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1. ABSTRACT

A method is developed for defining localized states and !
effective Hamiltonians in perturbed crystals. The method is based :
on the localization ideas in the kq representation for perfect é

T T

£ lattices. An equation is derived defining localized states for per-
; : turbations caused by am impurity, a magnetic and electric fields.
First, the impurity problem is considered in detail. A correction
term is obtained to the one-band Koster-Slater effective Hamiltonian.
It is shown to be significant for bound states and scattering cross
sections of a localized impurity. Second, an orthonormal set of
localized states for a crystal with a perturbation is developed. It
includes the impurity problem, surface states, superlattices and
other perturbations. These localized states are used for deriving
one-band effective Hamiltonians up to second order of the perturba-
tion expansion. Relatively simple results for localized states and
one-band Hamiltonians are obtained in the cases of wide and narrow

energy gap crystals. The orthonormal set of states that diagonalize
the Hamiltonian is also used for deriving an expression for local
charge densities in a perturbed crystal which can directly be compared
with experiment.

Third, the symmetric coordinates in solids are used for
developing Wannier functions in the presence of a magnetic field.
The functions are shown to form an orthonormal set with respect to
different bands and different sites of the crystal. A simple relation
is established between the eigenfunctions of a Bloch electron in a
magnetic field and the newly developed Wannier functions. This
relation is used for an entirely elementary derivation of one-band
effective Hamiltonians. Multiband operators are defined in the
space of envelope functions for different physical quantities, e.g.
the radius vector, velocity and acceleration. :




2. INTRODUCTION

The recent interest in the Koster-Slater impurity problem1

was caused by a new idea put forward in a paper by Kohn and Onffroyz.
The idea consists in defining one-band generalized Wannier functions
(GWF) that are suitable for expanding the corresponding one-~band
eigenfunctions of a perturbed crystal. By doing so the multiband
Koster-Slater equation reduces to a one-band problem. In addition,
the local density of states and the charge density can directly be
expressed in the GWF.

In this work an equation for defining localized states and
effective Hamiltonians in perturbed crystals is developed. The
equation is written in the framework of localized states in perfect
crystals in the kq representation. The localization problem on
ideal latticesa’ *
an extension of Ref. 4 to perturbed crystals. A variety of perturba-

was recently solved and the approach here will be

tions is considered, e.g. the impurity problem, the magnetic and
electric fields. In developing the above-mentioned equation some
simple facts about the localization problem in the kq-representation
were used. First, a localized function in a perfect crystal, a Wannier
function, for some band in the kq-representation is equal to the

Bloch function for the same band. Secondly, localized functions in the
kq~representation satisfy the Bloch equation for a perfect crystal.
Thirdly, Wannier functions in the kq-representation for different

sites differ from one another by a simple exponential factor. In a
non-perfect crystal these facts can easily be generalized, and omne

is then lead to an equation for perturbed localized states. Because

of their localized character, one expects the perturbed localized
states not to differ very strongly from the corresponding localized
states in a perfect crystal. Having this in mind, a pertubative
procedure was developed in for deriving localized states and

effective Hamiltonians in perturbed crystals.
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Using the set of localized orthonormal functions a general
theory is developed for dériving one-band effective Hamiltonians.
The results are obtained up to second order in the perturbation
expansion. The orthonormal functions that lead to the one-band
effective Hamiltonians are shown to be suitable for deriving local

charge densities in a crystal with a perturbation.

The perturbation expansion for the localized functions and
the one~band effective Hamiltonian in this work is of quite general
character and can be applied to a variety of problems, including the
impurity problem, surfaces, superlattices and external fie1d85-7. The
applicability of the approach is limited to crystals in which band
touching does not appear and there is at least one isolated band.
Good examples of this kind of crystals are the alkali halides, the

rare gas solids and the II-VI semiconductor compounds.

The idea of using Wannier functions in the problem of a
Bloch electron in a magnetic field was first given by Luttingers.
Later this idea was further developed for deriving effective one-band
Hamiltonians in a paper by Rothg.

The idea of modifying the Wannier functions in order to
adjust them to the perturbation of a magnetic field is put forward
in the Refs. (8) and (9). Following our perturbative approach, the
Roth operator technique9 is used for developing an orthonormal set
of Wannier functions in the presence of a magnetic field. The newly
defined Wannier functions are shown to be useful in deriving one-
band effective Hamiltonians for a Bloch electron in a magnetic field
in an entirely elementary way. These functions are also used to
prove that the eigenfunction for a Bloch electron in a magnetic
field can be written as a product of a known operator and the
envelope function which satisfies the effective Hamiltonian equation.
This structure of the eigenfunction serves as a basis for defining
multiband operators in the space of the envelope functions for

e e
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different physical quantities, e.g. the radius vector, the velocity,
the acceleration, etc. Different relations are obtained between
these operators fully resembling the corresponding relations in the
absence of a magnetic field. In particular an acceleration theorem is
proven to hold for the velocity of a Bloch electron in a magnetic
field. It is also shown that a sum rule is satisfied by the newly
defined operatorslo.

3. EQUATION FOR LOCALIZED STATES IN PERTURBED CRYSTALS (REF. (6) )

Let us start with a number of remarks about the kq representa-
tion and the problem of localized states in perfect crystals.

-
The connections between a wave function Y(r) in configuration

space and the corresponding wave function C(t,;) in the kq representa-

tion are as fOllOWSll :

v 1/2
V@) = ( °3) f dkc(k, 1), Sl
(2m)
o
¢k, =( - 3) & expik-B@ - B, )
(2m) R

where Vo is the volume of a unit cell in the Bravais lattice, the
integration in (1) is over the Brillouin zone, and the summation in
(2) is over all the vectors R of the Bravais lattice. From (2) it
follows that a Bloch function anB(i,a) in the kq representation is

3\1/2
> &> 2m > > >
Cak, (620) = G_Vi_) wnkm));_s(k -k -0,
K
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where wnk(a) is the Bloch function in the coordinate representation
(with T replaced by E), iB is the Bloch quasimomentum, and the
summation is over all the vectors K of the reciprocal lattice. By

-
definition, a Wannier function a'nm(k,;) in the kq representation

belonging to the nth band and located on site im of the Bravais lattice
is

1/2
a'__(k,0 =((2:)3\) J diBexpc—ﬁB-‘r{,gcnkB('i.E)

> > ->
= exp(-ik*R )Y , (q) (4)
This is a very simple connection between a Wannier function in

the kq representation and a Bloch function. The orthogonality of
the Wannier functions (4) is seen immediately

> > > > > >
5; dkdqa;;(k,q)a'n.m.(k,q)

- ‘( expliks R ~ R )1V F @Y, 1, (@ dkdq
=88, (5)

For arriving at (5), we used the following relation that Bloch
functions satisfy :

3
SZTQ > > > (6)
v Vof (¥ v (@)dq =8,

In what follows we shall prefer to work with the periodic part
U(ﬁ.;) of the wave function C(ﬁ,z)




c(k,q) = exp(ik-q)uck,q), %))

where U(t,-a) is periodic in —c; with the period of a Bravais lattice
vector -ﬁn and 2Bloch periodic in I,

: vk + X0 = exp(-13-0UE, D),
. ;
i with En a reciprocal-lattice vector. In an unperturbed crystal we
;, have
U V) L CORENCILINCORC :

where U nkB(I.a) is the periodic part of the Bloch function in the kq

i . representation
1/2
- o, @& -(enl 3 s&-% -%) (9
nky »q) = v Uak (D Z KB w9
o Km
and € n(tn) are the energy bands (_l:B being the conserved quasimomentum).
The periodic part of the Wannier functions anm(i:,;) is therefore
>
L a0 (850) = exp (KR )u_, (@) (10)
> > > >
In what follows am(k,q) [and not the at'm(k.q) in (4)] will be

called the Wannier functions. It is obvious that the Wannier functions
; (10) satisfy in the kq representation the Bloch equation

[ ‘ [ 32 "’|2 -+ > >
( ~10/20) > k-, V(q))am(k.q) = e (0a_ (k3 A
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It is of interest to compare Eq. (8) for Bloch functions with Eq.
(11) for Wannier functions. In Eq. (8), en(iB) is a constant
independent of the kq coordinates while on the right-hand side of
Eq. (11) we have en(i), a function of k. We see that the only
difference between the equation defining Bloch functions [Eq.

(8)] and the equation defining.localized functions [Eq. (11)] is in.
the factor multiplying the function on the right-hand.side. This
fact will be used in postulating an equation for localized states
in perturbed crystals.

.The Schrsdinger equation for a Bloch electron in a constant

magnetic field H and perturbation v(?) in the kq representation 1311

( [-13/39 + & +(e/20)Bix1d/0K)% | pse (1 l})(’i.'&) 5
ok

2m

= €U(k,q) (12)

Equation (12) is the eigenvalue equation (€ is a constant).for an.
electron in a perturbed crystal. The solutions U(ﬁ,a) are eigenstates
of the problem. In order to obtain an equation for localized states
we shall use the analogy with equations (8) and (11). Equation

(8) is an eigenstate equation [with a constant en(ii) multiplying

the function on the right-hand side], while Eq. (11) defines localized
states anm(i,a) [the energy en(i) multiplies anm(i,;) on the right-hand
side]. Having this in mind we shall postulate in correspondence with
Eq. (12) the following equation for localized functions in a perturbed
crystal :

Y > >.2
[-13/3q + k + (e/2¢c)Hix13/3k] >
( 2m + V@)

9 > > > > > >
*"(ia—ﬁ))ﬂm“’v = E (k,R)A_, (k,q) (13)

e ——————
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where Anm (i,;) are the perturbed localized functions and

En(ﬁ,ﬁm) are the effective band energies. The explicit dependence

on the site im appears in the equation if one follows the structure | 3
of localized functions (10) in the kq-representation

-

A (8,0) - exp(-1k-R)U__(%,9) (14)

with Unm(i.a) satisfying the equation

( [-13/33 + & + (e/20)x(®_ + /0812 | 4

2m

+V@ +v 18—; + Km) U@ = E (&RDU_(K,9)  @a5)

In the absence of perturbations (H = 0, v = 0) Eq. (15) goes over into
Eq. (11) for localized states of a perfect crystal. In the latter
case the localized functions Unm(K’;) and the effective band energies

E_(k,k ite R_ ind
n( »R ) are site R independent

U060 = uy @ (16)
> > ->
E (k) = € (0 an

This 1s no longer so when a perturbation is present. As is seen

from Eq. (15), both the localized functions Unm(f,;) and the effective
band energiea»En(f,ﬁg) will, in general, be ﬁ; dependent (an exception

is the homogeneous electric field case). One should expect Eq. (15)

to lead to localized states because the solution of the unperturbed
equation [Eq. (11)] are localized and they should not be strongly affected
by the perturbations. It is therefore possible, in principle, to solve




e F0Z, towig
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Eq. (15).by a perturbation procedure starting with the unperturbed
equation (11). This is the main advantage of the localized

equation (15) over the eigen-value equation: (12). The eigen-
functions U(i;a) of the latter are very different from the eigen-
functions U (i;;) of the unperturbed problem (8) and a perturba-
tion procedure can, in general, not be applied to Eq. (12).

For comparison reasons let us write Eqs. (11) and (13) for
localized states in the regular : representation. The left-hand sides
of Eqs. (11) and (13) will just be the corresponding Hamiltonians
applied to the function in the : representation. In order to obtain
the right-hand side we expand the band energies en(i) and nn(i,ii) i:
Fourier series and use formula (1). Equations (11) and (13) in the r

representation will be

2
( L4 v({)) an('r’ % iim) - zs: hn&s)an(? “ 'ﬁm + 'ﬁs),

> > >.2 & m
( [E + (egcﬂxrj_ + V(r) + v(r)) Anm(r = Rm)

~ H > > -+ > >
:E; n(Ra,Rm)Anm(r g 1 Rs)’ (19)
s
where
e U
hn(Rs) o | e sen(k)dk (20)
(2m)
> &> Vo _1+--§ > > >
Hn(Rs,Rm) = (2ﬂ)3 f’e sEn(k,Rm)dk (21)

> > > > £
and an(t - Rh), Anm(r - Ry) are the localized functions for the

perfect and perturbed crystal, correspondingly. Equation (18) is well
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known and is the equation for Wannier functions a, (t) in a perfect
crystal. In this case the shape of the function a (r - i.) does
not vary with the site and all the Wannier functions for a given
band are derived from a single function an(;). In the perturbed
crystal the shape of the localized function Anm (; - -i’.) depends also
on the site

1/2
) f dic exp(-tkeR)C (k,D)  (22)

A (?-'15)-(
‘nm ) (2")

where C m(i:,;) = exp(i-l:-;)u mn(i:’;) [see Eq. (1)]. In the regular
r-representation, Eqs. (18) and (19) appear to be more complicated
than Eqs. (11) and (13) and we find it more convenient to work in

the kq representation.

4. THE IMPURITY PROBLEM

In the presence of an impurity perturbation v (ﬁ = 0), Eq.

(15) for localized states becomes

( s-ialag + kz + V(q) + v (i—- + ﬁQ)U (k’Q)

= E_(X,R)U_(K,q) (23)

We shall solve Eq. (23) by a perturbation procedure assuming that the
unperturbed bands En(-lz) are well separated. This will be needed for
defining a parameter of smallness for the perturbation theory. Any
function U(i:,;) can be expanded in the complete set of functioms (10),

U = S By, exp(-tkRDuy, @
nm

= 2 3@ @ (24)
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which is a well known expansion in the kq representat:l.onu.

the solutions U m(i’;) of Eq. (23), expansion (24) will be

For

U k0 = % B, (k,R )ug, (@ (25)

In this case the expansion coefficients are site in dependent. We
substitute expansion (25) into Eq. (23), multiply it by u:k(‘ﬁ) from
the left, and integrate over E We arrive at the following equation
for the coefficients B nl(I,im) :

e (OB (kR + 2;_ vﬂfl:,i—a% +% )8 R

&,R ), (26)

where

> -> 3
v ( k.i;-% +F) =20 f u g @v ( 1;% + B yu,, @d3
(o]
(27)

Expression (27) defines an operator which is to be applied to the
coefficients B n!.(k'K)’ and the integrand from point of view of the
quasimomentum kis a product of three operators. Equation (26) can
be solved by perturbation theory. Let us introduce the following
notations :

’ B, @&k = 3Q@E) + sV @R +3P&E) + ...
. (28)

E &) = (0 + eél) @Ry + P&+ .. @
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where the superscript denotes the order of perturbation. Up to
second order in the perturbation we have (we apply perturbation
theory to band n)

(0) > >
Bs (KoRp) = 6ns (30)

> >
v__(k,R )
D&% ) - —=2 i ~ s#n BVER) =0 (D
e () - e

3 o, 19/9% + R )B(])(k, )
"o i en(k) i es(k)
L#n

m- sn

Ve (k,-ﬁ v (.l:,-l{)
2

- s#¢n (32)
[e, @) - €,
@)z 1 v ok 2
PR @R - -3 = (33)
w®i T 22 g e, (01
2’*n n .
eD @R = v ®E), (34)
ePD@iy -5 v 1—- +8 )@k (35)
n+n

In the above formulas in addition to the matrix operator (27) also the
matrix Vs (k,R ) appears. The latter is a special case of the
operator (27) when it no longer operates on a function of k [the
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operator v(ialat + im) in the integrand of (27) operates in this
case directly on the function uz'k('t;)]

vsz(-l;,-im) = Z exp(-:l.-lz'i) x d;a:(;-i)v(g.k’.)az(;)

R
= 7 exp(k-Rv, R +,R ) (36)

with :
v R = f a*(r-R)v(D)a, (r-R")dr (37)

For results (30)-(35) to have the meaning of perturbation corrections
we have to assume that

n = v (kR /(e (@-c (©)] << 1, (38)

where N is in some sense the expansion parameter of the perturbation
theory.

When (38) holds the localized functions Am(i,;) for a crystal
with an impurity up to second order in perturbation theory will be

Ao = ety x (1 + 32 Y1y D

+ 7 @R + nﬁ’(i,iﬁ)]usk({)) (39)
s#n
where the coefficients Bm(-l:,-im) are given by (31)-(33).

The functions (39) by the construction of perturbation
theory are normalized to second order in the perturbation




- 3k~

> 12 > > 2) 72 (2)* »>
(1apt0 | 2dtadnt + 3P @8 + 3P @R

W32
LD I el (S SIS (40)

s#n
The last equality in (40) is a consequence of (31) and (33).

By using these results a one hand effective Hamiltonian
can be derived for the impurity problem. The derivation will be
based on the localized functions Anm(fﬂ> [Eq. (39)] and the‘
effective one band energies (39) and (35). Following some simple
physical assumptions of Ref. (6), the localized functions Ahn(t;)
assume the following form to first order of the perturbation

Am(i:.;) L exp(-i-"-ﬁ) x (unk(;) +
v (i )
R uskG)) (41)

sim 0

The structure of the localized functions (41) is very simple and they
can easily be written in the ; representation

>
ApG-R)=a @G-R)+ T "B a@-8) w2
sin €ns
Here, Anm(; - ih) are the 1ocali?ed+functions for a crystal with an
impurity. It 1s seen that Anm(r - Rm) depends not only on the
difference r - Km as in the unperturbed Wannier functions ln(; - i;)
but also explicitly on the site iﬁ. As should be expected, the
stronger the perturbation is on site 3;, the more will the perturbed
function Ann(: - 3;) differ from the unperturbed one ‘n(; - i;) on this

particular site i;.

The assumptions simplify also considerably expressions (34)
and (35) for the effective energies. To second order in perturbation

theory we have




Led

- XR

eV, 1) -v ®) 3)

e(z)» -> |V (R )| ]
n

(k, n)-Z e (44)
ns

: v Let us now construct a one-band effective Hamiltonian for the
: r impurity problem. For this purpose we expand the solution U(k, q) of
2 ; b
- Eq. (12) (with H = 0) in the localized function Azp(k, q),

? vk, = rz(ip)A Rp(i, D, (45)

->
where the expansion coefficients rz(np) depend on the band index & and
>
: : the site Rm’ Substituting (45) into (12) we have
E | ;

> > -> > >
! ! %p_ E, (k, RP)FZ(R'p)Azp(k, q) g EZ. Fz(R plAgp ks @ (46)
! where
lv (R )|
E(k n)=€(k)+v ’R)+Z.——:—P——- (47)

s#L Ls

A
.

2
Up to the order of " the one-band effective Hamiltonian equation for the
impurity problem will be

O T o

> > >
‘» % h (R, - R)F (R )

> IV (R ) IZ >
t o R)+ T BB )p g - @) . (48)
s¥n ns

Equation (49) has a correction term

' . Ry |?
4 Z |vns( m) |
’ s#n ens ?

to the well-known one~band classical equations for localized impurities of
} } » Koster and 81atet1 and for shallow impurities in the effective-mass

approximation. Equation (48) reproduces both mentioned equations when

|

-—
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the correction term is neglected. However, the second-erder perturbation
term in Eq. (48) is of very simple structure and can lead to significant
contributions in the one band impurity potential. The significance of
this term follows from the fact that while being a one-band band term

it is influenced by the explicit band structure of the solid. This can in

] » particular be easily seen in solving the Koster-Slater localized impurity

E F - problem. Thus by assuming that only two bands interact in Eq. (48)
(band s influences band n) and that the impurity is localized at the
origin, we find that the effective impurity potential at ih =0 1{1s

V(0 + |vns(0)|2/ens : (49) 1

§ This potential depends explicitly on the band gap e and the interband

: i matrix elements vns(O). The second-order correction term in (49) can be

E | large and is restricted only by the applicability of perturbation theory.
Both the binding energies of the impurity and scattering cross sections
will be modified by the band structure.

F ! - Similar remarks can, in principle, be made about the significance
i of the correction term in Eq. (48) for the shallow impurity. In this case,
however, one should,in general, expect that for gentle potentials v(;)

the second order term in (48) will be very small. One could, however,
imagine cases when vsz(i) is not negligibly small. This is only a guess
and it should be checked on real problems.

5. BLOCH ELECTRONS IN A MAGNETIC FIELD (REF . (10))

In the presence of a homogeneous magnetic field H the equation for

localized states becomes

> AN
(-1 -a?+k+-;—c-ll>(1 5%)2

+ VD1 A Gd)= B (R A (o) (50)

( 2m
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where A (i:) is the perturbed localized function for band n and site Rm
and En(f, m) is the site dependent effective energy. In the absence of
the nagnetic field,Eq. (50) goes over into Eq. (11) and correspondingly

A (kq) go into a (kq) (Rel. (10)) and the E| (k R ) become the
unperturbed energies € (i) One can look for A (‘.) in the form

3 - 2>
Am(kq) = exp(—ik-Rm) U m(ka) (51)
23 '

where Um(kq) satisfies the equation5

PR S e iR + e?x:ta)2
= _, _e _e
[ e _w T B, e@)u &
D> >
= B (kR U (ke) (52)

The Hamiltonian in (52) depends on the combination

+ 5o BR (53)
which means that (51) can be rewritten as

a0 2D
A n(kq) = exp(—i ‘R) Unk (q) (54)
a D>
and En(k,Rm) in (52) will be

Y -->
En k,Rm) = En(km) (55)

~

The results (50) -~ (54) can be writtem in a more c!npact for- by
uling the notatiom A(X) for a function of the operater x = k + T Bxi W .
A(x) is defined as follows

& a > BN e™> 3 >
A(X) = J dx F() exp{i(k + 3¢ B4 ﬁ)-;\} (56)
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>
where F()\) 1s the Fourier transform of Afi). In Ref, (9) a simple multi-

pPlication rule was shown to hold for a product of two operators

Y P Y
Al 3O = c0 (57)
whére

> N
cl®) = A() BK) = 1n ” -;llfﬂ %@ 5

B
2. > 2. >
- 3°A(k) 3°B(k)
2 Mg Parpe k 3k s akBBkB, At ae (58)
and
haB © Cagy Zc (59)

In (39). BY is the antisymmetric unit tenmsor and in (58) and (59) there
are summations over repeated indices. Rel. (57) together with (58) and

© (59) give what is called the commutator expansion in powers of the magnetic

ES
for a product of two functions of Y.

By using notation (58) the localized functions (54) can be written
as follows:

A G = 0G0 exp(-fkR) (60)

an
where Unfiq) operates on exp(-ik-Rm). Similarly, Eq. (50) can be rewritten as

o -3 ad a s
i) U, exp-ik-R) = (0 v EOKY exp-kRY (6D

where H(kq) is the Bloch Hamiltonian. On both sides of Eq. (61) there are
operators which are applied to the function exp(-ik R ) Wethout the latter
Bq. (61) ia an operator equation. For reasons that w111 become clear below it
is convenient to write this operator equation in a somewhat different form

Y D a0 -3
H(xq) Un(Xq) = Un(Xq) H (X (62)

1
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On the right hand side of Eq. (62). the operators arf.tenrrqngcd‘in cg:pariaon
with Bq. (61) and this is the reason for vritingnﬂh(k)iinltcad of En(k);

Bq. (62) will be the main equation for defining-Wannter-fumetions and one-
band effective Hamiltenianms -for -a-Bloeh -etectron in- s magnetic field.

2>
One can now prove that the functions-anﬁékq)w-in (60) are the
Wannier functions of the problem.

Before turning to the solution of Eq. (62)- let-us show its con-
nection with the eigenvalue problem for a Bloch electron in a magnetic field.
The SchrBdinger equation for the latter in the kq-representation can be
written as follows

2> 2> a2
H(Xq) U(kq) = € U(kq) (63)

vhere H(kq) is the Hamiltonian and H(Xq) is obtained from B(kq) by
replacing in 1t k by k + T Hxiﬁ; It can be assumed: that the Wannier
functions A (kq) in (61) forg‘a complete set and the following expansion
holds for the eigenfunction U(kq)

N > > > >
vk = ZE®) A (ko) = 2 U (xa) B0 64)
nm n

- o>
where Bn(k) and Fn(Rm) are Fourier transforms of one another. Let us

substitute Exp. (64) and (63) and use Eq. (62). We find
D > > a - i
é U (xa) H_(X) B (k) = e?. v (xa) B_(k) (65)

: a3 : &
By multiplying Eq. (65) by UI(xq) from the left, and by integrating it over q
one finds '

> > E Y
00 B (k) = B (k) (66)
which is a one-band effective Hamiltonian equation for a Bloch electron in a

* >
magnetic field. Eq. (66) shows that H (k) in the equation for localized ,
states (Eq. (62)) 1is the effective Hamiltonian of the problem. This means that |

by knowing the solutions of Eq. (62) one knows directly the one-band
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effective Hamiltonian. In addition, from Eq. (66) together with Exp. (64)
one can find the eigenfunctions for a Bloch electron in a magnetic field,
Since the operators U (Xq) diagonalize the Hamiltonian, only one term

should be kept in the Exp. (64) and-the eigenfunction - U(kq) corresponding
to the band n becomes

D = >
Ukg) = U_(xa) B, (k) (67)

In the kq-representation the eigenfunction Ua:b exhibits therefore a
sepa;gtion of the envelope function B (k) and the crystalline operator

U (xq) Rel, (67) shows that in the kq—representation the separation of
the eigenfunction into a product of a known crystalline operator and an
envelope function is a general one band feature without any additional
assumptions. This general feature of the kq-representation is a consequence

of the fact that k and q are the symmetric coordinates in an ideal crystal.

The solutions of the main equation (Eq. (62)) can be found as a
power series of the magnetic field in the framework of the commutator expansion
(57) - (59). 1t was already shown that these solutions give the one band
effective Hamiltonian and the Wannier functions in the pﬁggfnce of a

maghetic field. For selving Eq. (62) multiply it by U;(Xq) from the left
and integrate overaq

%o (") e R e s, Rt O (68)
H X U, (xq) H(xq) U_(Xq)dq = X
(2n)3 2 n n (2")3 n

>
The next step is to expand the function Un(kq) in Wannier functions of

the ideal crystal

B
u_(ka) - Z 5,0 ug (@ (69)

-
Theaunknowns are now the effective Hamiltonian Hn(k) and the coefficients

Bn.(k). One can look for them in the form of a perturbation series

N - - -
B (k) = e§°) x) + ef‘l) ) + er(lz)(k) * i (70)

= aa (2) >
A R N AN L RPN 1 ..
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where the superscripts denote different orders in the magnetic field

according to the commutator expansion (57) - (59). It can be shown (Ref., (10))
that the effective Hamiltonian (Rel. (70)) and the coefficients (Rel. (71))

can be determined to any order of the magnetic field from Eq., (68) together

with the orthogonality relation. By solving these equations it is shown with
what ease one can reproduce the well known results of constructing one-band
Hamiltonians for a Bloch electron without the need of using diagonalization

procedures, Thus, the zero order effective Hamiltonian is

5 S
i eéo)(k) = en(k) (72)

; while the first order results are

() g M &
e - vWDao (73)
a >
3w = -8V (74)

v while for 2 # n one finds

(1)
V (k)
(1)(1) n

o
e, - ¢, &

(75)

The effective Hamiltonian (73) is identical with the one given by Formula (73)
of Ref. (9). It is interesting that both the effective Hamiltonian (Ref. (73))
and the coefficient (Rel. (75)) to the first order in the magnetic field are

! determined by a unique non-Hermitian matrix. The expressions (73) and (75)
look like first order perturbation formulas.

AT ARE s

With the same ease one finds the second order terms in (70) and (71)
(see Ref. (10)):

W&

g a s @b

. eP® = P - 08P+ 7 —m—.‘zﬁ? - D ®
8! n

(76)
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B P~
32 - - 2 P + |B(1’<k)| +h % z @D x @ +h.c)

8
(77)

By ug}ng the latter expressions one can show that the effective Hamiltonian
5:2)(k) in (76) is identical with the one given by Formula (74) of Ref. (9).

Similarly, for £ # n we have

@y . 1 @2 s a2y A
Bag () e;?!Y':'E;?§T {6gn (k) - e, (k) Ny " (k) +
+Z. n‘“ ®) n“’ @ (e, @ - c, @) + (n‘l’ @ V@) +hee) +

AN B R PO Z 3D ® 8)
o8 3k_ ng 8L . 8 ak Xass

It is therefore seen that with very little algebra one finds from
the Eq. (44) both the effective one-band Hamiltonian and the coefficients
an(k) . The latter determine the Wannier functions in a magnetic field
(Rels. (61) and (69)). Thus, to the zero order of the magnetic field one has
(ni‘;) - 4.0
>> -
A pke) = (q) exp(-ik*R ) (79)
>
where k. is given in (53). The zero order Wannier functions in the presence
of a magnetic field (Rel. (79)) are very similar to the corresponding funcgions
in an ideal crystal. The former are qgfained from the latter by replacing k
in the periodic function unk(q) by km. The functions (79) are modified
Wannier functions for the magnetic field problem and they were already used for
describing the motion of a Bloch electron in a magnetic field.8’9 Similarly,
one obtains the Wannier functions to higher order, of the magnetic field.

: =
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In summary, the use of localized functions:that correspond to non-
ideal crystals enables one to take directly into account multiband effects
in the impurity problem and in the problem of eiternal fields, Wannier
functions in ideal crystals have been known as an extremely useful tool in
general theoretical proofs and model calculations in solid state physics.
The work reviewed in this report shows that a similar role is played by

perturbation adapted localized functions in imperfect crystals.
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