
N-, _

“AP—ADSI 635 STAWCRD UNIV CAl IF DISI TAI. SYSTEMS LAB F/S 9/2
£*LAT ION ORIENTED SOFTWARE FIRST DEVELOPMENT • (U)
AUS 76 L w HOEVEL . W A WALLACH DAA029 76 0 0001

UNCLASSIFIED DSI.—tN—95 ARO—129S8.9—M NI.
I~~ l ____

- .

EMULATION ORIENTED SOFTWARE FIRST DEVELOPMENT

by

f Lee W. Hoevel and Walter A. Wallach
‘I 0—i c ~
I _~~~~ August 1976

~~~~~~

D D CTechnical Note No 95
1~fl1T1 DIE

MAR 28 1~78

~RThUTIO$ STAT~~~ T !1 [1 Ui~i~i~ U U 15
i~r p~ u r.1•c~~; B

a~.~tbieo~ Uali~ tt~~

DIGITAL SYSTEMS LABORATORY
Departments of Electrical Engineering and Computer Science

Stanford Electronics Laboratories
Stanford University
Stanford, CA 94305

The work described herein was supported in part by the U.S. Army Research
Office—Durham under Grant DAAG—29—76—G—0001 .

— - -- 
~~~~~~~~-- - - -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4


ACCESSION fo~ —__________

NTIS White Sect ion ~
Digital Systems Laboratory ~~ 8$CtIOtI 0

UNANNOUNCED
Stanford Electronics Laboratories JU~~IFICATION

Stanford Univers ity
BY

BISTIIBIIT~~AYiJL1EII.ffY ~O~S
Di~t. AVAIL m d /or BPECIAt.

Technical Report No. 95

August 1976

E M U L A T I O N O R I E N T E D S O F T W A R E F I R S T D E V E L O P M E N T

by

Lee W. Hoevel and Walter A. Wal l ach

ABSTRACT

Software First” is the design philosoph y whereby applications software is
developed to solve specific problems prior to the availability of applications
hardware. We propose the use of an interpretive computing facility , designed
around a high performance microprograniBable host machine , to support and enhance
Software First in the fol lowing manner:

1) Applications programs are initiall y converted into a high-leve l intermediate
text (DEL) by a straightforward “one—plus ” pass compiler. The intermediate text
so generated is executed interactively via a microcoded interpreter. This assures
that diagnostics can be generated at ti,e source l evel (e.g., “dumpless debugging ”),
and allows the exploitation of the host machine ’s inherent capabilities to attain
speedy interacti ve response.

2) The intermediate text surrogates for applications programs, having been verified
by interactive debugging, are then processed by a simple generator to produce
applications-hardware compatible code. This “hard” code is then checked out on
the development system by redefining the microcode running in the host machine so
that it becomes an image of the projected applications hardware.

Advantages of this approach , as compared to the conventional approach, accrue
from the directness wi th which the source language and applications hardware are
mapped into the development facility . System integrety is increased by using the
intermediate text produced in phase one to generate the hard machine code emulated
in phase two. The phase two testing does not require the delivery of actual hard-
ware, and can be used in the evaluation of proposed systems and the selection of
a final applications system.

The work described herein was supported in part by the Army Research Office—Durham
under Grant DAAG-29—76—G—0001 .

Li TI 1 ~~~~~~~~ . . -~ ____________

Emulation Oriented Software First Development

t;.I

We are interested in promoting “Software First” system

design , in wh ich development and check—out of applications

software preceeds acquisition of applications hardware. While

analytic simulation can provide considerable insiqht into the

pr oper design of compl ex systems , mode lin g tools alone do no t

constitute an adequate environment for systems implementation.

Cross—compilation in an alien “development environment” (i.e.,

using a host system othe r than the intended applications hardware

for ini tial programming work) can introduce non—trivial

verification problems during debugging , an d ma y be proh ibi t ively

expensive in many applications [1—6] .

In this paper , we d iscuss possi ble applica tion of an

“emula tion—oriented ” host system to obtain a straightforward

Software First development path. It is believed that recent

technological developmen ts have brou gh t the cos t of such a hos t

system to a currently competetive level vis—a—vis general—purpose

developmen t systems . Increased productivity of enhanced Software

First design , developmen t , debuggin g appears to jus ti fy f u r ther

investigation in this area.

. .—

F’
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- — — - .—

~~~~~~

. .-- .- -—.- -“-—

~~

- -.

Page 2

2.0 What is Software First?

“Software First” is the technique whereby applications

software is developed prior to or concurrent with the procurement

of appli ca t ions har dwar e . Th is resul ts in cost e f f ect ive sys tem

implementation by:

H

1) Minimizing lag between delivery of applications equipment

an d f i n al ve r i f i cation by pr o v i d i n g maximum lea d t ime f or

sof tware developmen t an d v e r i f i cat ion.

2) Minimizing mis—specification of hardware requirements by

providing detailed eng ineering data on which selection

• (or design) of applications equipment may be based .

Software First is most effective when applications software

must be developed for hardware that is currently unavailable.

The requisite applications hardware might be backordered , un der

• construction , or even under development. Given (1) a host system

• in which applica tions software may be written and exercised (as

f a r as prac tical) an d (2) a metho d of pred ict ing the behavior of

the f i n a l applica tions sys tem, however, sof tware developmen t need

not be delayed by hardware procurement delays. In the case where

hardware is being developed or has not yet been specified ,

sof twar e developers can prov ide insigh t as to actual sys tem

requireme n ts (this is especially relevan t to OEM and mil i tary

appl ica tions [8]).

—~ r
.-.--- -•- .••-, — — .,-.

~~—- - -••— — ____
~~-,. .~ - -•—-,

Page 3

2.1 Current Software First Strategies

Exis ti ng re al i za tions of th is desi gn me thodology r e ly on the

use of a genera l pur pose compu t in g f a c i l i t y to s i m p l i f y progr am

development. Non—trivial mappings are required to relate the

L cen tra l processor of such a fa c i l i ty to ei ther the appl ica tions

sof tware or the appl i ca t ions har dware . Ty pi ca l ly , a special

“debug ” com p i ler is used to tr ansla te app lica tions progra ms in to

the na t ive lan guage of the cen tr a l processing un i t wi thin the

• development facility. This compiler inserts auxilliary machine

instructions not directly related to the semantics of the

ori ginal applica tions program tha t wi l l evoke an envelop in g

“run— time monitor ” to perform “trace ” and “debug ” functions. The

output of run—time traces is usually processed by an analytical

mode l ing progr am to s imula te the behavior of the pros pec t ive

appl ica tions har dware an d provi de fee dback du r i n g the desi gn

process [5].

Once the “debug ” su r ro gate for an applica tions program is

ve r i f i ed func t iona l ly correc t, the ori ginal source program is

translated by a second “produc tion ” compiler in to an (op timize d)

program in a lan guage accepted by the intended applica tions

hardware. Output of the production compiler must subsequently be

chec ked for correctness on a true applica tions system , af ter the

appropriate hardware has been delivered [see figure 2.1).

Obtaining accurate instruction/data traces requires either the

use of har dware moni tors on applica tions systems or a

- • - _____________ -•------ -- • • -.-.~~- _

Page 4

compar ati vely ex pensive s imula t ion on the genera l pur pose host

facility [1—2 1.

Hence, the use of a general—purpose central processor for

program developmen t cons tr a in s the e f f ec t iveness of Sof twar e

First design in at least the following ways:

1) The complexity of the “debuq compiler ” and run—time

support required to convert a general—purpose host

pro cessor in to a source lan guage execu tor l im its i ts

e f f e c t iveness , tran sparency, an d apparen t per fo rmance .

2) Discrepancies between the progr am developme n t f a c i l i ty

an d the ac tual appl icat ions har dwar e ar e si gn i f i c a n t

obstacles during check—out of applications software.

3) Sampling run—time data is comparatively expensive , and

may alter the normal behavior of the system.

• Implici t in this discussion is the assump t ion tha t a “general

purpose ” facil ity is not easily tailored to the specific tasks of

program development and debugging . In general , the cen tral

processors for such systems , as well as thei r sof tware support ,

must be configured to handle “batch” computations efficiently.

The computational nature of production runs differs radically

f rom the tex t mani pula tion common to program en try and

compilation .

— -•,.,——— —-——• - —— -•— . -. .— ..•
.

• •

F, ‘ • -

~~~~~~~~~~~~~~~~~
-- •

~~~
-- -.— —--.•-.

~~~~~~~~~~~~~~~

- 

~
‘ —

~~~~~~~~~
- .

~~~
- - , ---——

Paqe 5

H 3.0 Interpretive Software First Strategy

Emula t ion is the implemen ta t ion  of an Ima ge mach in e by

ma pp in g the sta tes of this  Ima ge machine  in to substa tes of a

given Hos t mac h ine ,  then progr ammin g the Hos t machine  to pe r f o r m

state transitions over this substate space as required by the

architecture of the image machine . Emulation offers a new

approach to Software First development through a two phase design

procedure. The first phase will accomplish development and

ver i fica tion of hi gher level language source programs through the

emula t ion of a “v i r tua l ”  machine  tha t d i rec tly execu tes source

text [4]. The second phase will allow the checkout of actual

applications code through the emulation of the applications

hardware on the development system [see figure 3.1].

Du r i n g phas e one , applica t ion s source text is trans l i tera ted

in to a h i gh—level intermediate text directly reflecting source

lan gua ge seman t ics by a stra i ghtforward one—plus pass compiler.

The in termedia te  tex t so genera ted is then execu ted in terac t ively

via a microcoded interpreter. Trace and debug func t ions are

embedded in the in terpre ter , r ather than in the in terme d ia te tex t

itself. This assures that diagnostics can be generated at the

source level (e.g., inherent “dumpless debugging ”), and allows

the exploitation of the host machine ’s (assume d) in ter pre tive

capabilities to attain speedy interactive response.



Page 6

The in terme d ia te tex t s u r r o ga tes for  appl ica t ions tex t,

havin g been v e r i f i e d by in terac t ive de bugg ing , are  su bsequen tly

processed by a spe c i f i c  transl i tera tor to produce code compa tib le

wi th the intended applications hardware. This “har d code ” is

then checked—out on the development system by redefining the

micr ocode r u n n i n g in the hos t machine  so tha t it become s an ima ge

of the applications system. By emulating the actual applications

envi ronmen t, i t is possible to dete rmine  the per formance  of the

comb ine d applica tions sof tware/har dware system , as well as

pred ict the e f f ect of chan ges in a rch i tecture or conf i gura t ion.

Du r i n g phase two , a number of al terna tive applica tions systems

can be evalua ted , and ins ight into new sys tem design (s) can be

obtained with gr eater accuracy an d at less cos t than on a general

purpose system.

3.1 Advantages of the Interpretive Approach

The key advan tages of this approach , as compared to

conventional  program developmen t, accrue from the directness with

which the source language and applicatons hardware are mapped

into the development facility . System integrity is increased by

generat in g a rela t ively high leve l “Direc tly Execu ted Lan guage ”

(DEL code) text in phase one for the initial functional check—out

of applications software. Debugging need occur only at the

source leve l in phase one , and the “transli terator ” required to

genera te the hard machine code emula ted in phase two is of

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~ . _ _ _ _ _ _ _ _



Page 7

minima l complexity . This also improves cost—effectiveness by

reducing compilation overhead in both phases.

“In environm ent” phase two debugging , which  does no t requ i r e

delivery of actual applications hardware , is a l so  an impor tan t

contribution to the Software First design strategy . The same

types of sof tware  pro bes inser ted in to the ph ase one in ter pre ter

for debug purposes may be inserted into the phase two emulator to

obtain detailed memory—utilization data. Such data is valuable

input for program/data placement algorithms , dete r m i n a t ion of

appl ica tons pe r i phera l requ i remen ts, etc. Firmware probes are

also u s e f u l  in “pseudo real—time ” emulation , in whic h

applications system timing is formulated by updating an internal

coun ter once each interpretation cycle. Such figures are useful

in selecting appropriate applications hardware; this type of

analysis is far more difficult and time—consuming to perform

accurately using traditional program development tools.

4.0 Applicability

An in terpre t ive compu t ing f a c i l i t y  can suppor t Sof tware

Fir st design me thodolo gies in a num ber of ways , depending on the

type of product being developed . Figure 4.1 outlines some

software/hardware advantages offered by such a soft development

facili ty for two general markets of application. OEM/Military

users include m a n u f a c t u r e r s  of special purpose an d

process—control systems , while Commercial users include general

hi& —
~
,- 

~~~~~~~~~~~~~~~~~~~~~~~ 

.. •

~~~~~

. __ 
—_• - r,~~~~~~~~~~~~~~~~~~~2 , .s ~~ _ . _ s~~~,-nr • . —• — ~~~~~~~~~~~~~~~~~~~~ 

-



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 8

purpose computing machinery manufactures and software developers.

4.1 OEM/Military

Consi der a typ ical OEM/ Mili tary cont rac tor who in tends to

use a mini— or micro— processor as a real—t ime control device .

Undoubtedly, wei gh t an d powe r cons tr a in ts d ictate tha t the f i n a l
j .

system be as efficient as possible in both time and space. Using

Software First on an emulation—oriented development system , the

contractor can start by developing source—level code to control

the app l ica tion process befor e hav ing to evalu ate va r ious

alternative hardware systems, inc luding off—the—shelf as well as

new designs. The effect of architectural changes can be measured

• quickly and acccuately. An actual production system can be

configured and evaluated before hardware is delivered (or

ordered) to ensure program verification and hardware suitability .

• 4.2 Commercial

Typical general purpose compu ters are not designed for

compilation and prog ram verification . The use of an interpreter

in program development offers a simpler verification procedure in

tha t the comp i ler is fa r simpler than a compiler used on a

general purpose machine , and , since the inter pre ted tex t is a

d irec t representat ion of source tex t, program tracing and

debugg ing is greatly simplified .

- _ ±.z~~~~~~ • _ • • - . • -

.
~~~~~~~~~~~

•
~~~~~

— - - — -
~~~~~~ 

- - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -
~~~~

-
~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _

Page 9

Once a program has been verified using an interpretive

f a c i l i ty , the directly executed text can he used to drive code

generators for any number of applications systems . In this way,

software portability is enhanced , compi ler complexi ty i s

distributed over several development phases (reducing computing

costs, since only the first pass must be repeated each time

source text is modified), and shops utilizing multiple computing

resources can generate code for any and all of their machines .

Compilation load is reduced , increasing throug h put of the

general prupose machines.

Ma n u f a c tur ers of general purpose computing machinery can use

such a facility to investigate the usefullrtess of thier proposed

• designs and tune processor/peripheral configurations. Software

can be executed both directly and in the machine code of a

proposed machine to determine the efficiency of the new machine.

4.3 Interpretive Computing Facilities

Figure 4.2 outlines the needs of various interests and

marke t applica tions uti l i z ing Sof tware Fi rs t. All areas requi re

an In terpre tive En gine — a dynamical ly micro programme d processor -

which is easily microcoded . In addition , some fo rm of I/O

con trol processor such as a progr amma ble te r m i n a l , is requ i r e d to

provide interactive capability .

—~~~~~~~~
--

—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ --~~~~

- ~~~~~~~~ — — — -----—- — — ‘ —— ‘ —

• Paqe 10

A commercial software interest mi ght also employ code

generating eng ines for a number of hardware systems , including

• general—purpose systems used for normal simulation processing,

in—house accounting, etc . Code generation and DEL interpretation

are easily isolated functions; by extracting these functions from

an enveloping general—purpose operating system/host , the

complexity of these systems can be reduced. In installations

where compilation occurs with almost the same frequency as

production execution , emulation oriented processors capable of

• efficiently interpreting “Compiler—DEL’ s” would certainly be

cost—effective “front end” machines for a powerful central

proce ssor.

Hardware developers would require a variety of perpheral

devices to allow the emulation of configured systems in “real”

production environments. The interpretive eng ine can be included

in a general purpose facility , where I/O requests are mapped

throug h the larger machine , utilizing its peripheral devices and

main memory. In this way, channel programs can be interpreted by

the general pur pose machine concurren t wi th tar get code execu tion

by the interpreter with little performance degradation.

Several such interpretive computinq facilities are currently

under development. The Stanford Emulation Lab is configured

aroun d EM MY, a ver tically or ganize d dynamica l ly micro programme d

processor [7 ,9]. We are presently doing research in languages

fo r d irec t execu t ion , inter—architectural comparison through

~~~~~~~~~

--

~~

.•-- — -. . •

~~~~

• . - -

~

- -

- •-~~~~~~ - - _ _ • L _ _ _ . • -
-

-
- - -—-,~~~~~~~~~ -~~~~~~~~~~~~~~ - ~~~~~~~~~~ . - ••. - - -

rr
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _ _ _ _

• Page 11

emula t ion , as well as software first techniques. TRW is

assemb l i n g facilities around the Nanodata QM—l and QM—2 , wh ich

feature writable control store , two level microproqram ming

(vertical microinstructio ris interpreted by horizontal

“nartoinstructions ”), and a flexible bus structure. Seven CDC

5600 series micro—processors have been tied together in a

“mul ti—microprocessor ” Emulation Laboratory at the United States

Army Electronics Command , Ft. Monnouth, N .J. [8J. The

University of Maryland is also establishing an emulation and

direct execution facility built around the Burroughs B—l700.

~~ T~
_ _ _ .. • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~~ -~~~~~~~~- •~~~~~
-
~~~~~~~~~

-- -



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ______ 
-~-- - .—-, - - - • - - - ——--- -.-

• Page 12

Re fe r ences

1. Balzer , R.M., An Overview of the ISPL Computer System Design ,
CACM February, 1973, pp. 117—122.

2. Chu , Y., Methodology for  Sof tware  En gi nee r in g , Mar yland Univ.
Computer Science Center, TR—256 , 1973.

-: 3. Graham , Robert M ., Clancy , Gerald , 3., an d De Vane y , David , A
Sof tware  Design and Ev a l u a t ion System , CACM February 1973,
pp. 110—116.

4. Hoevel , L.W., Languages for Direct Execution , Proceed in gs of
the 7th Annual Workshop on Microprog ramming , (ACM/SIGMICRO) ,
Palo Alto, Ca l i f o r n i a ,  September 1974, pp. 307—16.

5. Lee, J.B., A Survey of Programmin g Methodolog ies , Texas Univ.
Computer Science Dept. TR—047, 1975.

6. Levy, J.V. , A Simulation Package for Computer Design,
• Stanford Univ . SLAC Computation Group, CGTM—l13, 1971.

- 7. Neuhauser , C., An Emula tion Or ien ted, Dynamic M icroprogramme d
Processor (Version III), Stanford Unii., Stanford Electronics
Lab , Digital Systems Lab TN—65, 1975.

8. Mattson , Roy , The Microprogrammable Multi—Process (MMP)
• System for Simultaneous Emulation of Interoperatinq Computer
• Systems , Proceedin gs of the 7th Annual  Workshop on
- Micro programmin g , (ACM/SIGMIC RO), Palo Al to, Ca l i f o r n i a ,

September 1974 , pp. 290—96.

9. Flynn , M.J., and McClure ,  R.M.,An In tegra ted Facil i ty for
Emula tion Research , presented at the USA—Japan Computer
Conference , August 1975.

______________________  -



Problem Analytic
* Definition Model

~~~~~

‘

y

’

~~~~~~~~~~~~~~~~~~i11111i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_

• Source Debug 
— 

G.P. G.P. 
______ 

Debug
Text ~~~~~~ Compiler ‘ Machine 

~~
- Host ~~ DataCode Env i ronment

“Production ” 
____ 

Applications Applications
Compiler ~~ Machine —

~~~~ Hardware
Code

Hardware “Trace”
Monitor ~~~~~ Data

Figure 2.1 Traditional Software First

Problem Ana1ytic
~~~~~~~~~~~~~~~~~~~~~~~~~ T S fe lfl l i On 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Probes

• User — —
~~~~.. Source ,,lrivial .......~~DEL - ~~_~Interpretive• • Text Compiler Code Facility

Applications Applications
System Code — 

~~ System Code
Generator

App l i ca t i ons
System

Figure 3.1 Interpretive Software First

— • 
. 

-— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -_1— - trmnt,.r---- - : - - - - - - — -


r i r - .. - -- - • -- .--~--—-- • —— ~~~~~ . • •_~~~~~~ • • •

Market Appl i cation Area

Design Interest OEM/Military Coninercial

Software Verification (independent of Veri fication (independent of
hardware) hardware)

Lead Time Lead Time
Portability Portability

• Component Simplifi cation Multimachine Compilers
DEL ’s

Hardware Hardware Tuni ng Hardware Selection
(Configured Emulation) Hardware Design

Hardware Procurement (Emulat ion Lab)
Hardware Design Peripheral Selection/Tuning

Figure 4.1 Applications Areas for Interpretive
Software First

Market Appl ication Area

Design Interest OEM/Military Coninercial

Software Interpretive Engine Interpretive Engine
Writable Control Store Writable Control Store
Interactive Capability Interactive Capability
General Purpose Computing Various Code Generators

Facility General Purpose Computing
Facility

Hardware Interpretive Engi ne Interpretive Engine
Writable Control Store Writable Control Store

* Interactive Capability Interactive Capability
Variety of Peripherals Variety of Peripherals
I /O Processor or General

Purpose Computing
Facility

Figure 4.2 Facilities Reauired for InterDreti ve Software First

~~~~~~~~~iT _ 1L~H



r’
~~~~~~~~~~~~: ~~ TY CL ASS CAT 0; T~~~~~~~ :: LA 7 2 7 ~ ~~~~~~~~~~~~~~~~~~~i

REPIu T flflrIIU~~.1TATIflkI DAGE ~~ M~ A iN5~~~U~~~mj~,j‘- u” ~~~~~~~~~~~ ~~~~~~~ BEFORE COM PLET IN G FORM
REP ORT NUMB ER

7 12 GOVT ACC ESS IO 40. ~~~~~~~~~~~ s ~~~~~ ‘ A~~ O~~

~ *ek..t~~.l 1LL~
~~ 4zq54’Qi~

j ~~ _ _ _ _ _ _ _ _ _ _

-
- TITLE (an d Subflhl.) I. -p-.-.-- .. ., r .,- ..,.. . .~~ OVERED

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ; E v PtN 1~/ ( 
7

~~~~~ nicai~~~ te ~/— - - -———••—.-. •— • 
. Pf~~~?OR~~~~~~~~ unto. ~~~~~~RT NUMBER

/..

~f4UT I4OR(.)
-

•• 8. CONTRACT OR GRANT NUMBER(.~

Lee W.iHoevel 4~vd Walter A./Wallach 7 ~ fDAAG*t29_ 76_G_i4o,~1~J’~~

I - 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PR Oj ECT , TASK
• AR EA & WOR K UN I T NUM BE RS

• Digital Systems Laboratory 1-~ -

Stanford Electronics Laboratories
/~~~~~

j_~:. - i, .7
Stanford University, Stanford , CA 94305 __________________________

II. CONTROLLING OFFICE NAME AND ADDRESS 2. ~~~

i / I Aug~~~~~~ 76
U.S. Army Research Office-Durham “-‘.--—‘

~~~~~~~~~~~~~~~~~~~~~~~

______________________________________________________ 
14

14. MONITORING AG ENCY NAME & AD DRESS(1( different lroni Controlling Olflc.) 15. SECURITY CLASS. (of thia report)

15a . DEC L AS S IFICA TION/ D OW I4G RA OI NG
SCHEDULE

16. DI STRIBUTION STATEMENT (of this Report)

Ap ; ’r  •‘~‘~‘d for p~ibIj c re1e~ &e di~t i~~~~~(
Liii! • -

Ii. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

The t •~~~~“ -
~~ j i~ I i:~ report r -  :~~ to hC’ ~~;~ ti-iied as a~i

o ff i c ia  - - ~~~~~~~~~~ • I l I t A r - ~~~~~~- l iii , un!e~c~ ~~
.,

desi gnatu • - • H ~ _. d . H’ .

i9. KEY WORDS (Continu, on reverse aide If necessar y end identify by bloc k number)

20. AS CT (Continue on revere, aid. If neceaemy end identify by block number)

“~~oftware First”~T~~ the design philosophy whereby applications software is
developed to solve specific problems prior to the availability of applications
hardware. -W€5~proposet~the use of an interpretive computing facility, designed
around a high performmnce microprogrammable host machine , to support and enhanc
Software First in the following manner:

~~I’) Applications programs are initially converted into a high—level interu dia te
text (DEL) by a straightforward ~~ne—plus’~~ ass compiler. The intermediate tex -

so generated is exe~ 4ted interactively via a microcoded interpreter. This _—~,.

DD ~~~ 1473 EDITION OF I NOV 65 IS OBSOLETE 4’~~ ~ ~:?1:.
SECURITY CLASSIF ICATION 0 THIS PAGE (Ithen Dale E,,ft,eci)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
--

~~~~~— -~~~- 
_~~~~~~~i

_
~_



_ _ _ _ _ _ _ _ _ _ _  • • • — •~~~~—- -~~~~~~~ --.-- -—----------- -~~—------ -.— --i--

SECURITY CLAS& IFICATIO N OF THIS PAGE(W7,w Data Enteted)

T~~ assures that diagnostics can be generated at the source level (e.g.,
.C”dumpless debugging~T and allows the exploitation of the host machine’s
inherent capabilities to attain speedy interactive response. ~

._—~—,s-~2) �he intermediate text surrogates for applications ~rograms ,
having been verified by interactive debugging , are then processed by a simp .e
generator to produce applicatons—hardware compatibl e code. This~~~iard”t
code is then checked out on the development system by redefining the
microcode running in the host machine so that it becomes an image of the
projected applications hardware.~~~

• ,~~
. Advantages of this approach, as compared to the conventional approach ,

accrue from the directness with which the source language and applications
hardware are mapped into the development facility. System integrety is
Increased by using the intermediate text produced in phase one to generate
the hard machine code emulated In phase two. The phase two texting does
not require the delivery of actual hardware, and can be used in the evaluat on
of proposed systems and the selection of final applications system.

I

* 

-.

~~

SECURITY CLASSIFICATION OF THIS PAGE(Then D.tn }nlered)

•

- - -- — .- ~~~~~~~ ~~~~~~~~


