AD-A051 836

STANFORD UNIV CALIF DEPT OF OPERATIONS RESEARCH F/G 12/1
A FINITE PROCEDURE FOR DETERMINING IF A QUADRATIC FORM IS BOUND--ETC(U)
AUG 77 B C EAVES
DAAG29-74-C-0032

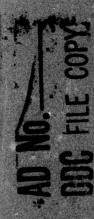
UNCLASSIFIED

OF AD51 836

NL

DDC

A FINITE PROCEDURE FOR DETERMINING IF A QUADRATIC FORM IS DOUBLED BELOW ON A CLOSED POLYHEDRAL CONVEX SET



B. CURTIS EAVES
AUGUST 16, 1977
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY, CALIFORNIA

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

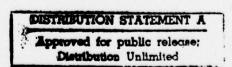
A FINITE PROCEDURE FOR DETERMINING IF A QUADRATIC FORM IS BOUNDED BELOW ON A CLOSED POLYHEDRAL CONVEX SET

TECHNICAL REPORT

B. CURTIS EAVES
AUGUST 16, 1977

DEPARTMENT OF OPERATIONS RESEARCH STANFORD UNIVERSITY STANFORD, CALIFORNIA

This research was supported in part by Army Research Office - Durham Contract DAAG-29-74-C-0032 and NSF Grant MPS-72-04832-A03.



Consider the quadratic program

(1)	$\begin{cases} V \triangleq \inf: & x \cdot Qx + x \cdot q \\ x & \\ s/t: & Ax \leq a & x \geq 0 \end{cases}$
	$\begin{cases} s/t: Ax \leq a & x \geq 0 \end{cases}$

ACCESSION fo	White Section
DDC	Buff Section
UNANNOUNCED JUSTIFICATION	
BY	
	VAILABILITY CASES
DETROUTER/A	VAILABILITY CODES and/or SPECIAL

We describe a finite but inefficient procedure for determining the optimal objective value, V, of the program, and in particular, whether or not V is finite. This task was suggested to the author by David Gale.

Let Q be $n \times n$, q $n \times 1$, A $m \times n$, and a $m \times 1$. We assume that the program is feasible. Define $\mathcal{Q}(x)$ to be $x \cdot Qx + x \cdot q$. The expression $x \cdot u$ indicates the inner product between x and u.

A Kuhn-Tucker point (u,v,x,y) of the program (1) is defined to be a solution to the system

(2)
$$\begin{cases} \binom{u}{v} = \binom{q}{a} + \binom{Q'}{-A} & \binom{A^T}{v} \binom{x}{y} \\ (u,v,x,y) \ge 0 & u \cdot x = v \cdot y = 0 \end{cases}$$

where $Q' = Q + Q^T$. Of course, if (u,v,x,y) is a Kuhn-Tucker point, then x is a feasible solution to the program (1). On the other hand, if x is an optimal solution to the program (1), it can be shown that there is a Kuhn-Tucker point of form (u,v,x,y).

To determine the value of $\,V\,$ we shall need the following result from the folklore of quadratic programming.

Lemma 1: If (u,v,x,y) is a Kuhn-Tucker point of the program then

$$\mathcal{Q}(x) = (1/2) (x \cdot q - y \cdot a)$$

Proof: Using (2) we have $0 = x \cdot q + x \cdot Q^{\dagger}x + x \cdot A^{T}y$, and $0 = y \cdot a - y \cdot Ax$. Hence $2x \cdot Qx + 2x \cdot q = x \cdot q - y \cdot a \boxtimes$

Now for k = 0,1,2,... consider the programs

(3,k)
$$\begin{cases} v_k \stackrel{\triangle}{=} \min: & \mathcal{Q}(x) \\ x \end{cases}$$

$$s/t: Ax \leq a \quad x \geq 0 \quad ex \leq k$$

where $e=(1,1,\ldots 1)$. For all sufficiently large k the program has a compact nonempty feasible region, and hence, has an optimal solution. Clearly $V_k \geq V_{k+1}$ and $\lim V_k = V$ as k tends to infinity. A Kuhn-Tucker point (u,v,w,x,y,z) of the program (3,k) is a solution to the system

Let l=m+n+1 and J be the set $\{1,l+1\}\times\{2,l+2\}\times\ldots\times\{l,l+l\}$. Observe that for any nonnegative (u,v,w,x,y,z) in R^{2l} we have $u\cdot x=v\cdot y=w\cdot z=0$, if and only if, for some α in J $(u,v,w,x,y,z)_{\alpha}=0$, that is, $(u,v,w,x,y,z)_{\dot{1}}=0$ for all i in α .

For each α in J and large k we consider the linear program

$$\begin{cases} V_k^{\alpha} & \stackrel{\Delta}{=} & \min: (1/2)(x \cdot q - y \cdot a - kz) \\ s/t: & \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} q \\ a \\ k \end{pmatrix} + \begin{pmatrix} Q' & A^T & e^T \\ -A & 0 & 0 \\ -e & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \\ & (u,v,w,x,y,z) \geq 0 \\ & (u,v,w,x,y,z)_{\alpha} = 0 \end{cases}$$

where the minimization is over the variables (u,v,w,x,y,z). Note that if (u,v,w,x,y,z) is feasible for $(5,\alpha,k)$, then (u,v,w,x,y,z)

solves (4,k) and is, consequently, a Kuhn-Tucker point of (3,k). Therefore, in view of Lemma 1, for any optimal solutions (u,v,w,x,y,z) to $(5,\alpha,k)$ we have $V_k^\alpha=\mathscr{Q}(x)$. For each α the linear program $(5,\alpha,k)$ is either feasible for all sufficiently large k or infeasible for all sufficiently large k; let us partition $J=J_F\cup J_I$ accordingly. Note that α is in J_F if and only if the linear program

(6,a)
$$\begin{cases} s/t: & \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} q \\ a \end{pmatrix} + \begin{pmatrix} Q' & A^T & e^T \\ -A & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{cases}$$

$$(u,v,w,x,y,z) \geq 0$$

$$(u,v,w,x,y,z)_{\alpha} = 0$$

has an optimal objective value of $+\infty$ where the maximization is over the variables (u,v,w,x,y,z).

Assuming α is in $J_{\mbox{\sc F}}$ we can use the simplex method treating k parametrically to generate in a finite number of steps

$$S^{\alpha} = (u_{1}^{\alpha}, v_{1}^{\alpha}, w_{1}^{\alpha}, x_{1}^{\alpha}, y_{1}^{\alpha}, z_{1}^{\alpha})$$

$$T^{\alpha} = (u_{2}^{\alpha}, v_{2}^{\alpha}, w_{2}^{\alpha}, x_{2}^{\alpha}, y_{2}^{\alpha}, z_{2}^{\alpha})$$

such that $S^{\alpha} + kT^{\alpha}$ optimizes (5, α , k) for all sufficiently large k.

Therefore S^{α} + kT^{α} is a Kuhn-Tucker point of (3,k) for all sufficiently large k and we have $\mathscr{Q}(x_1^{\alpha}+kx_2^{\alpha})=V_k^{\alpha}$. Furthermore, given α in J_F there is a fixed triple $(C_1^{\alpha},C_2^{\alpha},C_3^{\alpha})$ such that $V_k^{\alpha}=\mathscr{Q}(x_1^{\alpha}+kx_2^{\alpha})=C_1^{\alpha}k^2+C_2^{\alpha}k+C_3^{\alpha}$ for all sufficiently large k.

Select β so as to lexicographically minimize $(C_1^\alpha,C_2^\alpha,C_3^\alpha)$ over all α in J_F . Then $V_k^\beta \leq V_k^\alpha$ for all α in J_F and all sufficiently large k .

<u>Lemma 2</u>: $V_k^{\beta} = V_k$ for all sufficiently large k.

Proof: Choose \overline{k} so that a) for all $k \geq \overline{k}$ $(5,\alpha,k)$ is feasible or infeasible according to α being in J_F or J_I , b) $(5,\alpha,k)$ optimized by $S^{\alpha}+kT^{\alpha}$ for all $k\geq \overline{k}$ and α in J_F , and c) $V_k^{\beta}\leq V_k^{\alpha}$ for all $k\geq \overline{k}$ and α in J_F . Assume $k\geq \overline{k}$. Since $x_1^{\beta}+kx_2^{\beta}$ is feasible to (3,k), $V_k^{\beta}\geq V_k$. Let x optimize (3,k), then there is a Kuhn-Tucker point of form (u,v,w,x,y,z). Therefore, for some α in J_F we have $(u,v,w,x,y,z)_{\alpha}=0$ and $V_k=\mathscr{Q}(x)=1/2(x\cdot q-y\cdot a-kz)\geq V_k^{\alpha}\geq V_k^{\beta}$

Hence v_k^β tends to V as k tends to infinity and the result is established; $V=-\infty$ if $C_1^\beta<0$ or if $C_1^\beta=0$ and $C_2^\beta<0$, otherwise, $v=c_3^\beta\ .$

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	0172396.9-M/
REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG NUMBER
12396.9-M	
TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
A Finite Procedure for Determining if a	Technical Report
Quadratic Form is Bounded Below on a Closed Polyhedral Convex Set	6. PERFORMING ORG. REPORT NUMBER
MITHOR/O	8. CONTRACT OR GRANT NUMBER(*)
O B. Curtis/Eaves	Thursday a day
	DAAG29-74-C-0032
9. PERFORMING ORGANIZATION NAME AND ADDRESS	TO NAME CLEMENT PROJECT, TASK
Stanford University	12/80
Stanford, California 94305	(12/0p1)
11. CONTROLLING OFFICE NAME AND ADDRESS	12 REPORT DATE
	16 Aug 177
	S S
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimi	. vea.
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different for	rom Report)
18. SUPPLEMENTARY NOTES	
The findings in this report are not to be constr	ued as an official
Department of the Army position, unless so design documents.	nated by other authorized
19. KEY WORDS (Continue on reverse side if necessary and identify by block number	1)
	\
O. ABSTRACT (Continue on reverse side if necessary and identify by block number)
Consider the quadratic program	
(1) $\begin{cases} V \triangle \inf: & x \cdot Qx = x \cdot q \\ x & \\ s/t: & Ax \leq a & x \geq 0 \end{cases}$	times the
We describe a finite but inefficient procedure for	
value, V , of the program, and in particular, whe	
FORM 1479	classified 402 766