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ABSTRACT. In [1], 1971, a transformati referred Definition 2. We define
to as the G-Transformation was ir.troduc~~’~~~ H. L.
Gray, T. A. Atchison and G. V. McWilliams. The GIf f(x)dx;h,nl G[f[f(x)+f(_x))dx;h~n~ -~ransformation .we~~s own to be of value in evaluat- L-t j  ~ 1 ~~~

~~~~ ing inçroper integrals and was especially effective
in those caces where the integrand behaved like a From Definition 2 and our previous r~~arks itlinear combination of exponentials with real or corn— follows that if f(x)+f(—x) satisfies a differential
plex arguments. These ideas have more recently such as (2) for some n, then

been utilized to define a spectral
estimator referred to as the G—Spectral Estimator. 

GIf f(x)dx’h n S f f(x)dxIn this paper the nature of the C-transform and G- 
L-t 

‘ ‘ I -
~~Spectral estimator are discussed and it is pointed

out that such an estimator is most appropriate for for all t > 0 and h > 0.
processes whose autocorrelations behave as a linear —

combination of exponentials with real or complex Since our interest here is spectral estimation
and since we will restrict ourselves to real pro-
cesses we will henceforth only consider syusnetric

Let us begin with a few necessary definitions. integrands. All of our results will however, with
Definition 1. Let a be constant and let obvious modifications, follow from Definition 2

>.. when this is not the case, see (3]. That is the C—
transform method for estimating (or approximating)

~~~~~~~ 
F(t) = f f(x)dx, 

Fourier transforms is equally applicable to nonsym—

~~~~ 
a 

metric integrands. We are now in a position to de—
C..) where F(o’) Is assumed finite, fine the G—Spectral Estimator.

Then we define the G—transform by Definition 3. Let R (r;T) be an estimate, based on

• _,J f(t) f(t+h) ~~• ‘  f(t+nh) R(r), of real stochastic process with spectral den—

~ity S(w). Then we define the G—Spectral estimator

UJ 

~

F(t) F(t+h) •,. F(t+nh) a record of length I’, for the autocorrelation,

~~ La... S(w;T) by

— f(t+(n—l)h) •.‘ f(t+(2n—l)h) 
~ 

T~
G(F(t);h,nJ (1) S(w;T) G J 2 f R(t;T)cos 2irwrd-r~ h~n] 15)

~~ 
1 1 ‘ ‘ •  1 o

f(t) f(t+h) ‘“ f(t+nh)
In (5) the quantities n, T h are constants which

• must be determined in ordj to calcu1a~e ~(w;T).
f(t+(n—1)h) ‘ • •  t(t+ (2n—l)h) A discussion of that problem is beyond the scope of

this paper. A complete solution to the problem is
Properly defining C in the indeterminate case, see however given in [3], where a computer program for
(1]. it can be shown that if f satisfies the differ— calculating S(w;T) is given. In most instances
ent~al equation 1 < T << T, h 1, and n is not actually needed.

(m) . ..(m— 1) Again0
see [3]. The spectral estimator defined by

f (x i + a1r ( x) + • • •  + a f ( x )  0 (2 ) (s) enjoys many properties which most other methodsa
x c (t,—), then do not. We list a few, which subject to mild con-

ditions can be shown when n is properly chosen, and
G[F(t);h,nJ S F(=) (3) R(~) satisfies an equation such as (2).

for all h > 0, t a and n m. i) u r n  S(w;T) S(w),*
T4~For brevity we will limit ourselves to inte-

grals whose limits become infinite in only the posi— ii) if R ( r ; T )  R ( r )  when 0 < t < T~ <

tive direction. Since the G—transformation is non— S(w) S S(w;T)
linear it is not clear from (1) how it should be 

~~i) for most cases T0 + (2 n— 1)h << T.
defined for integrals whose limits become infinite
in both directions . Thus we include the fol lowing * Mere the limit can be interpreted in whateverdefinition, sense is appropriate .
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• In essence property, (i) states that when R ( t ; T )  SUMMARY STATISTICS
• is consistent for R(~), S(w~T) is consistent forS(w). Property (ii) states that if R(T) satisfies (w) S(w) Estimator Sample Sample

an equation such as (2) (the coefficients of that Mean MSE
equation are of course not known nor are they as— 0.00 19.000 *BARTLETT(l5) 7.731 129.560
sumed known ) then there is no error in the approxi— ‘l”J~~Y ( l3 )  7.724 128.775
mation due to leakage, i.e. the finite record. Fi— PARZEN(19) 7.964 123.953

• nally property (iii) is listed simply to point Out ARSPEC(l—8) 14.514 85.275
that the sample autocorrelation will normally need MEM (1-]0) 15.152 76.627
be calculated at considerable fewer lags in the cal— G(2—6) 15.886 57.839
culation of ~(w;T) than other methods which make use 0.06 1.393 BARTLETT 2.684 2.078of R (r~T). TUXEY 3.173 3.328

We now give three examples and some comparisons. PARZEN 2.999 2.838

In the final two examples we use discrete data and P.RSPEC 1.629 .309
the trapezoid approximation t~ the integrals in (1). 

MEM 1.764 .856
G 2.146 2.031When this is done the proper G—transform will yield

the discrete Fourier transform of the corresponding 0.24 .112 BARTLETT .230 .0230
discrete autocorrelation , i.e. the leakage error TUKEY .162 .0109
will still be eliminated . A sore complete discus— PARZEN .127 .0109
sion will be given in (3). ARSPEC .131 .0019

MEM .130 .0041
Example 1. Consider the continuous autoregressive G .143 .0069
process defined by

0.50 .053 BARTLETT .104 .0042
dx TUXEY .070 .0019+ mx z ( t )  —~~ < t < 

PARZEN .099 .0036
• ARSPEC .064 .0006where z ( t )  is white noise.

it t MEM .062 .0012—BIn this case R (t) e and for t > 0 and h > 0 G .070 .0014

rt
G2[2fe~~

X cos 2n~~cdx;h’ 2 2 S(w). Example 3. Consider the ARMA (3,2) processJ l.5X~_1 — l.2lX
~~2 

+ .455X
t 3  

+
Example 1 is of course trivial and only meant to

— .l75Zdemonstrate the exactness property of the G—trans— t-l +

form. A result which is less trivial and suggested
by this example and our comments above is the Thirty realizations of length 400 points were gen-
following. erated from the above process and the various spec-

tral estimators were again calculated. The summary
statistics are as follows.Example 2. Let z ( t ) ,  t £ (0+1,...) be white noise

and let {x(t ) J be the discrete autoregressive pro— SUMMARY STATISTICS
cess Sample Sample(w) 5(w) Estimator Mean MSEx( t )  — ~x ( t — l )  = z ( t ) . 0.00 .017 BARTLETT(38) .065 .00238
Then TUKEY( 33) .023 .00014

R(k )  = 8 1k1 PARZEN(46) .018 .00028
ARSPEC(7— 18) .023 .00015

and MEM(8—20) .014 .00004
G (4 — l4)  .018 .00019

l _ 8 2 1S(w) — 2 ‘ wi < . 0.16 4.063 BARTLETT 3.438 .6718
1+6 —26 cos 2lTw TUKEY 3.615 .4314

PARZEN 3.598 .4619Thirty realizations of 100 observations were gener—
ARSPEC 3.907 1.1851ated from this process and 5(w) was estimated by the
MEM 3.771 1.2200Bartlett, Tukey and Parzen Window methods*, Burg s
G 4.022 .1924MEW , Parzen ’ s Autoregressive Spectral estimator

(ARSPEC) and the G—Spectral estimator. The summary 0.18 4.480 BARTLETT 4.079 .8192
statistics are given below. The numbers in paren— TUKEY 4 .226 .6353
theses show the range of the number of lags for PARZEN 4 .224 .6710
which the sample autocorrelation was needed except ARSPEC 5.142 3.7695
in Burg method where it is the range of the lengths • MEW 4.624 2 .5005
of the prediction error filter. G 4.815 .7261

0.50 .319 BARTLETT .366 .0172
TUKEY .349 .0154

* The window methods here and below are better PARZEN .347 .0158
than would be expected in practice since several dif— ARSPEC .376 .0231
ferent length windows were used and the best result MEW .361 .0252
is given here. G .336 .0083
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The above example demonstrates that the C—
Spectral estimator tends to have a smaller mean
square error (MEE) than the other methods (this is
not clear in the table for the window methods since
the best window was used which of course could net
be done in practice). In some cases it is signif i—
cantly smaller, in others it is not. More exten-
sive examples however do demonstrate that in many
cases the C—spectra l estimate is significantly bet-
ter than the others considered here and hence
should be a useful addition to existing methods.
For further examples the reader is referred to (31 .

As a final comment it should be remarked that
the application of the C—spectral estimator is not
limited to processes whose autocorrelatjon satisfy
an equation such as (2) . Such processes were only
considered here since theoretical results suggest
that this is the setting irb which the method should
be most effective . A more extensive investigation
would of course be interesting and hopefully forth-

• coming in the future.
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