |
parameter or control variable i.e. m = 1. Using the Centre-manifold
theorem, this case can be studied in two dimensions since k = 2
corresponding to a single pair of complex eigenvalues crossing the |
imaginary axis. For m > 2, a double pair of complex eigenvalues or '1
a single pair plus a real eigenvalue may cross the imaginary axis |
simultaneously. The classification of Hopf Bifurcation for these
cases is still incomplete. However, the cases discussed by Taken [23]
and Arnold {7] for m = 1,2 are quite rich in their behavior and their
uses in Hydrodynamic Stability and flutter have been reported [7,24].

For the case of a scalar parameter u (m=1), the Hopf Bifurcation
theorem stated in Appendix A requires that the purely imaginary
eigenvalues cross the imaginary axis with nonzero velocity at the r

critical value of M i.e. 4 R’;su)] > 0 where RelA(u) denotes the
u=0 I

real part of the eigenvalue of F which vanishes at u = 0. If this
condition is not satisfied and an even derivative with respect to u |
of Re)(p) is nonvanishing, then depending upon its sign, either two

families of limit cycles or none may bifurcate at y = 0. If an odd

derivative of Re)l(u) is nonzero, then at least locally a one parameter

family of limit cycles will exist.

ek i e i e e e e e e e o2 b e it .
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Another requirement of the Hopf Bifurcation theorem is that the
rest of the eigenvalues be in the left half plane bounded away from 3
the imaginary axis. It turns out that for the aircraft application 1
(Chapter III, aircraft H) this condition is satisfied for all the
cases of interest since one is mainly interested in those situations

where stability is lost for the first time.

(2.3.4) Global Implicit Function Theorem

It may be seen from the discussion so far that an important
problem in the application of Bifuraction Analysis and Catastrophe
Theory is the solution of a set of nonlinear algebraic equations for
different values of a parameter or control vector c. In particular,
the bifurcation and catastrophe behavior is intimately connected with
the fact that these equations have multiple solutions which bifurcate

from each other or coalesce as the vector c is varied over its

" s

admissible domain. It is also of interest to determine the conditions
under which a set of nonlinear algebraic equations has a unique
solution since this implies the lack of catastrophic or jump behavior.

The global implicit function theorem of Palais [17] has been

(i e

used extensively in establishing the uniqueness of equilibrium
solutions in nonlinear networks [25]. Consider the equation
f(x,c) = 0 (2.17)
Palais' theorem (or its generalization by Kuh and Hajj [26])
states two conditions for uniqueness of solutions viz. (i) non-

vanishing of the determinant of F = 3f/23x for all (x,c), and

(ii) “growth conditions”.

[lex,c) || + = as ||x]] + = (2.18)
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The importance of the first condition is clear from the discussion

in Sections 2.3.1 and 2.3.2 for systems with real eigenvalues of F
since the first condition implies precisely the absence of bifur-
cations. 1In Chapter 3, we will use this theorem and certain special
cases of it to study the effect of feedback control on bifurcation
surfaces. In particular, if one is interested in control laws that
change the structure of a nonlinear system from bifurcational to
nonbifurcational, then the importance of the global implicit function
theorems is obvious. Notice, however, that the case of complex
eigenvalues leading to Hopf Bifurcations needs further study since

in this case the determinant of F does not vanish.

(2.4) A Unified Methodology for Applications-

Based on the above four theorems, a fairly complete methodology
has been developed for studying the global stability and control
characteristics of nonlinear systems. This methodology complements
and extends previous approaches to nonlinear system stability analysis
such as Liapunov methods and two-dimensional phase plane methods,

We describe this methodology here in some detail since it is
different from other applications of Catastrophe Theory reported in
the literature. Fig. (2.8) shows the four basic steps involved in

BACTM which are discussed below.

(2.4.1) Problem Formulation

In this step, the variables of interest in the system are
divided into state variables x and control variables c (this may
include parameters). The qualitative difference between the two

types of variables is that the former are fast~varying and the latter

i o L T e NPT R, e T s et s g s e s i S e oo s e S i - i
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FIG, 2.8: Stepsin BACTM (Bifurcation Analysis and
Catastrophe Theory Methodoiogy)

Parameter Problem Formulation
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and m Control Variables ;
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are slow-varying. Next, the equations of motion for the state
variables are written down and conditions for the equilibrium

state are developed. If a potential function exists in the
problem, it is identified and related to the equations of motion.
The admissible ranges of values for the state and control variables
are specified. It is useful, though not essential, to identify
specific unstable and jump behavior known to exist for the system

under study.

(2.4.2) Computation of Equilibrium Surfaces

This step, in general, requires solution to a set of nonlinear
algebraic equations. One may either assume values for the control
variables and solve for the state variables or vice versa. The
second procedure turns out to be simpler in many cases. For example,
in the aircraft case, the equilibrium equations are generally linear
in the control variables but nonlinear in the state variables. Thus,
it is easier to obtain the control values necessary to achieve a given
equilibrium state. The numerical techniques used to solve nonlinear
algebraic equations may be Newton-Raphson, Quasilinearization or
Conjugate Gradient methods. An efficient numerical procedure is
necessary since equilibrium states are to be computed for a large
number of control values. Furthermore, for each control value, it
is necessary to compute all admissible equilibrium points. For high
dimensional systems with several constraints, fixed-point techniques
{36] may prove to be quite useful for the computation of equilibrium

points. The above computation becomes quite easy if the quilibrium

i it
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equations can be reduced to a single nonlinear equation as will be
demonstrated in the aircraft B case considered in Section 3*. 1In
addition, if this equation is a polynomial equation, then the
reduction to one of the canonical models of Catastrophe Theory is
possible. Since the global behavior of these canonical models is
well-understood, the equilibrium surfaces and the bifurcation
surfaces are obtained easily. In the more general case, it is
possible to employ Quasilinearization techniques to generate all
the branches of equilibrium solutions by varying one parameter at

a tima.

A

(2.4.3) Computation of Bifurcation Surface

The surface in the control parameter space of singular equilibrium
points at which the eigenvalues of the linearized system cross the
imaginary axis are called Bifurcation Surfaces. At these surfaces,
equilibrium solutions branch out and either new equilibrium points or
periodic orbits (limit cycles) are born or are destroyed. Therefore,
Bifurcation Surfaces represent jump surfaces at which the system may
jump from one equilibrium state to another. In systems obeying the
Delay rule [1], the jumps occur only when the current stable equilibrium
state disappears by collision with an unstable equilibrium state.

The analytical calculation of the bifurcation surfaces is possible
only in simple cases. Therefore, efficient numerical techniques have
to be devised to solve the set of nonlinear algebraic equations repre-

senting the Bifurcation surfaces. Thom's classification theorem of

*The justification for this reduction is provided by the Centre
Manifold Theorem (Section 2.3.1) since for aircraft B only a single
real eigenvalue crosses the origin under all admissible control
variations.
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i oo el B .

Catastrophe Theory [l] and Taken's classification theorem on Hopf
Bifurcations [41] can be used to describe the qualitative behavior
of the bifurcation surfaces near the singular equilibrium points.

On the other hand, if the bifurcation surfaces are obtained numer-

i e s 5 il

ically or experimentally, then the classification theorems can be

it s ke, i

used for validation of the results. i
The location of singular equilibrium points can be done

simultaneously with the computation of the equilibrium surface if

a Newton-type algorithm or Quasilinearization is used. The extra
work involved is a calculation of the eigenvalues of the jacobian
matrix or a check for the location of eigenvalues on the imaginary

axis. In fact, starting from one branch of equilibrium points,

PO e ———

one may generate other branches by proper calculation at the
singular equilibrium points. The bifuraction to limit cycles,
however, would require special calculations such as converting the
equilibrium equations to polar coordinates or the construction of

Poincare maps [5].

(2.4.4) Use of Bifurcation and Equilibrium Surfaces

An amazing amount of dynamical information is compressed in the

bifurcation and equilibrium surfaces. The jump phenomena, hysteresis

effects, divergence properties, limit cycles and domains of attraction 4

can all be inferred from these diagrams. It is also possible to devise

control laws that will move the system from one equilibrium state to

another minimizing a certain cost function. The design of control

inputs to identify the model structure can also be based on the above
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information. The chief characteristic of these surfaces is that they
contain global information regarding the system. It may seem that

for high dimensional systems, an excessive amount of computation is
required to obtain these surfaces. On the other hand, the computations
involved are much less than the numerical solution of the equations

of motion for a large number of control histories. The latter approach
is routinely used on most practical systems, but can miss many
significant phenomena since the number of cases to be considered is
extremely large. The case of aircraft dynamics at high angles-of-

attack is a good example of this situation.

(2.5) Relationship to Other Methods for Nonlinear System Analysis

BACTM may be thought of as an extension of the classical phase
plane method from two to higher dimensions with special emphasis on
topological properties of equilibrium and bifurcation surfaces. Two
of the other common methods for nonlinear system analysis are (i)
Liapunov methods and (ii) Describing function methods [44]. Liapunov
methods (first, second and extensions by Lure, Popov and others [42]),
are useful for determining whether a given equilibrium point or
trajectory is stable in the sense of Liapunov Stability. The main
difficulty in the use of these methods lies in the construction of
Liapunov Functions. Takahashi et al. [43] state that the difficulty
of finding Liapunov functions is of the same order as that of finding
analytical solutions to differential equations. Even if a suitable
Liapunov function can be found, its use in computing the domain of

attraction and in control system synthesis may be very limited. BACTM,

e
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on the other hand, does not suffer from any of these deficiencies
since its use can be reduced to straightforward computational steps.
In a sense BACTM is more general, since Liapunov theorems and
extensions can be used as part of BACTM to analyze the stability

of equilibrium points. In fact, the First Method of Liapunov is
used during step 2.4.4 and in those cases where only a single real
eigenvalue crosses the imaginary axis (e.g. aircraft B, Chapter III),
the use of BACTM leads to a potential function which can be used to
construct a suitable Liapunov function.

The describing function techniques [44] are inherently limited
due to assumptions of harmonic inputs and specific nonlinearities.
They cannot be expected to provide the global type of topological
information which is necessary for a complete understanding of the

aircraft nonlinear phenomena at high angles-~of-attack.

(2.6) Applications of BACTM

As described earlier, BACTM leads directly to an understanding
of the global stability behavior of nonlinear systems as control and
system parameters are varied globally. Two other applications of
BACTM are (i) input design and model structure determination for
nonlinear systems and (ii) nonlinear control system design., These

are discussed below.

(2.6.1) Nonlinear System Identification

The identification of nonlinear systems of unknown structure is
of great practical importance, but woefully little has been done in

this field. 1In Section 2.3, we discussed four different theorems,

i
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all of which have implications for nonlinear system identification.
The center manifold theorem allows us to reduce the dimensionality

of the system and provides guidelines for deciding whether a non-
linear model is required and of what dimension. For example,

suppose the unknown system is perturbed around an equilibrium point
and its linearized dynamics is identified using standard identification
techniques [33]. If the identified eigenvalues and their standard
deviations indicate that all the eigenvalues are far removed from

the imaginary axis, then the identified linearized model can be
regarded as satisfactory. On the other hand, if the 95% confidence
limits around the identified eigenvalues enclose the imaginary axis,
then a need for the addition of nonlinearities is indicated. (If the
confidence limits are too wide, one may repeat the experiment and
collect further data to narrow the confidence limits). The eigenspace
corresponding to the eigenvalues that are most likely to cross the

imaginary axis would exhibit the "essential” nonlinearity.

(2.6.2) Nonlinear Control System Design

A standard requirement in control system design is to place the

poles of the system in the left half plane. It is clear from the

theorems of Section 2.3 that, if a control law achieves this requirement

Nl Gt it i i

N o "

for a nonlinear system at all points in the state and control space, and

the "growth condition” is satisfied, then the close-loop would be

bifurcation-free. This powerful result which follows almost trivially

from the above theorems is not widely appreciated in the control
literature. It may, however, account for the success of linearized

techniques that are commonly used in control system design.

i
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A more difficult problem to solve is to design controllers that
do not allow the eigenvalues of the linearized system to cross the |
imaginary axis. The problem is solved easily for the generic models

(2.7)-(2.13) since the behavior of these models is well-understood.

P

For example, in the cusp model Eq. (2.8), negative feedback on <, viz,. ’

cl, = (-klx + ko) has the effect of changing ¢

2 to (cl + kl). If cl is

1

negative, then by choosing k., > c. the bifurcations are eliminated.

1 1
The same effect can be achieved for the "Butterfly" case, Eq. (2.10),
by choosing e = -(klx + k2x2 + k3x4 + ko) and choosing the gains

(kl, k2, k3) in such a way that the case shown at the top of Fig. 2.9
(unique equilibrium point) is achieved. For more general models, the
control parameters (cl...c4) are nonlinear functions of the physical ]

control variables. 1In such cases, a feedback law on a physical

control has the effect of changing more than one control parameter {

in the generic models. The design of bifurcation-free control laws

is more complicated in these cases. However, we do have a clear cut |
methodology to proceed and to study the effect of different control l

laws on the bifurcation behavior of the system. |
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CHAPTER III

Aircraft Global Stability and
Control at High-Angles-of-Attack

(3.1) Overview

This chapter presents detailed numerical results of applying
BACTM to three aircraft configurations, A, B and H. (See Section 3.3
for a description of the characteristics of each of these aircraft).
Section 3.2 contains a discussion of specific high angle-of-attack
phenamena providing the main motivation for the current study.
Aircraft characteristics and equations of motion are contained in

Sections 3.3 and 3.4. Numerical procedures for the solution of equil-

ibrium equations and for the computation of bifurcation surfaces are

discussed in Section 3.5. Specific global stability and control ;]i
results for models of aircrafts A, B and H in the form of two- ]f
dimensional projections of the equilibrium surface, bifurcation "5
surfaces, qualitative dynamics, numerical verifications and physical l
explanations for jumps and limit cycles are contained in Section 3.6. 5
(This section contains the major numerical results of the current study). al

e

Certain control and stability augmentation aspects of the model for

it

aircraft B are discussed in Section 3.7. Figure 3.1 defines and shows
the various forces, moments, angular velocities and angular position ‘]

for an aircraft.
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(3.2) High Angle-of-Attack Phenomena

A large numﬁer of éhe performance requirements expected of today's
maneuverable jet aircraft lead to flight conditions containing large
values of angle-of-attack (®). Generally, maneuvers requiring a rapid
increase in l1lift, such as rolling pullouts, pullups and turns, require

not only a higha, but may also require a sudden, large value of roll rate

(p) to properly orient the lift vector. However, as & increases, many
destabilizing effects associated with flow separation (such as stalling)
and diminished control effectiveness become prominent; and, if the flight é
condition is severe enough, these effects can cause loss of control of )
the aircraft. Furthermore, while the streamlining trends in aircraft
geometry certainly enhance both the speed and the capability to perform
certain kinds of maneuvers, they also tend to campound the destabilizing .
tendencies of high~0 maneuvers. For some aircraft the "destabilizing >
tendencies” at high a are so severe that the airframe and/or control

surfaces can hreak apart, particularly for such maneuvers as rolling

pullouts where inertial and gyroscopic coupling is also prevalent.

The essential feature of aircraft behavior at high a is that it is
nonlinear in nature. Predominant nonlinear characteristics are jump and
limit cycle phenomena. The large-disturbance nature of such motions implies,
furthermore, the presence of significant coupling between the longitudinal
and lateral modes. Hence, separation of modes based on small-disturbance
linearized theory is no longer valid. Given a significant roll rate p and

high angle-of-attack a, the coupling phenomenon produces high sideslip
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angles (B) which may generate hinge moments surpassing the structural
limits of the vertical tail. Whether or not structural integrity remains,
quite often this condition induces jump and limit cycle behavior which
leads to departure and subsequent loss of control.

Prominent features of flight in high o regimes include:

* Roll Coupling:
The roll coupling problem is an old one dating back to the intro-

duction of jet aircraft. Phillips [4] produced his results in 1948,
and the bulk of the main results, including the high angle-of-attack
phenomena, were obtained in the middle fifties (see Pinsker [13] and
Rhoades and Schuler [1}, for example). Certain vertical tail failures
were caused by maneuvers combining a simultaneous roll and pull-up
(rolling pull-out). Large sideslip angles, generated by the combination
of roll rate and high angle~of-attack, were responsible.
Previous work in this area, while quite often very productive,
has been hampered by the lack of adequate mathematical tools for
dealing with the nonlinear models which are required to simulate
the high-o maneuvers. Therefore, the studies tend to be locally
concentrated, so that at least quasi-linear methods are applicable.
The risk is, of course, that it is thereby possible to overlook
regions in the control space in which "catastrophic" phenomena occur.
For aircraft with a short wing span and having most of their
weight in the fuselage, and performing rolling maneuvers, their
"catastrophic" phenomena assume the form of sudden changes in the
values of the dynamic, or state, variables. Such "jumps" tend to ;
occur almost entirely without warning, with very little, if any,

change in control settings. The roll coupling problem, then, does




—48-

SCIENTIFIC SYSTEMS, INC.

exhibit many of the properties of those dynamic systems which
may be dealt with using BACTM. Later sections of this chapter
will show that BACTM is a useful tool for analyzing in a global
manner the nonlinear behavior of aircraft performing high-a,
rolling maneuvers.

. Low Rudder Effectiveness: This is a consequence of the vertical

tail (hence, rudder) descending further into the wing's wake
as a increases; it can lead to nose slice (see below). Large
negative values of a also inhibit rudder control effectiveness.

Result is weakening of "weathercock stability"” moment (CnB).

. Reduced Dihedral Effect: Related to the reasons for reduced

rudder effectiveness, in that the tail is in the wing's wake,
so that its lift due to sideslip B is reduced.

) Stall: The stall angle-of-attack, O , is the angle of

STALL
maximum usable 1lift at a given flight condition. Beyond this
o, while there may be greater 1ift potential, severe longitudinal
and/or lateral-directional instability will most likely arise,
with ensuing loss of control.

 Wing Rock: Uncommanded lateral-directional motions, in the
form of roll oscillations.

o Nose Slice: Uncommanded lateral-directional motion, in the

form of yaw excursions. Also known as "directional divergence" [2].
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Departure: Aircraft motions immediately following loss of
control. Many of these motions will shortly be identified

as "jump phenomena”.

Post Stall Gyration: Uncontrollable motions about more than

one body axis following departure, e.g., a rapid roll after

initial yaw divergence ("roll departure").

Spin: Sustained yaw rate r at angles-of-attack greater than
aSTALL' If a is positive the condition is called "erect spin";

if negative, "inverted spin".

Incipient Spin: In the initial stages of spin, there is often

insufficient balance of the aerodynamic and inertial moments,
giving rise to an incipient spin condition. When these moments

are in balance, the condition is called "developed spin".

Recovery Roll: This is roll rate occuring in the initial

phase of recovery from spin or departure. As O gets smaller
during recovery, the residual values of roll and yaw rates

generate a "pitch up" tendency, delaying the reduction in a.

Pre-Stall Buffeting: For & less than aSTALL' buffeting intensifies

somewhat, and a "nose-rise" tendency develops. This buffeting

typically does not provide adequate warning of an oncoming stall
condition. However the BACTM presented here is able to indicate
beforehand the flight condition(s) under which buffeting type of

conditions will give rise to "jump" catastrophes.

Jd

B
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Finally, typical of the phenomena less directly due to high
angle-of-attack, but nonetheless amplified by it, is that of adverse
aileron yaw, in which the rolling motion of the wings generates an o !
differential along the wing. This &0 produces an (abetting) lift
differential and a drag differential which induces yawing motion in i

the adverse sense of the rolling motion.

Not all of the above characteristics of high & flight are hazardous. i
Some are merely bothersome, reducing control effectiveness, while others,
such as the reduced dihedral effect, may actually aid the pilot in
reestablishing solid control of his vehicle, if he has an understanding
of how to utilize it.*
It will be seen later that many of these phenomena can be categorized,
predicted, and, ultimately, controlled by utilizing the BACTM methodology, .

presented in this report. | 4

(3.3) Aircraft Characteristics £

The aircraft used in this study are identified, respectively, as

aircraft A, B and H. In future work, it is hoped to apply the results of |
this study to an aircraft of particular interest to the Navy, such as | 4
the P-14. |
In general, aircraft A and B are distinguished from aircraft H in
that the latter is modelled by nonlinear aerodynamic coefficients, while
aircraft A and B are modelled only with linear coefficients (see Table 2).
The data available on aircraft A allowed study of the roll-coupling 4

problem for zero values of §e (elevator angle) and 8r (rudder angle) only.

2 aec il

I
*
For "pitch-down" maneuvers (see Etkin,p.153),6e > 0, negative o )
converts to negative B via the rolling motion. This makes the dihedral '
destabilizing, so that reduction of the dihedral effect is desirable.

ot
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.TABLE 2: CHARACTERISTICS OF EXAMPLE AXRPLANES

A/C A(Haddad {31y

A/C B(Etkin [5],p.447)

1

m, slugs
I slug - ft2

x’ g
I slug - ft2

v’ g
2

Iz, slug - ft
C , per radian

(o) per radian

Ypr per radian
per radian
, per radian
» per radian
» per radian
C , per radian
C_, per radian
C_, per radian
C, , per radian
C_  , per radian
C, , per radian
(2 , per radian
Cc , per radian
C , per radian
C , per radian

Cc , per radian

Cc , per radian
r

a, 1b/ee’

745

10976

57100

64975

-0.28

-0.034

-0.255

0.09

0.06

-0.044

186.3

1700

12400

13600

-0,081

4.35

-0.435

-9.73

0.0218

-0,0424

0.

-0.442

0.0309

-0.081

=-0.24
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Vv, ft/sec

s, ft2

c, ft

b, ft

AIRCRAFT H

i, =

11 = .727

YB = ~-.196

y‘Sa = -,0071

Yor = g

z = =1,

a

z6e = -,168

m_ = -22.95
a

m_ = -.987
q

Mse = -28.37

m& = =,173

m = -23.18
a

m = -.814
q

nB = 5,67
nea - 1.132
n = -,235

(Iz - Iy)/Ix

Mach = 0.9; h = 20,000 ft.

1

%2

n =
p

-52-

691
377
11.3

36.6

(Iz o Ix)/Iy

.949

.002
-1.578
-.921
-6.51

-9.99

"
|
>
wn
®
w

U}
]
~

.
[+,]
W

500

216

36.0

.716

(Iy - Ix)/Iz
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Control derivatives with respect to both 8a (aileron angle) and Ge

were available for aircraft B and this allowed a study of the roll coupling,
autorotation and divergence problems. Aircraft H, taken from Rhoades and
Schuler [1} and Hacker and Oprisiu [6] contains significant nonlinearities
in the aerodynamic model, and also gyroscopic effects due to engine rotation 3
(ﬂé, mp, n and m_). Note that "normalized" aero coefficients, such as 28 ’

which are used by Hacker and Oprisiu, relate to the more conventional, 4

"dimensionless" coefficients, say CE , via the factors F, = E'S /Ix for

1

coefficients C, , C ; or F_ = F_(b/(2V)), for coefficients such as C
LB . da B Lp ?

and Clr' Phenomena such as bifurcations to limit cycles were predicted and

2

verified for aircraft H. Aircraft A, taken from Haddad [3] , is an F100A.

Aircraft B is a small jet airplane taken from Etkin [5]. It has been

used extensively in the literature (see Schy and Hannah [7]) and has been
exhaustively studied here, along with aircraft H. The bifurcational proper-
ties of aircraft H are studied here for the first time. The aircraft A and
B are chosen for analysis here because of the amount of study they have
already been subject to, with regard to roll-coupling and similar phenomena.

Therefore, it is meaningful to compare the results presented in this report

with earlier work. With regard to aircraft H, the above is true, as well as
the fact that it is a more comprehensive model - i.e., more non-linear coupling
terms are present, with values for the coefficients of these terms specified
at the appropriate flight conditions. These extra terms for aircraft H
also introduce limit cycle phenomena which are known to exist in

modern fighter aircrafts. For aircraft A and B nonlinear

aerodynamic data was not available to permit similar analysis.

The algorithms used have been kept general so that the effect of additional
nonlinearities is easily studied. 1In this report, only the effect of

- varying the physical controls (6e,8a,fr) is studied, but the same approach

j-m--b——i”" R W it i M B M st A it gt i e i s G e




SCIENTIFIC SYSTEMS, INC. -54-

can be used for studying the effects of aerodynamic and other aircraft
parameter variations on the stability properties of the aircraft.

(3.4) Equations of Motion

The most general set of equations of motion used in this study is
for aircraft H. The equations for aircraft A and B can be derived by
setting some of the parameters in the aircraft H model to zero. Notation
and terminology used here is taken from Hacker and Oprisiu [6] and is

given in Appendix C. The complete system, then, is

P = 288 + 2a6aAa6a + qu + 2rr + lsaBAa + RraFAu+ sz - ilqr + 26a6a + 26r6r
(3.1)
q= maAa + m 4 + ipr + m6e6e - m&pB (3.2)
r= nBB + naaaAaéa +nr+ npp + npapAa - i3pq + naaﬁa + nardr (3.3)
a = q-pB+ zaAa + zcede + (g/V) (cos 6 cos ¢ - cos 90) (3.4)
B = yBB + p(sin a, + M) - r cos a, + yaaéa + y6r6r + (g/V) cos 8 sin ¢
(3.5)
$ =p+qtan O sin ¢ + r tan O cos ¢ (3.6)
8 = gqcos ¢ - r sin ¢ (3.7)

In egqs. (3.1) to (3.7) the air density, speed and aerodynamic
coefficients are assumed to be constant. These equations also include
the usual assumptions that Ax and Se are measured from trim settings for
steady, straight flight, and that u = V, = ao + Mz w/V, and B = V/V,
Note, however, that the complete rotational coupling and gravity terms

such as npa'zﬁa' etc., introduce coupling terms into the equations. While

-
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such terms are nonlinear in the variables, the coefficients are assumed
to be constant over the flight regimes of interest. It is also noted
that the aircraft principal axes have been used here for convenience
(one benefit being that inertia products vanish), as opposed to the
stability axes. The latter are defined as the set of wind axes at a cer-
tain steady-flight reference condition, most commonly with sideslip angle
B = 0. Stability axes are generally the reference axes in which the aero-
dynamic coefficients (stability derivativés) are derived, using wind tunnel
data; however, transformations to body principal axes of these coefficients
are straightforward.

The complete set of equations includes the x-axis force equation
and the kinematic equation for yaw angle, Y. Bowever, under the assump-
tion of constant speed, and noting that J is not an element in any of the
other equations save its own kinematic equation, the full system reduces to
the system of seven equations presented here, which hereafter shall be
called "complete". In order to successfully explore the high angle-of-attack
phenomena described in Section 3.2, it is not possible to introduce the
usual set of assumptions about the aircraft dynamics which lead to a
decoupling of the above equations into a longitudinal and lateral set,
each of which may be separately analyzed. However, it is often profitable
to neglect the gravity terms, as is done in the derivation of the equilibrium
surfaces and in the examination of "jump" phenomena, which are not seen to
depend appreciably on gravity effects. When this is done, the kinematic
equations for roll (¢) and pitch (6) decouple from the five force/moment
equations for the states (p,w,r,a,B), leaving five differential equations,
f; = R,BB + ZasaAaGa+%!q + zrr + R.BaBAa + pr - ilqr + zsasa + Zsrér A

(3.8)

& = ;;Aa + ;;q + izpr + msede - n&pB (3.9)
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= i L)
r nBB + naGaAada + nr + npp + npapAa i3pq + ncaGa + n6r6r (3.10)
a=gq-pB+ zaAa + zGeGe (3.11) 3
B = yBB + p(sin ao + M) - r cos ao + Y6a6a + Y6r6r (3.12)

The neglected weight effects have an important influence on peak
responses, so that if high accuracy is desired, the complete set should
be used in generating time histories (Schy and Hannah [7]). The qualitative
properties of the solution may, however, be studied from Egqs. (3.8) to

(3.12). For either set, the following notation is used:

ma = ma + m& za (3.13)
m =m +me (3.14)
q q a
i1 = (Iz - Iy)/Ix (3.15)
E
12 = (Iz - Ix)Iy (3.16)
i 3.17 ]
i, = (IY - Ix)/Iz (3.17) |

Also y = Y(g/WV), z = Z(g/WV), & = L/Ix, m = M/Iy, n= N/Iz. Dotted
symbols denote time derivatives. The aerodynamic forces are y and z,
and the aerodynamic moments are £, m, and n. The notation 28, say,
is standard for the expression %% ., and implies a linearization of

the contribution of sideslip to roll rate. Such linearization, unfortun-

ately, is necessary due to limited data. Finally, the state vector is

IR ) vk *;-bj‘»w:‘;.-, et el et e o e e v-.i.x',.i' i Bt i e i s e
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(p.q,r,a.,8,08,4) or (p,q,r,@,8), depending on the set used, and the
control vector is (§e,8a,8r), representing angular deflection commands

for elevator, aileron, and rudder, respectively.

(3.5) Solution Procedures

In the actual implementation of the BACTM method (see Fig. 2.8)
computer programs were developed which perform four basic tasks:

1) evaluationg the equilibrium solutions for the equations of motion
(Section 3.4); 2) determining the stability of an aircraft at these
equilibrium solutions; 3) computing the bifurcation surface (control
values at which a stable equilibrium solution bifurcates from an
unstable one); and 4) numerical integration of the equations of motion
with respect to time, for specified control inputs. The last program
produces a calculated time history of the behavior of an aircraft, and
is used as a verification of the correctness of the results obtained
from the first three steps. The BACTM method, programmed as described
above, has been applied to the three aircraft (A, B and H) described
in Section 3.3. See Table 2 for their physical characteristics. The
projrams use the most general set of equations of motion [Section 3.4
Eqs. (3.1-3.7)] for all the aircraft, typically by setting some of

the parameters to zero. In this manner, while doing the time history
solutions, the influence of force or moment terms of interest may be
studied, e.g., the effect of gravity on the motions.

In finding the equilibrium or steady-state solutions for the
aircraft under study, gravity was ignored (see Section 3.6.1.6 and
3.6.2.6 for a discussion of the consequences of such an assumption),
and ﬁ, &, f, &, and é were set to zero in Eq. (3.1)-(3.5). The last
four of the resulting five equations were solved for &, &, g, and T

*
respectively and the expressions qbtained were substituted into
*A bar over a variable denotes its equilibrium value.
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Eq. (3.1), giving rise to an 1llth degree polynomial in equilibrium roll
rate, ;, with an additional ; L term. The resulting equation has the

following form:

fl(l—a,ﬁe,t’ir:)da4 + f2 (;,Ge,ér)Ga3 + f3 (;,Ge,é'r)é'az + f4(;,6e,6r)6a

+ fs(f),ﬁe,ﬁr) = 0. ) (3.18)

Eq. (3.18) is a 4th degree polynomial in da. Solutions to this
equation may be studied by fixing Se and 8r, and solving fa for a wide
range of values of p. See Appendix B for definitions of the fj.
Since the coefficient of the 6a4 term is very small for the air-
craft considered, a simple cubic equation was solved using Newton's
method.* In solving Eq. (3.3) for @, it was found that the resulting

expression has a denominator which is a function of 8a and ; Thus

E L N(Gajselarl ;)
D (p, a, e, 6r)

No solution will exist at any point where D is equal to zero. Such
points do occur for some values of parameters for aircraft H and
correspond to more than one eigenvalue crossing the imaginary axis
simultaneously. The study of these singular points would involve
umbilics or the Hopf bifurcation.

When the model for aircraft B is considered (see Etkin [5] and also
Schy and Hannah [9]), the equations are simplified a great deal since all
the nonlinear aerodynamic terms are neglected. Eq. (3.18) becomes linear

in (6a,8e,8r) and the bifurcation surfaces are obtained by solving two

* e
Neglecting the -ilqr term in Eq. (3.8) results in a cubic equation. On
the other hand, neglecting nysa yields a quadratic equation in 6a.

c (3.19)

b,
3

i e

it
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linear equations, viz (see Schy [9] for details):

f4(5,6e,6r) Sa + fS(S,ae,cr) =0 (3.20)
of of
2 s+ =0 (3.21)
op dp

It is further observed that Eq. (3.20) is a fifth-degree polynomial
in p so that the most general catastrophe that can be observed is of
"butterfly" type. See Section 2.3.2 and in particualr, Eq. (2.10).

This fact is verified by solving Eq. (3.2) and (3.21) parametrically in
p (see Section 3.6.1.3). An eigenvalue analysis around each equilibrium
point shows that no stable autonomous limi% cycles exist in this case.

The above method for determining the equilibrium surfaces often
encountered difficulties in that for some values of the controls and
flight condition the derivation was invalid, and care had to be taken to
recognize these conditions. Further, for each specific application of the
program to a different set of equations, the program had to be rewritten,
after a long and tedious algebraic effort. As a result it was decided to
solve the set of nonlinear equations numerically for one set of control
values and continue the solution for the other set of control values in
terms of a differential equation that uses the length of the arc along a
solution path as the independent variable. The details of this technique
will be provided in a forthcoming report.

The linearized stability analysis was used to determine the stability

of a given equilibrium solution. If the equations of motion are written as,

f> = fp (p,q,r,s,8, 6a,de,dr)

) fq (p,q,r,a,8, ©&a,be,dr) (3.22)

™eee Qe

= fB(p,q,r,a,B, 6a, de,0r)
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then the linearized system matrix F is defined as, ]
g i
r
of of of of of
S PJ Ssp) ASP i) <) ) <)
op 3q or da 8 3

F = __a.p_q_ S alaate _a% (3.23)
3y 3 g }
? e o e -5p— 4

where the partials are evaluated at a given equilibrium, or trim,

setting x = (p, q, ¥, & B). If the real parts of all eigenvalues of }
F are negative, the equilibrium is stable and is indicated by an "S" 1
on the equilibrium plots. A real eigenvalue which is positive indicates _l;
an unstable equilibrium solution and is denoted on plots as "U". ;
Finally, complex eigenvalues with a positive real component indicate :14
an unstable focus with a possibility of a surrounding limit cycle, l%
indicated by "L". It should be noted that since each equilibrium .1
solution has five corresponding eigenvalues it is possible to have a y

combination of the above conditions, leading to points denoted by "UL",

"Uuu", etc.

Of particular importance is the condition arising when a change
of control input causes an eigenvalue to change from a negative real
part (stable) to a positive real part (unstable). The set of control
values at which such a change occurs (i.e. at least one eigenvalue equals
zero) constitute the bifurcation surface. This surface is determined by

solving the following set of six equations obtained from Eqs. (3.1)-(3.5)

and Eq. (3.23):

T I WL TR O AR RN A S T Py vare
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fp(qu'rrGIBrGarcerﬁr) =0
fq(PIQIroGIBr éa,de,ér) =0

- fr(PrerrGr Blaa, 66,61‘) = 0

(3.24)

fa(qulrrG' B,6a,8e,8r) = 0

fB(plqlrrGl B,8a,de,8r) =0

detIF(P:q:r,a:B:68,63161')I =0

In the (68a,8e) plane, (6r fixed), this means solving a set of six

equations in seven unknowns, producing a one dimensional surface.
Finally, the most straightforward task is to numerically

integrate the equations of motion to produce time histories. This

is accomplished using a fourth order Runge-Kutta integration routine.

The program is written to integrate either the set of five equations

of motion (gravity neglected) or the complete set of seven equations with

gravity included. The presence of gravity couples Eq. (3.6) and (3.7)

into the Eq. (3.1) to (3.5).

(3.6) Discussion of Results

This section is divided into two main subsections viz. section 3.6.1
on aircrafts A and B and section 3.6.2 on aircraft H. Each subsection is

3 further divided into discussions of equilibrium surfaces (3.6.1.1, 3.6.2.1),
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nonlinear root locus (3.6.1.2, 3.6.2.1), bifurcation surfaces (3.6.1.3,

3.6.2.2, 3.6.2.3), qualitative dynamics (3.6.1.4, 3.6.2.4), numerical

R i i bk,

verifications (3.6.1.5, 3.6.2.5) and physical explanations (3.6.1.6,

g

3.6.2.6). Figures 3.2 to 3.102, which pertain to Sections (3,6.1) through

(3.7), appear at the end of Section (3.7),

it i

rrene ye

(3.6.1) Aircrafts A and B

Figures (3.2) through (3.25) pertain to aircraft A and B. We
describe them in detail below.

(3.6.1.1) Equilibrium Surface ]

Fig. (3.2) shows the equilibrium roll rate E'plotted against the
aileron angle 8a for aircraft A (FlO00A). The other control variables
(Se,8r) are zero. A maximum of five steady states (3 stable and 3
2 unstable) are possible. It is clear from the figure that once 6a

increases beyond +8° (approximately) a jump in roll rate will occur since

the middle stable equilibrium branch disappears. A physical explanation
for this phenomenon which is related to roll coupling will be given in
section 3.6.

Alrcraft B: Figs. (3.3) and (3.4) show the behavior of equilibrium
roll rate with respect to da for a pitch up elevator (8e = -2°) and a pitch
down elevator (6e = 2°). A marked difference in equilibrium behavior
is noticed for the two cases. For the pitch up elevator, only one stable
(S) equilibrium state exists for -20° < §a < 20° so that for all practical
purposes, the aircraft is stable in pitch up except for very high values
of |6a|(>20°). For a pitch down elevator (Fig. 3.4), five equilibrium
states (3 stable, 2 unstable) exist in the approximate' range 4°<8a<4°

and one stable equilibrium point exists for |5a|> 9°, As §a is increased

L
The exact critical values for §a will be given in section 3.6.1.5.
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from zero, the roll rate increases almost linearly until 8a % 4° at
which point a jump occurs to a value on the upper equilibrium branch.
Figs. (3.5)-(3.8) show the behavior of equilibrium yaw rate ;, sideslip
angle B, angle-of-attack &, and pitch rate q versus aileron deflection,
Sa. At 8a ® +4, similar jumps occur in other states and the direction

and size of the jumps can be easily observed from the above figures. If

i kst dice B it

the direction of 6a is reversed, a second jump would be observed at

g

IGaI % 9°, resulting mainly in a reversal of the direction of roll rate. 1
Notice that, without changing §e, it is not possible to bring the roll 3
rate back to zero in a smooth fashion. The other possibility is to pro-

duce via some control action a large change in the initial state of the

aircraft so that it lies in the domain of attraction of the inner roll

i Saviaasnai e,

rate equilibrium branch. The important point is that after a jump has
occurred, the hysteresis effect due to separated domains of attraction
prevents the aircraft from returning to prejump conditions unless a

coordinated control action is taken or an abrupt reverse change in the
aircraft state is made by some other means. These aspects of qualitative
dynamics will be discussed further in sections 3.6.1.4 and 3.6.1.5.

(3.6.1.2) Nonlinear Root Locus

Figure 3.9 shows a nonlinear root locus plot obtained by varying
the equilibrium roll rate from -500 deg/sec to 500 deg/sec and com-
puting the eigenvalues of the linearized system around different
equilibrium points for fe = 2° It is noticed that a real
eigenvalue crosses the origin precisely at those points where
bifurcations occur. Referring to the Center Manifold Theorem, it can
be seen that the bifurcation behavior for this case can be studied in
terms of one state variable. We have chosen the roll rate as the single

variable, but it is possible to choose any other state variable in the
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A

present case. The reduction of the bifurcation behavior to one dimension

is achieved easily for aircraft A and B since their model does not contain
nonlinear aerodynamic terms. As discussed in Appendix B, if the equilibrium
equations are solved for E} ;, o and E'in terms of 5, then the following

fifth order polynomial equation in ; is obtained.

5+f2§4+f'§3+f432+f3+f=0 (3.25)

5P 3 5 6

where, for aircraft B,
f. = =21.6

f. = -326.4 da

£, = 50.3 §e + 358.9

£, = 5412.6 6a

f_ = 11752.8 §e - 1525.9

f_ = -23015 §a

Notice that f1 is constant, (f2,f ) depend linearly on 6a and

4'f6
(f3'f5) depend linearly on Se. We can reduce the above equation to the
canonical Butterfly model of Catastrophe Theory [1] by the following

change of variables:

b=p- £,/56 (3.26)
Eq(3.26) 1is derived by using the fact that the only difference between
Eq(3.25) and Eq(2.10) 1is that the coefficient of the quartic term is
zero in the latter case. When the expression p = b + f2/5f1 is substituted

in £q(3.25) and binomial series expansions are used, it is found that

.L*-‘ x Lg-—‘. b {..,..4

r 4
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the coefficients Cys Cys Cq and <, in Eq(2.10) correspond to

-3f§ 3f§
c S —— + o p—
1 2 (3.27)
5f1 2f1 i
gg3 6f_f 2f
c, = .__2_3 - 12* 2" f4 (3.28) 3
25¢€7 5£] y
4 3
c__-_9f_2...+_?.f3_f2-§f4f2+ﬁ (3.29)
3°125 4 25 2R 5 g2 £ j ;
1 i )
5 3 |
o =28 22 6 5 e fsh . s o) )
4~ 3125 57 125 o Bil 42 £ . j
1 1 1 3
The canonicazl model has the form:
1;—6b5+4cb3+3cb2+2cb+c (3.31)
1 2 3 4 *

(3.6.1.3) Bifurcation Surface

The bifurcation plot for Eq. (3.31) is well-known "Butterfly" which

was shown in Fig. 2.9 using Cy and c, as the control variables. The
bifurcation plot and the three-dimensional Catastrophe diagram for

aircraft B using (8a,8e) as the control variables is shown in Figs.

3.10 and 3.11. Notice the interesting fact that if 8a = 0 and e is
increased from O to 12°, one crosses point C corresponding to fe = 9.3°

at which the equilibrium state (8a =0, ér =0, p =0, r = 0, = 0) becomes
unstable. This is also shown in Fig. 3.12 which should be compared with

Figs. 3.3 and 3.4 for e = + 2°. It is clear from Figs. 3.1l and

3.12 that autorotation and departure would occur at this value of Se.

Fig. 3.12 shows that, at 8§e = 12°, the central branch has become an

unstable one, while it is seen to be stable in Figs. 3.3 and 3.4, where e = + 2%

An analytical criterion has been developed for the determination of critical

R I
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8e at which autorotation would occur and is given in Appendix B
(section B.2).

Figure 3.13 shows the behavior of equilibrium roll rate with
respect to §e for 8a = 0°. The presence of a bifurcation point at

8e = 9.3° is demonstrated beautifully, with two solutions branching off

e

in opposite directions. Notice that locally in the neighborhood of :
(3 = 0, e = 9.3°), there are either 3 or 1 equilibrium solutions, but
globally there are either 5 or 3 equilibrium solutions. A local bifurca- 3
tion analysis would simply indicate a loss of stability at Se = 9.3°,

but the global analysis also indicates the resulting autorotation equilibrium
state after the jump. In the case of Fig. 3.13, the choice between positive

and negative roll rates would be almost random depending on the sign of a E

perturbation in roll rate at e = 9.3°,

T
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(3.6.1.4) oQualitative Dynamics for Aircraft A and B

Having generated the equilibrium and bifurcation surfaces, it
is now possible to derive from them (Figs. 3.2-3.13 , for example)
extremely useful information about the aircraft behavior. Fig. (3.2)
shows a plot of the equilibrium (or steady state) roll rate p for

0°. Note that

aircraft A as a function of aileron angle, with Se
there are values of 8a for which five solutions of ; exist.* The
stability and instability properties of the equilibrium points are

also indicated in Fig. 3.2. Starting with a state in the linear region
of the figure (i.e. around ;'= 0, 8a = 0), small aileron inputs show

a (linear) variation of p with 8a. Similar plots of @ vs. 8a and B

vs. da show that & remains near its trim setting and'g remains small,
for small Sa. However, it is clear from the figure that at values of
about + 8° for 8a, the basic solution "disappears”, and a "jump" occurs
from one aquilibrium point to another. The well documented and much
utilized criterion of Phillips [8] gives a much higher value of critical
da of about 15°. Time histories of p vs. 8a show that the tendency is
for the state to jump to an "attractor" state - in this case, a jump to

the upper "S" line, (solution branch (2)) which is a stable equilibrium

manifold, rather than the "U" unstable solution. However, the new

stable solution represents a large change in the value of p. Furthermore,

the other states will experience jumps, for example a from a small positive

to large negative value.

*The presence of the qr term in the set of equilibrium equations would

generate a ninth order polynomial in P, gravity neglected. See Section 3.6.2.
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i
Other interesting features of plots like Fig. 3.2 will be discussed |
below in conjunction with Etkin's aircraft B [5], which has received much 1
more extensive analysis here. 4
For aircraft B, the elevator is first set at either +2°, to |
correspond closely with the studies done earlier, e.g. Etkin ({S]
and Schy and Hannah [ 9 ]J. When §e =~2° (pitch up) a unique equilibrium
sfate exists for a large range of 8a values (+ 20°), as seen in Fig. (3.3).
A large change in the shape of this curve is noted in Figure (3.4), |
which corresponds to 8e = + 2° (pitch-down). Here, five possible equilibrium
values of E-exist around 8a = 0°, three of which are stable. This lack
of symmetry about 8e is a result of the nonlinearity of the equations.

Again, there are no gravity terms, and the (-i, qr) term in the roll

1

moment equation, Eq. (3.8) is neglected in generating the curves of Fig. (3.3)
*

through Fig. (3.4). The equilibrium solutions of yaw rate, sideslip,

angle-of-attack, and pitch rate are shown, respectively, in Figs. (3.5,3.6,

oy

3.7,3.8). 1In all these figures, note that there are two sets of equilibrium
states at which jumps may occur, 6a = +4° and + 9°. For example, the

motion could begin for fa = 0° (§e is held at +2°); as |6a| moves beyond
4°, the equilibrium values of the state will change suddenly to new, larger
values. The yaw-rate-; undergoing a large change in particular (nose slice) ;
while 'a'changing sign from negative to positive, are two of the most !
drastic effects, although all five states experience jumps, phenomena |
closely related to departure and post stall gyration phenomena described

in Rutan, et al. [10])]. From this initial jump, the equilibrium states

< :
The effect of the gqr term is found to be negligible, as will be ]
demonstrated for the model of aircraft H. *
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will vary smoothly with increasing |6a|, even though the "equlibrium"
state, with its high values, is hardly a physically desirable situation,
being characterized by severe coupling on all axes. If |6a| is then
reduced to 0°, it will be noted that there is no smooth mechanism to

return the equilibrium solutions to their original linear, small-value

*
condition by using §a alone. That is, one expects a hysteresis condition,

resulting in an autorotational state (sustained rolling motion for §a = 0°).

Results presented in Sec. 3.6.1.5 will indeed confrm this and other
observations.

An asymptotically stable autorotational steady state is actually
dangerous if the stationary value of at least one other variable than E
is high. This would then induce either large angles of attack or sideslip
or high rates of pitch or yaw. To continue changing IGa' in the same
direction, increasing it to 9°, will initiate the second jump condition.
The change in values for this jump are even more severe than for the
inner jump (|8a| = 4°).

Figure (3.9) shows a locus of the eigenvalues of the linearized
system, plotted as a function of E: Critical roll rates (i.e, where
jumps occur) correspond to values at which an eigenvalue crosses the
imaginary axis. Note especially that only a real eigenvalue moves over
to the right half plane in Fig. (3.9). Therefore, only elementary
catastrophes, i.e., jumps from one equilibrium point to another, are
observed. More generally (see discussion of aircraft H in Sec. 3.6.2),
bifurcations to limit cycles may occur when a complex pair of eigenvalues

crosses the imaginary axis.

*

It is possible to force the aircraft out of this equilibrium state,
but this would require a large transient or external force to cross
the domain of attraction.

i

i, G
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The bifurcation plot, shown in Fig. (3.10). for aircraft é in
the (6a,fe) control plane indicates that instability is possible for
6a = 0 and §e increased beyond 9°. The phenamenon here is auto-
rotation and departure, and Figs. 3.1l and 3.12 amplify this prediction.
Based on an analytical criterion, the §e at which departure occurs in
this case is 9.3°, which corresponds to an a of -16.3°. The analytical
criterion is very ea.y to apply and involves the solution of at most

a quadratic equation in fe. (See Appendix B)

(3.6.1.5) Numerical Verification.

Time history plots obtained by the integration of differential
equations (3.8) to (3.12) for aircraft B are shown in Fig. (3.14). Also
given are the (8a,6e) control histories (this model does not contain
rudder derivatives so that 6r = 0 is implied). The state variables have
initial values of zero. Over the first 20 seconds, Se was fixed at 2°
(pitch down) and 8a varied in steps from 0° to 10°, and back to 0°. These
inputs were chosen to verify the jump and hysteresis phenomena predicted
from Figs. (3.4) to (3.8). Note that the steady state variables jump
shortly after 8§a changes to 10° and reach values which closely correspond
to those predicted by the equilibrium surface plots of Figs. (3.4) to
(3.8). Furthermore, the return of 6a to 0° at t = 10 seconds does not
return S'to zero, but results in a rather severe autorotational condition,
a clear example of hysteresis. Changing e properly can induce recovery

from this autorotation involving the roll axis. The strategy for e may

*®
The numbers on the figure indicate the number of possible equilibrium
solutions in that region.
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be derived from Fig. (3.10); i.e., to move the control point out of the
Butterfly pocket, where the states are multi-valued, to the single-valued
region of small motions, set 8e = 0°, This was done, at t = 20 seconds,
in Fig. (3.14), and the variables do indeed jump toward the initial state
at t = 0. It should be obvious that the (global) surface of Fig. (3.11)
can be used as a starting point to derive control strategies which will
transfer the aircraft from one equilibrium state to another without jumps.
In order to investigate more closely the physical nature of the ]
jump phenomenon (see next section), several time histories were run in
the "inner jump" region ( |6a| ~ 4°) of the well-treated pitch down case
(6e = 2°), and some of these are shown in Figs. (3.15) to (3.24). For
all of these cases, the initial value of the state variables is zero.
Figure (3.15) shows how the state variables respond to step
variations in §a, for a fixed §e (=2°). Each setting of 6a is held for
3 seconds, to allow the system to reach its equilibrium state. As can
be seen, there is a definite jump, occurring betwen t = 6 and t = 9 sec.
The jump is especially sharp for the variables r and a, and in all cases

these time histories reflect exceptionally well the behavior predicted

by their respective equilibrium curves (Figs.[3.4] to [3.8]). Note how
B, g and r decrease in magnitude after the jump, and note how a changes
X sign from negative to positive, as Fig. (3.7) predicts. (This particular
{7 feature must be especially disconcerting to the unsuspecting pilot, who

initially commanded a pitch down mode). There is no evidence either in

the equilibrium plots or in the time histories of self-induced buffeting

phenomena or wing ruck (a more complicated model, A/C KB, does exhibit these

b A il s i il e, | et S e e i B T T D T ey
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and other limit cycle motions - see Sec. 3.6.2); however, Fig. (3.15)
does evidence many of the phenomena typical of the high angle-of-attack
regime described in Sec, (3.2) and extensively elsewhere, including
reduced rudder effectiveness, nose slice and departure. Noteworthy is
the observation that it is possible to exploit the excellent correspondence
between the equilibrium curves and the time histories by using the
equilibrium plots, which have the advantage both of being relatively
inexpensive to generate and of being global in nature. It is also
possible to identify the flight conditions and control settings which
lead to harmful high-0 motions.

The yaw rate curve of Fig. (3.15) seems particularly sensitive
to incipient jump conditions (the reasons for this will be given in
the next section), and it provides a clue that, while the jump has
clearly been initiated by the time 6a = 6°, nevertheless an inspection
of smaller values of 8§a might prove fruitful.

Figures (3.16) to (3.18) each show time history plots for one
setting of 8a per solution, again with zero initial conditions. For
Sa = 3° (Fig. [3.16]), there is no jump, although it takes upwards of
8 to 9 sec. to bring the system to steady state. Then, as is quite
accurately predicted by the corresponding equilibrium curves (Figs.
{3.4 ] to [3.8 }), a jump occurs for Sa = 4° at about 6 sec. into the
solution (Fig.[3.17]}). Yaw rate is the cleanest, and also the earliest,
indicator of the jump situation. Pitch rate experiences a marked

increase in amplitude as early as 1.5 sec; however, the same thing happens
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in the (stable) 6a = 3° case, except that g manages to return to a
value in the steady state somewhat close to its "first plateau” value
prior to t = 1.5 sec. The mechanism, then, influencing this pre-jump
behavior in g is not related to conditions causing the jump, but is

a result of the (nonlinear) lateral-longitudinal coupling in the equations.
In the jump case, yaw rate changes sign (neglecting the cross-over

at about 1.5 sec. due to Dutch roll transients), upsetting the moment
balance in the pitch moment equation, which forces g to keep growing.
Since r manages to stay positive at 8a = 3°, the coupling influence

on q is a stabilizing one. Similarly, none of the jump changes in the
other variables precedes the change in r.

Finally, the case 8a = 5° is presented in Fig. (3.18) to show
that a more extreme jump setting will cause the jump to begin sooner.
The jump does not come to completion noticeably quicker, however.

The above observations indicate strongly that the region in
control space for which a jump will occur is separated from the stable
region by a distinct boundary (in fact, the bifurcation line of Fig.
(3.101). There is no intermediate region in which a jump may or may
not occur. One can expect, then, the highly nonlinear situation of one
value of Sa producing well—behaved,‘stable, motions, yet a value
(8a + €) causing a jump. Bifurcation Theory implies this, the above
observations support the contention, and the plots of Figs. (3.19) -
(3.22) tend to verify it. For éxample, §a = 3.7° (Fig. [3.20)) is clearly

stable while 8a = 3.9° is not (Fig. [3.22)). As before, the initial

value of all state variables is zero. From the data which generated the
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bifurcation surface of Fig. (3.10), the critical value of 6a is
given as 3.828°. This is in close agreement with the results presented
below, considering the effect of nonlinearities in Liapunov's First Method 1
would slightly reduce the stability limits.

While the examination of time history plots adds much insight to 3
the understanding of jump phenomena, there are pitfalls; it is possible
to overlook conditions which indicate an incipient jump. This is
illustrated by the 6a = 3.8° case, Fig. (3.21). Through t = 12 sec.,
everything seems to be well-behaved, although a sharp-eyed observer might
detect that, unlike the 6a = 3.6, 3.7° cases, a steady state has not been
reached. Compare in particular the A and R (@ and r) plots in each of
Figs. 3.20 (§a = 3.7°) and 3.21 (6a = 3.8°). Note that they have achieved
a steady state condition in the 3.7° case while there is (barely!) noticeable
oscillation still occurring for 8a = 3.8°., Note also in the 3.8° case that
the Q and B (g and B) plots continue to move away from the origin, which

is not the case when §a = 3.7°. Further, r has gone negative at around

i

10.5 sec., and the previous discussion indicates, therefore, that the
problem may have reached an incipient jump condition.

Therefore, the 6a = 3.8° solution was run for 24 seconds and
Fig. (3.23) shows clearly that a jump has occurred. Besides showing 1
that as little as a 0.1° change in 6a can produce significantly greater .
changes in the aircraft's behavior, due to bifurcation phenomena, there i
is also manifested a definite "caveat" against relying too heavily on time '

histories to define the stability behavior. The expense of generating these

runs (compounded, of course, as the model becomes more complex) and the
fact that only a point-by-point examination over the control space is
possible, preclude exclusive use of the time histories for a definitive

evaluation of high-a performance, even though useful insight may be derived
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from solutions taken at selected points of interest. The problem with

using time histories to define the global bifurcation surface is

compounded further by two facts: (1) the .iearch procedure is iterative 1
in nature, since one is wise to initiate it with a "coarser" grid of

control settings (Figs. [3.16] to [3.18]), and then proceed to a "finer"

grid (Figs. [3.19] to [3.22]); (2) as is evident by the 8a = 3.8° example,
the closer one is to the bifurcation surface, the longer it takes for the |
jump to initiate; which, if nothing else, adds to the computational require-
ments.

The next section attempts to explain what is happening physically
during a jump, and will report on initial investigations into a formulation
whose implementation has the potential of providing the pilot (or auto-
pilot) with on-board real-time warning of incipient jump.

(3.6.1.6) Physical Explanation. |

In the previous section, predictions derived from an inspection of
the global equilibrium and bifurcation surfaces, regarding the behavior
of a jet aircraft (B) in high angle-of-attack regimes, were seen to be 4
readily verified by integrating the system equations (3.8) to (3.12).

The detail of these verifications resulted in some further insight as to !

the mechanism causing a jump condition, and in Sec. 3.6.1.5 some of
the observed kinematics were described - specifically: (1) the sensitivity 1
of yaw rate r to jump conditions ("jump conditions” being the change in
the control settings for a particular equilibrinm solution in a direction
which would cause the equilibrium solution to "jump" to a different branch.
See, for example, Fig. 3.4, where a jump condition exists if §a increases

from some value less than about 4° to a value greater than 4°). (2) the

importance of coupling as a mechanism for either stabilizing or destabilizing

[
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the motion; (3) the manner in which the coupling mechanism and the

change of sign in r interact to bring about incipient jump (and nose slice).
The computer runs which generated the time history plots presented

in the previous section were modified to provide time history plots of

roll and yaw moment terms which comprise the right-hand side of

equations (3.8) to (3.12). Note the absence of gravity terms in these

equations. The terms are clustered into groups for plotting, as follows

{Notation is for aircraft H, which is a more complete formulation):

Roll (Eq. 3.8)
Aerodynamic terms
A=QB+2p+2r
BB o r
Control terms

C = léaéa + lsrér

Inertia term

I= —ilqr

Nonlinear terms

N = lasaaéa + qu + leaBa + lrara

Yaw (Eq. 3.10)
Aerodynamic terms

A= nBB +nr+ np

Control terms

C= “6a6‘ + nsrér

T =SSRENLIV bt ittt iodl bl i
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Inertia terms
I = -13pq
Nonlinear terms

N = nadaada + Npapa

Each of these four terms, together with its respective moment
(p or r), is plotted against time. ([P or r] = A+C+I+N) It should be

noted that NZ0 in both roll and yaw for aircraft B, These terms, however,

do appear in the results for aircraft H. A typical plot, the roll equation,

is shown in Fig. 3.24. This plot represents the case: aircraft B,

6a = 3.7°, 8e = 2°, 8r = 0°; the companion state variable time history

is given in Fig. 3.20. 1In Fig., 3.24, all terms are converted to units

of deg/secz. Also, the roll axis I-term is scaled by a factor of 100 in

order to detect its behavior. This term has little effect on the presence
and magnitude of jumps, obviously, but is presented for completeness.

A run made with i1=0 produced essentially the same results, as discussed
below. The yaw axis I-term, however, is most emphatically not insignif-
icant.

An inspection of a set of these plots for aircraft B in the flight
conditions depicted by Figs, 3,20 and 3,23 (the §a=3.7° and 3,8°% cases
respectively) leads to the following conclusion (Figs, 3,24 to 3,27):

The mechanism of the jump is related directly to the inertia
properties of the aircraft, the particular flight condition and the

degree of control surface deflection. As Rhoades and Schuler [1] aptly

state it, the "real villains" are the (izpr) and (-i3pq) inertia coupling

e




SCIENTIFIC SYSTEMS, INC.

-78-

kRl

terms which appear, respectively, in the pitch and yaw moment equations.

To a certain degree, the relationship between inertia coupling and jump

phenomena has also received widespread recognition among other investigators
(e.g., Phillips [4], Etkin[5], Pinsker{[13}, and Schy and Hannah [9]).

The flight condition and degree of control surface deflection are also

PRIy PO Ui Ve S LW A

important factors, however. Along with the vehicle geometry, these factors 1
determine whether the state of the vehicle is in a region of incipient jump, ;
or whether it evolves to a stable steady state.

Further, for the specific case of aircraft B initiating a roll
maneuver in a pitch-down elevator setting, the lateral-directional
stability is seen to be the most fragile. This means that the (-iBPq)
term in the yaw rate equation is the chief mechanism for inducing the jump. 3
The following observations with regard to this flight situation are supple-

mented by referencing the relevant equilibrium and bifurcation surfaces, as

O T e o 1

presented in Sections 3.6.1.1 and 3.6.1.3, and as discussed there and in
Sections 3.6.1.4 and 3.6.1.5. 1
The yaw rate inertia coupling term (-i3pq) is destabilizing in the
sense that it tries to drive r negative, and this has been observed, by the
mechanism of coupling, to induce rapid changes (i.e., jumps) in the values
of the other state variables. The factors most responsible for causing the
jump, then, are most completely present in the term (-i3pq). The positive

elevon deflection (+2°) causes pitch down, g negative; positive aileron

similarly generates negative roll rate p; with i3 > 0, the coupling term,
then, is also negative. Also, aircraft which are most susceptible to jump

phenomena, such as aircraft B, are members of the class of so-called high-

performance aircraft. Their geometry is characterized by thin, stubby wings,
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which means low aspect ratio, and, critically, low Ix' The relatively

lower values of Ix makes i i_ and i_ larger, thereby enhancing greatly

1’ 72 3
the (destabilizing) effect of the yaw rate inertial coupling term. Another
effect is that the roll damping term, which involves Clp’ is related
directly to wing size. As this and similar terms grow smaller, the
systeﬁ's ability to dissipate energy diminishes.

The sequence in which the magnitudes (and sign) of the important
force and moment terms change is also significant. The principal agent
for this is, again, coupling, as will be seen following a detailed descrip-
tion of the history of each of the moment terms which make up the roll (p)
and yaw (r) equations.

Five terms comprise the roll moment equation: command (laaéa), damping

qr).

(lpp), dihedral (QBB), cross derivative (er), and inertia coupling (-i1

Of these terms, for the flight condition under discussion, the damping,
inertia and cross derivative terms are seen as "stabilizing"; that is,
balancing the moments due to the command and the dihedral term. In this
condition, the dihedral effect is destabilizing - the rolling moment
generated by the command deflection, 8a, is enhanced by the dihedral term.
In the context here, "destabilizing" terms -~ after transients have decayed,
at t = 2 seconds - are negative, and the "stabilizing" ones are positive.
Refer again to Figs. 3.24 to 3.27.

For the 8a = 3,7° case (staBle), after transient decay at about
t = 2.0 sec., the stabilizing terms, which contribute the greatest to the
value of the A-term, and include the I-term, in roll {(Fig. 3.24), achieve
a balance with the destabilizing terms (the dihedral term in A and the

C-term. In the yaw axis, the critical I-term is destabilizing, but, for

e A el s Ll i kil i e e
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the stable control setting, it is seen to begin to decay (Fig. 3.26). This j
decay again maintains a balance among the yaw moment terms, so that r

rapidly damps to 0.0. ]

For the 6a = 3.8° case (unstable), shown in Figs. 3.25 (roll) and

3.27 (yaw), 8a, by directly affecting p in the yaw I-term, causes enough
of an increase in magnitude of this (destabilizing) term so as to disrupt
the balance. Fig.3.27 shows this critical I-term failing to decay at all -
(until after 15 sec, after the jump has occurred). As a result of this, %
t goes negative, starting just after the I-term, at about 9 sec. This

changes the sign of r, which is a coupling "agent" into the roll axis (and

also the pitch axis). The most direct effect in the roll axis as a result

l of this jump condition is seen in the I-term, Fig. 3.25. The effect on P, )

J
]
)
]
]
however, is quite small (recall that I for roll is blown up in the figures), -]
Figure 3.23 shows that the p history reflects this, The behavior of r, as ]
induced by the yaw I-term, is most noticeable in the yaw and pitch axis,
as the histories of q and r (and @ and B8) in Fig. 3,23 show. Although }
the roll I-term plays no major role in inducing the jump, it nonetheless
may be useful as an indicator, or a detector, of an incipient jump (A more l
"natural” indicator, vehicle kinetic energy, is introduced and discussed }
below). The terms mostly affected by the jump are seen to undergo tran-
i sitions to new, and much different, steady state values following the jump, }

l as Pigs. 3.25 and 3.27 show.

|
It should be emphasized here that these greatly divergent results arise &;

lies barely on the stable side of the bifurcation locus in the control

from a difference in the value of 8a of only 0.1°, One value, Sa = 3,7°, }f
3 space, while the value §a = 3,8° lies barely outside the stable region. }




SCIENTIFIC SYSTEMS, INC.

-81-

An analogy to this situation of the control state being in the neighborhood
of the bifurcation line is illustrated by the "Catastrophe Machine" of
E.C. Zeeman (See Reference [4) of Chapter II). The machine consists of a
cardboard disk pivoted about its center, with two rubber bands fixed to a
point on the disk near its perimeter. The other end of one of these is
fixed éo the mounting board and the "machine" is operated by moving the
other rubber band, whose free end location may be considered as a control
point. The angle formed by the fixed point, the pivot of the disk and the
common point of attachment to the disk, is a measure of the behavior of the
machine. It is not hard to visualize that many movements of the control
point cause a smooth rotation of the disk., However, when the control point
is at a bifurcation point, the disk will suddenly swing with large amplitude.
Near this point, on the stable side of the bifurcation point, there is
basically a balance between "stabilizing" and "destabilizing" moments
produced by the rubber bands attached to the fixed point and to the control
point, respectively. This is analogous'to the 8a = 3.7° case described
above. At this point, on the verge of a catastrophe, only a minor distur-
bance is necessary to induce a jump. The balance between the two roughly
equal and opposite moments, near the bifurcation point, is a precarious one,
The value of 8a which is just large enough to force r to go negative (in
this particular flight regime), as dictated by the yaw I-term, will be
that value  which causes a jump.

The above discussion is not intended to minimize the importance of the
dihedral term on roll behavior. Indeed, a common simplification is to neglect
totally one of the roll rate jump-indicator terms, (vilqr). Runs made first

with i, = 0, and then with both i

1 and lr = 0, both show a jump occurring

1




SCIENTIFIC SYSTEMS, INC.

-82-

ORI o St et

near 8a = 4° (6e = 2°, 6r = 0°), same initial conditions as before.* This
justifies the simplification. Again, the principal imbortance of the r-terms
with regard to roll behavior lies in their role as indicators of a jump
condition.

A study was also done on the effect of adding the gravity terms to the
system equations. A run made with the same control history and initial con-
ditions as the one depicted in Fig. (3.14), except for the addition of the
gfavity terms, shows very similar behavior, as Fig. (3.28) indicates. This
result agrees with observations made by Schy and Hannah [9].

A question now arises as to whether or not there may exist a more general
dynamic indicator of incipient jump conditions. This is an important concern,
insofar as the time history of a jump situation manifests only very subtle
differences, prior to the jump, compared to a neighboring non-jump control
setting. If the pilot had a reliable, real~time, on-board dynamic indicator
of incipient jump conditions, he would then have a much better chance of
taking the proper action to return to stable control settings, Providing
such information to an autopilot obviously has similar benefits, The studies
done with aircraft B seem to indicate that monitoring the rate of change of
total vehicle kinematic energy might very well play an important role in
creating a general control strategy for avoiding jump phenomena. 1In any
event, it adds useful insight.

Consider
E =

N

mv2+-;—125-23 (3.32)

where E is the vehicle totallkinetic energy, m is the vehicle mass, V the
velocity, I the inertia tensor, and W is the vehicle angular velocity,

coordinatized in a body~fixed frame consistent with I,

*A run with only i, = 0 still produces a jump for Se = 2°, 8a near 4°,

1

Sr = 0°,

~
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Then

é = [ ] + [ ] [ ] L ] L ] .
U mv (oo + BB) + I pp + Iyqq +Lrr (3.33)

where E is the time rate of change of E and the other terms have been |

identified elsewhere.

‘ : Eq. (3.33) was computed for the 8a = 3.7° and 3.8° runs with

i aircraft B, 8e = 2°, and the preliminary results (see Figs. 3.29 and
3.30) show that, for stable 8a (3.7°), E is positive and increases during
E | the transient period, but then decreases and changes sign shortly there-
after,_then decays negatively towards zero. For the jump situation,

however, there is an inflection point in E as it decreases towards

p zero, and it again starts increasing, This inflection point occurs in ,

time just before the point that yaw rate goes negative (about 4.5 sec.). |

The resultant buildup in E because of é's failure to go negative in a

G S S

jump situation, until the jump is completed, is interpreted as imparting

the vehicle with enough energy to jump the energy barrier separating

|
a
|
|
]
] ] the current state from a new equilibrium state of higher energy. Once l
the jump has occurred, there is a higher level of energy, and é does !
decay to the origin. Fig. 3.30 shows this for the fa = 3.8° jump setting,
. The jump is well underway at about t = 15 sec. (see also Fig, (3.23)
1 ' for a time history of this case), where E is a local maximum. There-~
after, E falls off in magnitude towards zero.

The connection between the behavior of the vehicle's kinetic

r energy and jump phenomena is not mere coincidence. The equilibrium

A A
s
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values of any of the state variables, for aircraft B, may be interpreted
; ' as local extrema of a potential,. or Liapunov, f.unctionI . For
i example, if equations (3.8-3.12) are solved for equilibrium valués of the
state variables, the algebraic system reduces to a scalar, polynomial

equation of ninth order for F, in the form (see Appendix B)

J

J
3 fp&;' Ga,Ge,Ger) = 0 (3.34) “]
afear q, r,a, and B have been eliminated using equations (3.8-3.11) }
[A fifth order polynomial in p results if the (-i dr) temm in Eq. (3.12)
FE is neglected]). From this equation, the Liapunov or potential function 1J ':

is defined as

B . |
a;._p 1

P=p

Thus, } may be easily generated numerically by integrating (-fp) over p,
| with the control variables fixed. i(p) will typically have maxima and

minima. 'I'hezextrem of § correspond to the equilibrium points, and the

9
expression fagz will determine whether the extremum in question is a

of '
maximum or minimum. Since %2 = - E. this is equivalent to saying

i that the minima of E (stable points) occur where :—;_- < 0, and conversely }
for the maxima (unstable points). This is consistent with the results i

of linearization, which require the eigenvalues of the Jacobian matrix }3

§

to have negative real parts' for stable behavior in the neighborhood of

an equilibrium solution. ¢ changes shape as the controls vary, and the

point(s) in the control space where the number of extrema ofI changes

=
A potential function can be defined for the case in which the equilibrium
equations can be reduced to a single equation, as is shown in Appendix B.

bt s Rl b st et S S e ol daciaak b
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| , i
(as one or more extrema become inflection points) are bifurcation %
points, and their locus generates the bifurcation surface. A system 3
staté which is at a local minimum of:§ which disappears in this way

(as, say, da increases) then "jumps" to a surviving local minimum.

The family of local minima of:§, in the state space are called "attractors".

St a i A L e e e el

For fixed controls, the initial conditions determine which equilibrium

state is attained by the system as is seen in Fig. 3.31 for a representa-

ek

tive situation. As initial conditions vary over the p-qg space (controls
fixed) iﬁ'Fig. 3.31, the solution'may or may not diverge. The x's are :
equilibrium points, [extrema of a Liapunov (potential) function i (p.q)]. :
S means the point is a stable node, U, unstable saddles.

From this viewpoint, §:is seen to generate a potential energy field,

with “"barriers" and "sinks". Changing the controls, say da, is then seen

as changing the potential energy field of the system. Referring to

ket g st

Fig. (3.31), if the solution is in the vicinity of S, and 6a changes so

1
that U1 moved toward Sl, then a jump occurs for that §a at which U1 merges ;
with Sl' cancelling the extrema. 1
Notice that the sum of potential and kinetic energies (or Hamiltonian) é
of the system stays constant. When the equilibrium state is unstable { é
corresponding to a maximum of the potential function, any disturbance will L
generate an exchange of kinetic and potential energies, viz., an increase i

3
-
b

in the kinetic energy and a decrease in the potential energy of the system.

Fig. 3.30 shows this increase in kinetic energy during a jump condition.
After the jump, the exchange between kinetic and potential energies is

completed and the system settles to a new stable equilibrium point.
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(3.6.2) Aircraft H.

(3.6.2.1) Equilibrium Surface and Nonlinear Root locus.

The equilibrium surface for aircraft H is a 3-dimensional surface in

an eight dimensional space consisting of five state variables (p,q,r,a,B) and

three control variables (8a,fe,8r). We present here projections of the
equilibrium surface on different planes formed by pairs of state and
control variables. Following the approach taken for aircraft A and B,
first the equilibrium roll rate E' versus 6a curves are shown for different
v&lues of (8e,6r). (Figs. 3.32-3.42). A comparison with similar figures
for aircraft B (Figs. 3.3 and 3.4) reveals that for aircraft H, up to 9
equilibrium points may exist. A linearized stability analysis around each
equilibrium point reveals that unstable equilibrium points may have one

or more complex eigenvalues with real parts in addition to positive real
eigenvalues. Points denoted by letter L have one pair of complex eigen-
values with positive real part whereas points denoted by E have in addi-
tion a real eigenvalue in the right half plane. Interestingly encugh, in
most of the cases, only one equilibrium point is stz ,z ’‘sze Figs. 3.32 to
3.41) for a fixed value of the control variable. . ‘2ve., an examination
of the root locus plot (Fig. 3.47) shows stability is .cnerally lost by

a pair of complex eigenvalues crossing the imaginary axis. Based on

the discussions in Chapter II, this indicates possibility of Hopf Bifurca-
tions to limit cycles. A complete representation of limit cycles requires
a minimum of two state dimensions chosen to span the eigenspace of the
purely imaginary eigenvalues. For this reason, limit cycles, which

are nothing but equilibrium orbits cannot be represented on figures such

as 3.33. 1In the next four sections, we would show limit cycles in terms

of time histories and phase plane plots. We complete our discussion of

:

T
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the equilibrium plots here by referring to Figs. 3.43-3.46, which

‘J show the remaining state variables (q,r,a,B) versus §a for Se = 6xr = 0°

and to Figs. 3.59-3.63 which show equilibrium states with respect to {e j
and 6r. The effect of neglecting different terms in Egs.(3.8)-(3.12) for
aircraft H on the equilibrium surface can be seen from Figs. 3.64-3.66. A
comparison of Figs. 3.69, 3.65 and the corresponding figure with (-ijqr)

neglected (not shown here) reveals that there is virtually no difference

BISSUSESEEE St s
P —
r
&

| between these three cases. However, Fig. 3.66 shows that neglecting all
the nonlinear aerodynamic terms for aircraft H has a serious effect,
particularly on the minor branches of the equilibrium surface. It is
interesting to note that for |6a| < 10° the shezpe of the p vs. 8a

curve is quite similar in all the cases.

(3.6.2.2) Hopf Bifurcation to Limit Cycles

Figures 3.48 and 3.49 show the projection of limit cycles on the
p-axis for different values of §a obtained by solutions to Eqs.(3.8)-(3.12).

A comparison of the two figures shows the hysteresis phenomena, which is a

consequence of the finite domains of attraction surrounding limit cycles.

It is seen from Fig. 3.48 that when 8a is decreased from zero to negative
values, limit cycles appear at §&a A -12° when the equilibrium point changes
from an S to L~type (representing the crossing of a complex pair of eigen-
values into the right half plane). The limit cycle first grows and then
decays in amplitude, finally'disappearing around 6a j; -30°. A stable

limit cycle generally disappears by collision with an unstable limit

cycle. Figs. 3.48 and 3.49 only show the stable limit cycles obtained

by solving the equations of motion.
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| when 8a is increased from negative to positive values, Figs. 3.49

shows that limit cycles exist for §a values up to -2°. 1In fact for

i 6a = -2°, §e = 2°, the state portrait consists of at least 5 equilibrium
points (one stable, 4 unstable) and 2 equilibrium orbits or limit cycles 4

(1 stable, 1 unstable). The stable equilibrium point is surrounded by

kit g

i an unstable limit cycle which in trun is surrounded by a stable limit
cycle. Therefore, depending on the initial state, the aircraft trajec-

tories may either converge to the stable equilibrium point (Fig. 3.48)

S i L A

or to the limit cycle (Fig. 3.49). Actual phase plane plots showing

\r

this phenomena will be presented in section 3.6.2.5. The existence of two ‘1
stable limit cycles for a particular value of 6a will also be demonstrated.
To complete our discussion of Hopf Bifurcation, we show in Fig. 3.50 time %

E

history plots where 8a is increased in steps from -~10° to -20°. The

development and growth of limit cycles is seen clearly in this figure.

SEEE——

(3.6.2.3) Bifurcation Surface

Figs. 3.51, 3.52 and 3.53 show the bifurcation surface in the
control space. Compared to the Butterfly bifurcation surface for
| aircraft B (Fig. 3.10), the bifurcation surface for aircraft H is much 3
more complicated. A three or higher dimensional visualization of the
equilibrium surface can be obtained by combining Figs. 3.51-3,53 with
Figs. 3.32-3.42. The presence of an umbilic (possibly parabolic type
[14])) is indicated by the shape of curves around N and N'. These regions
correspond to the case where two distinct eigenvalues of the linearized i?
system go to zero simultaneously. The dotted branches (I,I', J,5', K,K',

L and L') on Fig. 3.51a represent (8a, 8e) points at which a pair ot

complex eigenvalues crosses the imaginary axis, resulting in Hopf
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Bifurcations to limit cycles.

The bifurcation branches (solid lines) separate each plane into

a group of individual regions. Each point (corresponding to a specific i

control setting) in any specific region has the same number of equilibrium H

solutions as any other point in the same region, and the number of such |
solutions is indicated by the number which appears in the region. Catas-
trophic behavior can occur when the controls are varied so as to cross
one of the bifurcation branches to a region with a fewer number of ; |
equilibrium solutions, as some of the stable solutions disappear. 1
The bifurcation behavior around M and M' (see also Fig. 3.42) in Fig. 3.51a
requires further study. A proper representation of this behavior would

require the use of two behavior or state variables corresponding to the

i

case of an umbilic catastrophe. Further computations are also needed
to obtain the limit cycle bifurcation boundaries in the (8e,6r) and
(8a,6r) planes. Both the above computations, however, are straightforward

p and are not expected to present any additional complications.

(3.6.2.4) Qualitative Dynamics for Aircraft H 3

Dynamically, the added complexity of the aircraft H model vis-a-vis
aircraft A and B tends to produce more periodic motions and even tighter

coupling than the simpler models which describe these aircraft. As a

consequence of this, one expects to observe some of the phenomena which are |
oscillatory in nature, and which have not been observed in aircraft A

and B. These would include limit cycle phenomena, buffeting and wing !E

rock, in addition to the phenomena which have characterized the high-a

behavior of the aircraft discussed in Sec. 3.6.1.

i R e R e e e ks
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The basic maneuver to be investigated is similar to the maneuver
applied to aircraft B; i.e., a pitch down (Se = 2°), with a commanded
aileron deflection near the stability surface. For this condition, the
equilibrium surface plot of (steady state) roll rate E'vs da (Fig. [3.33])
shows the usual linear behavior in the small control deflection region
which is one of five possible solutions for small da. While this plot has
most of the traits of the corresponding one for aircraft B (Fig. [3.4]),
there are extra curves for high |6a] which reflect the increased order
of the equilibrium equation for B: The 6e = 0° plot shows this even more
convincingly, as these "extra curves" have moved to the small |6a| region,
providing nine possible solutions for p (Fig. [3.32]).

Returning to Fig. [3.33], a linearized stability analysis at selected
points along the equilibrium reveals whether the equilibrium point has
stable (S), unstable because of real positive roots (U), or unstable
because of right-half complex roots (L), eigenvalues. The L surfaces were
not present in eariier studies (Sec. 3.6.1), and they indicate regions
of possible limit cycles. Refer also to the root locus plot of the
eigenvalues with B'as the parameter, given in Sec. 3.6.2.2 (Fig. [3.47]).
In Fig. [3.33], the main equilibrium branch starting from (B'= 0,
éa = 0) becomes unstable around |8a| = 14°, when a pair of complex
roots crosses the imaginary axis (see also Fig. [3.47]). If the aircraft
is excited at fa = -12°, there are five possible equilibrium points, but
211 of them are unstable. The Hopf Bifurcation Theorem predicts the
possible existence of a family of stable limit cycles. Results which
confirm these predictions will be presented in following sections.

If 6a starts from 0° and increases, the solution will begin to
approach the limits of the linear region of steady state solutions. Just

prior to the jump, at stable 6a ¥ + 12°, p ¥ + 120°/sec. (Fig. [3.33]),

A ek i e b i SR s s e I i
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§ there is observed a small region where stable limit cycle behavior is
experienced. At this point, one expects oscillations in all axes to
. develop, somewhat like pre-stall buffeting. As 6a increases to a jump
setting, the equilibrium states jump to limit cycle solutions.l Here,
o if |6a| were decreased, there would again result a hysteresis effect,
- culminating in an autorotational limitcycle whea |6a| decreases to 0.0°.
On the other hand, a further increase in |6a| would result in the equilibrium

solutions entering a region characterized by stable equilibrium points.

(3.6.2.5) Numerical Verification

The verification of the limit cycles, predicted in the previous
section as a result of analysis of the equilibrium surface plots (e.g.,
Fig. [3.33]), is done first by solving the equations of motion
numerically for different values of §a from -12° to -40°, and e = 2°.
The results shown in Fig. [3.50] are again in general agreement with |
the equilibrium plot for this case (Fig. [3.32]). The significance of i
these results is that the family of limit cycle oscillations shown are
believed to be the first case of five-dimensicnal limit cycles shown
to exist for an aircraft. The appearance, growth, decay, and extinction

of these limit cycles is typical of Hopf Bifurcations; and this has

e D e e

also been conjectured to play an important role in the onset of tur-
bulence (see Ruelle and Takens [12].

As in the case of aircraft B (Sec. 3.6.1), time history runs were
made to study the behavior of aircraft H in the vicinity of its "inner"
jump control setting for Se = 2° viz. §a & 12°. Refer to the roll rate
equilibrium plot (Fig. [3.33]) for a global perspective of behavior in

this region. Time history plots for aileron values equal to 8,10,11,12, 1

e
| 14 and 16° are shown, respectively, in Figs. [3.67 - 3.72]). For 6a = 8,10
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. and 11°, the time response is linear, and the steady state values for each
value of 8a behave as indicated by the corresponding equilibrium surface
plots. There is, however, a noticeable tendency towards increasing oscilla-
tory response as 8a increases in this linear region. At 8a = 12°, just

beyond the bifurcation value, the jump is quite obvious at t = 3 sec.,

e gk

and the post jump trajectory grows to a limit cycle. This behavior is
F - guite accurately predicted by Fig. [3.33], since Hopf Bifurcations to
4 limit cycles occur when a pair of complex eigenvalues crosses the imaginary ;

axis from the left half plane. The final two figures in the sequence 1

(Fig. [3.71,3.72]) show that the limit cycle amplitude decreases and finally
vanishes with increasing 6a. This behavior is also in agreement with Fig.

[3.33], as there one notices the stable (S) region of the upper equilibrium

branch which exists for high values of |6a|. Except where noted, gravity
is neglected in these and subsequent runs.
The hysteresis phenomenon was adequately discussed and verified

f for the simpler models of Sec. 3.6.1, and thus will not be repeated here.

1 There is a clear hysteresis situation for aircraft H as well, setting
l up an autorotational state. Figs. [3.73] and [3.74] show the hysteresis
behavior of aircraft H, with multiple solutions for a = 11.2° and
6e = 2°, The initial conditions for Fig. [3.73] are p = -80 deg/sec,
g = -8.1 deg/sec, r = 2.5 deg/sec, a= -2.5°, B = 3.80°; and for
Fig. [3.74], p = -310 deg/sgc, q = ~23.69 deg/sec, r = -38.56 deg/sec,
o = 6.92° B = 6.14°. For both cases 6a was set to 11.2 %at t = 2 sec.,

from an initial setting of 6° (Fig. [3.73]) and 13.5 (Fig. [3.74)).

This is not an autorotational situation, but the figures do show great

[3.73], with much less severe amplitude and frequency than is seen in

“ . differences in behavior. There is nearly limit cycle behavior in Fig.
|

1 Fig. [3.74], where limit cycle behavior is very much evident.
L T
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4 The distinguishing characteristic of the aircraft H model, with its non- b
linear aerodynamic coefficients, is the existence of limit cycles in the %

motion, over large portions of the flight regime. BACTM provides a sys-

tematic approach for predicting the existence of limit cycle behavior,
exhibited by time histories such as shown in Figs. [3.50] and [3.74].
As further validation, a “finer grid" study of the response of air- %
£ craft H was conducted for 6e = 2° and §a in the neighborhood of the bifurca-
tion point §a = 12°, A family of plots for da = 11.4, 11.46, 11.48, 11.5
and il.6° is presented, respectively, in Figs. [3.75] to [3.79]. The
initial conditions for these runs are p(0) = -80. deg., q(0) = -8.1(deg/sec.,
r(0) = 2.5 deg/sec, a(0) = -2.5°, B(0) = 3.8°. From these plots, it can

be deduced that the critical value of 8a at which damping of an oscillatory A

el

mode is zero lies between 11.46 and 11.48°. For values of 8a just short of

the critical value (Figs. [3.69, 3.75 3.76]), there is excitation of steady

amplitude and frequency oscillations of very low damping. The case fa =

11.46 (Fig. [3.76]) was run for 64 sec., much longer than the aircraft

i o

characteristic times, and there is only a mild decay in amplitude. There-

ayid

fore this value for 6a is the critical value, for all practical purposes.

Once the jump has occurred, for 8a = 11.48° and 11.50° cases, there
is no question that growth to a limit cycle is the predominant phenomenon.
Again, the state space plots of Sec. 3.6.2.6 (Figs. [3.87] and [(3.88])
amplify this result. Observe also that the limit cycle magnitude is greater
for the smaller value of 6a. Fig. [3.80]) also shows this tendency, as it
presents a time history for 4 different values of 6a, 13.5, 12., 11.4 and
11.2°, with 8e = 2° and 6r = 0°, as usual and the state initial conditions
on the post-jump equilibrium branch. Figs.[3.87] and [3.88], plotting p vs.
the other state variables, runs for 72 sec., by which time the limit cycle

Li amplitude is clearly established. The time history shown in Fig. [3.80]

*e
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|
|
runs for t = 32 sec., stopping shortly before this steady state amplitude
is reached.

(3.6.2.6) Physical Explanation

: The distinguishing feature of the model for aircraft H is that the

| added nonlinear aerodynamic terms enhance the overall nonlinearity and,
specifically, cause limit cycle behavior over large regions of the control
space. Evén though, physically, limit cycles are very different from
equilibrium points compared to the non-oscillatory jump phenomena observed
for aircraft B, their sudden appearance may be thought of as an oscillatory

| Jump.

As before, the roll and yaw moment equation will be examined as being
typical of the remaining state variables. For aircraft H, there are four extra
moment-generating terms: the pitch cross derivative, (£qq), and three
terms linear in B, r and 8a, with the coefficient being proportional to
a, (zrara), (ZBGQB), and (zasasa). The inclusion of such terms obviously
makes the aircraft H model more realistic in high-a regions. The added
terms are all nonlinear, and they tend to make the behavior generally
more oscillatory. However, the basic conclusions of Sec. 3,6.1 remain
valid here also. As before, yaw rate is the variable most sensitive to
the mechanisms which create a jump situation; 1i.e., 13, which is large
when Ix is small (as it is for high performance aircraft) and p and q,

which respond directly to the control settings &a and Se. For Se fixed

at a pitch down setting (2°), and for increasing $a, the yaw moment term

(—13pq), will eventually force the secular part of r to remain below zero

(see Fig. [3.77]). Thus, as before, an imbalance between the aero- i
dynamic and inertia moment terms, produced by the large values of sa

and 13 in the latter, causes the jump to occur. Figs. 3.83 to 3.86 show the ‘][
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roll and yaw moment time histories for a non-jump (8a = 10°) and jump

(6a = 11.6°) control setting. See Section (3.6.1.6) for definitions

—r

of the A, C, I and N terms; and Figs. 3.68 and 3.79 for the state
variable time histories. The time history initial conditions for these runs
are p'= -80°/sec, q = -8.1°%/sec, r = 2.5%/sec, & = -2.5°, B = 3.8°.
Fig. 3.79 shows that, for 8a = 11.6°% the jump is underway by about
t = 6.0 sec. However, the roll I-term's behavior (Fig, 3.84) is seen

i . to begin to diverge from the stable (8a = 10°, Fig. 3.83) I-term by

-

1 = 5.0 sec. As explained for the aircraft B case, this term is not involved
in producing the jump, but seems to indicate well, if magnified enough,

; o the presence of an incipient jump. Note also, particularly in the

stable ; plot, Fig. 3.85, that the nonlinear (N) terms play a notice-

able role in the motion. Further, note that the yaw I-term is greater

in magnitude than the control (C) -term. The yaw I-term for the unstable \

S§a, 11.6°, Fig. 3.86, begins to diverge in behavior from the stable I-term,

Fig. 3.85, at about 5.0 sec. As was observed with aircraft B, this

term's behavior for aircraft H is similarly the main catalyst for

inducing the jump. This is clear in Fig. 3.86 as the I-term's growth
preceeds that of the other terms. As before, this causes r to assume

consistently negative values, and the coupling effect in pitch and the

other variables is obvious from Fig. 3.79.
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{ A study was made to compare the effect of gravity terms on the |
dynamics of aircraft H. Time history plots for dynamics without, and ]
with, gravity terms are presented, respectively, in Figs. [3.81], and

[3.82]. The initial conditions for both runs at §a = 2° are p = 0.40 Ll

deg/sec., q = -2.80 deg/sec., r = ~.16 deg/sec., a = =2,.35°, B 0.18°, |
The elevator setting is de = 2° throughout, As for the aircraft B study, ' E
the results are quite comparable, the most noticeable difference here 5
being the smoothing of peaks near the jump region when gravity is i
included. The jump consequently does not occur until §a = 14, slightly
higher than the critical value of §a when gravity is neglected,

A limit cycle is a self~sustained oscillation in a dynamic
system. The amplitude of this oscillation is not dependent on the initial
conditions of the zroblem, as is the case for linear systems, “1t it
depends on the nonlinear nature of the system model itself. See Figs.
[3.74] and [3.77] for examples of limit cycles.

Hopf has sh&wn that a 1limit cycle always exists under certain

mild conditions when a pair of roots of the linearized system is purely |

imaginary, The Liapunov Center Theorem is one consequence of Hopf's

results, and the Liapunov stability analysis of the equilibrium solutions
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for aircraft H have shown that the conditions are present for bifurcations

to limit cycles. Time histories of several flight conditions (see,

for example, Figs. (3,77, [3.78], [3.81], and [3.82) have
| J verified this behavior.
Phase plane plots of the state variable p (roll rate) vs. the
remaining variables (q,r,a,8) demonstrate the evolution of limit cycles.
| An entire set of such plots is presented in Figs. [3.87] and [3.88].

These plots represent a run made with aircraft H with §e = 2°, 6r = 0°,
6a = 11.46°, and initial conditions p = -310 deg/sec., @ = =23.7 deg/

_ sec., r = -38.6 deg/sec., 0 = 6.92°, and 8 = 6.14°. Due to scaling

E within the plot algorithm, portions of the large amplitude limit cycles
have been cut. The initial conditions place the equilibrium state on

the "outer” solution branch of Fig. [3.33]. A very similar time history,

PR T

also on this equilibrium branch, but with time as the independent variable
is given in Sec. 3.6.2.5, Fig. [3.74 ]. The major differences are that

in Fig. [3.74 ], the control settings are §a = 13.5°, and then 11.2°

it it i ai

for 30 sec., whereas in Figs. [3.87] and [3.88], 8§a = 11.46° is used for |

72 seconds to allow the limit cycle amplitude to reach a steady state
value.

If the above run is repeated, except that the initial conditions
are on the "inner" equlibrium solution branch - i.e., p = -80 deg/sec.,
q = -8.1 deg/sec., r = 2.5 deg/sec., o = -,25° and f = 3.8°, the solu-
tion is "attracted" to a completely different region, as Fig. [3.89
(p vs. q) shows, in comparison to Fig. [3.87). Figure [3.76] is the K

companion plot to Fig. (3.89], showing time as the independent variable. 1

A more complete series of time history runs, varying the intial conditions,

s
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would define the barriers between attracinr regions in, for example,
the p-q plane. However, the equilibrium surfaces themselves perform
this function far more efficiently.

Fig. [3.90] shows how a change in elevator setting to a value
‘ outside of the "Butterfly" region of the bifurcation surface affects

the subsequent motion. The run is the same one as that which generated |

o~

Fig. [3.88], except that the initial conditions were right on the

. Fig. [3. 8] limit cycle, and, at t = 8 sec., §e was changed to -2°.

e i ailmaion

As can be seen, there is very erratic behavior (plots of the other state

POPESVEEE S Ve

variables are similar, due to coupling) in the course of transition

from the limit cycle to a stable, steady state solution. The

‘ equilibrium surface predicts the results, but not the transient behavior
very much in evidence in Fig. (3.90].

‘ Finally, runs were made from the same initial conditions as

? the runs started from the "inner" equilibrium branch 6e = 2% r = 0°;
however, 6a was set to 10.6°, a non-jump value, for one run, and then

to 13.5°, which forces a jump. Plots of p vs. B for both cases are shown

in Fig. [3.91), which shows the effect of the "disappearance" of an

FRR T RTAOTR

“attractor” equilibrium soiution, as it merges with an unstable equilibrium

solution for changing 6a. ] 3
As with aircraft B, the behavior of kinetic energy of aircraft H under :

4

jump and non-jump conditions was studied, and Figs. 3.92 and 3.93 show E and E 1
vs. time for 8a = 10° (no 'jump') and 8a = 11.6° (jump) settings of a
run with 6e = 2°, 8r = 0°, and zero initial conditions. The results

indicate large exhanges of kinetic and potential energy typical of limit
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cycle motions. Note the smoothness of the (decaying) oscillations of E

in the stable case, Fig.[3.92], as opposed to the behavior of E in Fig.[3.93].

Table 6 and Fig. [3.79] also show non-sinusoidal inflections in E at 6.5
and 7.5 seconds, hinting of a jump, which does occur at about 8 seconds.

Unlike aircraft B, E, the energy, does not asymptotically approach a new,

higher value. This is due to the limit cycle nature of the jump state. The

time history of the 8a = 10° run is shown in Fig. [3.68].

(3.7) Control and Stability Augmentation (A/C B)

>The effect of feedback controls on the bifurcation behavior may

be studied by using Egs. (3.26)-(3.31). It is seen from Fig. 2.9 that
large positive values of c, produce unique stable equilibrium solutions.
Consider a negative feedback on 8a from roll rate viz. 8a = ~K;P + K,
where K, > 0. This has the effect of changing all the f's, but for

1
simplicity, let us concentrate on the change in f; and fi. The new
values, denoted by fi and f; would be:
fi = 326.7x1 - 21.64 (3.34)
f; = 11752.78 Ge + 23015x1 - 1525.9 (3.35)

Thus, negative feedback (K1 > 0) increases the values of fi and

f; and by a proper choice of K,

on c, is seen from the last term in Eq. (3.16). It is seen that for

Kl = 0 and §e > .13 rad, this term is negative and increases with

de. The net-effect is a decrease in c, which eventually results in

3
unstable behavior for (§a = 0, p = 0). With Kl > 0, this problem can

be avoided and c, can be increased to a velue for which the stable region

3

around (8a = 0,'3 = 0) is considerably enlarged. The effect of more

complicated feedback laws can also be studied in similar fashion.

both can be made positive. The effect
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Control and Stability Augmentation (A/C H).

Bifurcation and equilibrium surfaces can be of great help in
deriving stability augmentation systems or feedback control laws,
which need not necessarily be linear. An example involving the
aircraft H model will now be considered. More detailed analysis will
be presented in forthcoming reports.

A combat-type maneuver of basic interest is the rolling pullout.
This maneuver typically calls for coordinated deflections of all three
controls (8a,8e,0r). Lateral response is often enhanced by the addition
of the aileron-rudder-interconnect (ARI) and stability-axis yaw damper
command augmentation systems [11,15]. The ARI system causes the rudder
(r) to deflect in conjunction with roll control inputs (6a) so as to
eliminate adverse yaw due to these surfaces, and to improve roll response
in general. Typically, the ARI gain(s) are scheduled with angle-of-attack.
In implementation, more and more rudder deflection results from a lateral
control stick movement, and less and less aileron deflection, as angle-
of-attack increases. The stability axis yaw damper deflects the rudder
(6r) in response to a signal proportional to‘ (r-p&) . The purpose of this
feedback is to reduce sideslip excursions during rolling maneuvers at
high angles-of-attack, and to improve lateral-directional damping in
general.

Equivalent lateral stability augmentors can be derived from the
bifurcation surfaces for aircraft H. The example given here shows results for

relatively small deflections of Se, The ARI law may be written as

8r = k(Se)ba (3.36)

ek 4 ket it bectibld s i 2 P e R T O L S e ATSRONS e o oyt
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In Eq. (3.36), while 8r is linear in §a, the gain k is actually j

a parameter varying with Se setting, as will be seen below. This

"

law can be rather straightforwardly extended to a more general form

of the type

8r = £ (8a,de) (3.37)
De.tails of this extension will appear in future reports.
The form of Eq. (3.36) may be ascertained directly from the 4
bifurcation surface, of which Fig. [3.53] is a typical example.
Fig. [3.53] shows the bifurcation surface in the (6a,8r) control plane,
with e = 0°. In this figure, bifurcations in the form of jumps occur
when a (6a,6r) locus crosses one of the branch lines. The branches :

A and B are of particular interest because they are associated with ;

lower values of equilibrium roll rate, ;; hence, these branches would
mark the first jump encountered as (6a,8r) move away from the linear

(trim) region, which is centered at the origin.

If 8r is fixed during a roll maneuver (8a varies), then the
(8a,8r) locus in Fig. [3.53] is a horizontal line. If 6r = 0°, this

line intersects branches A and B at |6a| 211.5°., The corresponding

o i

equilibrium plot, p vs. 8a for §e = 8r = 0°(Fig. [3.32]), confirms

that jumps will occur at these settings, when the problem starts near

bt s et -

Sa = 0°. Thus, the "non-jump” region for Se = 0° and 6r = 0° is |8a| <

e

11.5°. However, this region can obviously be expanded by relating $a

and 8r so that their locus passes through the points N and N' in
r Fig. [3.53). The simplest locus is a line of form (3.36), with k =

-0.152. Fig. [3.94]) shows the p vs. 8a plot for this case. Notice

aﬂ - o s s A i b it i e e i e e i = i o i il
i




SCIENTIFIC SYSTEMS, INC.

-102- i

that the trim (basic) stability region has been expanded to |6a| < 17°

from + 11.5° for the 8r = 0° case. Time historiesg for the &8r = 0° case and

.
e e e,

the ARI case are compared in Figs. [3.95 and 3.96], respectively.
It is obvious that ARI aids not only in stability, but in performance as

well. Note that ARI causes decoupling, even for the large $a values.

' In order to excite the instability at §a = 18.5°, it was necessary to
hold that setting for much longer than the 8 sec. shown in Fig. [3.96a].

Fig. [3.96b] shows that when §a = 18.5° for an extended time, a very mild

divergence ensues. A Thus, for ARI when e = 0°, the effective range of Sa 1

is increased upwards to |8a| =36°. It is therefore obvious, from the time i

histories shown, that stability augmentation control laws can rather easily

be derived from the bifurcation plots. |
If k is not the value which intersects the points N and N', the {

results are seen to be less than optimal. Fig. [3.97] shows the fe = 0°

R Y, T BT SR OO B e e e
.

case with k = 4+0.152 (the "optimum” value of k for this case is -0.152).
The plot is p vs. §a. Note how the stable region for §a has shrunk to
+ 8°. (Other equilibrium branches are not shown for the purposes of
clarity).

when elevon is nonzero, the use of the equilibrium plots becomes
more important, as well as the bifurcation plots. This is because limit
cycle behavior enters the major branch. Fig. [3.98] demonstrates this,
showing a pitch down case, e = 5°. Thus, for combined longitudinal-
lateral maneuvers, where elévon as well as rudder-aileron deflections
become prominent, there are two kinds of stability criteria that must be

| considered: the first, seen already for the Se = 0° case, is the jump in

*
There is one unstable root at this value of 8a, which has a time constant
of 14.8 sec.

B o e i it i kbl i e il - "i"“;' ikt il i
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stability, indicated by the bifurcation loci; the second is the entry into

a limit cycle region, which is seen to occur for magnitudes of 8a which

are less than values at which jumps occur. In Fig. [3.98 ], the jumps

occur at |8a] = 35°, while limit cycle behavior may be expected to begin

at around + 20°. This figure, for the particular case 8e = 5°, was plotted
using the ARI relationship (3.36), with the "optimum" k being used (k =
-0.250). As for the Se = 0° case, the value of k is determined as the slope
of the line which connects the points N and N' on the relevant bifurcation
surface, Fig. [3.99]. It is worthwhile to consider the "optimum" gain k

as the slope of the line which connects two points which are on loci
marking the onset of limit cycle behavior. The two points would be selected
80 as to maximize the stable range of da.

In Fig. [3.99], only the major bifurcation hranches are plotted.

Note that, for §e = 5°, the non-jump region of 8a is generally quite
insensitive to variations in k (the ARI gain). But it turns out for this
case that the non-limit-cycle range of 8§a is greatest for the value of

k (-0.250 here) which connects the points N and N'. More work is being
completed in this area, viz., the effect of the ARI gain k on both stability
ranges for Sa: limit cycle and jump (roll departure). The results will
appear in forthcoming reports.

Time history results for the pitch~down roll maneuver case are
presented in Fig. [100a]. It can be seen that there is limit cycle behavior
both at the pre-jump aileron setting of 24°, as well as the post~jump value
of 40°. The jump occurs at around 17 sec., just after Sa is changed to 40°.

These results are consistent with the predictions of Fig. [3.98].

T L B R P AT D e N Ll RR e e e e g D By . T b




e —

SCIENTIFIC SYSTEMS, INC.

-104-

The studies coﬂducted thus far show that definite improvement in
performance results from doing control system design using the bifurcation
surfaces. Even for the most simple situation, a control law of the form
(3.36), there are significant improvements. For the above pitch-down case,

the ARI ; vs. 8a plot, Fig. [3.98], shows that limit cycle behavior will

be avoided if |Sa| < 18°. If there is no ARI (§r = 0°; see Fig. [3.34]), this

region is only + 13°. In this case (and also for the §e = -5° case, pre-
sénted below), the jump stability region is not particularly sensitive to
k, as Fig. [3.99] indicates. However, for smaller values of e, as noted
earlier, jump stability is particularly sensitive to k (for smaller values
of Se, i.e., |8e| <4°, limit cycle behavior is not predominant on the major
equilibrium branches). Time histories are compared in Fig. [3.100]for the
e = 5° case. For the same 8a history, there is a noticeable improvement
in response when ARI is active (Fig. [3.100al]),as opposed to no ARI
(6t = 0° Pig. [3.100b]). Note especially the reduced amplitudes for all
of the §a settings, and the lack of oscillation, after transients, at
Sa = 12°, The rolling pullout maneuver is a combined pitch-up (8e < 0°)
and roll, executed together. For the case 8e = -5°, the "optimum"
ARI gain k = 0.118. This gain is optimum in the sense that the rudder
control is specified by Eq. 3.36, and in the sense that k has a value which
is the slope of the line connecting the N-N' points in the relative bifurca-
tion surface. .

The equilibrium plot, p vs. 8a, for aircraft H in a rolling pullout
maneuver is given for the ARI (k = 0.118) and non-ARI (k = 0°; 6r = 0°)

cases in Figs. [3.101 and 3. 40], respectively. As for the e = 5° case,
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a comparison of these figures clearly shows that limit cycles are

avoided over a much larger Sa range (+32°) with ARI than without (+20°).
Additionally, time history comparisons of the ARI and non-ARI systems

(Fig. [3.102]),as for the 0 and 5° settings of Oe, show improved response
over all of the values of fa. .Note particularly that o does not change
sign .when 6a moves to 30° from 12°, and longitudinal buffeting (@ oscilla-
tions) is greatly reduced at this setting of Sa. Furthermore, roll rate
;'haé a lower average value at 6a = 30° for the ARI case, as can be veri-
fied by comparing the respective histories of roll angle, ai Note further,
for 8a = 30°, that the frequencies of oscillation are reduced with ARI,
and that there is a tendency for the oscillations to dampen out. Fig.
[3.102b] shows the damping out of the variables more clearly, as 8a is :
held to 30° for 16 sec. This tendency is not evident in the non-ARI case;

indeed, 8a = 30° is a setting for possible limit cycle activity, according

to Fig. [3.40]. The time history Fig.[3.102c]at 6a = 30° certainly

supports the results of Fig. [3.40]. i

Plots of the ARI gain k versus equilibrium angla-of-attack O show
nonlinear behavior in the & < 10° region; however, the values of k as

derived from the bifurcation surfaces are in the neighborhood of the ARI

gain values presented in [11]. Results of a comparison of the BACTM ARI
gain with others [11,15] will be presented in a later report. At this
time, it seems that BACTM is fully capable of deriving satisfactory

comnand augmentation schemes, as the above example indicates.
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i

“ Notation for Figs. 3.2 - 3.102
E P,p = Equilibrium Roll rate -~ Deg/Sec

DR, §r = Rudder Angle - Deg

DA,8a = Aileron Angle ~ Deg

DE, e = Elevator Angle -~ Deg

E S = Stable

U = Unstable with one real positive eigenvalue

. A = Unstable with two real positive eigenvalues
B = Unstable with three real positive eigenvalues
C = Unstable with four real positive eigenvalues

D = Unstable with five real positive eigenvalues

T T

L = Unstable with one pair of complex eigenvalues

E = Unstable with one real and one pair complex eigenvalues

F = Unstable with two real and one pair complex eigenvalues

G = Unstable with three real and one pair complex eigenvalues

Unstable with two pairs of complex eigenvalues

I = Unstable with one real eigenvalue and two pairs of complex
eigenvalues

AR e Afie. gl Bttt Do gl deitahaty &
o
"

Q = Equilibrium pitch rate Vv deg/sec.
R = Equilibrium yaw rate v deg/sec.
A = Equilibrium angle-of-attack "V deg.

B = Equlibrium side-slip angle Vv deg.
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Fig. 3.10: A/C B, Bifurcation Surface in
(Sa, Se) plane. The numbers in o
each region indicate number of <
equilibrium points; ﬁr = 0. ' T9
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Relation between stable,
unstable equilibrium points and
attractor regions in p-q space.

(Qualitative Representation).
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Fig. 3.47:

Nonlinear root-locus plot,
A/C H; Se = 2°; &r = 0°%
P varied from ~500 deg/sec
to 500 deg/sec.
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Fig. 3.50: Time history plots showing the development of
an expanding limit cycle for Aircraft H.
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