

FTD-ID(RS)T-1911-77

EDITED TRANSLATION

FTD-ID(RS)T-1911-77

28 December 1977

MICROFICHE NR: 74D-78-C-000074

LIQUID-PROPELLANT ROCKET ENGINES: TERMS AND DEFINITIONS

English pages: 43

Source: GOST 17655-72, Moscow, pp. 1-47.

Country of origin: USSR Translated by: SCITRAN F33657-76-D-0390

Requester: FTD/PDBP Approved for public release; distribution

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD _ID(RS)T-1911-77

Date 28 Dec 19 77

UNANNOUNCED JUSTIFICATION

DISTRIBUTION AVAILABILITY CODES

RY

e Section N

8 1. Sellion

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Bl	ock	Ita	lic	Tra	ansliteration	B	Lock	Ita	lic	Tra	ansliteration
А	a	A	a	Α,	a	Ρ	р	P	P	R,	r
Б	б	Б	6	В,	b	С	С	С	c	s,	S
В	8	B		V,	v	Т	т	T	m	т,	t.
Г	Г	Г	:	G,	g	У	У	У	y	U,	u
Д	д	Д	9	D,	d	ф	ф	Ø	¢	F,	f
Ε	е	E		Ye	, ye; E, e*	Х	×	x	x	Kh	, kh
ж	ж	ж	×	Zh	, zh	Ц	ц	Ц	4	Ts	, ts
З	Э	3	3	Z,	Z	ч	ч	4	*	Ch	, ch
И	и	И	u	I,	i	Ш	ш	Ш	ш	Sh	, sh
Й	й	A	ŭ	Υ,	У	Щ	щ	Щ	4	Sho	ch, shch
н	н	K	×	К,	k	Ъ	Ъ	Ъ		"	
11	л	Л	^	L,	l	Ы	ы	ы		Υ,	У
i'i	19	М	M	Μ,	m	Ь	ь	Ь	•	1	
Н	н.	H	н	N,	n	Э	Э	э	,	Ε,	е
0	0	0	0	Ο,	0	Ю	ю	ю	ю	Yu	, yu
П	п	Π	n	Ρ,	p	Я	я	я	*	Ya	, ya

*ye initially, after vowels, and after ъ, ь; e elsewhere. When written as \ddot{e} in Russian, transliterate as y \ddot{e} or \ddot{e} .

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russian	English	Russian	English	Russian	English
sin cos tg ctg sec cosec	sin cos tan cot sec csc	sh ch th cth sch csch	sinh cosh tanh coth sech csch	arc sh arc ch arc th arc cth arc sch arc sch	sinh-1 cosh-1 tanh-1 coth-1 sech-1 csch
		Russian	English		
		rot	curl		

log

lg

LIQUID-PROPELLANT ROCKET ENGINES: TERMS AND DEFINITIONS

State of the second sec

STATE STANDARD OF USSR

GOST 17655-72

By decree of State Committee of Standards of USSR Council of Ministers of IV/27/1972 No. 873 the period of introduction has been set from VII/1/1973.

This standard sets the terms and definitions applicable in science, technology and production for the primary concepts in the area of liquid-propellant rocket engines.

The terms set by this standard are mandatory for use in documentation of all types, textbooks, instructional manuals, technical and reference literature. The use of these terms is recommended in the rest of the cases.

One standardized term has been set for each concept.

For individual standardized terms in the standard letter designations have been given for reference, as well as short forms which can be used in cases which exclude the possiblity of their varying interpretation.

In cases where the essential features of the concept are contained in the literal meaning of the term a definition is not given and a line is drawn accordingly in the "Definition" column.

The standard gives an alphabetical index of the terms it contains.

The recommended appendix 1 contains the terms and definitions referring to automatic machine aggregates of liquid-propellant rocket engines and to their characteristics.

The reference appendix 2 presents the terms and definitions for the liquidpropellant rocket engine nozzles.

The reference appendix 3 presents the terms of reliability of the/IRE.

The reference appendix 4 contains schematic drawings of certain LRE aggregates.

-1-

The standardized terms have been set in semi-bold face type, their short form in light type and inadmissible synonyms in italics.¹

Term	Definition	Letter desig- nation
	Main Concepts	
1. Rocket engine (RE)	Jet engine which uses for its operation only substances and energy sources stored on a mobile apparatus.	
	Note: The mobile apparatus can be flying, ground or underwater.	
2. Liquid rocket propellant (IRP)	Substance or collection of substances in liquid state which as a result of exothermic chemical reactions is capable of forming high- temperature products creating a jet force (45)* when they flow from the RE.	
	Note: When IRP is used reactions of oxi- dation, breakdown and others can occur in the RE in the chambers of combustion, breakdown and others respectively and form products of combustion, breakdown and others Below, for the sake of abbreviation, only the combustion chambers and combustion products are mentioned.	5.
 Liquid-propellant rocket engines (IRE) 	Rocket engine operating on liquid rocket propellant.	
	Note: IRE generally consist of chambers (8), pipe and pump aggregates** (9), gas generators (10), automatic machine aggregate (11), devices for creating controlling forces and momentum, frames, trunk lines and auxiliary devices and aggregates.	

¹Translator's note: Regular type, parentheses and underlining of terms respectively are used for the different face types in this translation.

*Here and further the numbers in parentheses indicate the number of the terms placed in this standard.

"In this standard "aggregate" means the finished item of a specific functional purpose to fulfill operations in the EA work $(4) \cdot [II]$

4. Liquid-propellant rocket engine assembly (EA)	The assembly consisting of one or several LRE, fuel tanks, supercharging aggregates of fuel tanks or pressurg propellant $supply(5)$, steering gears (134), trunk lines connecting the engines to the tanks, and auxiliary devices.
5. Pressurized pro- pellant supply	Supply of fuel components to chamber by dis- placement from fuel tanks by gases whose pressure exceeds the pressure in the combustion chamber (42).
 Pump supply of propellant Products of gas generation 	Products of breakdown or low-temperature com- bustion of components of main (211) or auxili- ary (212) fuel used to drive TPA (9), super- charge fuel tanks, operate control aggregates.
	Note: Products of gas generation are called oxidizing if they are obtained with an excess of oxidant and are called reducing with an excess of fuel.
Main Aggrega	tes of Liquid-Propellant Rocket Engine
8. Chamber of liquid- propellant rocket engine (Chamber LRE)	The IRE aggregate in which the fuel or products of gas generation as a result of chemical reactions are transformed into high-temperature products creating a jet force during outflow.

Note: The IRE chamber consists of the chambers of combustion (75) and nozzle (85).

9. Turbopump aggregate The IRE aggregate designed for pump supply of fuel to the chamber and gas generator.

(TPA)

10. Liquid-propellant gas generator of

rocket engine (Gas generator) 11. Automatic machine

aggregates of

rocket engine (Automatic machine

12. Impulse block

liquid-propellant

liquid-propellant

aggregates LRE)

Note: The TPA usually consists of pumps and turbines activating them.

The LRE aggregate in which the main or auxiliary fuel as a result of exothermic chemical reactions is converted into products of gas generation.

Collection of devices installed in IRE which provide control, adjustment and servicing of IRE.

Note: The devices can be mechanical, hydraulic, pneumatic, electric, pyrotechnic, etc.

Aggregate of multichamber IRE of normal orientation (34) or link-up (35), triggered for short time intervals and consisting of a chamber and valves turning on or off the flow of fuel components into the chamber.

Types of Liquid-Propellant Rocket Engines

- 13. Liquid-propellant rocket engine with pressurized propellant supply (IRE with pressurized prop. supply) 14. Liquid-propellant rocket engine with pump prop. supply (LRE with pump propellant supply) IRE with fuel supply by TPA in which the 15. Liquid-propellant products of gas generation after their rocket engine work in the gas turbine enter the chamber with afterburning (IRE with afterburning) 16. Liquid-propellant rocket engine without afterburning (IRE without afterburning) 17. One-chamber liquid-propellant rocket engine (One-chamber IRE) 18. Multichamber liquid-propellant rocket engine (Multichamber LRE) IRE consisting of several engine blocks 19. Block liquidpropellant rocket united by a common frame. engine Note: (Block IRE)
 - 1. The engine block is understood to be the engine intended only for formation in a set of block IRE and lacking certain aggregates.
 - 2. Engine blocks can have common systems, for example, start (69) and stop (73).

20. Liquid-propellant rocket engine of single use (IRE of single use)	-
21. Liquid-propellant rocket engine of multiple use (IRE of multiple use)	IRE designed to ensure several flights of the aircraft.
22. Liquid-propellant rocket engine of single actuation (IRE of single actuation)	_
23. Liquid-propellant rocket engine of multiple actuation (IRE of multiple actuation)	IRE actuated many times in one flight
24. One-pattern liquid- propellant rocket engine One-pattern IRE	IRE with one main pattern of operation (71)
25. Multi-pattern liquid-propellant rocket engine (Multi-pattern IRE)	IRE with several main patterns of operation
26. Rotating liquid- propellant rocket engine (Rotating IRE)	IRE which can rotate relative to the aircraft
27. Sustainer liquid- propellant rocket engine	IRE which ensures the acceleration of the air- craft.
(Sustainer LRE)	Note: In addition to fulfilling the indicated task the sustainer IRE can be used to con- trol the flight, brake the aircraft, etc.
28. Auxiliary liquid- propellant rocket engine (Auxiliary LRE)	IRE installed on aircraft in addition to the main engine
29. Correcting liquid- propellant rocket engine (Correcting LRE)	LRE used to correct the speed of the aircraft

-5-

30.	Steering liquid- propellant rocket engine (Steering IRE)	IRE creating forces and momentum used to con- trol the position of the aircraft in the active portion of the flight. Note: The steering IRE can also perform the	
		function of sustainer IRE and others.	
31.	Braking liquid- propellant rocket engine (Braking IRE)	-	
32	Starting liquid- propellant rocket	Auxiliary LRE serving to force the take-off of the aircraft.	
	engine (Starting IRE)	Note: Usually discarded after the end of operat	ion.
33.	Launching liquid- propellant rocket engine (Launching LRE)	Auxiliary IRE, usually of small thrust, creating overloads to separate propellant components from gas in fuel tanks feeding the main engine.	
34.	Liquid-propellant rocket engine of orientation (LRE of orientation)	LRE creating forces and momentum used to control position of aircraft in passive portion of fligh	
35.	Liquid-propellant rocket engine of link-up (LRE of link-up)	IRE for link-up of aircrafts	
	Paramete	rs and Characteristics of Liquid-Propellant Rocket Engine	
36	Mass consumption of IRE oxidant (Oxidant consumption)	Mass of oxidant consumed during operation of IRE in unit of time	^m o k
37.	Mass consumption of IRE fuel (Fuel consumption)	Mass of fuel consumed during operation of LRE in unit of time	m r
38.	Mass consumption of LRE propellant (Propellant con- sumption)	Mass of propellant consumed in operation of LRE in unit of time	m
39.	Volume consumption of IRE propellant	Volume of propellant consumed in operation of IRE in unit of time	v

40.	Mass correlation of components of pro- pellant in IRE (chamber, gas gen- erator) (Correlation of components)	Ratio of mass consumption of LRE oxidant (by chamber, gas generator) to corresponding mass consumption of fuel	k _m
41.	Volume correlation of components of propellant in IRE (Volume correlation of components)	Ratio of volume consumption of IRE oxidant to corresponding volume consumption of fuel	ĸ _V
42.	Pressure in com- bustion chamber (gas generator)	Mean static pressure of combustion products in beginning of combustion chamber (gas generator)at displacing head (76)	^p k (p _{cr})
43.	Combustion tem- perature	Temperature for inhibiting the combustion products in the first section of the nozzle (101).	T _{0c}
		Note: Here and further the index "O" is given to inhibition or braking parameters.	
44.	Rate of outflow	Rate of stream on section of nozzle (106) determined in linear approximation.	w _a
45.	Jet force	Equivalent hydro- and gas-dynamic forces which affect the inner surfaces of the rocket engine during the outflow from it of substances, and the forces of environmental pressure affecting its outer surfaces, with the exception of forces of outer aerodynamic resistance.	
46.	Chamber thrust	Jet force created by the chamber	P _k
47.	IRE thrust	Equivalent force of all jet forces created by IRE aggregates.	Р
		Note: Consists of the chamber thrust, thrust of exhaust pipes and other elements through which outflow occurs.	
48.	Specific impulse of IRE thrust (IRE chamber) Specific impulse IRE (IRE chambers)	Ratio of IRE thrust (IRE chambers) to IRE propellant consumption (by IRE chamber) Note: 1. Specific IRE impulse (IRE chambers) is also equal to derivative from IRE thrust impulse (IRE chambers) according to the mass of consumable propellant.	ľy

	2. In a vacuum is designated	Iy,n
	on ground	Iy,3
49. Volume specific impulse of IRE thrust (IRE chambers)	Ratio of IRE thrust (IRE chambers) to volume consumption of IRE propellant (IRE chamber)	Iy,I
(Volume specific IRE impulse (IRE chambers))	Note: Volume specific LRE impulse (LRE chambers)also equals derivative from impulse of engine thrust (LRE chambers) according to the volume of consumable propellant.	
50. Characteristic rate in chamber (Characteristic rate) Inad. <u>Specific</u> <u>impulse of pressure</u>	Product of braking pressure in minimum section of nozzle (102) for area of this section and for coefficient of nozzle consumption (57) referred to the mass con- sumption of propellant by the LRE chamber	c*
51. Consumption complex Inad. <u>Specific</u> <u>impulse of pressure</u>	Product of pressure in certain section of combustion chamber for area of minimum section of nozzle, referred to mass con- sumption of propellant by LRE chamber.	β
	 Note: 1. When used to analyze the stability of the characteristics of the combustion chamber during its serial production it is recommended that the consumption complex be determined according to the static pressure in the first section of the combustion chamber. 2. When used to analyze multiphase currents it is recommended that the consumption complex be determined according to the static pressure in the first section of the combustion chamber. 	
	braking pressure in the first section of the nozzle; designated β .	
52. Thrust coefficient	Ratio of chamber thrust to product of braking pressure in minimum section of nozzle for area of this section and coefficient of nozzle con- sumption	^k T
	Note: Thrust coefficient also equals the ratio of specific chamber impulse to characteristic rate in chamber.	
53. Thrust complex	Ratio of chamber thrust to product of pressure in certain section of combustion chamber for area of minimum nozzle section.	^k p

		1
	 Note: 1. The thrust complex is also equal to the ratio of specific chamber impulse to the consumption complex. 2. When used to analyze the stability of the characteristics of the chamber during its serial production it is recommended that the thrust complex be determined according to the static pressure in the section of the combustion chamber. 3. When used to analyze multiphase currents it is recommended that the thrust complex be determined according to the braking pressure in the first 'section of the nozzle; designated k ps 	
54. Ideal value of chamber parameter	Value of chamber parameter corresponding to equilibrium linear flow of combustion products with lack of elimination of heat and friction.	
55. Coefficient of specific impulse	Ratio of actual specific chamber impulse in vacuum to ideal, computed at the same values of the correlation of components, pressure in combustion chamber and geometric degree of nozzle expansion (108)	¶.
56. Complete coeffi- cient of specific impulse	Ratio of actual specific chamber impulse in vacuum to ideal, computed with value of cor- relation of components corresponding to the maximum of ideal specific impulse, and with the same geometric degrees of expansion and pressures in the combustion chamber	φ _{IS}
57. Coefficient of nozzle consumption	Ratio of actual consumption of gas through nozzle to ideal, determined with respectively the same values of temperature and pressure of braking in the minimum nozzle section, gas constant and local index of adiabatic curve (169) as well as with a flat surface of tran- sition from the subsonic speeds to supersonic	۳c
58. Coefficient of combustion chamber	Ratio of actual characteristic rate in chamber to ideal, computed with the same values of correlation of components and pressure in com- bustion chamber	φ _k
59. Nozzle coefficient	Ratio of actual thrust coefficient in vacuum to ideal, computed with same values of correlation of components, pressure in combustion chamber and geometric degree of nozzle expansion	φc

-9-

60. IRE Mass		тд
61. Mass of primed IRE		™да,з
62, Specific LRE mass	Ratio of mass of primed LRE to its greatest thrust in main pattern.	^т д,
	Note: When there are several main patterns it is determined according to the greatest thrust.	
63. Relative mass of turbopump aggre- gate	Mass of TPA per unit of power producable by gas turbine	
(Relative TPA mass)		
64. IRE working time	Time from first command for start-up of IRE to first command for its stop.	
	Note: For IRE of multiple actuation the working time is a sum of the working time of IRE corresponding to each actuation.	
65. Impulse of IRE aftereffect	Impulse of IRE thrust from first command for its stop to complete disappearance of thrust	
66. LRE high-altitude characteristic	Dependence of thrust on environmental pressure with constant pressures in combustion chamber and correlation of propellation components	l l
67. IRE throttle characteristic	Dependence of thrust on pressure in combustion chamber with constant correlation of propellant components and environmental pressure	
Operating Pat	ttern of Liquid-Propellant Rocket Engine	1
68. IRE operating pattern	State of operating IRE determined by collection of parameters of the processes occurring in it	
69. Starting of IRE	IRE operating pattern from first command for its actuation to passage to main pattern (71)	
70. Pattern of pre- liminary stage of LRE	Steady-state operating pattern of LRE during start-up with thrust less than thrust in main pattern.	
	Note: Several patterns of preliminary stages can occur.	

-10-

71. Main IRE operating pattern	IRE operating pattern which is the deter- mining one during the fulfillment of the main task.
	Note: Several main patterns can occur.
72. Pattern of final stage of LRE	Steady-state IRE operating pattern before stop with thrust less than the thrust for the main pattern.
73. Stop of LRE	LRE operating pattern from first command for its shutdown to complete disappearance of thrust.
	Note: The pattern of the final stage is not included in the stop of LRE.
74. Emergency IRE shutdown ESE	Premature shutdown of IRE produced by break- down of IRE, EA, stand systems or aircraft system.
Chamber (Ga	s Generator) of Liquid-Propellant Rocket Engine
75. IRE Combustion chamber	Section of LRE chamber in which the processes of carburction and combustion of propellant components and (or) products of gas generation mainly occur.
	Note: It includes displacing head (76) and a part of the frame of the chamber (80) before the first section of the nozzle.
76. Displacing head of chamber (gas generator)	Section of chamber (gas generator) of LRE which is a device for feeding the components of pro- pellant and (or) products of gas generation into the fire space and initially for their inter- mixing.
77. Displacing head end plate	Part of displacing head which separates the cavities of propellant components or products of gas generation from each other, or separates them from the fire space and the outer medium (draw. 1)
	 Note: 1. Usually an outer; middle and inner end plate are distinguished. 2. In the IRE chambers with afterburning the gas conduit can fulfill the role of the outer end plate.
78. Gas distributing network	Element of the displacing head which provides the necessary distribution of gas consumption over the area of the displacing head and an improvement in

-11-

	combustion chamber (136)
79. Antipulsation barrier	Element of displacing head which improves the stability of the working process in the com- bustion chamber (gas generator)
80.Frame of chamber (gas generator)	Section of chamber (gas generator) which is a casing forming the wall of the nozzle and combustion chamber without displacing head.
	Note: In the designs with circulating (171) or transpirating (177) cooling it usually consists of an inner and outer wall forming the cooling channel (81) or part of it.
81. Cooling channel of chamber (gas generator)	Collection of channels in framework and dis- placing head of chamber (gas generator) with circulating or transpirating cooling serving for the flow of the coolant
82. Band of screens of chamber (gas generator)	Set of elements of chamber (gas generator) located in one cross section and designed to feed one of the propellant components or products of gas generation into the boundary region of the fire space to create a protective layer of liquid or gas.
83. Single zone gas generator	Gas generator in which propellant components are only fed through displacing head
84. Multizone gas generator	Gas generator in which the propellant com- ponents are fed through the displacing head and frame
Nozzle of Ch	namber of Liquid-Propellant Rocket Engine
85. Nozzle of LRE chamber	Section of chamber forming channel of varying section in which the heat energy of the com- bustion products is converted into kinetic energy of the exhaust stream
86. Axisymmetric nozzle	Nozzle show surface on the side of the stream of combustion products is axisymmetric
87. Round nozzle	Axisymmetric nozzle in which any section of the stream of combustion productsperpendicular to axis of symmetry is a circle

88. Ring nozzle	Axisymmetric nozzle in which a portion or all of the sections of the current of combustion products perpendicular to axis of symmetry are are ring (drawings 7, 8, 9)
89. Contour of nozzle	The intersection line of the nozzle surface on the side of the stream of combustion products with the half plane passing through its central axis.
	Note: The outer and inner section of the contour are distinguished in the ring nozzles.
90. Conical section of nozzle	Section of nozzle between the first (101) and minimum sections
91. Expanding section of nozzle	Section of nozzle between minimum section and cut-off of nozzle
92. Conical nozzle	Round nozzle whose expanding section, beginning with the section near the minimum has a recti- linear contour
93. Profiled nozzle	Nozzle whose expanding section has a curvilinear contour, profiled in order to increase the nozzle efficiency.
94. Extremal contour of nozzle	Contour of profiled nozzle whose expanding section is determined with the help of variation methods
95. Nozzle contour with uniform characteristic	Contour of profiled nozzle whose expanding section provides a parallel stream in the outgoing section of the nozzle with the same amount of speed at any point of this section
96. Shortened contour of nozzle	Contour of profiled nozzle whose expanding section is the first part of the expanding section of nozzle with a contour with uniform characteristic
97. Nozzle contour with angular point	Nozzle contour with angularity.
	Note: Usually the angularity of the contour occurs in the critical section (103).
98. Pin-type nozzle Inad. <u>Nozzle with</u> <u>outer</u> <u>expansion</u> . <u>Nozzle with covered</u> (<u>semi-covered</u>)shell	Ring nozzle whose contour of the expanding section almost or completely lacks an outer section (draw. 8)

99. Plate-like nozzle Inad. <u>Mushroom</u> <u>nozzle. Nozzle</u> with inner expansion	Ring nozzle whose contour of the expanding section almost or completely lacks an inner section (draw. 9)
100. Telescopic nozzle	Nozzle with one or several extensible fittings which in the extended position are a continu- ation of the expanding section of the nozzle and increase its degree of expansion (108)
101. First section of nozzle	Conventional flow-passage section of chamber beyond which intensive change in the area of the flow-passage section begins.
	 Note: 1. The parameters in this section are given the index "c". 2. For round nozzles it is a flat, perpendi- cular to axis of symmetry section while for ring nozzles the first section can be not flat (conical, cylindrical, etc).
102. Minimum section of nozzle	Flow-passage section of nozzle which has the minimum area.
	Note:1. The parameters in this section are given the index "m" (if this section differs from the critical).2. For round nozzles the minimum section is a flat section perpendicular to the axis of symmetry, for ring nozzles it can be not flat
103. Critical section of nozzle	Flow-passage section in which the gas speed equals the local speed of sound.
	 Note: 1. The parameters in this section are given the index "*". 2. When there are irreversible processes in the nozzle the critical section located according to the stream below the minimum section. 3. In practice the critical and minimum sections are often identified.
104. Outgoing section of nozzle	The section, perpendicular to the centra axis, passing through the end point of the nozzle contour.

	 Note: The parameters in this section are given the index "a". By the area of the outgoing section of the ring nozzle is meant the area of the section conducted through the end point of the outer section of the ring nozzle contour (draw. 7,8,9) For nozzles with oblique cut (107) it is conducted through the end point of the shortest contour 	
105. Contour of outgoing nozzle opening	Closed line conducted through outgoing end points of all nozzle contours.	
	Note: Not defined for ring nozzles.	
106. Nozzle cut	Surface of minimum area limited by contour of outgoing opening of nozzle.	
	Note: 1. Not defined for ring nozzles. 2. For axisymmetric, not ring nozzles it coincides with the outgoing section	
107. Oblique cut of nozzle	Nozzle cut at angle to axis, distinct from straight Note: The nozzle with oblique cut is not axi- symmetric, however it can consist of main, axi- symmetric section and small non-axisymmetric section.	
108. Geometric degree of nozzle (Degree of nozzle expansion) Inad. <u>Expansion</u> of <u>nozzle</u>	Ratio of area of outgoing section of nozzle to area of its minimum section	च
	Ratio of braking pressure in first section of nozzle to static pressure in its outgoing section.	3
	Note: In terms (109-112) by "pressure" is meant the pressure determined in linear approximation.	
110. Rated operating pattern of nozzle	Operating pattern of nozzle in which the gas pressure in its outgoing section equals the pres- sure of the environment.	
111. Operating pattern of nozzle with underexpansion	Operating pattern of nozzle in which the gas pressure in its outgoing section is higher than the environmental pressure.	

and a second and a second a second as a

112. Operating pattern of nozzle with overexpansion	Operating pattern of nozzle in which gas pressure in its outgoing section is below environmental pressure	
113. Adjustable nozzle	Nozzle whose degree of expansion can by changed in the required manner during its operation	
114. Altitude of nozzle	Altitude above sea level at which under standard atmospheric conditions the operating pattern of the nozzle is the rated.	
	Note: Instead of altitude it is permitted to use the environmental pressure corresponding to it.	
Turbopump Aggregate of Liquid-Propellant Rocket Engine and Other Aggregates of Propellant Supply		
115. Oxidant pump	Pump for supplying oxidant to LRE aggregates	
116. Fuel pump	Pump for supplying fuel to IRE aggregates	
117. Booster pump aggregate	Aggregate installed in propellant trunk line before inlet to IRE pump in order to increase the pressure of the component entering this pump and which consists of a pump and drive.	
	Note: The drive can be a hydroturbine, gas turbine, electric drive, etc.	
118. Worm rotary pump	Pump with pre-actuated worm feeder	
119. Jet prepump LRE	Booster-type jet pump (draw. 11).	
120.Launching turbine of turbopump aggregate	Gas turbine providing start of TPA rotor during LRE launching.	
121.Turbopump aggre- gate spring	P Part of T/A designed for spring connection of coaxial shafts of of the aggregates in it and for transmission of the torque (draw. 12)	
	Note: The spring permits relative radial and axial shift of the shaft axes without dis- rupting the normal TPA operation.	
122. Floating sealing ring of turo- pump aggregate pump	Part separating the cavities with different pressures in the TPA pump, made in the form of a ring which is self-adjusting during the pump operation under the influence of hydrodynamic forces and a drop in pressures (draw. 13).	

123. Launching nozzle	Autonomous nozzle or group of nozzles in stator of TPA turbine used to start TPA
124. Pneumoblock	One or several cylinders with supply of compressed gas equipped with valves and reducers for charging the cylinders and turning on the gas.
	Note: The pneumoblock is used for pressurized propellant supply, starting up the IRE (IRE aggregates), supercharging the tanks, etc.
125. Solid-propellant LRP	Aggregate generating by combustion of solid propellant grains gases which serve to dis- place the components of liquid propellant from the tanks or for auxiliary purposes.
	Note: By auxiliary purposes is meant TPA overspeeding during start-up, feeding of steering nozzles, etc.
	s for Creating Controlling Forces and Momentum 1 Liquid-Propellant Rocket Engine
126. LRE Steering chamber	Auxiliary immobile or rotating chamber serving to create controlling forces and momentum
127. Steering nozzle	Auxiliary rotating or immobile nozzle serving to create controlling forces and momentum
128. Rotating chamber IRE	Chamber which can rotate relative to the immobile LRE sections.
129. Rotating nozzle	Nozzle which can rotate relative to the immobile section of the chamber (drawing 14).
130. Gas vane	Profiled rotating element installed in current of products of combustion near the outgoing section of nozzle and having two working surfaces streamlined by the current (drawing 15).
131. Peripheral vane	Profiled rotating element, in neutral position is a continuation of the nozzle and has one working surface streamlined by the current of combustion products (drawing 16).
132. Controlling flap	Blade located near outgoing section of nozzle and can be moved into the stream of combustion pro- ducts (drawing 17).
133. Rotating section of nozzle	Outgoing section of nozzle which can rotate re- lative to immobile section of nozzle (draw. 18).

134. Steering drive	Drive which changes the position of the rotating or movable devices creating con- trolling forces and momentum
135. Injection into nozzle	Irregular feeding into expanding section of nozzle of secondary gas stream (liquid- propellant)resulting in the development of lateral unbalanced force (draw. 19).
Working Process	in Combustion Chamber (Gas Generator) of Liquid-Propellant Rocket Engine
136. Working process in combustion chamber (gas generator) IRE	Collection of physicochemical processes of conversion of propellant components or products of gas generation into products of combustion (gas generation) occurring in the combustion chamber (gas generator)
137. Carburetion in combustion chamber (gas generator)	Distribution, intake, diffusion and movement of propellant components and gas generation products
138. Diffusion of liquid components of propellant	Breakdown of stream or sheet of propellant components flowing from jet into drops
139. Boundary layer in combustion chamber (gas generator) LRE	Section of stream in combustion chamber (gas generator) adjacent to walls and differing from main part of stream in fundamental chemical composition, thermophysical characteristics and speed.
	Note: The division of the stream into core (140) and boundary layer is arbitrary.
140. Core of stream in combustion chamber (gas generator) IRE	Central and main section of stream in combustion chamber (gas generator) where the passage of its working process is essentially not affected by the walls of the combustion chamber (gas generator) and the boundary layer.
141. Flow intensity of chamber (gas generator)	Ratio of mass consumption of combustion products to area of cross flow section to chamber (gas generator) at displacing head
142. Relative flow intensity of com- bustion chamber (gas generator)	Ratio of flow intensity to pressure in chamber of combustion (gas generator)

	1
143. Mean time of stay in combustion chamber	Ratio of mass of products in combustion chamber to mass consumption of propellant by combustion chamber
144. Relative length of combustion chamber	Ratio of sum of volumes of combustion chamber and conical section of nozzle to area of minimum section of nozzle
	of Working Process in Combustion Chamber (Gas cator) of Liquid-Propellant Rocket Engine
145, High-frequency oscillations in combustion chamber (gas generator)IRE	Auto-oscillations in combustion chamber (gas generator) with frequency near to one of its own acoustic frequencies.
146. Longitudinal oscillations in combustion chamber (gas generator)IRE	High-frequency oscillations along chamber (gas generator) axis
147. Cross oscillations in combustion chamber (gas generator) IRE	High-frequency oscillations in plane perpendicular to chamber (gas generator) axisNote: Depending on the direction of the oscillating movement of the gas tangential, radial and mixed cross oscillations are distinguished.
148. Low-frequency oscillations in combustion chamber (gas generator)IRE	Auto-oscillations in combustion chamber (gas generator) with frequency considerably lower than the minimum inherent acoustic frequency.
149. Nozzle impedance	Complex amount whose modulus equals the ratio of amplitude of oscillations in pressure to the amplitude of oscillations in speed in the first section of the nozzle, and the phaseto the shift in phases between oscillations in pressure and oscillations in speed.
150. Impedance of dis- placing head of chamber (gas generator)	Complex amount whose modulus is equal to the amplitude of oscillations in pressure to the amplitude of oscillations in the speed at the displacing head, and phaseto the shift in phases between oscillations in pressure and oscillations in speed.
151. Light excitation of auto-oscillations in combustion chamber (gas gen- erator) IRE	Development in combustion chamber (gas generator) of auto-oscillations from arbitrarily light dis- turbances.

152.	Strong excitation of auto-oscilla- tions in com- bustion chamber (gas generator)IRE	Development in combustion chamber (gas generator) of auto oscillations from disturbance exceeding the specific- critical value
153.	Stable working process in com- bustion chamber (gas generator)IRE	Working process in combustion chamber (gas generator) without autoosciallations
154.	Unstable working process in com- bustion chamber (gas generator)LRE	Working process in combustion chamber (gas generator) with auto-oscillations
155.	Region of stability for working process in combustion chamber (gas generator)	
156.	Region of instabi- lity of working process in com- bustion chamber (gas generator)	Region of values of parameters for operating pattern of combustion chamber (gas generator) in which working process is unstable.
157.	Border of stability of working process in com- bustion chamber (gas generator)LRE	Collection of values of parameters for operating pattern of combustion chamber (gas generator) separating the region of stability of the working process from the region of in- stability.
		Processes of Flow in Nozzles
1 <i>5</i> 8.	Equilibrium flow in nozzle	Model of flow in nozzle according to which at each point of the current there exists an energy, chemical and phase equilibrium of the combustion products.
		 Note: 1. By energy equilibrium is meant the equilibrium distribution of atoms and molecules according to the energy states. 2. It is the limiting case in which the greatest release of energy occurs.
159	. Nonequilibrium flow in nozzle	Flow in nozzle in which there is no energy, chemical or phase equilibrium or even if one of these types of equilibrium.

160. Chemically frozen flow in nozzle	Model of flow according to which the chemical composition of the combustion products moving in the nozzle does not change.	
	Note: The energy of recombination is not released and the greatest losses occur due to the chemical nonequilibrium	
161. Multiphase flow in nozzle	Flow in nozzle of combustion products consisting of gas, liquid and solid phases.	
	Note: Multiphase flow in the nozzle occurs with a flow of combustion products which contains particles of condensed components, for example, oxides. The parameters of condensed particles are given the index "s", for example, w velocity of particles, r _s radius of particles, etc.	
162. Velocity lag in nozzle	Difference in velocities of particles of the condensed phase and the gas environment sur- rounding it.	
163. Temperature lag in nozzle	Difference in temperatures of particles of con- densed phase and gas environment surrounding it.	
164. Losses in specific impulse in nozzle (Losses in nozzle)	Relative losses in specific impulse in vacuum, governed by deviation of actual parameters of combustion products in nozzle from ideal.	\$,
	Note: $\zeta_c \approx \zeta_p + \zeta_{\tau p} + \zeta_{\kappa} + \zeta_s + \zeta_{\tau rp}$, where: $\zeta_{plosses}$ due to dispersion (165); $\zeta_{\tau plosses}$ due to friction (166); ζ_{\mulosses} due to chemical nonequilibrium of flow (167); $\zeta_{slosses}$ due to multiphase nature (168); ζ_{np}	
165. Losses due to dis- persion in nozzle	Losses in nozzle governed by nonuniformity of parameters of current in outgoing section of nozzle	ζp
166. Losses in nozzle due to friction	Losses in nozzle governed by friction and encum- bering of transitional sections of nozzle by boundary layer (displacement)	Śrp
167. Losses in nozzle due to chemical nonequilibrium of flow	Losses in nozzle governed by chemical nonequi- librium of combustion products	Ŝн

168. Losses in nozzle due to multi- phase nature	Losses during flow of multiphase combustion products in nozzle produced by final time of relaxation during formation, cooling and hardening of particles of the condensed phase, as well as their velocity and temperature lag from the gaseous medium.	F s
169. Index of adiabatic curve	Index of degree in equation $p/\rho^{\times} = \text{const}(p-pressure, \varrhodensity})$, describing the flow of gaseous products of combustion in the nozzle when heat exhange with the environment is lacking	x
Cooling and 7	Propellant Rocket Engines	
170. Outer IRE cooling	Removal of heat from elements in IRE construction to coolant or to surrounding space	
171. Flow-type cooling	Outer cooling by coolant flowing along channels in wall	
172. Autonomous cooling	Flow-type cooling in which the removable heat is not transmitted by propellant components	
173. Regenerative cooling	Flow-type cooling in which the removable heat is transmitted by the propellant components	
174. Radiation cooling	Outer cooling implemented by emission of heat into surrounding space	
175. Inner cooling	Reduction in heat flow to elements of LRE construction by creating on their surface a protective layer of liquid or gas.	
176. Screen cooling	Inner cooling implemented by creation of a pro- tective layer of liquid or gas flowing along the wall.	
	Note: When there is a liquid phase in the pro- tective layer the screen is called liquid, when there is nonegas.	
177. Transpirating cooling	Inner cooling implemented by injecting gas or vapor into the boundary layer through a porous or perforated wall.	
178. Capacity cooling	Prevention of overheating of structural element by absorbing heat by its material without removal of mass.	

-22-

179.	Ablation cooling	Prevention of overheating of structural element by absorbing heat by its material with removal of mass.
180.	Heat-insulating protection	Reduction of heat flow by inclusion in the construction of an aggregate of elements with high heat resistance.
		Note: It is implemented by using heat-insu- lating coverings of the walls, shields, etc. in chambers, gas generators, and other aggregates for their protection from the effect of high temperatures or to reduce the losses of heat or cold
	Operatio	n of Liquid-Propellant Rocket Engine
181.	Operation of IRE	The use of IRE according to purpose or its readiness for direct use in the compsition of aircraft.
182.	Thermostatic control of IRE (IRE aggregate)	Bringing the IRE (IRE aggregate) temperature to the assigned and maintaining it.
183.	Thermostatic control of pro- pellant com- ponent	Bringing the temperature of the propellant com- ponent to the assigned and maintaining it.
184.	Prestart con- sumption of pro- pellant compo- nent IRE	Mass of propellant component consumed by engine of first stage from first command for IRE actuation to start of movement of aircraft
185.	Blowing through IRE (IRE aggre- gates)	Process of substitution of products of combustion, gas generation, propellant components or atmos- pheric air in inner IRE cavities by air, neutral or special gases.
186.	IRE neutrali- zation (IRE aggregates)	Treatment of LRE (IRE aggregate) in order to remove residue of propellant components and other substances and rendering harmless of un- removed residue.
187.	Passivation of IRE cavities	Treatment of LRE cavity surfaces as a result of which the material on the surfaces is transferred into an inert state in relation to the agressive action of the components.

Testing of Liquid-Propellant Rocket Engine

188. Flight testing of IRE (FT)	Testing of IRE during flight in composition of aircraft
189. Flight and struc- tural testing of IRE (FST)	Flight testing of rebuilt or modified LRE in order to verify the compliance of its charac- teristics to the specifications, in the process of which additional LRE sizing can be performed.
190. Stand testing of IRE (IRE aggre- gate)	Autonomous testing of LRE (LRE aggregate) on test stand.
191. Fire testing of IRE (IRE aggre- gate)	Stand testing of LRE (LRE aggregate) with com- bustion of propellant in it.
192. Cold testing of IRE (LRE aggre- gate)	Stand testing of LRE (LRE aggregate) without com- bustion of propellant in it.
193. Operating life testing of LRE (LRE aggregate)	Testing conducted in order to determine the operating life of the LRE (LRE aggregate).
194. Sizing testing of IRE (IRE aggre- gate)	Testing of LRE in order to finish off the con- struction and bring the characteristics of the LRE (LRE aggregate) to the values corresponding to the specifications.
195. Concluding sizing testing of LRE (IRE aggregate) (SCT)	Sizing testing of final structural variant of IRE (IRE aggregate) at the initial stage of which an insignificant correction in the design is possible,
196. Research testing of LRE (LRE aggre- gate)	Testing of LRE (LRE aggregate) in order to study the phenomena determining the parameters or the LRE characteristics (LRE aggregate)
197. Adjusting testing of LRE	Fire testing of LRE before the start or resumption of commercial production in order to verify the technology and quality of manufacture
198. Adjusting testing of LRE aggregate	Testing of IRE aggregate before start or resumption of commercial production in order to verify the technology and quality of manufacture
199. Control and tech- nical testing IRE (CTT)	Fire testing of each IRE model during commercial production to verify the compliance of its characteristics to specifications.

200.	Control and sampling testing of LRE (CST)	Fire testing of individual IRE selected from batch according to the results of which the suitability of the batch is determined.
	Control testing of IRE aggregate	Stand testing of each model of IRE aggregate during its commercial production in order to verify the compliance of the characteristics to the specifications.
202.	Control and sampling testing of LRE aggregate	Testing of individual IRE aggregate selected from batch according to the results of which the suitability of the batch is determined.
203.	Interdepartmental testing of IRE (IDT)	According to GOST 16504-70
204.	Special verifying testing of LRE (SVT)	Fire testing of LRE conducted in expanded relative to working range of parameters in order to verify the stability of production
205.	Stand for testing LRE (LRE aggre- gate)	
206.	Testing complex	Complex of stands for various types of tests for IRE and its aggregates
207.	Stand base	Collection of testing complexes available to enterprise (department)
Liquid Rocket Propellant		
	Component of liquid rocket propellant (Component of	Part of liquid rocket propellant, can be stored separately and fed into IRE, differs in composition.
	propellant)	 Note: 1. The propellant component can consist of one or a mixture of individual chemicals. 2. Liquid rocket propellant can be one-, two- or multi-component (three-component, etc.).
	Liquid rocket fuel	Component of liquid rocket propellant, oxidi- zable during combustion
	Liquid rocket oxidant	Component of liquid rocket propellant serving to oxidize the fuel in the process of combustion.

211. Main liquid rocket propellant	Liquid rocket propellant serving to produce all or the main percentage of thrust.
	Note: In the IRE usually only one propellant is used which is also employed for auxiliary purposes (feeding of aggregates of pump supply, devices for creating controlling forces and momentum, etc.).
212. Auxiliary liquid rocket propellant	Liquid rocket propellant which differs from the main and is used only for auxiliary purposes, whose products of gas generation or combustion are discarded aside from the combustion chamber of the main chamber.
	Note: The components of main propellant can be one or several of the components of two or multi-component auxiliary propellant. At the same time the components of auxiliary fuel are auxiliary oxidant or fuel respectively.
213. Density of liquid rocket propellant	Calculated amount equal to the ratio of the total mass of the propellant components to their volume at the assigned value of the component correlation.
214. Efficiency of rocket propellant	Relative characteristic of rocket fuel under con- ditions of its use in EA which are optimal for fulfilling the assigned task with the standard and available propellants as determined by the final result of employing the EA on these propellants.
	Note: The final results for the use of the EA are usually evaluated by the amount of changes in the net load or speeds of flight at the end of the active portion of trajectory.
215. High-boiling com- ponent of liquid rocket propellant	Component of liquid rocket propellant which has at the maximum temperature under operating con- ditions or storage a pressure of the saturated vapor below the permissible according to the conditions for the strength of propellant tanks.
	Note: High-boiling component of liquid rocket propellant can be stored in the con densed state in hermetically sealed stationary tanks and propellant tanks without taking special measures for cooling the component or recovering the con- densate, essentially without losses for evaporation
216. Low-boiling com- ponent of liquid rocket propellant	Component of liquid rocket propellant which has at the maximum temperature under operating conditions or storage a pressure of saturated vapor above the

-26-

		permissible according to the conditions for the strength of propellant tanks.
		Note: Low-boiling component of propellant cannot be stored in the condensed state in hermetically sealed propellant tanks without taking special measures for cooling the component or recovering the condensate.
217.	Cryogenic component of liquid rocket propellant	Component of liquid rocket propellant which has a critical temperature lower than the maximum temperature under the conditions of operation or storage.
		Note: The cryogenic component cannot be stored in the condensed state in hermetically sealed tanks without taking special measures for cooling the component or recovering the condensate
218.	Stable component of liquid rocket propellant	Component of liquid rocket propellant which has stability of the physicochemical properties under conditions of operation or storage during the assigned time.
		Note: The stable component can be stored for several years.
219.	Stable liquid rocket propellant	Liquid rocket propellant consisting only of stable components.
220.	Thermostability of component of liquid rocket propellant	Ability of component of liquid rocket propellant to preserve its chemical composition and not to separate solid ingredients during heating under operating conditions.
221.	Radiation stability of component of liquid rocket	Ability of component of liquid rocket propellant to preserve its physicochemical properties during lengthy action of electromagnetic and corpuscular radiation.
222.	Hypergolic liquid rocket propellant	Liquid rocket propellant which is combustible during the contact of its components in the liquid state in the entire range of pressures and tem- peratures occurring during IRE operation.
223.	Limited-hyper- golic liquid rocket propellant	-
224	Non-hypergolic liquid rocket propellant	-

-27-

	225.	Coefficient of excess of oxidizing elements	Ratio of sum of products for number of gram-atoms of oxidizing elements for their highest valency to the sum of products for the number of gram-atoms of oxidizable elements in the same amount of propellant for their highest valency.	α
			Note: With α=1 the products of combustion contain only products of compelete oxidation.	
	226.	Coefficient of excess oxidant	Ratio of actual correlation of propellant com- ponents to the correlation at which only products of complete oxidation are obtained.	α _{or}
	227.	Launching liquid rocket propellant	Liquid rocket propellant used only for launching IRE	
	228.	Standard rocket propellant	Rocket propellant to characteristics of which the corresponding characteristics of the pro- pellant at hand are compared.	
	229.	Nitric acid oxidant	Liquid rocket oxidantbased on nitric acid or a mixture.	
	230.	Nitric tetroxide oxidant	Liquid rocket oxidant based on nitric tetroxide or a mixture.	
	231.	Fluorine oxidant	Liquid rocket oxidantsimple fluorine or its mixture with other substances, as well as oxidant which contains fluorine-containing compounds.	
	232.	Oxygen propellant	Liquid rocket propellant which contains liquid oxygen as the oxidant.	
	233.	Nitric acid propellant	Liquid rocket propellant which contains a nitric acid oxidant.	
5	2345	Hydrogen peroxide propellant	Liquid rocket propellant which contains hydrogen peroxide as the oxidant.	
	238.	Fluorine pro- pellant	Liquid rocket propellant which contains a fluorine oxidant.	
V			Note: It is possible to have types of liquid rocket propellant which are determined according to the types of oxidants and fuels they contain, for example: nitric acid-kerosene, nitric tetroxide- dimethylhydrazine, oxygen-hydrogen, etc.	
	234.	Nitrogen tetro- xide propellant	Liquid rocket propellant which contains nitrogen tetroxide as the oxidant.	

-28-

237. Metal-containing propellant	Rocket propellant which contains metals or metal-containing compounds.
238. Pseudo-liquid propellant	Rocket propellant which contains powdery com- ponents which can be fluidized fed similar to the liquid component.
239. Thixotropic propellant	Rocket propellant containing one or several components in the gelatinous state which acquire fluidity under the influence of a drop in pressure.
240. Sludge-like propellant	Rocket propellant containing one or several components in the sludge-like state.
	Note: It is a liquid-moving mixture of substances in the liquid and solid states.
241. Suspension propellant	Rocket propellant whose component is a suspension
242. Addition to component of liquid rocket propellant	Substance added to component of liquid rocket propellant to give it the required properties
243. Inhibitor	Addition to component of propellant which inhibits undesirable chemical processes occuring during its use or storage.
	Note: By "undesirable" is meant processes: polymerization and oxidation of component, corrosion of metal contacting the component, etc.
244. Stabilizer of component of liquid rocket propellant	Addition to component of liquid rocket propellant to increase the stability of its physicochemical properties during storage or use.
245. Retarder of component of liquid rocket propellant	Addition to component of liquid rocket propellant which reduces the sensitivity of the component to external factors.

Alphabetical Index of Terms

ESE	74
Aggregate, IRE turbopump	9
Aggregate, pump booster	117
Aggregates, automatic machine IRE	11
Base, stand	207
Block, impulse	12
Injection into nozzle	135
Excitation of auto-oscillations in combustion chamber	
(gas generator) of IRE, strong	152
Excitation of auto-oscillations in combustion chamber	
(gas generator) of LRE, weak	151
Time of stay in combustion chamber, mean	143
Time, working IRE	64
Shutdown, emergency LRE	74
Gas generator	10
- , liquid-propellant IRE	10
- , multizone	. 84
- , single zone	83
- , solid-propellant IRE	125
Head of chamber (gas generator), displacing	76
Fuel, rocket liquid	209
Border of stability for working process in combustion	
chamber (gas generator) LRE	157
Pressure in combustion chamber (gas generator) LRE	42
Engine, rocket	1
- , - , liquid-propellant	3
Length of combustion chamber, relative	144
End plate of displacing head	77
EA	4
IRE	3
-, without afterburning	16
- , block	19
- , auxiliary	28
- , correcting	29
- , sustainer	27
- , multichamber	18
- , multiple actuation	23
- , multiple use	21
- , multi-pattern	25 17
-, one-chamber	
-, single actuation	22
- , single use	20
-, one-pattern	24
-, orientation	34
- , rotating	26
- , launching	26 33 30 13
- , steering	30
-, with pressurized propellant supply	
with afterburning	15

14 LRE with pump propellant supply 32 -, starting 35 31 2 - , of link-up - , braking IRP 69 Starting of IRE 180 Protection, heat-insulating 195 SCT Value of chamber parameter, ideal 54 Impedance of displacing head of chamber (gas generator) 150 - , of nozzle 149 Impulse of pressure, specific (Inad.) Impulse of IRE thrust (IRE chamber), specific 50, 51 48 49 -- , volume --- , of LRE aftereffect 65 243 Inhibitor 202 Testing of LRE aggregate, control and sampling - - , control 201 --, adjusting 198 Testing of LRE (LRE aggregate), sizing 194 - - - , concluding sizing - - - , research 195 , research 196 , fire -191 --- -, operating life 193 ---, stand --190 ---, cold 192 -IRE, control and sampling 200 IRE, control and technical 199 -IRE, flight 188 189 Testing of IRE, flight and structural 203 Testing of LRE, interdepartmental 204 Testing of LRE, special verifying 197 Testing of LRE, adjusting Chamber, LRE 8 128 - , rotating LRE 126 -, steering LRE 75 , combustion LRE 200 CST Oscillations in combustion chamber (gas generator) IRE, 145 high-frequency Oscillations in combustion chamber (gas generator) IRE, 148 low-frequency Oscillations in combustion chamber (gas generator) LRE, cross 147 Oscillations in combustion chamber (gas generator) LRE, 146 longitudinal 122 Ring of TPA pump, sealing floating 206 Complex, testing - , consumption 51 - , thrust 53 Component of liquid rocket propellant 208 liquid rocket propellant, high-boiling 215

Component of liquid rocket propellant, cryogenic	217
- of liquid rocket propellant, low-boiling	216
- of liquid rocket propellant, stable	218
- of propellant	208
Contour of outgoing nozzle opening	105
Contour of nozzle	89
with uniform characteristic	95
with angular point	97
, shortened	96
, extremal	94
Frame of chamber (gas generator)	80
Coefficient of excess of oxidizing elements	225
of oxidant	226
- of combustion chamber	58
- of nozzle consumption	57
- of nozzle	59
- of thrust	52
- of specific impulse	55
- of specific impulse, complete	56
CTT	199
FT	188
FST	189 60
Mass of IRE	62
- of IRE, specific	61
- of primed LRE	63
- of TPA, relative	203
	116
Pump, fuel	115
-, oxidant	118
-, worm rotary	186
Neutralization of IRE (LRE aggregate) Region of stability of working process in combustion	100
	155
chamber (gas generator) Region of instability of working process in combustion	-))
chamber (gas generator)	156
FT IRE	191
Oxidant, nitric acid	229
- , nitric tetroxide	230
- , liquid rocket	210
- , fluorine	231
Stop of IRE	73
Lag, velocity in nozzle	162
Lag, temperature in nozzle	163
Cooling, ablation	179
- , autonomous	172
- , inner	175
- , capacity	178
- , screen	176
- , outer	170
- , flow-type	171
- radiation	174

Cooling, regenerative	173
- , transpirating	177
Passivation of IRE cavities	187
Barrier, antipulsation	79
Density of liquid rocket propellant	213
Pneumoblock	124
Supply of propellant, pressurize	56
, pump	
Index of adiamatic curve	169
Losses in nozzle	164
Losses due to multiphase nature in nozzle	168
- due to dispersion in nozzle	165
- due to chemical nonequilibrium of flow in nozzle	167
- due to friction in nozzle	166
- of specific impulse in nozzle	164
Band of screens of chamber (gas generator)	82
Prepump, jet IRE	119
Drive, steering	134
Addition to component of liquid rocket propellant	242
Boundary layer in combustion chamber (gas generator) IRE	
	139
Blowing through LRE (IRE aggregate)	185
Products of gas generation	7
Process in combustion chamber (gas generator) LRE, working	136
Process in combustion chamber (gas generator) IRE, working unstable	154
Process in combustion chamber (gas generator) LRE, working stable	153
Diffusion of liquid components of propellant	138
Consumption of fuel	37
- of fuel IRE, mass	37
- of IRE propellant component, prestart	184
- of oxidant	36
- , LRE mass	36
- of propellant	38
, IRE mass	38
, IRE volume	39
	141
Flow intensity of chamber	141
Flow intensity of combustion chamber, relative	
RE	1
Pattern of final LRE stage	72
- of preliminary IRE stage	70
- of IRE operating	68
- of LRE operating, main	71
- of operating of nozzle, rated	110
, with underexpansion	111
, with overexpansion	112
Spring TPA	121
Network, gas distributin	78
Vane, gas	130
-, peripheral	131
	133
Section of nozzle, rotating	104
Section of nozzle, outgoing	
, critical	103
minimum	102

Section of nozzle, first	101
Force, jet	45
Rate in chamber, characteristic	50
- of outflow	44
- , characteristic	50
Carburetion in combustion chamber (gas generator)	137
Correlation of components	40
- , volume	41
- of components of propellant in LRE, volume	41
(chamber, gas	1.0
generator), mass	40
Nozzle, altitude of	114
Nozzle, mushroom (Inad.)	99
Nozzle of IRE chamber	85 88
- , ring	92
- , conical	92 87
-, round	86
- , axisymmetric - , rotating	129
- , rotating - , profiled	93
- , launching	123
- , telescopic	100
- , adjustable	113
- , steering	127
- , with outer expansion (Inad.)	98
- , with inner expansion (Inad.)	99
- , with covered (semi-covered) shell (Inad.)	98
- , plate-like	99
- , pin-type	98
SVT	204
Cut of nozzle	106
, oblique	107
Stabilizer of component of liquid rocke propellant	241
Stand for testing IRE (IRE aggregate)	205
Degree of expansion of gas in nozzle	109
- of expansion of nozzle	108
- of expansion of nozzle, geometric	108
Stability of components of liquid rocket propellant, radiation	221
Temperature of combustion	43
Thermostability of component of liquid rocket propellant	220
Thermostatic control of IRE (IRE aggregate)	182
of component of propellant	183
Flow, multiphase in nozzle	161
-, nonequilibrium in nozzle	159
-, equilibrium in nozzle	1 <i>5</i> 8 160
-, chemically frozen in nozzle	9
TPA Propollent nitric coid	233
Propellant, nitric acid - , nitric tetroxide	234
- , oxygen	232
- , metal-containing	237
, mooar comoarment	~) (

Propellant, stable	219
- , hydrogen peroxide	235
- , pseudo-liquid	238
- , liquid rocket	2
- , liquid rocket auxiliary	212
- , limited hypergolic	233
main	211
- , rocket launching	227
- , liquid rocket non-hypergolic	224
- , liquid rocket hypergolic	222
- , rocket standard	228
- , suspension	241
- , thixotropic	239
- , fluorine	236
- , sludge-like	240
Channel of cooling of chamber (gas generator)	81
Turbine, TPA launching	120
Thrust, LRE	47
- of chamber	46
Assembly, liquid-propellant rocket engine	4
Expansion of nozzle (Inad.)	108
Retarder of liquid nocket propellant component	245
Characteristic, IRE high-altitude	66
- , - throttle	67
Section of nozzle, expanding	91
Section of nozzle, conical	90
Flap, controlling	132
Operation of IRE	181
Efficiency of rocket propellant	214
Core of stream in combustion chamber (gas generator) LRE	140

Appendix 1 to GOST 17655-72 Recommended

Automatic Devices of Liquid-Propellant Rocket Engines and Their Characteristics

Term	Definition
1. Regulator	Automatically acting device which ensures the maintenance of any parameter as constant or its change according to the assigned law.
	Note: The regulator generally consists of a sensitive element, amplifier-converter consisting in turn of an actuating mechanism and regulating device.
2. Sensitive element of regulator	Device reacting to deviation of regulated parameter from assigned value, manufactures and transmits reaction to amplifier-converter, and if this is lacking, to the actuating device.
3. Controller of regulator	Device which introduces the assigned value of the regulated parameter.
4. Regulator of direct action	Regulator whose regulating device is adjusted directly by the sensitive element without an additional source of energy.
5. Regulator of indirect action	Regulator whose regulating device is adjusted due to an additional energy source controlled by the sensitive element.
6. Regulator of consumption	Regulator whose sensitive element reacts to the deviation in consumption of liquid or gas from the assigned amount.
7. Regulator of pressure	Regulator whose sensitive element reacts to a deviation in pressure of the liquid or gas from the assigned amount.
8. Pressure reducer	Regulator of pressure of direct action which reduces the pressure of the gas or liquid passing through it to the assigned amount.
9. Tuning characteristic of regulator	Dependence of regulated parameter on the value of the reference action (signal) or on the position of the controller.
10. Loading characteristic of regulator Inad. <u>Efficiency</u> <u>characteristic</u>	Dependence of regulated parameter on value of parameter at inlet or outlet of regulator

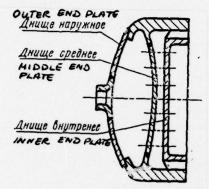
11. Throttle	Device designed for smooth change in hydraulic resistance by partial covering of working through sections with the help of actuating mechanism.
12. Throttle plate	Device which has constant through section installable in liquid or gas line to create local hydraulic resistance.
13. Jet	Throttle plate with small through section.
14. Valve	Device opening and closing the passage of liquid or gas in the line on which it is installed.
15. Triggering of valve	Shifting of parts opening or closing the through section of the valve from one fixed position to another.
16.Automatic valve	Valve which is triggered by forces of liquid (gas) pressure in the line on which it is installed.
17. Controlled valve	Valve which is triggered upon reception of a command signal directly not related to pressure or con- sumption of liquid (gas) in the line on which it is installed.
18. Valve of direct action	Valve which is triggered by energy contained in command signal.
19. Valve of indirect action	Valve which is triggered by energy not con- tained in command signal.
20. Valve of single triggering	Valve whose parts are not reset after triggering.
21. Valve of multiple triggering	Valve whose parts are reset after a specific cycle of triggering.
22. Pneumovalve	Valve in which the actuating mechanism is triggerd by the pressure of the controlling gas
23. Pyrotechnic valve	Valve which includes a pyrotechnic cartridge producing triggering of the valve during the feeding of an electric impulse.
24. Electric valve EV	Valve which is triggered by an electromagnet included in the composition of the valve.
25. Electropneumatic valve EPV	Valve in which the actuating mechanism is controlled by an electromagnet included in the composition of the valve, while the triggering of the valve is implemented by the pressure of the gas in the line on which it is installed.

-37-

26.	Electrohydraulic valve EHV	Valve in which the actuating mechanism is controlled by an electromagnet included in the composition of the valve, while the triggering of the valve is implemented by the pressure of the liquid in the line on which it is installed.
27.	Membrane valve	Valve of single triggering in which the through section is covered by a membrane before triggering.
28.	Pyrotechnic membrane valve	-
29.	Pneumatic membrane valve	-

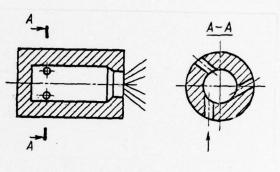
Appendix 2 to GOST 17655-72 Reference

Nozzles of Liquid-Propellant Rocket Engines


Term	Definition
1. LRE nozzle	Device for feeding the components of propellant or products of gas generation into the fire space of the chamber (gas generator)
	Note: It is usually an element of the displacing heads.
2. One-component nozzle	Nozzle through which is fed either one component of propellant or reducing or oxidizing products of gas generation (draw. 2).
3. Two-component nozzle	Nozzle through which simultaneously are fed either two different components of propellant or oxidizing and reducing products of gas generation in com- bination with one of the types of gas generation products (draw. 3).
4. Jet nozzle	Nozzle from which the liquid (gas) comes out in the form of one or several streams (draw. 2).
5. Centrifugal nozzle	Nozzle at whose outlet the liquid has an axial as well as tangential component of speed (draw. 4, 5).
6. Jet-centrifugal nozzle	Nozzle combining elements of jet and centrifugal nozzles (draw. 6).

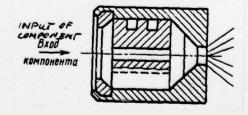
Appendix 3 to GOST 17655-72 Reference

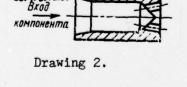
Reliability of IRE

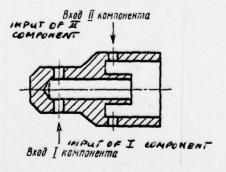

Term	Definition
1. Operating life of LRE (IRE aggregate)	Length of operation or number of cycles of triggering of IRE (IRE aggregate) during which IRE (IRE aggregate) maintains the assigned characteristics.
	Note: The length of work or the number of cycles of triggering of IRE (IRE aggregate) during control testing is not included in the IRE operating life.
2. Gamma-percent operating life of LRE	Operating life of LRE which has and exceeds on the average the conditional number (γ) of percents of items of the given type
3. Working life of LRE (LRE aggregate)	Length of work or number of cycles of triggering of LRE (LRE aggregate) in composition of aircraft

Appendix 4 to GOST 17655-72 Reference Schematic Drawings of Certain IRE Aggregates

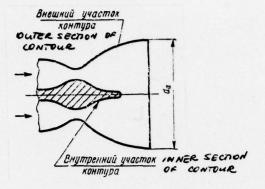


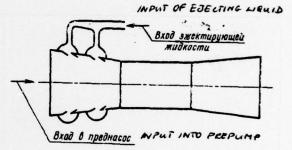

INPUTOP

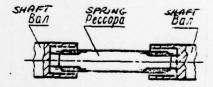

Drawing 4.

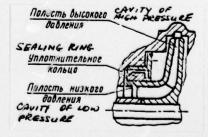


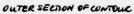
Drawing 5.

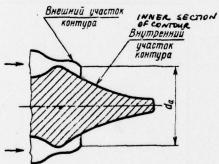




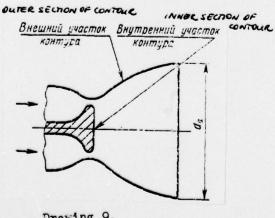

Drawing 7.


Drawing 10.

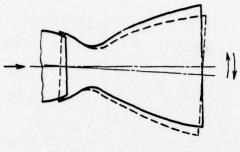

Drawing 11.

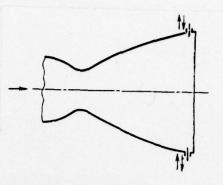


Drawing 12.

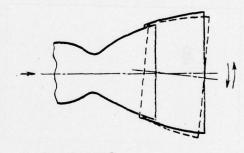


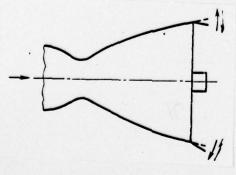
Drawing 13.

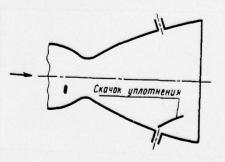



Drawing 8.

Drawing 9.


Drawing 14.




Drawing 15.

Drawing 18.

Drawing 16.

1 - SHOCK WAVE