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Chapter 1

Introduction

1.1. Problem Statement

Manpower Scheduling is the process of converting daily or hourly
workforce requirements into precise scheduling assignments by specifying
both the days and the shift patterns each employee works. Manpower
scheduling is important in all business operations, and is especially
critical in the case of service operations because services often cannot
be inventoried or deferred, and because minimum manpower requirements
vary from hour to hour, shift to shift, and day to day. Examples of
service operations are telephone directory assistance, turnpike toll
collection, airline reservation booking, and food service operations --
the application which prompted this research.

The scheduling of workers has become more important lately because
of the rapid increase in labor costs in both government and private
firms. One recent study by Smith, et al [29], showed that labor costs
in one typical large military installation amounted to nearly $12 million
or 55% of the total annual cost of food service operations. Also, in
another study, Lunberg and Armatas [4] stated that in restaurant oper-
ations, as much as 33% of the available labor is wasted through lack of
proper scheduling.

Ahuja and Sheppard [2] revorted that a computerized nurse scheduling
system utilized in General Hospital, St. Johns, Newfoundland was able to

reduce nurse overtime and simplify adjusting for vacation and sick leave.
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Mapstone and Thamaro [22] also reported that significant savings were
obtained when a vacation manpower schedulina model was used to schedule
employees' vacation so as to spread vacations as evenly as possible
over vacation planning period.

The idea of using an automated (computerized) maﬁpower scheduling
system is not new. However, the materialization of such a system is
slow because manpower scheduling problems are complex, and the develop-
ment of innovative mathematical models and algorithms is still in its
infant stage. Undoubtedly, with increase interest generated by dis-
coveries on the part of Operations Research scientists and greater aware-
ness of managers in the advantages of using an automated system, man-
power scheduling will rank as one of the most promising candidates for

improving operations efficiency.

1.2 PResearch Objective

~y
N

“This research arises as a result of a contract with the U.S. Army

Natick Labg’to study and develop manpower scheduling algorithms which

would efficiently schedule food service workers at military installations.
The objective of phis research is to provide a manager with an

automated (computerized) program for scheduling manpower. At the present

time, the scheduling of food service workers at a military installation

is accomplished manually by each of the dining hall stewards. The num-

ber of workers to be scheduled at a given dining facility ranges from

12 to 125 depending upon the number of customers and hours of operation.
Some of the benefits to be realized by implementation of an auto-

mated scheduling system are expected to include:
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“(a)

(b)
(c)

(d)

-5

saving of time spent by the manager to create a schedule,
saving in labor cost due to a more efficient schedule,
improved employee morale due to a fairer and more efficient
schedule, o4

better customer service because empioyees aré working in the

right place at the right time.

X




Chapter 2

Literature Review

Manpower Scheduling Overview

Manpower Scheduling can be viewed as a subset of Manpower Planning,
which includes manpower forecasting, selection and placement of person-
nel, production and maintenance of human capacities [18]. Manpower
Scheduling can also be viewed as a subset of Scheduling which includes
scheduling machines or jobs in a job shop environment [12], the
scheduling of capital funds or cash in and outflows in a business enter-
prise [25], or the scheduling of mater‘als and parts in a production
plant [15]. A great amount of Literature including texts have been
devoted to the topics of Manpower Planning and Scheduling e.qg. [7,8,
24,25]. This review here will confine itself to the topic of manpower
scheduling.

Manpower Scheduling problems are not confined to service operations
and arise in many different environments and situations. For the purpose
of discussion it is convenient to divide manpower scheduling problems
into the following categories:

(a) Assignment Problems - In many business organizations, there
often arises the problem of assigning workers to jobs so as to minimize
the total cost/maximize the total efficiencies, given that the cost/
efficiency of each worker is different when assigned to different jobs.
Efficient network algorithms have been used successfully in solving

the above problem. [10]
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(b) Manufacturing - Many manpower scheduling problems exist in
Manufacturing Cperations. One of the more well known problems is the
balancing of the production/assembly line, where workers are assigned
to different work stations in order to create a balanced production
Tine. [15]

(c) Airlines - The flight crew scheduling problem can be described
as follows. Given the airline's timetable, a large set of possible
crew rotations can be generated. Each crew rotation is a segment of
scheduled flight segments constituting a round trip - that is, a
sequence departing from and returning to one of the airline's crew bases.
Each rotation must comply with all of the relevant federal, company,
and union regulations. The problem then is to select an ontimal subset
of all fiyable rotations. [3]

(d) Hospitals - The principal work carried out in this area con-
cerned nurse scheduling in hospitals and physician assignments in out-
patient clinics. In the case of physicians scheduling, the problem con-
cerns the allocation of available resources in a manner which accomodates
patient demands while retaining a high degree of physician utilization
and satisfaction. [16] In nursé staffing, the problem concerns the
efficient matching of workers while service demands are placed upon
multiple work centers. The problem involves decisions relating to the
basic organization and design of_work centers, the interrelations among
the type of staff at each center, the operation and control of the staff-
ing process, and the training of nurses, and the short term scheduling of

available staff to work centers. [1]
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(e) Service Operations - Since this is the subject of current
research, problems relating to this area will be described in the next

section.

2.2 Review of Manpower Scheduling in Service Operations

There are several types of manpower scheduling problems. The 1it-
erature reveals three general types of manpower scheduling problems in
service operations. Problem type I, [5,17,23,26,30] involves allocating
employees to fluctuating daily manpower requirements such that each
employee has a certain days-off pattern, eg., two consecutive days off

each week. A typical model is shown below:

e
M1g 5 ? j
st X Xyt Xg t Xg + Xy 2 R]
S t x5+ X6t X 2 R
By SNy R S
X] * X ¥ X3+ X, ' t Xy 2 R4 (1)
o Bl R Bl B 2. g
Xop + X3+ Xy + Xg + X > Rg
X3 + X4 + Xg tXg t Xy 2 R7
where Xj = number of employees with dayvs-off pattern j.
xj > 0 and integer, j = 1,...,7.
R. = minimum number of employees required for day i.
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Tibrawala, et al, [30] and Baker [5] have both developed efficient
algorithms which solve (1), without relying on Integer Procramming.
However, their algorithms fail to work for more complicated problems
such as Problem type II and III described below.

Problem tvpe 11 [19,27] concerns the allocation of employees with
different shift patterns {that is, different patterns of werking hours)
to meet manpower requirements which change throughout a working day.
Essentially, the mathematical formulation is similar to problem type I,
except that shift patterns are generally quite different from days-off

patterns. A typical model is shown below:

Mint & C%

N
J
st dgaXy > R; =t el A (2)
g 2 0 and integer
where aij = 1 if shift pattern j requires an employee to be working
during period i.
0 otherwise.
m = number of periods (eg., hours) in a working day.
Ri = minimum manpower requirements for ith period.
Xj = number of employees in shift pattern j.
Cj = cost of one employee in shift pattern j.

Problems where the shift patterns consist of only contiguous
periods, can be formulated as a transshipment problem [10]. However, for
problems involving shift patterns which are split shifts (i.e., conti-

guous working periods followed by a rest period and then followed by
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contiguous working periods), an integer program approach is required
unless the number of workers is so large that fractional answers can
be rounded up or down with no appreciable loss of accuracy.

Segal [27] used a transshipment algorithm as a first approximation
to his problem of scheduling telephone operators to ideal shift patterns
(which are split shifts) so as to satisfy minimum quarter-hourly man-
power requirements throughout the working day. Fitting his approximate
solution to the ideal shift patterns, he then moved excess workers to %
deficient periods. This he accomplished by means of another network
formulation. His method is reported.to provide good, but not necessarily
the optimal, schedules. :

Problem type III is essentially a combination of Problem type I and j
IT. Here the task is to allocate employees to different shift and days-

off patterns such that the fluctuating manpower reguirement for each

period of each day of the week is satisfied. For any realistic problem,
the integer programming formulation for Probiem type III is usually very
large, so individuals such as Smith [28] and Luce [21] have developed
heuristic algorithms which give good but not necessarily optimal solu-
tions.

Smith's algorithm [28], consists essentially of 2-phases. Phase 1
solves for the optimal manpower schedule for each day of the week with-
out considering days-off pattern. In phase 2, the phase 1 solutions are
joined up using the Tibrawala's algorithm. In joining up the solutions,
several heuristic rules were followed. The solution obtained was reported

to be good.
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Chapter 3

Theor: and Algorithm Development

3.1 Problem Type T

| Problem Type I involves allocating employees to fluctuating daily
manpower requirements such that each employee has a specified days-off
pattern.  As presented in Section 2.1,(1), involves days off patterns
where each employee is given two consecutive days off each week. However,
the formulation can easily be modified to handle the situation where the
days off need not be consecutive. Since there are 7C2 combinations of
2 days off out of 7 days in a week the number of variables increases to

21 rather than 7.
a

1 y K%, >R (3)
X5 > 0 and integers

o T
where R = (Rl’ RZ""R7)

A= (

T
5= (854 a2j”"a7j)

a. = 5o geleios 21

a.. = 0or 1 and i ij

13

oM~

;
very often, many business organizations have manpower requirements

which are essentially the same for week days (M-F) but different for week-

ends (Sa-Su). (For example, food service operations in military installations).

If employees are allowed two consecutive days off per week, (1) can then be

simplified by reducing the number of variables to 4 days off patterns.
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In the following figure assume that the manpower requirements for

a week are symmetrical about the weekends. The days off paterns are
identified by their distance from the weckends, and are represented by

enclosed boxes.
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The formulation becomes:

4
Min I X,
r J
d=1
st. Xo + Xg t X, z_Rw
Xp + Xy # 2xy * 2x4 >Ry, * T
2x) * Xp t Xyt 2x >Ry R (4)
LR R 2 hsa T sy

Xj > 0 and integer

where Xj = Number of employees with days-off pattern j

R.

j Manpower requirements for day i

i=M, Tu, W, Th, F, Sa, Su
Similarly, if employees are allowed two days off per week, not
necessarily consecutive, (2) can then be simplified by reducing the number

of variables to 3 days-off patterns as follows.

Tet x; = Number of employees with pattern 1 (2 weekend days off)
Xo = Number of employees with pattern 2 (1 weekend day and 1 weekday off)
Xq = Number of employees with pattern 3 (2 weekdays off)

The formulation becomes:
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Min & x.
J
J=1
Bx. + + + + +
SE By + 4x, ¥ X3 2 R+ R, * R ¥R, *Re
+
%2 2X3 E-Rsa + Rsu
Each of the problems (1), (2), (3), (4), and {5) can be solved by

integer program algorithms,

3.2 Problem Type II

3.2.1 Problem Description

Problem Type II involved the allocation of employees with different
shift patterns to period by period manpower requirements throughout a
working day. (2) in Section 2.2 is a typical model. It was noted there
that for problems involving shift patterns which are split shifts, an
integer program code is necessary to solve the problem whereas, for
problems involving shift patterns consisting of contiguous periods, the
problem can be formulated as a transshipment problem.

Now, consider the following problem involving both contiguous and

split shift patterns.

Let Cj = cost of one employee working contiguous shift pattern j
fj = cost of one employee working split shift pattern j
xj = number of employees working contiguous shift pattern j
yj = number of employees working split shift pattern j
Sy = slack variable for equation (period) k, k=1, 2,..., number of periods
Rk = manpower requirements for period k.
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formulation of Problem Type II can be written as

Min 5: Qj&j + § ijj
dp doLda" SR e Sy Bgine Ay
L1 1 4=y 00 6 0 0 0
10 1l0-1 00000
g0 1@ el 00080
1 @ 110 @ 6-1004
¥ 0 @ F 08 s 0-F 00
1 el one 6010
g 1 t ko e 0 00 0]

(i)
(i)
(ii1)
(iv)
(v)
(vi)

(6a)

(vii)

If we subtract equation (j-i) from (j), for j=(ii) to (vii) end if we

substract

obtain

-
-> - - 0 . .
0 from equaticn (i) and equation (vii) from 0, then we

i 0 0

Qo O O

0

-1 0

(o SRR = TR o BRRE o

0 -1
0 0 -1
0 0 0~

0 -1
00
00
00
10

1
0
0
]
0
0

-1

11 3t 0060 000
B=1 OF1-1 60000
1 o ole 1=t 6000
T 0 0f a0 11000
o0 T-1le 66 11008
000f000O0T1-10
SRR R
o=1-tl0 00000 3

Defining matrices as expressed by the partitions above,

be written as

(6b)

can
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(A |F|A2) L R or (A]IAz)()g) + FY = R
Y S

S

Notice that every column in (A]IAZ) has only one positive 1 and one

negative 1. This suggests that if F = [0], (A]EA ) (é) = R ¢ a trans-
8., S
shipment problem. Notice also that =& Ry = 0, which suggests that the
s

supply is equal to the demand in the transshipment problem, provided
(A]IAZ) (é) = R is consistent. One can represent the transshipment

problem as a network by dividing Ri into 3 sets G-, Go’ Gy

G’ = {Ri <0}

6, = {R; = 0
6, = (R > 0}

Using transshipment problem terminology G-1is associated with demand nodes.

Go is associated with intermediate

stocking houses nodes .

The transshipment problem can be represented by the following network:

is associated with supplying nodes.



Where node i equals the beginning of working period i.

When F # [0), we have the following problem:

Min CX + fY
st. (A1A%) () + v = (6c)

X>0 Y >0 and integer vectors .

The original problem (63) has been partitioned into 2 sets. The first
set of variables (X|S) are those associated with the transshipment
problem, and the second set (Y) with an integer program. The literature
[11,13] reports successful attempts in solving problems having the above
structure by means of the Benders Partitioning Method [6]. Using
Bender's terminology, when Y is fixed, the linear sub-problem (trans-
shipment probiem) becomes:

Min CX + fY

st. (A11A%) () = (R-FT) = (R, .fQT (6d)
Notice that the columns in g consist of equal numbers of positive and

negative 1's. Therefore = ﬁ} = 0, i.e. the supply is equal to the
i=1

demand in the 1inear_sub-prob]em; provided that the linear sub-problem is

consistent.
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3.2.2 Motivation and Background

Bender's algorithm utilized to solve (6a) evolved from the work of
[6] and [10] and is founded on the naturally appealing idea of fixing
y =y eG, solve a sub-problem to generate a u, fix u = u and then solve
another problem to obtain a new y. Continuation of this type of solution
technique allows us to solve a series of manageable sub-problems which
yield feasible solutions to the overall system. As is true with many
partitioning techniques, duality results are instrumental in guaranteeing
convergence to optimality as well as providing upper and Tower bounds on
the objective value--the bounds being very informative when the procedure
is terminated before the optimal solution is attained.

Before a step-by-step statement of the algorithm is presented, let
us inspect the original problem (6a), called it Problem "P".

Min cx + fy

s.t. Ax + Fy >R
x>0 yeG where G={set of integers}

On fixing y=yeG, we are left with the following linear sub-problem,
P(y), (transshipment problem).
Min  o(x, ¥) = cx + fy

st Ax > R-Fy
x>0

The dual to the Tinear sub-problem D(y) is:

Max 4 (y,u) = (b-Fy) u + fy

st uA < c

u >0

An important property of problem D(y) is that its solution space is

independent of y. It will be seen shortly that this allows us to successively

generate y's without duplication and to obtain a lower bound on the objective
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value of "P".
Let (x,y) be an optimal sslution to “P". From the theory of duality [19],

there exists an optimal solution G to D(y) such that . (y,u) = a(x,y).

Furthermore, if we assume that y is such that P(y) is consistent,

O (x.y)= ¢(y,u) > ¢y,0) > ®(y,u) where % and u are optimal solutions

to P(y) and D(y) respactively. Thus, by fixing y=yeG and solving P(y), or
D(y), an upper bound on the optimal objective value is obtained, and, since
u is feasible for D(y) regardless of the value of y, by minimizing 4 (y,u)
over yeG, a lower bound is obtained. These observations lay the foundation
for an algorithm to solve "P". However, the iterative process which appears
to be forming breaks down when P(y) is inconsistent. In most other
applications of Bender's algorithm, a well-known theorem of alternative
known as Farkas' Lemma [19] is used to eliminate the y's which fall into
this category. However, in the case of the present application, P(y),
being a transshipment problem, is inconsistent only when a non-existent
route appears in the optimal soluticn. Based on most network algorithms,
this will be reflected as a high cost in the objective function of P(y),
and assuming that the original problem "P" is consistent, the inconsistency
in P(y) will resolve itself as the algorithm proceeds.

3.2.3 Statement of Algorithm

An iterative procedure based on the preceding results is given below:
Step 1. Initialize the following. Set y = 0, the upper and lower bounds on
the optimal objective value of "P", UB=+« and LB=- « ., The number of
linear sub-problems solved with a finite optimal solution, ks=0.
Step 2. Solve P(y) and obtain the optimal dual variables u.
Step 3. If 6(X.y) < UB, let UB = o(X.y). Let ks = ks + 1 and uk® = T.

Step 4. Solve the following master problem (MP)
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Minimize 2
stz lpa ) d =12, ks
yeG

If ks=0, Z = —» and constraint set of (MP) is omitted.

<o

1}

Step 5. Let (z,y) be one optimal solution to (MP). Put LB =7. If LB = Ul

terminate the algorithm, otherwise go to step 2.

3.3 Problem Type III

3.3.1 Problem Description

Problem Type III is essentially a combination of problem type I and %
ITI. Here the problem is to allocate empioyees to different shift and |
days-off patterns such that the fluctuating manpower requirement for each
period of each day of the week is satisfied. Several versions of the schedul-
ing problem are described below.
Case III-A
(A1) The objective is to minimize the cost of employees.

(A2) The hour-by-hour manpower requirements for each day of the wcak cycle

must be met.

(A3) Each employee works five consecutive days and is given two consecutive
days off per week.

(A4) An employee can work one shift one day and another shift on another day.

(A5) The number of hours in each working day is no longer than sixteen hours,
so that every employee is given at least eight hours of break before
working again.

fA6) A full time shift is a shift of eight consecutive hours work.

(A7) A part time shift is a shift of four consecutive hours work.

(A8) A full time employee is one who works only in full time shifts.

Similarly, a part time employee is one who works only in part

time shifts.
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(A9) Except for the last seven hours of any working day, there exists one

full time shift beginning at every hour. Similarly, except for the

last three hours of any working day, there exists one part time

shift beginning at every hour.

(A10) The cost of an employee depends on whether s/he is a full time or
a part time employee and does not depend on the shifts s/he is assigned
to on each day. The cost of each full time employee is the same and
the cost of each part time employee is also the same. The cost of
one full time employee can be greater or less than the cost of two
part time employees.
(A11) Each hour has at least one full time employee on duty.
Relaxations or modifications to the above conditions will be discussed
in Section 3.3.4.
Case JII-B
Same as Case III-A except that weekdays manpower requirement is the
same but different from weekend requirements.
Case III-C
Same as Case IIT-A except that each employee is given 2 days off,
not necessarily consecutive, each week.
Case III-D
Same as Case III-C except that the weekday manpower requirement is
the same but different from weekend requirements.
Case I1I-E
Same as Case III-A except that a part time shift is 5 consecutive

hours work.

s sl
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The integer program formulation of the problem based on Case III-A
conditions is first presented. Two formulations are given. A new 2-phase
algorithm is then presented based on all 5 cases. Lastly, extension of
the 2-phase algorithm to multiple shift patterns is presented. ‘

3.3.1.1. Formulation I

Minimize

nmMmo
o

Subject to §

> Eoif g p of
LT B S LS LR -
jo3 Wk 3 A '51 tk 55 2 Ry ter atlnof (1P1)
J k=1,...,m,
i
F F o
(IP1-b) £ S, >1land I S, 21 for A= ,.eu sl
Je Jil JEJin
E P ; -
(IP1-c) Sj >0, Sj > 0 and integers for all j.
where,
cf = cost of one fulltime (FT) employee.
S_F = number of FT employees working in shift/days-off pattern j.
QF = number of FT shift/days-off patterns.
6iij = 1 if FT employee working in shift/days-off pattern j works

during period k on day i.

0 otherwise.

C = cost of one part time (PT) employee

S P = number of PT employees working in shift/days-off pattern j.
J

QP = number of PT shift/days-off patterns

6igk = 1 if PT employee working in shift/days-off pattern j works

during period k on day i.

0 otherwise
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Rik = minimum number of employees required during period k on day i

m; = number -of periods in working day i -

Ji] = (shift/days off pattern j |employee works on the first ful] time

shift pattern of day i}

i {shift/days off pattern j lemployee works on the last full time
g shift pattern of day i}

(<
"

Constraint set (IP1-a) ensures that the minimum requirements are satisfied.

Constraint set (IP1-b) ensures that on any period of the day, there is at
least one full time employee on duty.
Constraint set (IP1-c) ensures that all variables are non-negative and
integers.

For a typical problem where consecutive days-off patterns are
assumed,

16

=
n

7 x (9)5 = 413,343

n x(mi-7)%

0
]

Q" = n x(mi-3)° = 7 x (13)5 = 2,599,051
giving 3,012,394 variables and 126 constraints. Notice that the number of

variables is huge.

3.3.1.2. Formulation II

1 1
minimize cF ¢ xF +« Pz xP
g:] g g:] g
Subject to: qF qp
§% Yo 7
F ' oF : A R e
(IP2-a) §=] 845k Sij + §=] 633k Sij SRy k=1, my
(ipean) S0 2 )
il
F = Vgerey i
"2 ) (1p2)




(IP2-c)

(IP2-d)

=21
T Y 3 F
g Yig X = 7 S..
= s s oo i
F
7 P q
g oMg gt es 5 F
g:] g J‘___.] J
F P F p : R
Sij . Sij s Xg s Xg > 0 and integer for all i, j, g

number of fulltime shift patterns
number of part time shift patterns

number of full time employees having days off pattern g

1 if full time employee with days off pattern g works on day i -
0 otherwise

1 if part time employee with days off pattern g works on day i
0 otherwise

cost of a full time employee
cost of a part time employee

number of full time employees working in shift j on day
aumber of part time employees workgng in shift j on day
minimum number of employees required on hour k of day i
number of periods in working day i

1 if full time employee works during period k in working shift

pattern j on day i

0 otherwise
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6ijk = 1 if part time employee works during period k in working shift
pattern j on day i

0 otherwise

Constraint set (IP2-a) ensures that the minimum manpower requirements are
satisfied.

Constraint set (IP2-b) ensures that on any period of any day, there is

at least one full time employee on duty.

Constraint set (IP2-c) distributes the shift patterns of the seven days
to different days off patterns.

Constraint set (IP2-d) ensures that all variables are non-negative and
integers.

For the same problem as discussed in Formulation I, where m, = 16,

F qP

g =9, = 13, there are 140 constraints and 168 variables.

If we double the number of work periods (say each period = 1/2 hour)
then m; = 32, qF = 18, qH = 26'yie]ding 252 constraints and 322 variables.
Integer program codes suitable for handling problems of these mag-

nitudes, although available in the market, are nevertheless costly to pur-
chase as well as to run them. Also, large computers are necessary to run
such large problems. Since most organizations have small computers, and
attempt is made here to decompose the problem into several smaller problems.
The next section proposes an algorithm to solve the problem by decomposing

the problem into two phases, each phase consistina of smaller integer pro-

grams.
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3.3.2 2-Phase Algorithm Based on Case III-A Conditions

In this section, a procedure is developed to solve Problem type III
based on Case III-A conditions. The other cases will be presented in
subsequent sections. The procedure involves 2 phases. Phase 1 consists
of solving for the optimal schedule for each day of the week. Phase 2
will then connect up the optimal solutions obtained from Phase I by
allowing days off for each employee. The motivation behind this 2 phase
procedure is the fact that 2 consecutive part time (PT) shifts can replace
1 full time (FT) shift and vice versa. Also 1 full time shift can replace

1 PT shift if necessary.

Phase 1:

In Phase 1, the optimal solution for every day of the week is obtained
using the integer program below, (one problem for each day, 7 problems
altogether). In the first phase, a solution is desired such that.if two
consecutive PT shifts appear in the optimal solution, they will appear
as one corresponding FT shift. This can be done by costing PT employees
slightly more than 1/2 the cost of a FT employee, i.e., (CP = 1/2CF +€)
where ¢ is an arbitrarily small number. By moving all consecutive PT
shifts to their corresponding FT shift in Phase 1, it becomes only necessary
to consider replacing one FT shift with two consecutive PT shifts in Phase

2. The Phase 1 formulation for day i is similar to (2).
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F

q q
Minimize CF b S; + Cp RS i (7)
f=1 g=1 9
S C S R e N .
ubject to (7a) I & Se * I &8, 2 R, for k =1,...m,
f=1 g=1
F F 3 5
(7b) Sy 21 (7¢) S¢ 2 0 and integers for f = 1,...q
S i > 1 S B 0 and integers for f = 1,...q
qF — gg
Where CF = cost of 1 FT employee.
SfF = number of FT employee in FT shift f.
CP = cost of 1 PT employee.
SgP = number of PT employee in PT shift g.
qF = number of FT shift patterns.
P

q = number of PT shift patterns,

F 1 if FT employee works during period k in FT shift pattern f.

0 otherwise.

F 1 if PT employee works during period k in PT shift pattern g.

6 -

k3 0 otherwise.
Rk = Minimum number of employees required during period k.
m, = number of periods in working day 1.

Constraint Set (7a) ensures that the minimum manpower requirements for
each hour are satisfied.
Constraint Set (7b) ensures that during any period of the day, there is

at least one full time employee on duty.
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Constraint Set (7c) ensures that all variables are non-negative and

; integers. Since the shift patterns are contiguous, problem (7) can be
formulated as a transshipment problem discussed in Section 3.2. If the
) ' shift patterns were not contiguous, (7) would have to be solved using

integer programming. Let us assume that the solution obtained is as

follows:
m F
q Fx
z Sf = aj
f=1
P
q
I SP*-B1
g=179

Since the length of a FT shift is twice that of a PT shift,
Solution = ai FT + Bi PT
= (Zai + Bi) PT equivalents
We know that this is the best (i.e., least cost) schedule we can

obtain for each particular day i.

Phase 2:

In Phase 2, the seven optimal solutions for each day of the week
are connected by another integer program. In this formulation, we have
to make sure that each employee is given two consecutive days off per
week. Also, two replacement possibilities have to be represented in the

formulation: replacing one FT with two consecutive PT shifts and replacing

one PT by one FT shift. The other possibility, that of replacing two
consecutive PT shifts by one FT shift do not need to be considered because
by costing PT employees slightly more than 1/2 the cost of a FT employee

in Phase 1, all consecutive PT shifts are moved to their corresponding

FT shift.




(8a)

(8b)

(8c)
(8d)
(8e)

Subject

"Wty
Wty
Nty
"ty

)

2Fi + Pi

=26-
7 7
- Minimizecf £ x.+cfz vy,
to: j=1 J j=1 J
X, + Xg + X6 + X4 -F] -Q] =0
xs + X6 + x7 -F2 '02 =0
t X3t x, X3 Fp -Q =0
e S gl ! S
X3t Xy toxg ¥ Xe -Fe -Qg =0
X3+ Xt Xg ¥ Xo + Xy £y <Gy =10
(8)
.Y4+.YS+.Y6+.Y7 'P] +Q] =0
y5 + 'y6 & .y7 'Pz +QZ =0
* Y3 Y6 * ¥7 ey e
ty3tyy Y7 o sl
¥yt uy g e | =0
Y3ty t st Y e My =9
y3+y4+y5+y6+_y7 .P7 +Q7=0
> 2“1 +g; for i = | R
S for d 207
y520, F; 20, Py >0, Q > 0 and integers for i = 1,..,7 § = Vyeues?
i = minimum number of FT for any day i. For m; < 8, W= 1; for

8 <|n15_16; Y;=2 to ensure that a FT employee is working every

hour of the day.

—
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X: = number of full-time employees whose days off pattern is J.

F; = number of full-time employees required on day i, not counting those
created from PT. '

¥: = number of part-time employees whose days off pattern is j.

P; = number of part-time employees required on day i, not counting those
converted to FT.

; Qi = number of full time employees required on day i, who are created

from equal number of PT (where 1 PT is replaced by 1 FT).
Constraint (8¢c) shows that (2a; + 6;) PT equivalents is the minimum manpower

wnich will meet the demand on the ith day.

! Constraint (8a) and (8b) specify the days off patterns. Also, constraint

(8b) allows a PT shift to become a FT shift and so is removed from (8b)

and added on to (8a). This flexibility to allow a PT shift to become a

FT shift is built in to allow some PT shifts to join up with FT shifts if
that creates a better schedule. Constraint (8d) ensures that for any day
i, the number of FT shifts must be greater than T3 but not greater than

O.-i.

Rewriting (8) in a more convenient form yields
7

F FZ
Minimize C'z x.+CzZ .
Subject to: =19 g =1 J
7
st (9a)j;z] ijj-F-Q=0
7
i T e S (9)

(9c) 2F + P> 2a + 8
(9d) y<F<a
(9e) X >0,Y>0, F>0,P>0,Q>0 are integer vectors

and y, 8, a are all vectors corresponding to (8).




Aj is the column vector associated with the days off pattern j, and is

consistent with the column vector used in (1).

Solution Schedule:

X5 s and ‘%'s are the optimal number of FT and PT employees. They
will cover the daily requirements as indicated by the schedule obtained
in phase 1. Obtaining actual manpower assignmerts is a straight-forward

but cumbersome process which is best explained by a flow chart as shown

in figure 1.
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Figure 1

Macro - Flow Chart Showing How Final Optimal Schedule Is
Created From Phase T and 2 Solutions

Starg)

Phase 1 and 2
Integer Programs
Y

i Full Time Scheduls
; u ime Schedulin fys
: negative (Fi + Qi) - o 9| positive
‘ 0 Phase 1 FT Schedules
’ is less than Phase 2
Phase 1 FT Phase 1 FT Schedule
Scheduie is is covered exactly
greater than by Phase 2 ’
Phase 2
' /\ Is there a PT
% Schedule in Phase 1
[ yes no
i=1d+]
For each excess FT, For each deficient [lFor each
create 2 corresponding FT, replace a PT in ||deficient
PT, and.add on to the Phase 1, to become a[[FT, create
Phase 1 PT Schedule FT, Phase T PT a new FT
\ Schedule is less one
employee
\ \
/ Y I
AR
S <«————Al1 days considered?|—e -
NO ¢ _yes
Part Time Scheduling
(Pi - Qi) - (8. 2 ¢.) negative
where e. is modiFication ‘}
due to uheven FT Scheduling
¥y 0 Phase 1 PT Schedule
Phase .1 PT Schedule is is less than Phase 2
covered exactly by Phase 2
¥ For each deficient PT,
(Print Optimal Schedule | create a new PT

End
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3.3.3 Problem Sizes

The 2-phase algorithm exploits the structure of the scheduling problem.

For a problem involving 7 days, 16 working hours a day, Phase 1 consists

of seven integer programs (Problem (7)), each having 22 variables and 18
constraints. Phase 2 consists of problem (8) which has 35 variables and
35 constraints for which 14 are upper/lower bounds on variables. Notice
that all the problems are small, involving not more than 35 constraints.
There are many advantages in having to solve seven much smaller integer
programs rather than one huge one. Some of the advantages are:

(a) saving in computer memory storage

(b) saving in computer running times

(c) a small computer can be used .

3.3.4. Discussion of Case III-A Conditions

This section is devoted to discussing how the 2-phase algorithm is
affected when the conditions of Case III-A are modified for type III

problems.

Condition (A1)

The minimization of cost is usually accentable to most organizations

provided that certain constraints are met.

Condition (A2)

The hour-by-hour manpower requirements can be modified to half hourly

or even quarter hourly requirements.

Condition (A3)
Any kind of days off patterns can be represented in the formulation

of the Phase 2 problem (eg. see Section 3.3.6., Case I11-C)
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Condition (A4)

For service operations, the flexibility to allow an employee to work
one shift on one day and another shift on another day is usually acceptable.
When creating the final optimal Schedule from Phase 1 and 2 solutions, one
can assign employees to shifts which are as close as possible on different
days, but does not guarantee that the same shift is assigned on different

days.

Condition (A5)

If the number of hours in each working day is greater than sixteen
hours, then the condition that a break of at least eight hours before work-
ing again is not guaranteed. If the working day is twenty-four hours, a

new probiem type IV arises, as discussed in Section 3.4.

Condition (A6) and (A7)

Split shifts can be handled by the 2-phase algorithm.
A split-shift is any non-contiguous shift pattern. Since the number
of split shifts is large and since many are not reasonable from an
employee's point of view, several assumptions have to be made when develop-
ing an algorithm and programming a comouter code.
o A split-shift has only one break of up to four hours
e Any full time shift (split or contiguous) which can possibly encompass
a part-time snlit shift, and therefore, be a feasible reolacement for
it, is a valid full time shift.
When a full-time shift is not an integral multiple of a part time shift
the 2-phase algorithm can be modified as shown in Section 3.3.8., Case III-E.

When multiole shifts, i.e. three or more tyoes of shifts of different lengths

are involved, the 2-phase algorithm becomes complicated as shown in £ < tion 3.3.9,
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Condition (A)
It is generally acceptable to have full time emplovees working in full

time shifts only and part time emplovees working in part time <hifts only.

Condition (AS)

If certain snift patterns are undesirable, one could cost tiese shift
patterns many tii s nore than the cost of the desirable shift patterns.
However, the phase 2 problem is blind to the fact that certain shift pat-
terns are undesirable, and so may nroduce an "optimal" schedule involving
urdesir~able shif*s i° using them utilizes less manonower. Unces rable shift
patterns will not be in the solution if full time shifts and their corres-

ponding part time shifts are removed simultaneously. Also, the algorithm
can search among existing shift patterns and choose only the desirable
shift patterns to be included in the final schedule. This can happen in
three instances:
(a) Phase 2 requires some of the FT shifts to become two PT shifts.
We assume that all the FT shifts in Phase 1 solution are desire-
able shifts (this assumption is reasonable unless user specified
too many shifts as undersirable, so that a feasible solution
must corsist of an undesirable shift). The algorithm has to

search for those FT shifts in Phase 1 solution which can be

broken up into two desirable PT shifts. Although unlikely, the
sea~ch may not be successful, in which case, an undesirable shift
has to appear in the final schedule. The user should be notified

with an appropriate message.
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(b) Phase 2 requires some of the PT shifts to become FT shifts. Again
we assume that all the PT shifts in Phase 1 solution are'desirable
shifts. lThe algorithm has to search for a PT shift which can be
replaced by a desirab]e.FT shift. Although unlikely, the search
may not be successful, in which case an undesirable shift has to
appear in the final schedule. The user should be notified with
an appropriate message.

(c) Phase 2 requires a FT or PT shift to be created. The algorithm has

to choose among the desirable shift patterns.

Condition (A10)

The cost differential between shift patterns of the same length is

usually small for most organizations.

Condition (A1)

The condition to have at least one full time employee on duty at each
hour of the working day can be removed. Additional constraints like having
a desired ratio of full time employees to part time employees can also be

incorporated.

3.3.5 Case III-B Conditions

When the weekday requirements are essentially the same but different

from weekend requirements, the 2-phase algorithm can be outlined as follows:




Phase 1:

Solve for optimal solutions to a weekday and a weekend day. (Two
problems.) Let the solution be (Za] + e]) PT equivalents and y] for

weekday, and (Za2 + 62) PT equivalents and y2 for weekend day.

Phase 2:

Consistent with the days off patterns as in (4), the Phase 2 formulation
has fewer variables and constraints than (8) or (9),. Using the compact form

as in (9), we have,

F4 4
Minimize_C TR G Y

S B S
4
st. (10a) 5 Ajs - F-Q=0
3=
4
=1
(10c) 2Fy+ Py > 201 4 ¢ (10)
2P +P.>2 (20 +8) for i =2, 3
i 9
2Pt P> 2 (245 + 6°)
) 1

(10d) 4 <F<a

2y < Fi<2d for i =2, 3

2

Q

n
2Y° < Fpe

n

(10e) X>0,Y¥>0,F>0,P>0,0Q > 0 and integer vectors.
where Aj is the column vector associated with days off pattern j, and is

consistent with the column vector used in (4).




3.3.6 Case III-C

Phase 1.

Same as in Case III-A

Phase 2.
Consistent with (3), there are 7C2 = 21 days off patterns. The
formulation is same as (9 ), except that j = 1,...21 and Aj is consistent

with (3)

3.3.7 Case III-D
Phase 1:

Same as in Case III-B.

Phase 2
Consistent with (5), there are 3 days off patterns. The formulation is

as follows:

- B
Minimize Cz x,+Czt y.
FEAC g
3
. A. A= F - =
st (Ha)j LA Q=0
3
Y. - + =
(Hb)j:z]AJyJ P+Q=0
W (1)
(11c) 2Fy + Py >5(2a +¢g)
% *Pys 2(24% + 8%)
(11d) 5y < Fy < 5a
2v% < Fp < 20

(17e) Xx>0,Y>0,F>0,P>0,Q>0 and integer vector;
where Aj is the column vector associated with days off pattern j, and is

consistent with the column vector used in (5).
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3.3.8 Case III-E
Case III=E provides an example of how the solution approach is
complicated when full time shift is not an integer multiple of a ‘part

time shift. In the current formulation, we have allowed five-hour part

time shifts.

Phase 1:

First, we need to establish the replacement relationships between
FT and PT shifts.

FT to PT Replacement:

(i) 1 FT can be replaced by 2 PT .
PT to FT Replacement:

(i) 1 PT can be replaced by 1 FT; 2 consecutive PT can be replaced by

& B

(ii1) 3 consecutive PT can be replaced by 2 FT.

For al6 hour workday, only 3 basic replacement relationships are found.

(i) and (ii) are similar to that of Case III-A, so we only need to handle
(iii).

One way to handle (iii) is to include in the formulation of phase 1.
shift patterns of three PT shifts totaling 15 working hours. For a 16
hour work day, there are only 4 such shifts:

Break, 3 consecutive PT

1 PT, Break, 2 consecutive PT

2 consecutive PT, Break, 1 PT

3 consecutive PT, Break.
The cost of these shifts would be slightly less than the cost of 3 PT

employees, so that,
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CP = cost of one PT employee .
CZ = cost of one employee with 15 hour shift pattern = 3Cp - €,
CF = cost of one FT employee = % CP-
Formulate the problem as in (2). Let the solution be as follows:
The number of FT employees equals ai
The number of PT employees equals 8i
The number of employees with 15 hour shift patterns equals £;
Phase 2
Formulate the connecting problem as in ( 9) except for a few
modifications:
F7 p/
Minimize C'2 Xy +C & Y
J=1 J=1
7
St. (12a)' f Aj'ﬁ -F-Q-22=0
J=1
7
(]Zb) z AJyJ-P+Q+3Z=0
j=1 (12)
(l2e) 2F + P> 204 B+ 3¢

(12d) y<F<eo

(12e) Z<¢
X>0,Y>0,F>0,P>0,0Q>0, Z >0, and are integer
vectors and y, B, o are all vectors corresponding to their indexed
notations. Aj is the column vector associated with days off pattern j,
and is consistent with the column vector used in (1).
Note that if g, = 0 from phase 1, then Z; =0
where Zi = number of groups of employees of the 15 hour shift pattern

which are converted to FT employees.
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3.3.9 2-Phase Algorithm Involving Multiple Contiquous Shift Patterns

An attempt is made here to devise a more general 2-phase algorithm
based on Case (III-A) conditions, except that multiple contiquous shift
patterns of arbitrary lengths are allowed instead of just full-time and
part time shifts. The problem is difficult because a large number of
possibilities exist for replacing one shift/combination of shifts by ,other
shifts/combination of shifts which can satisfy demand for a span of time.
When only full time and half time shifts are considered, two half time
shifts can be replaced uniquely by a full time shift, or a full time shift
can be replaced by two half time shifts. When multiple shifts of arbitrary
lengths are involved, the number of replacement relationships is huge.

Some definitions of the terms to be used will be explained below.-

Efficient Replacement Relationship:

When multiple shift patterns are allowed, many replacement relation-
ships are possible. For example, any shift/combination of shifts can be
replaced by another shift/combination of shifts in any instance when the
span of working hours of the latter is longer than the former. However, in
any replacement relationship, there exist at least one which performs
the replacement in the most efficient way (i.e. with least excessive man-
hours). Such replacement relationships are termed "efficient". In general,
there can be several efficient replacement relationships in a given situ-
ation and it would be wasteful to include equivalent relationships in a

mathematical model. Also, it would be redundant to include complex sets

of relationships as individual alternatives 'in the model, whenthe model itself

could construct the replacement relationships by combinations of simple
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relationships. We define these replacement relationships, which cannot

be formed by a combination of other efficient replacements as being "basic".

Determining Efficient Replacement Relationships:

An approach for determining a set of basic efficient replacement
relationships is given for a problem involving three different shifts. This
approach can be generalized to handle any number of shifts but the process
becomes tedious and requires an exhaustive computer search.

Given shift S] is l] hours and shift 52 is 12 hours , 1] > 12. Let
r be the smallest integer greater than 1]/12. Then a basic efficient
replacement relationship of S1 by 52 exists where r of 52 can replace S];

or 1(51) ] r(Sz) where = means can be replaced by.

® If Z(S])—> 2r(52), this replacement relationship is not basic

because it can be established by two cases of ](Sl)=§ r(Sz).

e  However, if 2(S])r» p(SZ) where p<2r, then the replacement

relationship is basic.

o IF3(5))=p(Sy) + r(S,) or 3(S{)=>p(S,), r(S,) or 3(Sy)=>(p + r)
(52), this replacement relationship is not bas.c because it can

be established through 2(S])~a p(S and 1(S])~° r(Sz).

2)

a  However, if 3(51)~t>q(52) where q<p+r, then this replacement

relationship is basic.

e Consider another shift S3 =>1(S3).ﬁ>1(51).
Since shift 52 is shorter than S], l(Sz)fe‘l(S]). Let us assume
that 2(52) ”s](S]). If 1(52), 1(53)-<>](s]), the replacement

relationship is basic.
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@ If 2(52), 1(53) ~>1(S]), the replacement relationship is also

basic.

° If 2(52), 2(53)ﬂ> 2(51), that replacement relationship .is not
basic because the replacement could be established through 2

cases of 2(52) and 1(53), or 1(52), 1(53) and 1(52).
o If ](SZ), 2(53)=> ](S]), the replacement relationship is basic.

o If 1(52), 2(53)ﬁ> 2(51), that replacement relationship is not

basic.

To summarize, if an efficient replacement relationship is such that
it cannot be established through a combination of simpler replacement -
relationships, then it is basic and need not be represented in the mathe-

matical model.

Joint Shifts

A joint shift is a combination of shifts. Examples of joint shifts
are 2(51) or 1(S4) , 1(s,) or 3(S;), 2(S{). The shifts forming the

Jjoing shift are always non-overlapping

A statement of the algorithm is given below:

Step 1. Establish all basic efficient replacement relationships
between shifts/joint shifts. If a basic replacement relation-
ship involves replacing joint shifts, the latter have to
appear as column vectors in Phase 1.

Step 2. Phase 1 costs are ordered and longer shifts/joing shifts are

costed proportionately higher.
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Step 3. Convert all Phase 1 solutions in terms of the shortest
shift type.

Step 4. Except for the shortest shift, Phase 1 solutions provide the
upper bounds to all other shifts/joint shifts, to be used in
Phase 2.

Step 5. In Phase 2, all basic replacement relationships between
shifts/joint shifts (except for direct replacement of basic
shifts by the shortest shift), will have to be represented
as variable in the formulation, thus, allowing shift/joint

shifts to move from one type to another.

Let us apply the preceding algorithm to a simple problem involving 3
different shifts - S], an 8 hour shift, 32, a 5 hour shift, and S3, a3

hour shift, and a working day of 10 hours.

Step 1:
Sy =S, Ratio Phase 2 Variables
1(8)—= 3(3) 3:1 *(Basic re- Not applicable because
placement) all S, shifts are con-
verte& to S3 shift equi-
valents.
1(5)—- 2(3) 2:1 * Not applicable because
all S, shifts are con-
2(5) —4(3) 2:1 vertefl to S, shift equi-
valents.
S-I -—-—>52
1(8)~> 2(5) 2:1 * p!

1(5) ->1(8) 1:1 ¢ p
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3
S3r>S]
1(3)= 1(8) 1:1 *
% 2(3) =1(8) l:2 * joint shift (J])
' 3(3) —2(8) 2:3 = (1:1) + (1:2)
f $3=>3,
1(3)= 1(5) I [
2(3)=>2(5) 1:1
3(3) =>2(5) 2:3 * joint shift (Jz)
(52 ) 53)'—3 S]
1(5), 1(3)= 1(8) 1:1,1 * joint shift (.13)'
2(5), 1(3) = 2(8) 2:2,1 = (1:1,1)+(1:1,0)
S.|=f> (SZ, 53)
1(8) = 1(5), 1(3) 1,1:1 *
Joint shift (J]) has to be reoresented as column vector in Phase 1.
e.q. 53, 53, 4B Where B = break for an hour
53, 28, S3, 2B
and so on.

Similarly for joint shift (J2)
e.qa. S3, S3, 53, B

B, 53, 53, S3

53’ B, 53’ B

©

©
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Joint shift (J3) and (J4), each has a total workina lenath of 8 hours

which is S] itself. Therefore thevy do not have to be considered.

Stepo 2: Essentially, we have 3 basic shifts (S]. 52. 53) and 2 joint shifts
(J], Jz). Order them in descending order: J2, S], J3, 52’ 53. The Tlonger

shifts are cost proportionatelv higher. Phase 1 oroblem is shown below.

: T
Min. C (\]2: S] ’ J3a 52’ 53)
T
: (15)

(Jz, 513\13, 52’ 53) _> O

Steo 3: Phase 1 solution would consist of the followina, converted to

the shortest shifts S,
1 1

Tne number of Sy shift = a = 3¢ S,
n " " SZ non = (l? = 2(! 2 33
oo non - a3
53 =
4
n " n J] n " = a4__> 2('! v S3
"non " ‘]2 non = 0.5:> 3(1 5 S3
Step 4:
a4 is upner bound for p4
as " nn " nn " P6
a] " nn " nn n F] + p7
(’.2 n nn n nn " F2
Step 5: The Phase 2 nroblem becomes:
Min  C(X, ¥, 2) 7
st (16a) zA].xJ.-F‘+p‘-Pz-D3-p4 AN : I
(16b) = Aj ¥g F, - 200 4 p? -p% _ 2p% 4 p/ - p8 =

2




(16c) zAJ.zJ.-F3 + P20t 4 PP 4380 4 pT . B
(16d) 3F' 4 2P + ¥ > 3a) +2e% 443+ 20" +3°
tiee) 1 +p? < & phigas R

2y rele

1

(16f) x>0,y >0,2z>0,F >0,P >0and intecer vectors, a' are

inteaer vectors. for all i.

3.4 Prqplgm_jypg A

3?4.1 Extension to 24 Hours Work Week

We have considered the scheduling of manpower to satisfv hourlv man-
oower reauirements subject to davs off patterns for a workdav which is no
longer than 16 hours. In cases where the workina day lasts to 24 hours, our
2-phase algorithm as it stands presentlv, would nrovide a good schedulei
although not necessarilv optimal, because shifts that work throughout the
midnight hour are not considered in the context of our model. Consider
now the general oroblem of scheduling full time and mart time emnloyees
such that periods off (instead of days off) are considered. A full'time
emnloyee would work for 8 hours, break (periods off) for 12 hours, work
the next 8 hours, break for 15 hours, work the next 8 hours and so on.

The idea is to have a full time emolovee work 5 neriods of 8 hours havina
“reasonable" breaks in between. Similarlv, a part time emplovee would work
neriods of 4 hours subject to having "reasonable" breaks in between.

Let us consider an hour by hour mannower reouirement for the whole
week cycle. There are a total of 24x7 = 168 hours per week. The nroblem

can be formulated as an inteaer program:

R (17)
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¥y 2 0 and integer and Aj =

R

[l
—
o)
b
-
=

A11 notations are similar to those of (2).

As one can see, the problem is a larae one, reouiring at least 168 con-
straints, and the number of variables can run to millions, since the number
of shift/periods off patterns is verv huae.

Let us try.to apoly the 2-phase algorithm develoned earlier to the nresent
problem based on Case III-A conditions, exceot for condition (3), where

the days off now become '"reasonable" neriods off.

Phase 1

Solve (17) where the column vectors Aj's consist of either 4 hour
consecutive or 8 hour consecutive shifts

Cost FT shifts CF and PT shifts Cp such that CF = ZCP - g

Since we have to consider shift patterns that work throuah the 168th hour
and back to the 1st hour, the oroblem consists of contiquous and snlit
shift patterns. From (6), we have learned that nroblem with the above
structure can be solved by the Bender's alaorithm if necessarv.

Assume now that we obtain the followina solution:

ag = number of FT in shift nattern f. f=1,2, ... F F <168
Bg = number of PT in shift patterna a=1,2, ... 6 G <168
Phase 2

Phase 2 problem will attemot to create sets of 5 FT shifts and 5 PT
shifts with "reasonable" breaks. Given qf and By it is nossible to enumer-
ate all compatible sets, although the number of ;ombinations miaht be huge.
Granted that, it is also nossible to enumerate all nossible reolacement

relationshins between part time and full time shifts (e.q. PT shifts {Ail LR
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a(.l + -I)J, “oe a(i + 3).] = ]} or {AJ| a(] + ])J, a(-i e Z)j"’a(i +4')j = ]}

can be replaced by FT shift {Ajl 330 A5 4 1) i+ )i T 1}

Now any FT shift pattern can be broken up into 2 equivalent part time
patterns, e.g. a ¢ FT = ag of gth PT pattern and af of (g + 4)kh PT pattern.
The total number of PT equivalents working PT shift pattern g = Bg + af +
af] where if ft = hour shift pattern f starts, then shift pattern £l
starts at (ft - 4) hour.

Example:
For simplicity of explanation, let us assume that every hour (all

168 hours) appear in the solution of phase 1, i.e. we have aps f=1,2,

..., 168, and Bg’ g=1,2, ..., 168, Total PT pattern i equivalents =

(Bi ta; + ai-4) where i = 1,2, ..., 164, 165 (-3), 166 (-2), 167 (-1),°

168 (0). Any PT shift pattern i can be replaced by FT shift patterns i,
i-1, i-2, i-3, i-4, remembering the cyclic nature of the shift pattern.
Qk, k=1, ..., 5 is used to represent the replacement of PT shift by FT

shift. In compact form, then, the formulation can be written, similar

to (11):
min ¢fzox o+’ r oy,
§ ! i
F g
st (18a) £ A X -F-z2 Q =0
s k=1
p L
(180) = A" ¥y P+t Q" =0
goins k=1 (18)

(18c) 2F +P > B+ a+ %(1-4)
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where:

A T
“1-4 = (9165221660 1916870192 +++o0164)
(18e) x20,y20,F>0,P20,0;0,00, 0,30,

F

B >0, vy >0, are integer vectors. A ; is the column

vector associated with a compatible set of FT shifts and
Apj are associated with a compatible set of PT shifts.

(18) can become quite huge, depending on how many of the shift patterns
appear in the solution of Phase 1, and the number of sets of compatible
shift patterns.

It is interesting to note that for the Phase 1 problem if the hourly
requirements over the day are similar for every day of the week, the same
results could be obtained by breaking the problem up into 7 equal pro-
blems since the optimal solution for one day would be the optimal for

another day. Consider the following problem involving 3 periods a

day and shifts of 2 periods in length.

JRpp—
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(19)

Per- shift patterns for a week cycle ﬁgg::re-
Days iods (ordered from 1, ... 21, 1, ... Ner neriods
M 1 1 R,
2 (B R,
3 11 Ry
Tu 1 11 Ry
2 11 Ry
3 11 Ry
W 1 11 R,
: 11 R,
3 11 Ry
Th 1 1 Ry
2 11 R,
3 11 Ry
F 1 11 R]
2 1 R,
3 3 Rs
Sa 1 11 R,
2 11 R,
3 11 Ry
Su 1 11 Ry
2 11 R,
3 11 Rs
T 11 R
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The manpower requirements are similar for each day, i.e. requirements
in period 1, Monday is the same as requirements in period 1, Tuesday
and so forth. Because of the cyclic nature of the daily requirements,

shift (1) = shift (4) shift (7) = shift (10) . . . = shift (22)

and shift (2) = shift (5) = shift (8) = shift (11) . . . = shift (20)

and shift (3)

shift (6)

shift (9)

shift (12} . . .

shift (21)
We shall break up the problem into 7 equal problems of the

following structure:

Period Shifts Requirements
1 1 1 R]
2 1 1 R2
shift (2}
3 ] 1 R3
- \
shift (1)=shift (4) shift (3)

Hence instead of solving a 7 day problem, we need only solve a 1

day problem.

Heuristics

Below is an attempt to solve a more general manpower scheduling

type 4 problem where multiple shifts including split shifts are involved:

using a heuristic approach. The heuristic approach involves 2 phases as
before. Phase 1 solves (17) where all shift patterns to be considered
appear as column vectors. Since (17) is quite huge, rather than solving

it with an integer program code, divide the problem into several smaller
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problems with equal number of constraints. Let us divide (17) into
7 equal problems. There will be some variables common to sub-problems
(i) and (i + 1). Call these common variables. Now solve sub-problem
(1) using an integer program code. If some common variables appe;r in
the optimal solution, they should be subtracted from the requirements
vector of sub-problem (2) accordingly. Now solve sub-problem (2) and
so on until sub-problem (7). Sub-problem (7) will have common variables
of sub-problem (1) and (6) subtracted from the requirements vector. We
have obtained now as our solution sets of shift patterns S15 555 S35 e
Sn ( in descending order of shift lengths).

Phase 2 looks at the Phase 1 solution and tries to create sets of
5§, shifts with reasonable breaks. If there are leftovers, break them
up to shorter shifts, adding as few extra man-hours as possible. (e.g.
breaking 8 hour shift to a 5 and 3 hour shift is better than breaking
an 8 hour shift to three 3 hour shifts or two 5 hour shifts.) Create

sets of 5 S, shifts. Again if there are leftovers, break them up to

2
shorter shifts, and so on until Sn shifts. If there are leftovers in Sn
shifts, 3 things can be done: (a) allow over time for employees already
scheduled, (b) allow some S,, shift employees to work less than 5 S

shifts a week, (c) add in more Sn shifts to create a new set.
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Chapter VI

Results and Discussions

4.1 Problem Tvpe I (Days off Scheduling)

Problems of this tyne are generally small, usually not more than 7
constraints. For problems with special structure, the number of variables
and the number of constraints can be further reduced as can be seen in
(4) and (5). "Good" or optimal solutions to problems of this tvne can
usually be arrived at bv enumeration within a short time. Conseauently
problem type I is of interest orimarily because it comorises of subunit
in more comnlex formulations.

In all the formulations of problem tvne I, we have confined ourselves
to employees working a 5-day week. It is conceivable to have emnlovees
working 6-day week (overtime) or 4-day week (part-time), etc. The formu-

lation can easily be modified bv adding the reauired davs-off natterns.

4.2 Problem Type II (Shift Scheduling)

In most instances type II problems contain up to a hundred constraints

and hundreds of variables. It was shown that the use of Benders Partitionina

Method to solve the nroblem, is a viable alternative to a branch and branch

Integer Program algorithm. The number of Benders cut for all nroblems solved

(not withstandina the size of the problem) was alwavs less than 7. This
means that the largest integer oroaram used has less than 7 constraints.
Exhibit 1 shows some of the results obtained for a few randomly

selected problems. The branch and bound code used was based on Linear
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Program with DKW/Tomlin's penalties [9, 31] and the transshioment code
used was based on Ford and Fulkerson's primal-dual alqorithm [10].

Tvpe II Problems

Sample Number of Number of Number of Comnuter Running
Problem Working Shift Benders Cut Times on CDC 660N
Number Hours Patterns

1 10 14 7 7 sec.

2 12 24 6 8 sec.

3 42 34 7 70 sec.

4 84 168 6 317 sec.

The slow running times for laraer oroblems 3 and 4 were attributed
to the fact that the transshioment code used was far more inefficient
than expected: for example, the fourth problem of Exhibit 1 reauired
approximately 50 seconds to solve each 84-nodes transshinment nroblem.
It is renorted in the literature [14] that there are codes which can solve
a 200-node transshipment oroblem in 1.3 seconds on a CDC 6600. Consequently,
one could expect to solve the fourth examole nroblem in ten seconds.

It is a difficult task to prove that Benders Partitioning Method is
a better algorithm than the branch and bound aloorithm for solvina nroblem
Tvpe II. One has to determing whether there are savinas in storaae and/or
in comoutational times and both denend on the particular codes beina used.

Much more work has to be put in before anv meaninagful comnarison can be made.
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4.3 Problem Type III (Shift and Days Off Schedulinag)

Randomly se]ected Tvpe III problems were run using the 2-ohase

algorithm based on Case (III-A) conditions including split shifts. Exhibit

2 shows some of the results. The algorithm was shown to be extremély
efficient. The maximum runnina times for the few selected oroblems do
not exceed 14 seconds on a CDC 6600. The integer proaram subroutine used

was the same one mentioned above.

Exhibit 2

Tvpe III Problems

Sample
Problem Number of Working Hours for Day Number Comnuter Runninag
Numbers 1 2 3 4 5 6 7 Times on CDC 6600
1 ne. 1o o lee Jeor 12, 02 11.7 sec.
2 220 2R | 2 ) | 2 12 13.1 sec.
!
3 o [ DS L2 (D) O | 2 ) 12.2 sec.
4 6 16 100 lor e 12 02 12.4 sec.

When part time shift is not a 4 hour shift, the 2-nhase alaorithm
can be modified to handle the new problem. However, because the reolace-
ment relationshio between the full-time and part-time shifts is not as
simple as the 8 hour PT and 4 hour PT nroblem before, the oroblem formu-

lation sizes in both Phase 1 and Phase 2 are increased aporeciably as

shown for Case III-E in Section 3.3.8.
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When multinle shifts are involved, the 2-phase alaorithm becomes even
more complicated. Replacement relationships between shifts/joint shifts
become more complex. For a nroblem involving 3 different shift patterns
(Section 3.3.9) Phase 1 problem could have as manv as a hundred v&riab]es.
although the number of constraints remains the same. However, in Phase 2,
the number of variables is as many as 98, and the number of constraints is
56 for which 21 are upper/lower bounds on the variables. It annears from
the problem sizes, that the 2-phase algorithm is auite efficient even for
a oroblem involving 3 different shift natterns.

It is noted here that for oroblems involving simple renlacement
relationshio (e.q. 8 hour full time and 4 hour part time shifts), the
2-phase algorithm is extremely efficient. However, as the number of diff—
erent shift patterns increases, the reolacement relationshins become more
complex, and hence difficult to establish. Also the Phase 1 and 2 nroblems
become very large and hence inefficient to solve.

It can be shown that Formulation IT s presented in Section 3.3.1.2.
for full time and part time shifts) can easilyv be extended to multinle
shifts. The advantage in uvsing Formulation II is that, it does not
reauire the process of establishina replacement  _lationshipos. Also the
"A" matrix in Formulation II is hiahlv structured. This dissertation has
not been successful in exploiting the structure of the "A" matrix. Suffice

to say, this should be interesting work for future research.

4.4 Problem Type IV (Shift and Periods off Scheduling)

Since shifts that work through the midnight hour have to be considered,

it is not possible to split uo the week into seven days as in Problem Type III.

When the 2-phase algorithm was aoplied to the type IV broblem, it is nec-

d
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essaryv to consider the whole week in one stage. The phase 1 oroblem has
168 constraints and 336 variables. Benders Partitionina Algorithm as
presented in Section 3.2 could heln to solve the nroblem. Granted that,
the Phase 2 problem reauired generating compatible shift oatterns‘from
Phase 1 results, and the number of ccnstraints denend on the number of
shift patterns appearing in Phase 1. Hence the size of Phase 2 nroblem
can only be guessed. An estimate would be as many as 200 constraints
and as many variables.

In aeneral, where multiole shifts are involved, it miaht be wiser
to resort to the heuristic algorithm as presented in Section 3.4. Although
the heuristic algorithm is not tested, it is justified to exmect that the
algorithm would give efficient schedules since it involves using many of

the ideas used in the 2-ohase algorithms.

4.5 Automated Manpower Schedulina Svstem (AMSS)

An Automated Manpower Scheduling System (AMSS) was designed for
the U.S. Army Food Service Operations. AMSS essentially consists of two
computer programs SCHED and MANPOW written in FORTRAN:
(1) SCHED develons the optimal emnlovee schedule for a day,
given that the minimum manpower reauirements fluctuate

from hour to hour. It is a typical tvbe II oroblem. The

algorithm involves using the Integer Program Code as a
subroutine. (Benders alaorithm was not used).

(2) MANPOY develops the ootimal emnlovee schedule for a week,
given that the minimum mannower reawrements fluctuates from
hour to hour and day to day. It is a tvpical type III oroblem
based on Case III-A conditions except that split shifts as well

as undesirable contiguous shifts can be snecified by the user.
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Details of both programs can be obtained from the AMSS User's Manual,

a copy of which can be found in Appendix I.
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Chanter 5

Conclusion

Four different types of manpower schedulina problems in Service
Operations were discussed, each having its own uniaue structure:; some of
them are more amenable to algorithmic exploitation than others, alluding
to the need for usina different algorithms for different problem tvope.

At least five alqorithms were developed or oroposed - Integer orogram,
transshioment algorithm, Benders Partitionina method, 2-phase alaorithm
and the heuristic algorithm.

Although some of the proposed algorithms have been tested, and
found to be efficient, the real test of an algorithm only comes when
the results are implemented in a real situation.

Plans are now underway to imniement the Automated Mannower Scheduling
System (AMSS) in selected Army Camos by the U.S. Armv Natick Laboratories.
Their findings would reflect to some extent the usefulness of this
dissertation.

Data which are assumed to be known for a schedulinag nroblem, like
the hourly/daily minimum manpower reauirements could be difficult to
estimate. Although demand for services is assumed to be an uncontrollable
factor, this is not always the case in real situations because demand for
services can be smoothed or even changed by offering different kinds of

incentives, e.g., special rates for telephone calls in the niaht. Much

“ more has to be studied concerning the dearee of smoothina or chanae in

service demand for any typical service oneration. In fact, a research

project directly addressing the data collection oroblem is being conducted
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at the Industrial Engineering and Operations Research Department at
the University of Massachusetts.

Innovations in terms of flexibility in working hours,shift and
days off patterns and work cycles, all contribute to the need for
improving scheduling models so as to develop better schedules. The
future should see some departure from the traditional 5-day week,

8 hour day schedule, moving, for example, to 4 consecutive 10-hour
days or 6 consecutive work days every 10 days. This would result
in more complex scheduling problems, necessitating even more so the

use of complex algorithms and computers.
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