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Chapter 1

Introduction

1. 1. Problem Sta tement

Manpower Scheduling is the process of convertinq daily or hourly

workforce requirements into precise scheduling assignments by specifying

both the days and the shift patterns each employee works . Manpower

scheduling is important in all business operations , and is especially

critical in the case of service operations because services often cannot

be inventoried or deferred , and because minimum manpower requirements

vary from hour to hour , shift to shift , and day to day . Examp les of

service operations are telephone directory assistance , turnpike toll

collection , airline reservation booking , and food service operations --

the application which prompted this research.

The scheduling of workers has become more important lately because

of the rapid increase in labor costs in both government and private

firms . One recent study by Smith , et al [29], showed that labor costs

in one typical large milit ary installation amounted to nearly ~l2 million

or 55% of the total annual cost of food service operations. Also , in

another study , Lunberg and Armatas [4] stated that in restaurant oper-

ations , as much as 33% of the available labor is wasted through lack of

proper schedul ing.

Ahuja and Sheppard [2] renorted that a computerized nurse scheduling

system utilized in General Hospital , St. Johns , Newfoundland was able to

reduce nurse overtime and simplify adjusting for vacation and sick leave.

L ___________



Mapstone and Thamaro [22] also reported that siqnificant savings were

obtained when a vacation manpower schedu l inn mo Icl was used to schedule

employees ’ vacation so as to spread vacations as evenly as possible

over vacation planning period .

The idea of using an automated (co~nnut erized) manpo~-ier sche du linq

system is not new . However , the materialization of such a system is

slow because manpower schedulin g problems are complex , and the develop-

ment of innovative mathematical models and algorithms is still in its

infant stage. Undoubtedly, with increase interest generated by dis-

coveries on the part of Operations Research scientists and greater aware-

ness of managers in the advantages of using an automated system , man-

power scheduling will rank as one of the most promisin q candidates for

improving operations efficiency .

1.2 Research _Objective

This research arises as a result of a contract with the U.S. Army

Natick Labs~to study and develop manpower scheduling algorithms which

would efficiently schedule food service workers at military installations.

The objective of this research is to provide a rnanaqer with an

automated (computerized) program for scheduling manpower. At the present

time , the scheduling of food service workers at a military installation

is accomplished manually by each of the dining hall stewards. The num-

ber of workers to be scheduled at a given dining facility ranges from

12 to 125 depending upon the number of customers and hours of operation.

Some of the benefits to be realized by implementation of an auto-

mated scheduling system are expected to include: 

-~~~~~- -~~~~~~. 
. .
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(a) saving of time spent by the manager to create a schedule ,

(b) saving in labor cost due to a more efficient schedule ,

(c) improved emp loyee morole due to a fairer and more efficient

schedule , ~~
(d) better customer service because employees are work inq in the

right place at the ri~ h~ t ime .

•1 j 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



—- ~c-~- 7 =.. __ .~~_; - - - .— . . - - .-. ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ — -

-4-

Chapter 2

Literature_Review

f’ an~owe r Schedul ~ ng Ov c rv icw

Manpower Schedulin g can be viewed as a subset of Manpower Planning ,

which includes manpower forecasting , selection and placement of person-

nel , production and maintenance of human capacities [18]. Manpower

Scheduling can also be viewed as a subset of Scheduling which includes

scheduling machines or jobs in a job shop environment [12], the

scheduling of capital funds or cash in and outflows in a business enter-

prise [25], or the scheduling of mater ? als and parts in a production

plant [15]. A great amount of Literature including texts have been

devoted to the topics of flanpower Planning and Scheduling e.g. [7,8,

24,25]. This review here w ill confine itself to the topic of manpower

scheduling.

Manpower Scheduling problems are not confi ned to service operations

and arise in many different environments and situations. For the purpose

of discussion it is convenient to dhide manpower scheduling problems

into the following categories :

(a) Assignment Problems - In many business organizations , there

often arises the problem of assigning workers to jobs so as to minimize

the total cost/maximize the total efficiencies , given that the cost/

efficiency of each worker is different when assigned to different jobs.

Efficient network al gorithms have been used successfully in solving

the above problem . [10] 

~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~
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(b) Manufacturing - Many manpower scheduling problems exist in

Manufacturing Operations. One of the more wel l  known problems is the

balancing of the production /assembly line , where workers are assigned

to different work stations in order to create a balanced production

line. [15]

(c) Airlines — The flight crew scheduling problem can be described

as follows . Given the airline ’ s timetable , a large set of possible

crew rotations can be generated . Each crew rotation is a segment of

scheduled flight segments constituting a round trip — that is , a

sequence departing from and returning to one of the airline ’ s crew bases.

Each rotation must comply wi th all of the relevant federa l , company ,

and union regulations. The problem then is to select an optima l subset

of all flyable rotations. [3]

(d)  H o spi t a l s  - The principal work carried out in this area con-

cerned nurse scheduling in hospitals and physician assignments in out-

patient clinics. In the case of physicians scheduling , the problem con-

cerns the allocation of available resources in a manner which accomodates

patient demands while retaining a high degree of physician utilization

and satisfaction. [16] In nurse staffing , the problem concerns the

efficient matching of workers while service demands are placed upon

multiple work centers . The problem involves decisions relating to the

basic organization and design oLwork centers , the interrelations among

the type of staff at each center , the operation and control of the staff-

ing process , and the training of nurses , and the short term scheduling of

available staff to work centers . [1]
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(e) Service Operations — Since this is the subject of current

research , proble ms relating to this area will be described in the next

section .

2.2 Revi~i-: of ~~ ~ic~ SJr ~’ u ~n~~~~~~c e O per~t ior s

There are several types of manpower sch cdu linq problems . The lit-

erature reveals three general types of manpower schedulin g problems in

service operations. Problem type I , [5,17 ,23,26,30] involves allocating

employees to fluctuating daily manpower requirements such that each

employee has a certain days-off pattern , eg., tiio consecutive days off

each week. A typical model is shown below :

7
Mm ~ x

j =

st x1 + x 4 + x 5 + x 6 + x 7 >

x1 + x 2 + x 5 + x 6 + x 7 > R~

x1 + x 2 + x 3 + x 6 + x 7 > R3

x1 + x 2 + x 3 + x 4 - 

+ x 7 > R~ ( 1 )

x1 + X 2 + x 3 + x 4 + x 5 > R5

x2 + x 3 + x 4 + x 5 + x 6 > R6

x3 + x 4 + x 5 + x 6 + x 7 R7

where x~ = number of employees with days-off pattern j.

x~ > 0 and integer , j = 1 ,... ,7.

R
~ 

= minimum number of employees required for day i.



Tib rawa la , et al , [30] and [
~ ker [5] have both developed eff ic ient

al gori t hws which so lve (1) , o i thout rely ing on 1 nteqer Pro wnm i ri~
However , their al qori Lhn!s f~ii 1 to w ork for more compi i cat ed 1r01 1 ins

such ~s Problem type II and III described bel ow.

Probi t o re  !j [1 ~Ce~’fl tee al l c~:,: ti or of e~. l  U) L~~5

different shi ft pat t c i~ (that is , d~f ’ erent patterns of w crk i nq  hours )

to meet manpower requi re rnants whi ch change throughout a workin g day .

Essentially , the mathematical formulation is similar to problem type I,

except that shift patterns are generally quite different from days-off

patterns. A typical model is shown below :

Mm ~ ~~~
3

St ~~~~ > R~ i = 1 ,. .. ,m (2)

x~ ~ 0 and integer

where 
~~ 

= 1 if shift pattern j requires an emp l oyee to be working

during period i.

0 otherwise.

m = number of periods (eg. , hours ) in a working day .

Rm = minimum manpower requirements for ith period .

X~ = number of employees in shift pattern j .
C~ = cost of one employee in shift pattern j.

Problems where the shift patterns consist of only contiguous

periods , can be formulated as a transshipment problem [10]. However , for

problems involving shift patterns which are sp lit shifts (i.e., conti-

guous working periods followed by a rest period and then followed by

- 
.

-~~~~-~~~.------ ,
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contiguous work ing per iods),  an integer program approach is required

un less the number of workers is so large that fractional ans wers can

be rounded up or down wi th no apprec iable loss of accuracy .

Segal [27] used a transshipment algorithm as a first approximation

to his proble m of schedu!i r ig te lephone operators to ideal shif t  patt or ns

(t,hi ch are spl i t  shi fts ) so as to sat isfy minimum quarter—hourly man-

power requirements throughout the working day . Fitting his aporoxim ate

sol ition to the ideal shift patterns , he then moved excess workers to

deficient periods. This he accomplished by means of another network

formulation. His method is reported to provide good , but not necessarily

the optima l, schedules.

Problem type III is essentially a combination of Problem type I and

II. Here the task is to allocate employees to different shift and days-

off patterns such that the fluctuating manpower requirement for each

period of each day of the week is satisfied . For any realistic proble m ,

the integer programming formulation for Problem type Ill is usually very

large , so individuals such as Smith [283 and Luce [21] have developed

heuristic algorithms which give good but not necessarily optimal solu-

tions.

Smith ’s algorithm [28], consists essentially of 2—phases . Phase 1

solves for the optima l manpower schedule for each day of the week wi th-

out considering days-off pattern. In phase 2, the phase 1 solutions are

joined up using the Tibrawala ’s algorithm. In joining up the solutions ,

several heuristic rules were fol l owed . The solution obtained was reported

to be good.



-~~ —
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3.1 Proble~jype I

Problem Ty pe I iir~’o1 w s ci locati n’~ cmpl ~yees to f luctuat ing dail y

manpo~,’e ’ requirements oaTh tea t  each C~~ UyC- e 
~ 0001  ~i0~ davs —n~f

pattern . As presented in Section 2. i ,( 1) ,  involves days off pa t t e rns

where each employee is given two consecutive days off each week. However ,

the formulation can easily be modified to handle the situation where the

days off need not be consecutive. Since there are 7 C2 combinations oF

2 days off out of 7 days in a week the number of variables increases to

21 rather than 7.

21

Miii ~ X~j

j = 1

St 21
E A . x. > R (3)

j = 1  ~

x3 
> 0 and integers

where R = (R1, R,,,...R,)T
I. L. / 7

A
3
= 
~~~ ~~~~~~~~ ~~ = 0 or 1 and E a~ 5 for j=1... , 21

Very often , many business organizations have manpower requirements

which are essentially the same for week days (M-F) but different for week-

ends (Sa-Su). (For example , food service operations in military installations).

If employees are allowed two consecutive days off per week , (1) can then be

simplified by reducing the number of variables to 4 days off patterns .
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In the fol l owing figure assume that the manpower requirements for

a week are symmetrical about the weekends. The days off paterns are

identified by their distance from the weekends , and are represented by

enclosed boxes.
,Pattern2(x ?)~~~attern 4_ (x4) Pattern 2 (x2)

i iu E E ’ j j~~~H _ _ _  

T F

Pattern 1 (x 1) Pa’~ttern 3 (x 3) ~~ttern 3 (x 3)’~~attenn 1 (x 1)

The formulation becomes :

4
Mm ~ x.3

j = 1

St. x2 + x3 + x4 ~~~

x1 + + 2x3 + 2x4 > RTU ~ 
TTh

2x 1 + x2 + x3 
-f- 2x4 > + RE (4)

2x 1 +2x2 + x3 > R5a + ‘R5

X~ > 0 and integer

where ‘Nümber of empl oyees with days-off pattern j

R~ = Manpower requirements for day i

i = M, Tu , W , Th , F, Sa, Su

Similarly, if employees are allowed two days off per week , not

necessarily consecutive , (2) can then be simplified by reducing the number

of variab l es to 3 days-off patterns as follows .

let x1 = Number of employees with pattern 1 (2 weekend days off)

x2 
= Number of employees with pattern 2 (1 weekend day and 1 weekday off)

x3 = Number of employees with pattern 3 (2 weekdays off)

The formulation becomes :

.

~

. .~~~~~~~~~~~ ,. .  
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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3
Mm E x .

3
j = 1

- 

- St 5x1 + 4x2 + 3x3 > R 1 + R10 + R + R~ +

x2 + 2x~ > R + (5)

Each cl ~ha ~~~~~~~~~~ (.~ ) * ( 2 ) ,  (3 ’ , ( a ) , ~~ (~) ~~ ~~•
-
~ ~~i -,~~~ ; 

~~
,

integer program al gori thms .

3.2 Prob j~p~jI

3.2.1 Problem Descr~~tion

Problem Type II involved the allocation of employees with different

shift patterns to period by period manpower requirements throughout a

worki ng day . (2) in Section 2.2 is a typical model . It was noted there

that for probl ems i nvolving shift patterns which are split shifts , an

integer program code is necessary to solve the problem whereas , for

problems involving shift patterns coiisisting of contiguous periods , the

probl em can be formulated as a transshipment problem .

Now , consider the following problem involving both contiguous and

sp lit shift patterns .

Let C~ = cost of one employee working contiguous shift pattern j

f~ = cost of one employee working split shift pattern j

x,~ 
= number of employees working conti guous shift pattern j

y~ = number of employees working split shift pattern .1

= slack variable for equation (period ) k , k = 1, 2,..., number of periods

Rk 
= manpower requirements for period k. - . 

, .. - --— -—-.--- . .
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The formulation of Problem Type II can be written as

Mm ~: C .x . + ~ f . y .

x x, x~ :~, >:~ x- “ “, v~. s~ s. ~ .. s2 .3 ‘-: o U i ’ ? ~~~ I ~ ~ ft ~) e 7

1 0 0 0 0 1 -ì 0 0 0 0 0 0~ - k - ~ ~~~~~~

1 1 1 0 1 1 1 0 1 0-1 0 0 0 0 0 = R 2 (ii)

1 1 1 1 1 1 0 0 1 0 0-1 0 0 0 O = R 3 (iii)

1 1 1 1 0 1  1 0 1  0 0 0 — 1 0 0 0 = R 4 (iv) (6a)

0 1 1 1 0 1  1 1 0  0 0 0 0 - i O 0 = R 5 (v)

O 0 1 1 0 1 1 1 0 0 0 0 0 0- 1 0 = R 6 (vi)

0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 —1 = R7 (vii)

If we subtract equation (i-i) from (j), for j=(ii) to (vii) and if we

substract from c-~uct ic :  (i) an d equation (vii) f r om 0, then we

obtain

1 0 0 0 1 0 1 1 1 -1 0 0 0 0 0 O = R 1
0 1 1 0 0 1  0-1 0 l - l 0 0 0 0 0 = R 2 - R 1
0 0 0 1  0 0 - 1  0 0  0 1 - 1 0 0 0  0 = R 3 - R 2
0 0 0 0 - 1 0 1 0 0  0 0 1 - 1  0 0  0 = R 4 - R 3
- l 0 0 0 0 u  0 1 - 1  0 0 0 1 - 1 0 0 = R 5 - R 4 (6b)

0-1 0 0 0 0  0 0 0  0 0 0 0 1 - 1  0 = R 6 - R 5
ii 0 0 - 1 0 0 0 - 1 0 1  0 0 0 0 0 l - 1 = R 7 - R 6

0 0 0 - 1 0-1 0- 1 -1 0 0 0 0 0 0 1 = - R 7

Defining matrices as expressed by the partitions above , (6b) can

be written as

_ _ _ _  _ _ _ _ _ _ _ _ _  _ _ _
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(A1 IF IA
2) X R or (A1~A2),X + FY = R

(Y)
S

Notice that every co lLJ ~r ~ (P1~A2) has only one positive 1 and one

rte at iv a 1. This srci~.sLs thca i F F ~~[ O ) ,  ~ 
1 ;~ 2) (~ ) R 1: a tran~-

shipeo rit pro ’l a~ . k~ oi c’a ales that :: F 0 , whi c.h su~~r.~ ts tha.  the
i 1

supply is equal to the demand in the transshipmen t problem , provided

(A1 IA 2) (-~-) = R is consistent. One can represent the transshipment

problem as a network by dividing R~ into 3 sets G-~ G0~ G~

G- {R1 <O}

= 0}

- 
{R1 > 0).

Using transshipm ent problem terminology G..is associated with demand nodes

is associated with intermedicte

stocking houses nodes .

is associated with supplying nodes.

The transshipment problem can be represented by the fol lowi ng network:

~~~

[

x 2

x1~

x6

~~

L
<~~~~~~~~~~~~~~~ .

_ __ _ __ _ __ _ __ __ _ __ _ __ _ __ _ _  4
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Where node i equals the beginning of working period i.

When F ~ [0] , we have the following problem :

Miii CX + fy

st. (A 1 I A ~ ) (
~

- ) i-V R

X > 0 Y > 0 and integer vectors -
The original problem (6~) has been partitioned into 2 sets. The first

set of variables (XIS) are those associated with the trarsshi pment

prob lem , and the second set (Y) with an integer program. The literature

[11 ,13] reports successful attempts in solving problems having the above

s t ructure  by means of the Benders Partitioning Method [6]. Using

Bender ’s terminology , when Y is fixed , the linear sub-problem (trans-

shipment problem) becomes :

Miii Cx + fy

St. (A’1A
2) (. .) = (~-FV) = 

~~~~~~~~~ (6d)

Notice that the colu mns in F cons ist of equa l numbers of positive and
8 ,.

negative l ’s. Therefore E = 0, i.e. the supply is equal to the
1 = 1

demand in the linear sub-problem , provided that the linear sub-problem is

consistent.

I 
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3.2.2 Motivat i -n and Backqround

Bender ’s al go~ithni utilized to solve (6a) evolved from the work of

[ 6 ]  and 110] and is founded on the n .:tu, 1 ly app ea l ing ide a of fixing

y = c C , so lve a sub-problem to generate a ~~, fix u = j~ and then solve

another problem to obta in a new y.  Conti nuation of this type of s o la t i cu

a i  lca~ us to ~ ol va a secies of mai :aqeabi a sub - prabl aim wh ch

yield feasible solutions to the overall system . As is true with .:cny

partitioning techniques , duality results are instrumental in guaranteeing

convergence to optimality as wel l as providing upper and l ower bounds on

the objective value- -the bounds being very informative when the procedure

is terminated before the optimal solution is attained .

Before a step-by-step statement of the algorithm is presented , let

us inspect the orig inal problem (6a), called it Problem “P’ .

Miii cx + fy

s.t. Ax + F y > R

x>0 yeG where G= (set of integers)

On fixing y=~7eG , we are left with the fol l owing linear sub-problem ,

p(~7), (transshipment problem).

Mm 0(x, ~7) = c~’. + f~7

St Ax > R-F~
7

x > O

The dual to the linear sub-problem D(~F) is:

Max ~ (~7,u) = (b-F~7) u + f~7

St u A < c

U ~~
An important property of problem DC~) is that its solution space is

independent of ~~~ . It will be seen shortly that this allows us to successively

generate ~‘s without duplication and to obtain a lower bound on the objective

~

-
-- ~~~~~~. -.
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value of “P” .

Let ~~~ be an optimal ~rlut ion lo “ P. f:~ .n!~I the theory of duali y [1 9]

there exists an op l i tia l e~1u t ier In )(y) ouee t~o-~ ~ 
(y, o) = r~ (x ,y).

Furthermore, if we asslaiie That y is such that p (~’) is consist ent ,
C 

~~~~ (~7,u) -~~ ,u) ~(y,~) ~o a are r )~ i iU1 eolu~int

to P(y) aai 0(y) res,:-~ t~.a la . Thj , t - ,’ ~i: in~ ,- G ar’1 aL l - ~ie-: J r(~~, ~~~
-

D(y ) , an ppar bourd on the optimal oejec t v r ~ ~‘dl er is obta ined , cnd , Si fl CC

U is feasible for D(y) regardless of the value of y, by minimizing ~ (y,ii)

over yeG , a l ower bound is obtained . These observations lay the foundation

for an algorithm to sol ve “P’ . However , the iterative process w h i c h  appears

to be forming breaks down when P(~) is inconsistent. In most other

applications of Bender ’s algorithm , a well -known theorem of alternati ve

known as Farkas ’ Lemma [19] is used to eliminate the y ’ s which fall into

this category . However , in the case of the present application , P(~),

being a transshipment problem , is  ~rconsisteut only when a non-existent

route appears in the optima l solut ian. Based on most network algori thn~s ,

this will be refl ected as a hi gh cost in the objective function of P(y~ ,

and assuming that the original problem “P’ is consistent , the inconsistency

i n P(~7) will resolve itsel f as the algorithm proceeds.

3.2.3 Statement of Algori thm

An iterative procedure based on the preceding results is given below :

Step 1. Initialize the following. Set 7 = 0, the upper and l ower bounds on

the optima J objective value of “P” , UB=--~ and L13=- -~ . The number of

linear sub-problems solved with a finite optimal solution , ks=O.

Step 2. Solve P(~) and obtain the optima l dual variables u.

Step 3. If O(i,~) < UB , let UB = ~~~~~ Let ks = ks + I arid ~
ks 

=

Step 4. So lve the following master problem (MP)

~~~L.
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Minimize z

St z < ~ (y,u
1 ), j 1,2 ,..., ks

yeG

If ks=0 , i = - -  and constraint set of (MP) is omitted .

Step 5. Let (~
[,~) La ouc op t i~rrl solution to (NP). Put 13 = . I I  LB U B ,

terminate the algorith i ’ , otherw ise go to step 2.

3.3 Problem jype lIt

3.3.1 Problem Descript io

Problem Type III is essentially a combination of probl em type I and

II. Here the problem is to allocate employees to different shift and

days-off patterns such that the fluctuating manpower requirement for each

peri od of each day of the week is satisfied. Several versions of the schedul-

ing probl em are described below.

Case Ill -A

(Al ) The objective is to min imi ze the cost of employees .

(A2) The hour-by-hour manpower requirements for each day of the wL~ k cycle

must be met.

(A3) Each empl oyee works five consecutive days and is given two consecutive

days off per week.

(A4) An employee can work one shift one day and another shift on another day .

(AS) The number of hours in each working day is no longer than sixteen hours ,

so that every employee is given at least eight hours of break before

working again.

~
A6) A full time shift is a shift of eight consecutive hours work .

(A7) A part time shift is a shift of four consecutive hours work .

(A8) A full time employee is one who works only in full time shifts .

Similarly, a part time employee is one who works only in part

time shifts . 



(Ag ) Except for the last seven hours of any working 
day , there exists one

full time shift beg inning at every hour. Simila rly, except fol the

last three hours of any wor king day , there exists 
one part time

shift beg inning at every hour.

(Alu) cost of an employee depends on whether s/he is a full time or

a part time ciiployee and does not depend on the shifts s/he is assigned

to on each day. The cost of each full time employee is the same and

the cost of each part time employee is also the same . The cost of

one full time employee can be greater or less than the cost of two

part time employees .

(All) Each hour has at least one full time employee on duty .

Relaxations or modifications to the above conditions will be discussed

in Section 3.3.4.

Case Ill-B

Same as Case Ill-A except that weekdays manpower requirement is the

same but different from weekend requirements .

Case Il l-C

Same as Case Ill-A except that each employee is given 2 days off,

not necessarily consecCitive , each week.

Case III-D

Same as Case Ill-C except that the weekday manpower requirement is

the same but different from weekend requirements .

Case III-E

Same as Case Ill-A except that a part time shift is 5 consecutive

hours work.

L - ~~ -~~~~~~ 
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The integer program formulation of the problem based on Case Ill-A

conditions is fi rst presented . Two formulations are given . A new 2-phase

al gorithm is then presented based on all 5 cases . Lastly, extension of

the 2—phase al gorithm to multiple shift patterns is presented .

3.3.1.1. Formulation I

qF F F qP
Minimize 1 C S. + X C~ S.~j=1 j=1

Subject to

(IP1-a) 
j!1 

6
ijk s~

F 
+ .~: 

6ijk s~ ~ 
R1~ for i=1 ,.. . ,7 (lPl)

k=1 ,...

( IP1-b) E > 1 and E s. F 
> 1 for i=1 7 

- -

• 1  • 1

‘~~~~ ii s) C j q F

(lPl-c) S~ > 0 , S~~ > 0 and integers for all j .

where ,
= cost of one fulltime (FT) employee .

F = number of FT employees working in shift/days-off pattern ,j.
3

QF = number of FT shift/days-off patterns.

6~ .k
F 

= 1 if FT employee working in shift/days-off pattern j  works
during period k on day i .

0 otherwise.

C~ = cost of one part tiiiic (Pr) employee

s p = nutisber of PT emp l oyees working in shift/days-off pattern j.
j

QP 
= number of PT shift/days-off patterns

~i k  = 1 if PT emp loyee workinq in shift/days-off pattern j  works
during period k on day i .

0 otherwise

---

~

-

~

-- - -  
.
-- “— _

~~~
-

~~~~~~~~~~ - - -  
_
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Rik = minimum number of employees required during period k on day i

= number -of periods in working day i

= (shift/days off pattern j  l ernployee works on the first full time
shift pattern of day il 

-

F 
= (shift/days off pattern j  employee works on the last full timeq shift pattern of day i} -

Constraint set (IPl-a) ensures that the minimum requirements are satisfied .

Constraint set (IP1—b) ensures that on any period of the day , there is at

least one full time employee on duty .

Constraint set (IP1-c) ensures that all variables are non-negative and

integers .

For a typical problem where consecutive days-off patterns are

assumed , 
- 

-

mi = 16

QF = 
~ x (mi-7)5 = 7 x (9) 5 = 413 ,343

QP = n x(mi-3)5 = 7 x (13)5 = 2 ,599 ,051 .

giving 3,012 ,394 variables and 126 constraints. Notice that the number of

variables is huge.

3.3.1.2. Formulation II

Minimize CF ~ x F 
+ X

g=l g g=l ~

Subject to: qF qP

( 1P2- a)  
j =l 

6 iJ k 5 ij + 

~~~~ 

6ijk ~~ ~ 
Rik k 1 ::::,

(1P2 -b) S~~ ~ 1

F i = l ,..., 7
Sjq F ~ 1 (1P2)
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7 F F qF F
(1P2-c) ~ 

- Pig x = S . .

g l g j=l 13

I = 1 ,..., 7

7 P p qF

~ 0ig X = 
~ S . .

g l g j=l 13

(1P2-d) s 1~
F , s 1~” Xg

F Xg~ 0 and integer for all I , j ,  q

qF = number of fulltime shift patterns

qP = number of part time shift patterns

Xg
F 

= number of full time emp l oyees having days off pattern 
~

pjg F = 1 if full time emp loyee with days off pattern q works on day i -

0 otherwise

Pig ” = 1 if part time emp l oyee with days off pattern g works on day i

0 otherwise

= cost of a full time employee

C~ = cost of a part time employee

= number of full time emp l oyees working in shift j  on day i

~~~ = .~umber of part time employees working in shift j  on day i

Rik = m inimum number of employees required on hour k of day i

= number of periods in working day i
F

= I if full time employee works during period k in working shift
13 pattern j  on day I

0 otherwise
p

L -
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6ijk = 1 if part time employee works during period k in working shift
pattern j  on day i

0 otherwise

Constraint set (1P2-a) ensures that the minimum manpower requirements are

satisfied.

Constraint set (IP2-b) ensures that on any period of any day , there is

at least one full time employee on duty .

Constraint set (1P2-c) distributes the shift patterns of the seven days

to different days off patterns.

Constraint set (1P2-d) ensures that all variables are non—negative and

integers . 
-

For the same problem as discussed in Formulation I , where m 1 16 ,

qF = 
~ qP = 13 , there are 140 constraints and 168 variables.

If we double the number of work periods (say each period = 1/2 hour)

then m~ = 32, qF = 18 , qH = 26 yielding 252 constraints and 322 variables .

Integer program codes suitable for handling problems of these mag-

nitudes , although available in the market , are nevertheless costly to pur-

chase as well as to run them. Also , large computers are necessary to run

such large problems . Since most organizations have small computers , and

attempt is made here to decompose the problem into several smaller problems .

The next section proposes an algorithm to solve the problem by decomposing

the problem into two phases , each phase consistin q of smaller integer pro-

grams . 
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3.3.2 2-Phase Algorithm Based on Case Ill -A Cond itions

In this section , a procedure is developed to solve Problem type III

based on Case Ill -A conditions. The other cases w i l l  be presented in

subsequent sections. The procedure inv olves 2 phases . Phase 1 consists

of solving for the optima l schedule for each day of the week. Phase 2

will then connect up the optimal solutions obtained from Phase I by

allowing days off for each employee. The motivation behind this 2 phase

procedure is the fact that 2 consecutive part time (PT ) shi f ts can replace

1 full time (FT) shift and vice versa. Als o I full time shift can replace

1 PT s h i f t  if  necessary .

Phase 1: - -

In Phase 1 , the optimal solution for every day of the week is obtained

using the integer program below , (one problem for each day , 7 problems

altogether). In the first phase , a solution is desired such that if two

• consecutive PT shifts appear in the optima l solution , they will appear

as one corresponding FT shift. This can be done by costin g PT emp l oyees

sli ghtly more than 1/2 the cost of a FT employee , i.e., (C~ 1i2c F 
+

where ~ is an arbitrarily small number. By moving all consecutive PT

shifts to their corresponding FT shift in Phase 1 , it becomes only necessary

to consider replacing one FT shift with two consecutive PT shifts in Phase

2. The Phase 1 formulation for day i is similar to (2).
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~~qF F ~~qPM i n i m i z e  C E S~, + C z S
f = 1  ‘ g = 1  g

Subject to (7a) 
~ ~~ 

~kf Sf + 
g ~~ 

~kg
Sg ~ 

Rk for k

(7b) s1
F > 1 (7c) Sf > 0 and integers for f =

Sq~ > 1 S
9~ 

> 0 and integers for f =

Where = cost of 1 FT employee

= number of FT employee in ~FT shift f.

C~ = cost of 1 PT employee .

Sg~ = number of PT employee in .PT shift g.

qF 
= number of FT shift patterns..

qP 
= number of PT shift patterns .

F — 

1 if FT employee works during period k in FT shift pattern f.
‘~ kf 0 otherwise.

F — 

1 if PT employee works during period k in PT shift pattern g.
‘
~ kg 0 otherwise.

Rk = Minimum number of employees required during period k .
= number of periods in working day i

Constraint Set (7a ) ensures that the minimum manpower requirements for

each hour are satisfied.

Constraint Set (7b) ensures that during any period of the day , there is

at least one full time employee on duty.

_ _ _
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Constrai nt Set (7c) ensures that all variables are non -negative and

in tegers. Since the shift pa tterns are contiguous , problem (7) can be

formulated as a transshipment problem discu ssed in Section 3.2. If the

shift patterns were not contiguous , (7) would have to be solved using

in teger programming . Let us assume that the solution obtain ed is as

follows :

q F*E S
~ 

= a j
f = l

Pq
E S =~~i -

g = l  g

Since the length of a FT shift is twi ce that of a PT shift , 
-

Solution = czl FT + Bj PT

= (2a~ + ~
) PT equivalents

We know that this is the best (i.e., least cost) schedule we can

obtain for each particular day i.

Phase 2:

In Phase 2, the seven optimal solutions for each day of the week

are connecte d by another integer program. In this formulation , we have

to ma ke sure that each employee is given two consecutive days off per

week. Also , two repl acement possi b ili ties have to be represented in the

formulation : replacing one FT wi th two consecutive PT shifts and replacing

one PT by one FT shift. The other po ssibility , that of replacing two

consecutive PT shifts by one FT shift do not need to be considered because

by costing PT employees slig htly more than 1/2 the cost of a FT employee

in Phase 1 , all consecutive PT shift s are moved to their corres ponding

FT shift. 

- • —~~~—-- •- 5— — •- - —4
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M inimize z x . + C~ z y.
Subject to: 3 1 ~ j  = 1 ~

x1 x4 + x 5 + x6 + x 7 -F1 -Q1 = 0

x1 + x2 x5 + x6 + -F2 ~~2 
= 0

x1 + x2 + x3 x6 + x7 -F3 Q3 = 0

(8a ) x1 + x2 + x3 + x4 x7 -F4 -Q4 = 0

x1 + + x3 + x4 + x5 -F5 -Q 5 = 0

X2 + X 3 + x 4 + X 5 + x 6 -F6 -Q 6 = 0

x 3 + x 4 + x 5 + x 6 + x 7 -F7 -Q 7 = o
(8)

+ y 5 + y6 + y7 -P 1 +Q 1 = 0

y 1 + y2 y5 + + -P2 +Q2 = 0

yl + + y6 + y7 -P3 +Q 3 = 0 •

(8b) y1 + y2 + y3 + y4 y7 ~P4 +Q 4 = 0

+ y2 + + + -P 5 +Q
5 

= 0

+ y 3 + y4 + y 5 + y6 -P5 +Q6 = 0

y3 + y4 + y5 + + y 7 -P7 
+

~~~~~

= 0

(8c ) 2F1 + P. > 2a. + for i = 1 ,.. .7

(8d ) -y~ < F
~ 

< 
~~~

. for i = 1

(8e) x ,j > 0 , y3 > O , F~ > 0 , P.~ > 0 , 
~ 

> 0  and integers for i = l ,..,7 j  = l ,...,7

L 

Where -~i = minimum number of FT for any day i. For m
~ ~ 

8, y.~ = 1; for

8 m 1 < 16; y,=2 to ensure that a FT employee is working every

hour of the day. -

_________________________________________  —a
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x~ = number of full-time employees whose days off pattern is i.

F 1 = number of full—t ime employees required on day i , not counti ng those

crea ted from PT.

y
3 = number of part-time employees whose days off pattern is j .

= number of part—t ime employees required on day i, not counting those

conver ted to FT.

= number of full time employees required on day i , who are created

from equal number of PT (where 1 PT is replaced by 1 Fl)

Constraint (8c) shows that (2a 1 + ~
) PT equiva l ents is the minimum manpower

wnich will fleet the demand on the itfl day .

Constraint (8a) and (8b) specify the days off patterns. Also, constraint

(8b) allows a PT shift to become a FT shift and so is removed from (8b)

and added on to (Ba). This flexibility to allow a PT shift to become a

FT shift is built in to allow some PT shifts to join up with FT shifts if

that creates a better schedule. Constraint (8d) ensures that for any day

I , the number of FT shifts must be greater than but not greater than

• aj.

Rewriting (8) in a more convenient form yields
F7Minimize C ~ x . + C z y.

Subject to: i = 1 ~ j  = 1 ~
• 7

St (9a) z A.x . — F — Q = 0
j = l  ~~

• (9b) E A !j~~~
P + Q = 0  (9)

(9c) 2F + P > 2 a  + B

(9d) y < F  < a

(9e) X > 0, V > 0, F > 0, P > 0, Q > 0 are integer vectors

and ~~~, 8 , a are a ll vectors correspond ing to (8)

___________________________________ —4



is the column vector associa ted wi th the days off patt ern j ,  and is

consistent wi th the column vector used in (1).

Solution Schedu l e:

x)’s and ~~s are the optima l number of FT and PT employees. They

will cover the daily requir ements as indica ted by the sched ule obtained

in phase 1. Obtaining actual manpower assignm erts is a straight-forward

but cumbersome process which is best explained by a flow chart as shown

in figu re 1.

~

--

~

-•- - - --- . -- - - - . • —  - - -5-
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Fi gure 1

Macro - Flow Chart Showing How Final Optimal Schedule Is
Created From Phase 1 and 2 Solu tions

tart

Input

Pha se 1 and 2
Inte er Pro rams

negative Full Time Scheduling posit iveFi + Q i ) - a i

10 Phase 1 FT Schedules
4, 

is less than Phase 2

Phase 1 FT Phase 1 FT Schedui~~Schedule is is covered exactly
greater than by Phase 2
Phase 2 

____________

f I s  there a P T ]____ -
j Schedu le in Phase

_ _ _ _ _  

yes~, ~,no
I i ~ + 1 

For each excess Ft~] For each deficient 1fF~ each lcreate 2 corresponding Fl, replace a PT in Ildeficient IPT , and .add on to the Phase 1 , to become aJ IFT , createj
Phase 1 PT Schedule FT. Phase I PT I~~jiew FrJ

Schedule is less one Jemployee

days considered~ —4 -4
NO ~~~j yes

Part Time Scheduling JI (P1 - Q-j ) - (
~~~

. j 
~.) 

negative
where ~~

. is modi~ icat~on
[~jte to u~ieven FT Scheduling _____________________

j  0 ~Phase 1 PT Schedule
I Phase .1 PT Schedule is 5-} Lis less than Phase 2
Lcovered exactly by Phase 

~ I i—— 
p

4 For each deficient PT,lfrint Optima l Schedui~]-.4- [create a new PT

L - - 

- 
—

~~~~
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3.3.3 Prob l em Sizes

The 2-phase algori thm exploits the structure of the scheduling problem.

For a problem involving 7 days , 16 working hours a day , Phase 1 consists

of seven integer programs (Problem (7)), each having 22 v a r i a b l e s  and 18

constraints . Phase 2 consists of problem (8) which has 35 variables and

35 c o n s t r a i n t s  for wh ich  14 are upper/ l ower bounds on variables . Notice

that all the prob l ems are small , involving not more than 35 constraints .

There are many advantages in having to solve seven much smaller integer

programs rather than one huge one. Some of the advantages are :

(a) saving in computer memory storage

(b) saving in computer running times

(c) a small computer can be used .

3.3.4. Discussion of Case Ill -A Conditio ns

This section is devoted to dis cussing how the 2-phase algorithm is

affected when the conditions of Case Ill -A are modified for type III

problems .

Condition (
~.L)

The minimization of cost is usually accentable to most organizations

provided that certain constraints are met.

Condition ~~~
The hour-by-hour manpower requirements can be modi fied to half hourly

or even quarter hourly requirements .

Condition i~
i)

Any kind of days off patterns can be represented in the formulat ion

of the Phase 2 problem (eg . see Sect ion 3.3.6. ,  Case ill -C)
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Condition (A4 )

For service operations , the flexibili ty to allow an employee to work

one shift on one day and another shift on another day is usually acceptable.

When creating the final optim al Schedule from Phase 1 and 2 solutions , one

can assign emp loyees to shifts which are as close as Dossib le on different

days , but does not guarantee that the same shift is assigned on d i f f e r e n t

days .

Condition ()~~
If the number of hours in each working day is greater than sixteen

hours , then the condition that a break of at least eight hours before work-

ing again is not guaranteed . If the working day is twenty—four hours , a

new problem type IV arises , as discussed in Section 3-4. -

Condition (A6) and (Al)

Split shifts can be hand l ed by the 2-ohase algorithm .

A split -shift is any non-contiguous shift pattern. Since the number

of split shifts is large and since many are not reasonable from an

employee ’s point of view , several assumptions have to be made when develop-

ing an algorithm and programming a comDuter code.

• A split -shift has only one break of up to four hours

• Any full time shift (split or contiguous) which can possibly encompass

• a part-time sD li t shift , and therefore , be a feasible reolaceinent for

i t , is a valid full time shift.

When a full-time shift is not an integral multiple of a oart time shift

the 2— ohase algori thm can be modified as shown in Section 3.3.8 , Case iII-E .

When rnul ti ole shifts , i.e. three or more tyoes of shif ts of different lengths

are involved , the 2-phase algorithm becomes complicated as shown in ~ .tion 3.3.9.
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Condition (A:

It is generall y ~cceptable to have full time employees work i ng in full

time shifts only .ind Dart time emolovees working in part time ~‘~ifts only .

Conditi on (Ag)

I-f certain s ift patterns are undesirable , one could cosi tiese shift

patterns many ti ~s riore than the cost of the desirable shift o~tterns .

However, the phase 2 problem is blind to the fact that certain shift pat-

terns are undesirable , and so may oroduce an “optimal ’ schedule i nvo 1 vinc :

‘iidesi ~’able ~~
-iif ~~

, j ? using them utilizes less manoower . Unc~ r~t -l-? shift

pat terns will not be in the solution if full time shifts and their corres-

ponding part time shifts are removed simultaneously. Also , the algorithm

can search among existing shift patterns and choose only the desirable

shift patterns to be included in the final schedule. This can happen in

three instances:

(a) Phase 2 requires some of the FT shifts to become two PT shifts .

We assume that all the FT shifts in Phase 1 solution are desire-

able shifts (this assumption is reasonable unless user specified

too ma.iy sl,ifts as undersirable , so that a feasible silution

must cor,sist of an undesirable shift). The algorithm has to

search for those FT shifts in Phase 1 solution which can be

broken up into two desirable PT shifts . Although unlikely, the

se~ -ch nay not be successful , in which case , an undes rable shift

has to appear in the final schedule. The user should be notified

wi th an appropriate message.

L - - - 5 - 5 - -- - - - - - - - - -~~~~ -~~~~~~~~~
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(b) Phase 2 requires some of the PT shifts to become FT shifts . Again

we assume that all the PT shifts in Phase 1 solution are desirable

shifts . The algori thm has to search for a PT shift which can be

replaced by a desirable FT shift. Al thoug h unlikely, the search

may not be successful , in which case an undesirable shift has to

appear in the final schedule. The user should be notified with

an appropriate message.

(c) Phase 2 requires a FT or PT shift to be created . The algorithm has

to choose among the desirable shift patterns.

Condition (Alo)

The cost differential between shift patterns of the same length is

usually small for most orqanizations .

Condition (All)

The condition to have at least one full time employee on duty at each

hour of the working day can be removed . Additional constraints like having

a desired ratio of full time employees to part time employees can also be

incorporated .

3.3.5 Case Ill -B Conditions

When the weekday requirements are essentially the same but different

from weekend requirements , the 2-phase algorithm can be outlined as follows :

.1



weekday and a weekend day (Two
problems.) Let the solution be (2ct1 + e~ ) PT equivalent s and for
weekday , and (2a 2 

+ 82) PT equivale nts and for weekend day .

Phase 2:

Consistent with the days off patterns as in (4), the Phase 2 formulation
has fewer varia bles and constraints than (8) or (9), Us i ng the compact form
as in (9), we have ,

Ii
4 4

Minimize x - + C ~ Y-j£1 
j  = 1  ~~ j = l  -

4
st. (iDa ) z A . x .  - F - Q = 0

-

-4
(lob) z A 1~~ - P ÷ Q = O

1

(lOc) 2F 1 + P 1 > 2c&l + 81 
(10)

2F~ ~ P 1 > 2 (2a1 
+ B1 ) for i = 2, 3

2F 4+ P4 > 2  (2a2 + B2 )

(lO d) Y
1 

< F 1 < a”

2Y1 < F ~~< 2cz1 f o r i = 2 ,3

2y6 
< F 4 < 2cz2

(lOe) X > 0, V > 0, F > 0, P > 0 , Q > 0 and integer vectors.
where Aj is the column vector associated wi th days off pattern j ,  and is

Consistent wi th the column vector used in (4).

—- -- -- - 
—-- ~ - - .-
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3.3.6 Case Ill -C

Phase 1.

Same as in Case 111-A -

Phase 2.

Consistent with (3), there are 7C2 = 21 days off patterns. The

formulation is same as (9 ), except that j  = l ,...21 and Aj is consistent

with (3)

3.3.7 Case III-D

Phase 1

Same as in Case Ill—B.

Phase 2

Consistent with (5), there are 3 days off patterns. The formulation is

as follows :
F3Minimize C z x . + C~z y.

j = l  ~ j = l  ~
3

st. (lla) E A . x .  — F - Q = 0
j = l  ~~

3
(ll b) E A . y .  - P + Q = 0

j  = 1 

1 1 ( 11)
(l lc) 2F 1 + P1 > 5(2 ct + B )

2~ + P 2 > 2(2a2 + 82)

(lld) 5 1 
< F 1 < 5a1

2 22y < F 2 < 2 a

( l l e )  X > 0, V > 0, F > 0, P > 0, Q > 0 and integer vector ;

where A~ is the column vector associated with days off pattern j ,  and is

consistent with the column vector used in (5).

—- 
-—-- --

~~~~~~~~~~~~~
- —- -5-~~~~~~~~~~~~~ — --- — - - - -~~~~~ -- -_—- ---— - — - - - - -—~~~~- 5---
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3.3.8 Case III-E

Case 111 - E provides an example of how the solution approach is

complicated when full time shift is not an integer multiple of a part

time shift. In the current formulation , we have allowed five-hour part

time shifts.

Phase 1: -

First , we need to establish the replacement rel ationships between

FT and PT shifts .

FT to PT Replacement:

(i) 1 FT can be replaced by 2 PT

PT to FT Replacement:

(ii) 1 PT can La replaced by 1 Fl; 2 consecutive PT can be replaced by

2 FT.

(iii ) 3 consecutive PT can be replaced by 2 FT. 
-

For al6 hour workday , on ly 3 basi c replacement relationship s are found.

(i) and (ii) are simi lar to that of Case Ill-A , so we only need to handle

(iii).

One way to handle (iii) is to include in the formulation of phase 1

shift patterns of three PT shifts totaling 15 working hours . For a 16

hour work day, there are only 4 such shifts :

• Break, 3 consecutive PT

1 PT , Brea k , 2 consecuti ve PT

2 consecuti ve PT, Brea k, 1 PT

3 consecuti ve PT, Break.

The cost of these shifts would be slightly less than the cost of 3 PT

employees, so that ,

_ 
- 
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= cost of one PT employee .

C~ = cost of one employee with 15 hour shift pattern = 3C~ - c.
F 8 P  

. 
—

C = cost of one FT empl oyee = C -

Formulate the probl em as in (2 ) .  Let the solution be as follows :

The number of FT employees equals czi

The number of PT employees equals 8i

The number of employees with 15 hour shift patterns equals F~~

Phase 2

Formulate the connecting problem as in ( 9 ) except for a few

modifications:
p7

Minimize C’~ 
x . + C ~ y.

i = i  ~ i~~ l ~
7

St. (12a) E ~~~ - F - Q - 2Z = 0
j = l

7
(l2b) ~ 4A3~~ - P + Q + 3 Z = Q

j  = 1 (12)

(12c) 2F + P > 2a + B + 3~

- (12d) - y < F < a

(1 2e) Z< ~~
X > 0, V > 0, F > 0 , P > 0 , Q > 0 , z > o , and are integer

vec tors and y, B, a are all vectors corresponding to their indexed

notations. Aj is the column vector associated with days off pattern j ,

and is consistent with the column vector used in (1).

Hote that if = 0 from phase 1 , then Z 1 = 0

where Z .~ = number of groups of employees of the 15 hour shift pattern

which are converted to FT employees. 
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3.3.9 2-Phase Algorithm Involving M ultiple Contiguous Shift Patterns

An attempt is made here to devise a more general 2-phase algorithm

based on Case (Ill-A) conditions , except that multiple contiguous shift

patterns of arbitrary lengths are allowed instead of just full -time and

part time shifts. The problem is difficult because a large number of

possibilities exist for replacing one shift /combination of shifts by ,other

shifts/combination of shifts which can satisfy demand for a span of time .

When only full time and half time shifts are considered , two half time

shifts can be replaced uniquely by a full time shift , or a full time shift

can be replaced by two half time shifts . When multip le shifts of arbitrary

lengths are involved , the number of replacement relationships is huge.

Some definitions of the terms to be used wi l l  be explained below .-

Efficient Replacement Relationship :

When multiple shift patterns are allowed , many replacement relation-

ships are possible. For example , any shift/combination of shifts can be

replaced by another shift/combination of shifts in any instance when the

span of working hours of the latter is longer than the former. However , in

any replacement relationship, there exist at least one which performs

the replacement in the most efficient way (i.e. with least excessive man-

hours). Such replacement relationships are termed “efficient” . In genera l ,

there can be several efficient replacement relationships in a given situ-

ation and it would be wasteful to include equivalent relationshi ps in a

mathematical model. Also , it would be redundant to include complex sets

of relationshi ps as individual alternatives in the model , when the model itself

could construct the replacement relationships by combinations of simple

- - - - - -- 5 5-~~~~~~~~—5 - —- 5 - 5 - — _  
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relationshi ps. We define these rep lacement relationships , which cannot

be formed by a combination of other efficient replacements as being “basic ” .

Determinin g Effici ent Replacement Relationships:

An approach for determining a set of basic efficient replacement

relationships is given for a problem involving three different shifts . This

approach can be generalized to handle any number of shifts but the process

becomes tedious and requires an exhaustive computer search.

Given shift S1 is l i hours and shift S2 is 1 2 hours , 1 1 > l 2~ 
Let

r be the smallest integer greater than 1 1/1 2. Then a basic efficient

replacement relationship of S
~ 

by S2 exists where r of ~2 
can replace S1 ;

or 1(s1 ) —~> r(S2) where => means can be replaced by. -

• If 2(51 )-- > 2r(S2), this replacement relationship is not basic

because it can be established by two cases of l(Si )~
> r(S2).

• 
- However , if 2(Si )~

—> p(S2) where p<2r , then the replacement

relationship is basic.

• If 3(S 1 )~-=> p(S 2 ) + r(S2) or 3(S1 )~-> p(S2), r(S2) or 3(S1 )=~
> (p + r)

this replacement relationship is not bas c because it can

be established through 2 ( S 1 ) — ~.p(S 2 ) and

• However , if 3(S1 )-- ->q(S 2) where q<p+r , then this replacement

relationship is basic.

• Consider another shift

Since shift S2 is shorter than S1 , i(s 2 ) 1(51 ). Let us assume

that 2 (S 2 ) -- ~ l(S 1). If 1(5 2 ), 1(S 3 ) ~~l(S 1), the replacement

relationship is basic.
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- 

• If 2(S2), i(S3) ‘-> 1(S1 ), the replacement relat ionshi p is also

basic.

• If 2(S2), 2(S3)’-~> 2(S1 ), that replacement relationship is not

basic because the replacement could be established through 2

cases of 2(S2) and l(S3)~ or 1(S2), i(S3) and 1(S2).

• If 1(S2), 2(S3)~> i(s 1), the replacement relationship is basic.

• If 1(S2), 2(S3)~--> 2(S1 ), that replacement relationshi p is not

basic.

To surmiarize , if an efficient replacement relationship is such that

it cannot be established through a coiiibinati on of simpler replacement -

relationships , then it is basic and need not be represented in the mathe-

matical model.

Joint Shifts

A joint shift is a combination of shifts , Examples of joint shifts

are 2(S
1
) or 1(S1 ) , l(S2) or 3(S3)~ 2(S1 ). The shifts formi ng the

joing shift are alway s non-overlapping

A statement of the algorithm is given below :

Step 1. Establish all basic efficient replacement relationships

between shifts/joint shifts . If a basic replacemen t relation-

ship involves replacing joint shifts , the latter have to

appear as column vectors in Phase 1.

Step 2. Phase 1 costs are orc~ered and longer shifts/joing shifts are

costed proportionately higher.
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Step 3. Convert all Phase 1 solutions in terms of the shortest

shift type.

Step 4. Except for the shortest shift , Phase 1 solutions provide the

upper bounds to all other shifts/joint shifts , to be used in

Phase 2.

Step 5. In Phase 2, all basic replacement relationships between

shifts/joint shifts (except for direct replacement of basic

shifts by the shortest shift), will have to be represented

as variable in the formulation , thus , allowing shift/joint

shifts to move from one type to another.

Let us apply the preceding algori thm to a simple problem involving 3

different shifts — S1, an 8 hour shift , S2, a 5 hour shtft , and S3~ a 3

hour shift , and a working day of 10 hours . 
-

Step 1:

5
~ 

--~>S~ Ratio Phase 2 Variables

l(8)~-~, 3(3) 3:1 *(Basic re- Not applicable because
placement) all S~ shifts are con-verted to S3 shift equi-valents.

S2 —~>S~

1(5)~-~> 2(3) 2:1 * Not applicable because
all S shifts are con—

2(5) ~r>4(3) 2:1 verte~ to S3 shift equl-valents .

~l
l(8) — > 2(5 ) 2:1 * p ’

S1 --~S1

l (5)-->l( 8) 1 :1 * p2 
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S3— >Sl

l(3)~~ 1(8) 1:1 * p3

2(3) =~l(8) 1:2 * joint shift (J~) P4

3(3) ~-~2(8) 2:3 = (1:1) + (1:2)

S3 > S2

l(3)—~. 1(5) 1:1 * p5

2(3)=’>2(5) 1:1

3 ( 3 ) — > 2 ( 5 )  2:3 * joint shift (J 2) P6

(S2 , s3 ) -~ s1
1(5), 1(3)=~. 1 ( 8 )  1 : 1 , 1  * joint shift (113) P7

2(5), l(3)-=~2(8) 2:2,1 = (l:l,l)+ (l:l,O)

S1 
=

~> (S 2. s3 )

l(8)=> 1(5), 1(3) 1 ,1 :1 * p8

Joint shift (J1 ) has to be reoresented as column vector in Phase 1

e.g . S3, S3, 4B Where B = break for an hour

S3, 2B, S3~ 2B

and so on.

Similarly for joint shift (11 2)

e.o. S3, S3~ S3, B

B, S3, S3~ S3
S3, B, S3, B 

-
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Joint shift (J3) and (J4), each has a total working l ength of 8 hours

which is S1 itself. Therefore they do not have to be considered .

Steo 2: Essentially, we have 3 basic shifts 
~~ 

S2~ S~) and 2 joint shifts

(J1, J2). Order them in descending order: J2, S1, j3, 
~2’ ~~ 

The longer

shifts are cost proportionately higher. Phase 1 oroblem is shown below .

M m .  C (J2, S1, J~ , S2, S3)
T

St A 
~ 2’ ~i ~~ S2, S3)~

’ 
R

1 (15)(j2, S1 , 1J
3~ s2 , S3) > 0

Steo 3: Phase 1 solution would consist of the followinn , converted to

the shortest shifts S.~, 
_

Tne number of S~ shift 
~~~ > 3 ~

t i  S “ a > 2c, S3

— a3
3

“ J~ “ “ ct 4~~ ’ 2a ~ S3
- 

“ 

~2 
“ “ = a5 ” > 3ct ~ S3

Sten 4:

is upoer bound for P4

,, 
~~ It H i t  II p

a
1 ‘ “ “  “ F1 + P7

F

Steo 5: The Phase 2 nroblem becomes :
TMm c(x, y, z)

St (l6a) E A~ x~ - F1 
+ p 1 - p2 

- 
p3 - p4 - p7 

+ p8 = o
(l6b) z A~ v~ 

- F2 
- 2P1 + P2 - P

5 
- 2P 6 

+ P7 - P8 = 0

_ _ _ _ _- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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(16c) zA ~ z~ - F3 + P3 +2P4 + P 5 
+ 3P6 

+ P7 - P8 = 0

(16d) 3F1 
+ 2F 2 

+ F3 > 3cz 1 
+ 2~~

2 
~~a 3 + 2 a 4 

+ 3a5

(l6e) F1 
+ P7 < a~ 

p4 a

2 2 6 5 -
F < a P < a

(16f) x > 0, y > 0, z > 0, Fi 
> 0, p

~ > 0 and inteaer vectors , a 1 are

inteoer vectors, for all i.

~S.4 Problem Type IV
3.4.1 Extension to 24 hours Work Week

We have considered the scheduling of manoower to satisfy hourl .v man-

oower renuirements subject to days off Datterns for a workday which is no

longer than 16 hours . In cases where the working day lasts to 24 hours , our

2-phase algorithm as it stands presentl y , would nrovide a good schedule.

although not necessarily optima l , because shifts that work throughout the

midnight hour are not considered in the context of our model . Consider

now the general oroblem of scheduling full time and nart time emoloyees

such that periods off (instead of days off) are considered . A full time

enrnloyee would work for 8 hours , brea k (oeriods off) for 12 hours , work

the next 8 hours , break for 15 hours , work the next 8 hours and so on.

)  The idea is to have a full time emolovee work 5 neriods of 8 hours havina

“reasonable ” breaks in between. Similarl y , a nart time emolovee would work

neriods of 4 hours subject to having “reasonable ” breaks in between .

Let us consider an hour by hour mannower reouirement for the whole

week cycle. There are a total of 24x7 = 168 hours ner week. The nroblem

can be formulated as an intecier orogram:

Mm E ~~~ -

~ A.x. > R (17)
3 3 3

_

_

- 

- -
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x~ 0 and integer and A~ = (a1~ . a21 . a

R (R 1, R2 R 168 )T

All notations are similar to those of (2).

As one can see, the oroblem is a large one , reouirin q at least 168 con-

straints , and the number of variables can run to millions , since the number

of shift/cieriods off natterns is very hucie.

Let us try to aooly the 2-ohase algorithm develooed earlier to the oresent

problem based on Case UI-A conditions , exceot for condition (3), where

the days off now become “reasonable ” neriods off.

Phase 1

Solve (17) where the column vectors A
1

’ s consist of either 4 hour

consecutive or 8 hour consecutive shifts

Cost FT shifts and PT shifts C~ such that = 2C~ - E

Since we have to consider shift oatterns that work throuah the 168th hour

and back to the 1st hour , the oroblem consists of contiguous and snil t

shift Datterns . From (6), we have learned that oroblem with the above

structure can be solved by the Bender ’s alaorith m if necessary .

Assume now that we obtain the followin o soiution

= number of FT in shift nattern f. f = 1 ,2. ... F F < 168

= number of PT in shift nattern p ci = 1 ,2, . . .  ( (
~ < 168

Phase 2 
-

Phase 2 problem will attemot to create sets of 5 FT shifts and 5 PT

shifts with “reasonable ” breaks . Given 
~ 

and it is nossible to enumer-

ate all comoatible sets , although the number of combinations minht be huge.

L 

Granted that , it is also nossible to enumerate all nossibl e reolacement

relati onshios between nart time and full time shifts (e.ci. PT shifts {A~ I a1~

--

~

-

~ 

- 

.
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+ l)j’ ... ~~ + 3)j = l} or { A
~~~~I a~1 + l)j’ ~ + ~~~~~~ ~~~

4
’)j = 1)

can be replaced by FT shift (A ~ I a13 , a(. + l)j’ ... a~ + 7 ) j  =

Now any FT shift pattern can be broken up into 2 equivalent part time

patterns , e.g. a f FT = a f of gth PT pattern and a~ of(q + 4)th PT pattern .

The total number of PT equivalents working PT shift pattern g = 8g + +

where if = hour shift pattern f starts , then shift pattern

starts at - 4) hour.

Example:

For simplicity of explanation , let us assume that every hour (all

168 hours ) appear in the solution of phase 1 , i.e. we have a 1, f = 1 ,2,

168, and ~~ g = 1 , 2, ..., 168. Tota l PT pattern i equivalents =

(B.1 ~~ a•  + a~~4) where i = 1 ,2, ..., 164, 165 (-3), 166 (-2), 167 (-l),

168 (o). Any PT shift pattern i can be replaced by FT shift patterns i ,

i-i , i-2 , i-3 , i-4 , remembering the cyclic nature of the shift pattern .

Qk k=l , ..., 5 is used to represent the replacement of PT shift by FT

shift. In compact form , then , the formulation can be written , similar

to (11):

Mm x + c ~~ y1
i i I

5
st (18a) zA F x~~~ F~~ z QK 0

i k=l

K(l8b) zA  y. - P + ~ Q = 0

j  
‘~ k=l (18)

(l 8c) 2 F + P >  8 + a +a (1 4) 

~~~~~- --- - - -~~~~~~~



—1

-47-

(18d ) .~ < F a

where :

Ia I 4 = (c1l65 ,cz166, ..~
al68~

ctl ,a2 ...,a164)

(l8e) x > O , y > 0 , F > O , P > O ,Q K > O ,a> O , a 14 > O ,

8 > 0, ‘r > 0, are integer vectors . A F 1 is the column

vector associated with a compatible set of FT shifts and

A~ . are associated w i t h  a compatibl e set of PT shifts .

(18) can become quite huge , depending on how many of the shift patterns

appear in the solution of Phase 1 , and the number of sets of compatible

shift patterns .

It is interesting to note that for the Phase 1 problem if the hour’y

requirements over the day are simil ar for every day of the week , the same

results could be obtained by breaking the problem up into 7 equal pro-

blems since the optimal solution for one day would be the optima l for

another day. Consider the following problem involving 3 periods a

day and shifts of 2 periods in length . 

~~~~~~--- - --



!II
~~~ 

-- - 

— ----. - - - - ___________________________________

-48-

Require-
Per- shift patterns for a week cycle ments

Days iods (ordered from 1 . . .  21 1 per periods

M 1 1 1

2 1 1

3 1 1  R3
Tu 1 1 1  R1

2 1 1  R2
3 1 1  R3

W 1 1 1  R1
2 1 1  R2
3 1 1

Th 1 1 1  R1
2 1 1 R-2 (19)
3 1 1 R3

F 1 1 1  R1
2 1 1  - R2
3 1 1 R3

Sa 1 1 1

2 1 1 R2
3 1 1

Su 1 1 1

2 1 1

3 1 1  R3
M 1 1 1  R1

- —  
-_
~ _ _

~~~~i
- - 

~~~~ _ --~~~
- - .
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The manpower requirements are similar for each day , i.e. requirements

in period 1 , Monday is the same as requirements in period 1 , Tuesday

and so forth . Because of the cyclic nature of the daily requirements ,

shift (1) = shift (4) shift (7) = shift (10) . . . = shift (22)

and shift (2) = shift (5) = shift (8) = shift (11) . . . = shift (20)

and shift (3) = shift (6) = shift (9) = shift (12) . . . = shift (21)

We shall break up the problem into 7 equal problems of the

following structure :

Period Shifts Requirements

1 1 1 R1

2 1 1 R
shift (2)~ 

2

3 1 1 R3

shift (i)=shift (4) shift (3) -

Hence instead of solving a 7 day problem , we need only solve a 1

day problem .

Heuristics

Below is an attempt to solve a more general manpower scheduling

type 4 problem where multiple shifts including split shifts are involved :

using a heuristic approach. The heuristic approach involves 2 phases as

before. Phase 1 solves (17) where all shift patterns to be considered

appear as column vectors . Since (17) is quite huge , rather than solving

it with an integer program code , divide the problem into several smaller
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problems with equal number of constraints . Let us divide (17) into

7 equal problems . There will be some variables common to sub-problems

(i) and Ci  + 1). Call these common variables . Now solve sub-problem

(1) using an integer program code. If some common variables appear in

the optima l solution , they should be subtracted from the requirements

vector of sub-problem (2) accordingly. Now solve sub-prob l em (2) and

so on until sub-problem (7). Sub-problem (7) will have comon variables

of sub-problem (1) and (6) subtracted from the requirements vector. We

have obtained now as our solution ,sets of shift patterns 
~l ~2’ 

s3~
S~ ( in descending order of shift lengths).

Phase 2 looks at the Phase 1 solution and tries to create sets of

~ shifts wi th reasonable breaks . If there are leftovers , brea k them

up to shorter shifts , adding as few extra man-hours as possible. (e.g.

breaking 8 hour shift to a 5 and 3 hour shift is better than breaking

an 8 hour shift to three 3 hour shifts or two 5 hour shifts.) Create

sets of 5 S2 shifts . Again if there are leftovers , brea k them up to

shorter shifts , and so on until S~ shifts . If there are leftovers in Sn
shifts , 3 things can be done: (a) allow over time for employees already

scheduled , (b) allow some 5n shift employees to work less than 5 Sn
shifts a week , (C) add in more 5n shifts to create a new set.
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Chapter VI

Results and Discussions

4.1 Problem Type I (Days off Scheduling)

Problems of this tyne are generally small , usually not more than 7

constraints . For oroblems with special structure , the number of variables

and the number of constraints can be further reduced as can be seen in

(4) and (5). “Good ” or ontima l solutions to oroblems of this tyne can

usually be arrived at by enumeration within a short time . Consenuently

r robi em type I is of interest orimarily because it cornorises of subunit

in more comnlex formulations . 
-

In all the formulations of oroblem tvne I, we have confined ourselves

to employees working a 5-day week. It is conceivabl e to have emniovees

working 6-day week (overtime) or 4-day week (part-time), etc . The forniu-

lation can easily be modified bv adding the renuired days-off natterns .

4.2 Problem Type II (Shift Schedulin g)

In most instances type II oroblems contain up to a hundred constraints -

and hundreds of variables . It was shown that the use of Benders Partiti cinin ci

Method to solve the oroblem , is a viable alternative to a branch and branch

Integer Program algorithm . The number of Benders cut for all orobl ems solved

(not withstandina the size of the oroblem) was always less than 7. This

means that the larqest inteQer orociram used has less than 7 constraints .

Exhibit 1 shows some of the results obtained for a few randomly

selected oroblems . The branch and bound code used was based on Linear
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Program with DKW/Tonilin ’s nenaities [9, 3lj and the transshioment code

used was based on Ford and Fulkerson ’s prima l -dual algorithm [10].

Exhibit 1

Type II Problems

Samol e Number of Number of Number of Comnuter Runnin g
Problem Working Shift Benders Cut Times on COC 6600
Number Hours Patterns

1 10 14 7 7 sec .

2 12 24 6 8 sec .

3 42 84 7 70 sec .

4 84 168 6 317 sec .

The slow running times for larger oroblems 3 and 4 were attributed

to the fact that the transshioment code used was far more inefficient

than expected : for example , the fourth problem of Exhibit 1 renuired

approximately 50 seconds to solve each 84-nodes transshi nment oroblem.

It is renorted in the literature [14] that there are codes which can solve

a 200-node transshipment oroblem in 1.3 seconds on a CDC 6600 . Consequently,

one could expect to solve the fourth examole nroblem in ten seconds.

It is a difficult task to orove that Benders Partitioning Method is

a better aiqorithm than the branch and bound aloorithm for solvin ci oroblem

Type II. One has to determinq whether there are savings in storaoe and/or

in comoutationa l times and both denend on the oarticular codes bein ci used .

Much more work has to be out in before any meaningful comnarison can be made.

L _
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4.3 Probl em Type III (Shift and Days Off Scheduling)

Randomly selected Type III oroblems were run usin g the 2-ohase

algorithm based on Case (ill-A) conditions including split shifts . Exhibit

2 shows some of the results . The algorithm was shown to be extremely

efficient. The maximum running times for the few selected oroblems do

not exceed 14 seconds on a COC 6600. The integer program subroutine used

was the same one mentioned above.

Exhibit 2

Type III Problems

Sample
Probl em Number of Working Hours for Day Number Comnuter Runnin g
Numbers 1 2 3 4 5 6 7 Times on CDC 6600

1 10 10 10 10 10 12 12 11.7 sec.

2 12 12 12 12 12 12 12 13.1 sec .

3 9 10 13 10 10 12 12 12.2 sec .

4 16 16 10 10 10 12 12 12.4 sec.

When part time shift is not a 4 hour shift , the 2-nhase aloorithm

can be modified to handle the new problem . However , because the renlace-

ment relationshi n between the full-time and oart-time shifts is not as

simole as the 8 hour PT and 4 hour PT nroblem before , the oroblem formu-

lati on sizes in both Phase 1 and Phase 2 are increased anoreciably as

shown for Case III-E in Section 3.3.8.

-- - _ _T~~~~Ii: 
-_  

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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When multi p le shifts are involved , the 2-ohase aioorithm becomes even

more compl i cated . Replacement relationshi ps between shifts/joint shifts

become more complex . For a oroblem involvin g 3 different shift patterns

(Section 3.3.9) Phase 1 problem could have as many as a hundred variables ,

although the number of constraints remains the same . However , in Phase 2,

the number of variabl es is as many as 98, and the number of constraints is

56 for which 21 are upper/ lower bounds on the variables . It annears from

the problem sizes , that the 2—ohase algorithm is ouite efficient even for

a problem i nvolving 3 different shift natterns .

It is noted here that for oroblems involvin g simple reolacement

relationshi p (e.g. 8 hour full time and 4 hour ciart time shifts), the

2-phase algorithm is extremely efficient. However , as the number of diff-

erent shift patterns increases , the reolacement relationshins become more

complex , and hence difficult to establish. Also the Phase 1 and 2 oroblems

become very large and hence inefficient to solve. -

It can be shown that Formulation II ~is presented in Section 3.3.1.2 .

for full time and part time shifts) can easily be extended to multi ole

shi fts. The advantage in i’~inq Formulation II is that, it does not

reguire the process of estab lishin ci replacement Jationshios . Also the

“A” matrix in Formulation II is hi cihlv structured . This dissertation has

not been successful in exploiting the structure of the “A” matrix. Suffice

to say, this should be interesting work for future research.

4.4 Problem Type IV (Shift and Periods off Schedulin g )

Since shifts that work through the midni ght hour have to be considered ,

it is not possibl e to solit un the week into seven days as in Probl em Tyoe III.

When the 2-ohase algorithm was anplied to the tycie IV oroblem , it is nec- 

-—--- - 
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essary to consider the whole week in one stage. The ohase 1 oroblem has

168 constraints and 336 variables . Benders Partitioning Algorithm as

presented in Section 3.2 could hem to solve the oroblem . Granted that ,

the Phase 2 problem reouired generating compatible shift Datterns from

Phase 1 results , and the number of cc-nstraints denend on the number of

shift patterns appearing in Phase 1. Hence the size of Phase 2 nroblem

can only be guessed . An estimate would be as many as 200 constraints

and as many variables .

In cieneral , where niultiole shifts are involved , it miaht be wiser

to resort to the heuristic algorithm as oresented in Section 3.4. Althou gh

the heuristic algori thm is not tested , it is justified to exoect that the

algorithm would aive efficient schedules since it involves using many of

the ideas used in the 2-phase algorithms .

4.5 Automated Mannower Schedulin o System (AMSS)

An Automated Manoower Schedulin g System (AMSS) was desiqned for

the U.S. Army Food Service Ooerations . AMSS essentiall y consists of two

comouter programs SCHED and MANPOW written in FORTRAN~

(1) SCHED develoos the optima l emnloyee schedule for a day ,

given that the minimum manpower reauirements fluctuate

from hour to hour. It is a typical tyoe II oroblem . The

algorithm involves usin g the Integer Program Code as a

subroutine . (Benders algorithm was not used).

(2) MANPOI’! develops the ootima l emnloyee schedule for a week ,

given that the minimum mannower reoL d rements fluctuates from

hour to hour and day to day . It is a tyoical type III oroblem

based on Case 111 -A conditions exceot that solit shifts as well

as undesirable contiguous shifts can be soecified by the user . 

____
i

_
i_ 

~~~~~~~~~~~~~~~~~~~ 

- 
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Details of both programs can be obtaine d from tile AMSS User ’s Manual

a copy of which can he found in Appendix 1.
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Chanter 5

Conc l us ion 
-

— 

Four different types of manpower scheduling orobiems in Service

Ooerations were di scussed, each having its own uniaue structure; some of

them are more amenable to alaorithmic exoloitation than others , alluding

to the need for using different algorithms for different oroblem tvoe.

At least five algorithms were developed or oroposed - Integer orogram ,

transshioment algorithm , Benders Partitionin ci method , 2-phase algorithm

and the heuristic algorithm .

Al though some of the pronosed algorithms have been tested , and -

found to be efficient , the real test of an algorithm only comes when

the results are imoiemented in a real situation .

Plans are now underway to imni ement the Automated Manpower Schedul i ng

System (AMSS) in sel ected Army Camos by the U.S. Army Natick Laboratories .

Their findings would reflect to some extent the usefulness of this

dissertation .

Data which are assumed to be known for a schedulina oroblem , like

the hourly/daily minimum manpower reauirements could be difficult to

estima te. Al though demand for services is assumed to be an uncontrollable

factor, this is not always the case in real situations because demand for

services can be smoothed or even chanaed by offering different kinds of

incentives , e.g., special rates for tel ephone calls in the nioht. Much

- more has to be studied concerning the degree of smoothing or change in
p

service demand for any typi cal service oneration. In fact, a research

project directly addressing the data collection oroblem is being conducted

- . 
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at the Industrial Engineering and Operations Research Department at

the University of Massachusetts.

Innovations in terms of flexibility in working hours ,shift and

days off patterns and work cycles , all contribute to the need for

improving scheduling models so as to develop better schedules. The

future should see some departure from the traditional 5-day week ,

8 hour day schedule , moving , for example , to 4 consecutive 10-hour

days or 6 consecutive work days every 10 days. This would result

in more complex scheduling problems , necessitating even more so the

use of complex algorithms and computers.

p
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