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Consider the quadratic program

PR ;
DESTRBNTIONMALABRTY CRots
VA inf: x-Qx+x-gq AVAIL and/or |
: |
W ﬁ |
s/t: Ax < a x>0 @
;

We describe a finite but inefficient procedure for determining the optimal

objective value, V , of the program, and in particular, whether or not V

is finite. This task was suggested to the author by David Gale.
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let Q be nxn,q nx1,A mxn, and a mx1 . We
assume that the program is feasible. Define Z(x) to be x-Qx + x-q
The expression x°:u indicates the inmer product between x and u .

A Kuhn-Tucker point (u,v,x,y) of the program (1) is defined to i

be a solution to the system

u q Q' A x
= +
(2) v a -A 0 y
(u,v,x,y) >0 urx=vey=0 f

where Q' = Q + QT . Of course, if (u,v,x,y) is a Kuhn-Tucker point,
then x is a feasible solution to the program (1). On the other hand,
if x is an optimal solution to the program (1), it can be shown that

there is a Kuhn-Tucker point of form (u,v,x,y) .
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To determine the value of V we shall need the following

result from the folklore of quadratic programming.

Lemma 1: If (u,v,x,y) is a Kuhn-Tucker point of the program

then
2(x) = (1/2) (x+q ~y-a)

Proof: Using (2) we have 0 =x.q + x-Q'x + x- ATy » and

O=y+a-y+Ax . Hence 2x-Qx + 2x+q = x°q-y-a®
Now for k = 0,1,2,... consider the programs

Y 4 min: 2)
x-
(3,k)

s/t: Ax<a x>0 ex<k

where e = (1,1,...1). TFor all sufficiently large k the program has a
compact nonempty feasible region, and hence, has an optimal solution.

Clearly V 2 Vil and 1lim Vk =V as k tends to infinity. A Kuhn-

k

Tucker point (u,v,w,X,y,z) of the program (3,k) is a solution to the

system
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u q Q' A e x
(4,%) v - a + -A 0 0 y
w k

-e 0 0 z

(u,v,w,x,y,z)lo Uu-*x=v-y=w-2=0

Let 2 = mintl and J be the set {1,8+1} x {2,242} x ... x
{2,2+42}. Observe that for any nonnegative (u,v,w,x,y,z) in RZ! we
have u + x=v-.-y=w-2=0 , if and only if, for some a in J

(u,v,w,x,y,z)0 =0 , that is, (u,v,w,x,y,z)i =0 forall i in o .

For each a in J and large k we consider the linear

program
va A in:
x = min: 1/2)(x - q-y + a - kz)'
s/t: u q Q' i e X
v = a +1-A 0 O y
(5,a,k) w k -e 0 O z

(u,v,w,x,y,2) >0

(u,v,w.x,y,z)a =0

where the minimization is over the variables (u,v,w,x,y,z) . Note

that if (u,v,w,x,y,2) is feasible for (5,a,k) , then (u,v,w,x,y,z)
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solves (4,k) and is, consequently, a Kuhn-Tucker point of (3,k). There-
fore, in view of Lemma 1, for any optimal solutions (u,v,w,x,y,z) to
(5,a,k) we have V: = 9P(x) . For each a the linear program (5,a,k)
is either feasible for all sufficiently large k or infeasible for all
sufficiently large k ; let us partition J = JF v JI accordingly.

Note that o is in JF if and only if the linear program

sup: w + ez

s/t: /u q Q' A e x
)

v a -A 0 0 y

(6,(1) z

(u,v,w,x,y,2) >0

\ (u,v,w,x,y,z)u =0

has an optimal objective value of += where the maximization is over

the variables (u,v,w,X,y,z) .

Assuming o 1is in JF we can use the simplex method treating k

parametrically to generate in a finite number of steps

a a . a a o a a
(u )

s by l’vl ’wl ,xl ,Ylnzl
o P a a a a a «a
T (uz’vziwszziyZ’zz)

such that S* + kT optimizes (5,a,k) for all sufficiently large k .
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Therefore S* + kT® is a Kuhn-Tucker point of (3,k) for all sufficiently

large k and we have Q(x; + kxg) = V: . Furthermore, given o in Jg

. a a .a . a oy _
there is a fixed triple (cl’CZ’C3) such that Vk Q(x:l + kxz)
Cc{kz + C;'k + C; for all sufficiently large k .

Select B so as to lexicographically minimize (Ci,C‘;,C;) over
all a in JF . Then V: < V: for all a in JF and all sufficiently
large k .

Lemma 2: Vs = Vk for all sufficiently large k .

Proof: Choose k so that a) for all k_>_E (5,a,k) is

feasible or infeasible according to o being in J_, or J

F 1.
b) (5,a,k) optimized by s® + kt® for all k 3? and a in JF , and
c) viiv{‘: for all k >k and o in Jp . Assume k >k . Since
xi + kxg is feasible to (3,k), VIB‘ > Vk . Let x optimize (3,k),

then there is a Kuhn-Tucker point of form (u,v,w,Xx,y,2) . Therefore,

for some a in JF we have (u,v,w,x,y,z)a-o and V, = 2(x)

k

=1/2(x-q—y-a-kz)_>,v:3v£

Hence VIB‘ tends to V as k tends to infinity and the result is

established; V = -« if Cg < 0 or if C: = (0 and Cg < 0 , otherwise,
8
v C3 c
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