=5 4

~ AD=AD51 835 STANFORD UNIV CALIF DIGITAL SYSTEMS LAB F/6é 9/2
EMULATION ORIENTED SOFTWARE FIRST DEVELOPMENT.(U)
AUG 76 L W HOEVEL, W A WALLACH DAAGZ9—76-G-0001
UNCLASSIFIED DSL=TN=95 ARO=12958,9=M

END
II\Ilr

, 0

- N

. QC

£ L
Li‘g-'e o) EMULATION ORLENTED SOFTWARE FIRST DEVELOPMENT
g (o

3 [\

=)

\ o

%

- ey,

1?”

J
)§\ Lee W. Hoevel and Walter A. Wallach

—;**’”?
£ COPY

it |

jRie

August 1976

g

>
L

ATNG

Technical Note No. 95

DISTRIBUTION STATEMENT & ‘
Approved for lis relecme;
l llnﬂbt&mrgznnMOH ;

DIGITAL SYSTEMS LABORATORY
Departments of Electrical Engineering and Computer Science
Stanford Electronics Laboratories
Stanford University
Stanford, CA 94305

The work described herein was supported in part by the U.S. Army Research
Office-Durham under Grant DAAG-29-76-G-0001.

e

SV

T,

Digital Systems Laboratory Doc Buft Section O
: : UNANNOUNCED 0
Stanford Electronics Laboratories JUSTIFICATION
Stanford University
N
BISTRIBUTION/AVAILAGILITY CODES

Dist. AVAIL. and “or BPECIAL

Technical Report No. 95

August 1976 A \

N

EMULATION ORIENTED SOFTWARE FIRST DEVELOPMENT

by
Lee W. Hoevel and Walter A. Wallach

ABSTRACT

“Software First" is the design philosophy whereby applications software is
developed to solve specific problems prior to the availability of applications
hardware. We propose the use of an interpretive computing facility, designed
around a high performance microprogrammable host machine, to support and enhance
Software First in the following manner:

1) Applications programs are initially converted into a high-level intermediate
text (DEL) by a straightforward "one-plus" pass compiler. The intermediate text
so generated is executed interactively via a microcoded interpreter. This assures
that diagnostics can be generated at the source level (e.g., "dumpless debugging"),
and allows the exploitation of the host machine's inherent capabilities to attain
speedy interactive response.

2) The intermediate text surrogates for applications programs, having been verified
by interactive debugging, are then processed by a simple generator to produce
applications-hardware compatible code. This "hard" code is then checked out on

the development system by redefining the microcode running in the host machine so
that it becomes an image of the projected applications hardware.

Advantages of this approach, as compared to the conventional approach, accrue
from the directness with which the source language and applications hardware are
mapped into the development facility. System integrety is increased by using the
intermediate text produced in phase one to generate the hard machine code emulated
in phase two. The phase two testing does not require the delivery of actual hard-
ware, and can be used in the evaluation of proposed systems and the selection of
a final applications system.

The work described herein was supported in part by the Army Research Office-Durham
under Grant DAAG-29-76-G-0001.

ACCESSION for
NTIS White Section

T T S Gy S I DO A Pt TV Py

A -2 o il

s

Emulation Oriented Software First Development

We are interested in promoting "Software First" system
design, 1in which development and check-out of applications
software preceeds acquisition of applications hardware. While
analytic simulation can provide considerable insight into the
proper design of complex systems, modeling tools alone do not
constitute an adequate environment for systems implementation.
Cross-compilation in an alien "development environment" (i.e.,
using a host system other than the intended applications hardware
for 1initial programming work) can introduce non-trivial
verification problems during debugging, and may be prohibitively

expensive in many applications [1-6].

In this paper, we discuss possible application of an
"emulation-oriented" host system to obtain a straightforward
Software First development path. It is believed that recent
technological developments have brought the cost of such a host
system to a currently competetive level vis-a-vis general-purpose
development systems. Increased productivity of enhanced Software
First design, development, debugging appears to justify further

investigation in this area.

Page 2

2.0 What is Software First?

"Software First" 1is the technique whereby applications
software is developed prior to or concurrent with the procurement
of applications hardware. This results in cost effective system

implementation by:

1) Minimizing lag between delivery of applications equipment
and final verification by providing maximum lead time for

software development and verification.

2) Minimizing mis-specification of hardware requirements by
providing detailed engineering data on which selection

(or design) of applications equipment may be based.

Software First is most effective when applications software
must be developed for hardware that 1is currently unavailable.
The requisite applications hardware might be backordered, under
construction, or even under development. Given (1) a host system
in which applications software may be written and exercised (as
far as practical) and (2) a method of predicting the behavior of
the final applications system, however, software development need
not be delayed by hardware procurement delays. In the case where
hardware is being developed or has not yet been specified,
software developers can provide insight as to actual system
requirements (this is especially relevant to OEM and military

applications [8]).

Page 3

2.1 Current Software First Strategies

Existing realizations of this design methodology rely on the
use of a general purpose computing facility to simplify program
development. Non-trivial mappings are required to relate the
central processor of such a facility to either the applications
software or the applications hardware. Typically, a special
"debug" compiler is used to translate applications programs into
the native language of the central processing unit within the
development facility. This compiler inserts auxilliary machine
instructions not directly related to the semantics of the
original applications program that will evoke an enveloping
"run-time monitor" to perform "trace" and "debug" functions. The
output of run-time traces is usually processed by an analyticai
modeling program to simulate the behavior of the prospective
applications hardware and provide feedback during the design

process [5].

Once the "debug" surrogate for an applications program is
verified functionally correct, the original source program is
translated by a second "production" compiler into an (optimized)
program in a language accepted by the intended applications
hardware. Output of the production compiler must subsequently be
checked for correctness on a true applications system, after the
appropriate hardware has been delivered [see figure 2.1}
Obtaining accurate instruction/data traces requires either the

use of hardware monitors on applications systems or a

e

u ey,

Page 4

comparatively expensive simulation on the general purpose host

facility [1-2].

Hence, the use of a general-purpose central processor for
program development constrains the effectiveness of Software

First design in at least the following ways:

1) The complexity of the "debug compiler" and run-time
support required to convert a general-purpose host
processor into a source language executor limits its

effectiveness, transparency, and apparent performance.

2) Discrepancies between the program development facility
and the actual applications hardware are significant

obstacles durinag check-out of applications software.

3) Sampling run-time data is comparatively expensive, and

may alter the normal behavior of the system.

Implicit in this discussion is the assumption that a "general
purpose" facility is not easily tailored to the specific tasks of
program development and debugging. In general, the central
processors for such systems, as well as their software support,
must be configured to handle "batch" computations efficiently.
The computational nature of production runs differs radically

from the text manipulation common to program entry and

compilation.

% Page 5

A 3.0 Interpretive Software First Strategy

-

Emulation is the implementation of an 1Image machine by

mapping the states of this Image machine into substates of a

R E v Sl

given Host machine, then programming the Host machine to perform
state transitions over this substate space as required by the

architecture of the image machine. Emulation offers a new

approach to Software First development through a two phase design

procedure. The first phase will accomplish development and

e

verification of higher level language source programs through the

emulation of a "virtual" machine that directly executes source
text [4]). The second phase will allow the checkout of actual
i applications code through the emulation of the applications

hardware on the development system [see fiqure 3.1].

During phase one, applications source text is transliterated

into a high-level intermediate text directly reflecting source

language semantics by a straightforward one-plus pass compiler.

The intermediate text so generated is then executed interactively
via a microcoded interpreter. Trace and debug functions are
embedded in the interpreter, rather than in the intermediate text
itself. This assures that diagnostics can be generated at the
source level (e.g., inherent "dumpless debugging”), and allows
the exploitation of the host machine's (assumed) interpretive

capabilities to attain speedy interactive response.

“

i, %

it

o'

- ey

Page 6

The intermediate text surrogates for applications text,
having been verified by interactive debugging, are subsequently
processed by a specific transliterator to produce code compatible
with the intended applications hardware. This "hard code" is
then checked-out on the development system by redefining the
microcode running in the host machine so that it becomes an image
of the applications system. By emulating the actual applications
environment, it is possible to determine the performance of the
combined applications software/hardware system, as well as
predict the effect of changes in architecture or configuration.
During phase two, a number of alternative applications systems
can be evaluated, and insight into new system design(s) can be
obtained with greater accuracy and at less cost than on a general

purpose system.

3.1 Advantages of the Interpretive Approach

The key advantages of this approach, as compared to
conventional program development, accrue from the directness with
which the source language and applicatons hardware are mapped
into the development facility. System integrity is increased by
generating a relatively high level "Directly Executed Language"
(DEL code) text in phase one for the initial functional check-out
of applications software. Debugging need occur only at the

source level in phase one, and the "transliterator" required to

generate the hard machine code emulated in phase two is of

A

“vn

e e

. o,

Page 7

minimal complexity. This also improves cost-effectiveness by

reducing compilation overhead in both phases.

"In environment" phase two debugging, which does not require
delivery of actual applications hardware, is also an important
contribution to the Software First design strategy. The same
types of software probes inserted into the phase one interpreter
for debug purposes may be inserted into the phase two emulator to
obtain detailed memory-utilization data. Such data is valuable
input for program/data placement algorithms, determination of
applicatons peripheral requirements, etc. Firmware probes are
also useful in "pseudo real-time" emulation, in which
applications system timing is formulated by updating an internal
counter once each interpretation cycle. Such figures are useful
in selecting appropriate applications hardware; this type of
analysis is far more difficult and time-consuming to perform

accurately using traditional program development tools.

4.0 Applicability

An interpretive computing facility can support Software
First design methodologies in a number of ways, depending on the
type of product being developed. Figure 4.1 outlines some
software/hardware advantages offered by such a soft development
facility for two general markets of application. OEM/Military

users include manufacturers of special purpose and

process-control systems, while Commercial users include general

B
€ |
¥
=

.

R

Page 8

purpose computing machinery manufactures and software developers.
4.1 OEM/Military

Consider a typical OEM/Military contractor who intends to
use a mini- or micro- processor as a real-time control device.
Undoubtedly, weight and power constraints dictate that the final
system be as efficient as possible in both time and space. Using
Software First on an emulation-oriented development system, the
contractor can start by developing source-level code to control
the application process before having to evaluate various
alternative hardware systems, including off-the-shelf as well as
new designs. The effect of architectural changes can be measured
quickly and acccuately. An actual production system can be
configured and evaluated before hardware is delivered (or

ordered) to ensure program verification and hardware suitability.
4.2 Commercial

Typical general purpose computers are not designed for
compilation and program verification. The use of an interpreter
in program development offers a simpler verification procedure in
that the compiler is far simpler than a compiler used on a
general purpose machine, and, since the interpreted text is a

direct representation of source text, program tracing and

debugging is greatly simplified.

Page 9

Once a program has been verified using an interpretive
facility, the directly executed text can be used to drive code
generators for any number 6f applications systems. In this way,
software portability 1is enhanced, compiler complexity is
distributed over several development phases (reducing computing
costs, since only the first pass must be repeated each time
source text is modified), and shops utilizing multiple computing
resources can generate code for any and all of their machines.
Compilation load 1is reduced, increasing through put of the

general prupose machines.

Manufacturers of general purpose computing machinery can use
such a facility to investigate the usefullness of thier proposed
designs and tune processor/peripheral configurations. Software
can be executed both directly and in the machine <code of a

proposed machine to determine the efficiency of the new machine.
4.3 Interpretive Computing Facilities

Figure 4.2 outlines the needs of various interests and
market applications utilizing Software First. All areas require
an Interpretive Engine - a dynamically microprogrammed processor
which is easily microcoded. In addition, some form of 1I/0

control processor such as a programmable terminal, is required to

provide interactive capability.

e e e e — v

P

Page 10

A commercial software interest might also employ code

generating engines for a number of hardware systems, including

v general-purpose systems used for normal simulation processing,
'2; in-house accounting, etc. Code generation and DEL interpretation
%I are easily isolated functions; by extracting these functions from
% an enveloping general-purpose operating system/host, the
: complexity of these systems can be reduced. In installations
§ where compilation occurs with almost the same frequency as
:f- production execution, emulation oriented processors capable of
b ¥ : efficiently interpreting "Compiler-DEL's" would certainly be

cost-effective "front end" machines for a powerful central

processor.

oo

Hardware developers would require a variety of perpheral
devices to allow the emulation of configured systems in "real"
production environments. The interpretive engine can be included
in a general purpose facility, where I/0 requests are mapped
through the larger machine, utilizing its peripheral devices and
main memory. In this way, channel programs can be interpreted by
the general purpose machine concurrent with target code execution

by the interpreter with little performance degradation.

Several such interpretive computing facilities are currently
under development. The Stanford Emulation Lab 1is confiqured
around EMMY, a vertically organized dynamically microprogrammed
processor [7,9]. We are presently doing research in languages

for direct execution, inter-architectural comparison through

S

- v,

Page 11

emulation, as well as software first techniques. TRW is
assembling facilities around the Nanodata QM-1 and QM~2, which
feature writable control store, two level microprogramming
(vertical microinstructions interpreted by horizontal
"nanoinstructions"), and a flexible bus structure. Seven CDC
5600 series micro-processors have been tied together in a
"multi-microprocessor" Emulation Laboratory at the United States
Army Electronics Command, Ft. Monmouth, N.J. [8]. The

University of Maryland is also establishing an emulation and

direct execution facility built around the Burroughs B-1700.

References

Balzer, R.M., An Overview of the ISPL Computer System Design,
CACM February, 1973, pp. 117-122.

Chu, Y., Methodology for Software Engineering, Maryland Univ.
Computer Science Center, TR-256, 1973.

Graham, Robert M., Clancy, Gerald, J., and De Vaney, David, A
Software Design and Evaluation System, CACM February 1973,
pp. 110-116.

Hoevel, L.W., Languages for Direct Execution, Proceedings of
the 7th Annual Workshop on Microprogramming, (ACM/SIGMICRO),
Palo Alto, California, September 1974, pp. 307-16.

Lee, J.B., A Survey of Programming Methodologies, Texas Univ.
Computer Science Dept. TR-047, 1975.

Levy, J.V., A Simulation Package for Computer Design,
Stanford Univ. SLAC Computation Group, CGTM-113, 1971.

Neuhauser, C., An Emulation Oriented, Dynamic Microprogrammed
Processor (Version III), Stanford Univ., Stanford Electronics
Lab, Digital Systems Lab TN-65, 1975.

Mattson, Roy, The Microprogrammable Multi-Process (MMP)
System for Simultaneous Emulation of Interoperating Computer
Systems, Proceedings of the 7th Annual Workshop on
Microprogramming, (ACM/SIGMICRO), Palo Alto, California,
September 1974, pp. 290-96.

Flynn, M.J., and McClure, R.M.,An Integrated Facility for
Emulation Research, presented at the USA-Japan Computer
Conference, August 1975.

- Problem Analytic
k. Definition Model

L
23
£ User —<—
. \. "Debug"
Monitor
: Source "Debug" G.P. G.P;
F Text ~ > Compiler — > Machine — Host
L Code Environment
e
e "Production" Applications Applications

Compiler ~—> Machine —— Hardware

? 3 Code &]

Hardware "Trace"
Monitor ™" Data

Figure 2.1 Traditional Software First

Problem Ana]yt1c

Trace <« So0ftware
Defi < on ’/Model/_\nata Probes
User —————=m Source Tr1v1al wng, DEL Interpret1ve

Text Comp11er Code Facility

$ 1
' Applications Applications
System Code - System Code

Generator

Applications
System

Figure 3.1 Interpretive Software First

Market Application Area

Design Interest

OEM/Military

Commercial

Software Verification (independent of | Verification (independent of
hardware) hardware)
Lead Time Lead Time
Portability Portability
Component Simplification Multimachine Compilers
DEL's
Hardware Hardware Tuning Hardware Selection

(Configured Emulation)
Hardware Procurement
Hardware Design

Hardware Design
(Emulation Lab)
Peripheral Selection/Tuning

Software First

Market Application Area

Design Interest

OEM/Military

Figure 4.1 Applications Areas for Interpretive

Commercial

Software Interpretive Engine Interpretive Engine
Writable Control Store Writable Control Store
Interactive Capability Interactive Capability
General Purpose Computing Various Code Generators
Facility General Purpose Computing
Facility
Hardware Interpretive Engine Interpretive Engine

Writable Control Store
Interactive Capability
Variety of Peripherals
1/0 Processor or General
Purpose Computing
Facility

Writable Control Store
Interactive Capability
Variety of Peripherals

Figure 4.2 Facilities Reauired for Interpretive Software First

Ny, 79 f
SECURITY CLASSIFICATION OF THIS PAGE (When Data Enrtered) 37

| REPORT DOCUMENTATICN PAGE BEF‘O&?‘COMPL!«.TNG FORM

T REPORT NUMBER /qug{ 2. GOVT ACCESSIO@‘ :D.S’L TN - ?5

2 TITLE (and Sublllla)
e —————————

R

e - - v m—————

OVERED
EMULATION QRIENTED jDFﬂJARE FIRST DEVELOPMENT-/ 7 Technical }éte [

.

. T = q. P:nromm; T NUMBER
29 #
oumoa(a) ? N lcommcr OR GRANT NUMBER(S)
Eaal

Crn

5
’ Lee W. Hoevel g Walter A./Wallach /' DAAG/29- 76—(:-[}0}51

- P - e

n 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, P ROJECT TASK
% REA & WORK UNIT NUMBER

Digital Systems Laboratory -
Stanford Electronics Laboratories
Stanford University, Stanford, CA 94305

11. CONTROLLING OFFICE NAME AND ADDRESS .
] @ Augummeas’ 6

A
2
5 U.S. Army Research Office-Durham 3
¢ 14
14. MONITORING AGENCY NAME & ADDRESS(il different from Controlling Office) 15. SECURITY CLASS. (of thie report)
L]
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE
% 16. DISTRIBUTION STATEMENT (of this Report)

nr
Appr '\- d far public releage; distributio,
unlimi

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

The findings in this report are not to be eonastrued as an
officia! partment of tl vasition, unless so
dCSiL"nil[L,v. 123 i authorizee renLs,

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

N

20. Aas‘l‘-‘ACT (Continue on reverse side ll necessary end ldentify by block number)

"’éoftware Flrst""'i/ the design philosophy whereby applications software is
developed to solve specific problems prior to the availability of applications
hardware. -Hexproposeslthe use of an interpretive computing facility, designed
around a high performance microprogrammable host machine, to support and enhancp
Software First in the following manner:

A1) Applications programs are initially converted into a high-level intermpdiate
text (DEL) by a straightforward “one-plus*“pass compiler. The intermediate tex

so generated is exelidted interactively via a microcoded interpreter. This -T)J;;{_
L

DD '523";3 1473 EOITION OF 1 NOV 65 1S OBSOLETE 6‘¢ ? @ 71— (V

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

S

SECURITY CLASSIFICATION OF THIS PAGE(Fhea Data Entered)

> assures that diagnostics can be generated at the source level (e.g.,

£™"dumpless debugging™), and allows the exploitation of the host machine's
inherent capabilities to attain speedy interactive response. «+!

= t€2) fhe intermediate text surrogates for applications ﬁrograms,
having been verified by interactive debugging, are then processed by a simphe
generator to produce applicatons-hardware compatible code. This ¢"hard™
code is then checked out on the development system by redefining the
microcode running in the host machine so that it becomes an image of the
projected applications hardware.si‘ 1

Advantages of this approach, as compared to the conventional approach,

accrue from the directness with which the source language and applications
hardware are mapped into the development facility. System integrety is
increased by using the intermediate text produced in phase one to generate
the hard machine code emulated in phase two. The phase two texting does
not require the delivery of actual hardware, and can be used in the evaluat
of proposed systems and the selection of final applications system.

o L L T b LR e A AR T o T B o N

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

