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~~ 20 Abstract 
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A method is developed for defining localized states and effective
Hainiltonians in perturbed crystals. The method is based on the
localization ideas in the kq representation for perfect lattices.
An equation is derived defining localized states for perturbations
caused by an impurity, the magnetic and electric fields. First,
the impurity problem is considered in detail. A correction term
is obtained to the one-band Koster-Slater effective Hamiltonian .
It is shown to be sign ificant for bound states and scattering cross
sections of a localized impurity. Second, an orthonormal set of
localized states for a crystal with a perturbation is developed.
It includes the impurity problem, surface states, superlattices and
other pcreLr~~t3i~~. Th~~c 1ocali~ed states are used for derivingone-band effective Ilamiltonians up to second order of the perturbation
expansion. Relatively simple results for localized states and one-
band Hamilton~ uis are obtained in the cases of wide and narrow energy
gap crystals. The orthonormal set of states that diagonalize the
Hamiltonian is also used for deriving an expression for local charge
densities in a perturbed cyrstal which can directly be cc~pared withexperiment.

Third , the s~çnnetric coordinates in solids are used for developing Wannier
functions iii ~ie presence of a magnetic field. The functions are shown
to form an ortl\onormal set wi. th respect to different bands and different
sites of the crystal. A simple relation is established between the
eigenfunctions of a Bloch electron in a magnetic field and the newly
developed Waniiier ñ~nctions. This relation is used for an entirely
elementary derivation of one-band effective !-!amiltonians. Multiband
operators are defined in the space of envelope functions for different
physical quantities, e.g. the radius vector, velocity and acceleration. 
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1. ABSTRACT

A method is developed for defining localized state. and
effective Hamiltonians in perturbed crystals. The method is based

- 

.

- on the localization ideas in the kq representation for perfect

lattices. An equation is derived defining localized states for per*_

- 
turbations caused by am impurity, a magnetic and electric fields.

First, the impurity problem is considered in detail. A correction
term is obtained to the one—band Koster—Slater effective Bamiltonian.

It is shown to be significant for bound states and scattering cross

• sections of a localized impurity. Second, an orthonormal set of
localized states for a crystal with a perturbation is developed. It

includes the impurity problem, surface states, superlattices and
other perturbations. These localized states are used for deriving

one—band effective Hamiltonians up to second order of the perturb.—

• 
. 

tion expansion. Relatively simple results f or localized states and
one—band Hamiltonians are obtained in the cases of wide and narra,

- - 
- 

energy gap crystals. The orthonormal set of state. that diagonalig.
the Hsmiltonian is also used for deriving an expression for local

charge densities in a perturbed crystal which can dir ectly be compared
with experiment.

Third, the symmetric coordinates in solids are used for
developing Wannier functions in the presence of a magnetic field.

The functions are shown to form an orthonormal set with respect to
different bands and different sites of the crystal. A simple relation

is established between the eigenfunctions of a Bloch electron in a
magnetic field and the newly developed Wannier functions. This
relation is used for an entirely elementary derivation of one—band

effective Hamiltonians. ~~1tiband operators are defined in the

• space of envelope functions for different physical quantities, e.g.
the radiu. vector , velocity and acceleration. 

* 
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2. INTRODUCTION

The recent interest in the Koster—Slater impurity problem 1

was caused by a new idea put forward in a paper by Kohn and Onffroy 2.

• The idea consists in defin ing one—band generalized Wannier functions
(GWF) that are suitable for expanding the corresponding one—band

- eigenfunctions of a perturbed crystal. By doing so the multiband
Koster—Slater equation reduces to a one—band problem. In addition ,
the local density of states and the charge density can directly be
expressed in the GWF.

In this work an equation for defining localized states and
effective Hamiltonians in perturbed crystals is developed . The
equation is written in the framework of localized states in perfect
crystals in the kq representation . The localization problem on
ideal lattices3’4 was recently solved and the approach here will be

• an extension of Ref. 4 to perturbed crystals. A variety of perturba—

tions is considered, e.g. the impurity problem, the magnetic and

electric fields. In developing the above—mentioned equation some

simple facts about the localization problem in the kq—repreeentation

were used. First, a localized function in a perfect crystal, a Wannier

function, for some band in the kq—representation is equal to the

Bloch function for the same band. Secondly, localized functions in the

kg—representation satisfy the Bloch equation for a perfect crystal.

Thirdly, Wannier functions in the kq—representation for different

sites differ from one another by a simple exponential factor. In a

non—perfect crystal these facts can easily be generalized, and one

is then lead to an equation for perturbed localized states. Because

of their localized character, one expects the perturbed localized

states not to differ very strongly from the corresponding localized

states in a perfect crystal. Having this In mind, a pertubative

procedure was developed in for deriving localized state. and

effective Hamiltonians In perturbed crystals.

- ~~-~~~~~-~~~~ -• • -S-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S 
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Using the set of localized orthonormal functions a general
theory is developed for deriving one—band effective Hamiltonians .
The results are obtained up to second order in the perturbation

expansion. The orthonormal functions that lead to the one—band
effective Hamiltonians are shown to be suitable for deriving local

- 
charge densities in a crystal with a perturbation.

The perturbation expansion for the localized functions and
the one—band effective Hamiltonian in this work is of quite general
character and can be applied to a variety of problems , including the
impurity problem, surfaces, superlattices and external fields57 . The

applicability of the approach is limited to crystals in which band

touching does not appear and there is at least one isolated band.

Good examples of this kind of crystals are the alkali halides, the

rare gas solids and the II—VI semiconductor compounds.

The idea of using Wannier functions in the problem of a

Bloch electron in a magnetic field was first given by Luttinger8.
* Later this idea was further developed for deriving effective one—band

9Hamiltonians in a paper by Roth

The idea of modifying the Wannier functions in order to

adjust them to the perturbation of 8 magnetic field is put forward

in the Refs. (8) and (9). Following our perturbative approach, the

Roth operator technique9 is used for developing an orthonormal set

of Warmier functions in the presence of a magnetic field. The newly

defined Wannier functions are shown to be useful in deriving one— —

band effective Hamiltonians for a Bloch electron in a magnetic field

In an entirely elementary way. These functions are also used to

prove that the eigenfunction for a Bloch electron in a magnetic
field can be written as a product of a known operator and the

* 

- envelope function which satisfies the effective Hamiltonian equation.

This structure of the eigenfunction serves as a basis for defining

multiband operators in the space of the envelope functions for 

~~~~ -- --- ~~~~~~~~- -~~~~~~~~~~ - -~~~~~~-“ --S-—- ----~~~~~~~
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different physical quantities , e.g. the radius vector , the velocity ,
the acceleration, etc. Different relations are obtained between

these operators fully resembling the corresponding relations in the
absence of a magnetic field . In particular an acceleration theorem is
proven to hold for the velocity of a Bloch electron in a magnetic

field. It is also shown that a sum rule is satisfied by the newly
10defined operators

3. EQUATION FOR LOCALIZED STATES IN PERTURBED CRYSTALS (REP. (6) )

Let us start with a number of remarks about the kq representa—
• tion and the problem of localized states in perfect crystals.

The connections between a wave function in configuration

space and the corresponding wave function C( ~ ,~ ) in the kq representa—
11tion are as follows :

V 1/2

~~~ 
= ( O~~~ 5’ d~C(i~,~), • : (1)

(2it ) /

1/2
C(~,~) =( V

-~ _~
) 

~~~~~~~~ exp(i~~l)~(~ — 

~), (2)
\(2IT) R

where V Is the volume of a unit cell in the Bravais lattice, the
integration in (1) is over the Brillouin zone, and the summation in

(2) is over all the vectors of the Bravais lattice. From (2) it

follows that a Bloch function C~ (Li) in the kq representation is

• C~~~(~,Z) ~~~~~ )
1/2 

~~~~~~~~~~ 
— — ~~~~‘ ~~~~

1 •
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where *~~
(
~) is the Bloch function in the coordinate representation

(with ~ replaced by ~), ~~ is the Bloch quasimomentum, and the
summation is over all the vectors K of the reciprocal lattice. By

— - 
. definition, a Wannier function a ’~~ d~~~) in the kq representation

belonging to the nth band and located on site of the Bravais lattice

is

a’umt~
,
~
) = 

(::3 )

112

S 
~~~~~~~~~~~~~~~~~~~~

= ~~~~~~~~~~~~~~ (4)

This is a very simple connection between a Wannier function in
the kq representation and a Bloch function. The orthogonality of

the Wannier functions (4) is seen immediately

.c ~~~~~~~~~~~~~~~~~~~
=Se~~~

h1
~~

(
~ 

-

= 6  ,6 , (5)nfl mm

For arriving at (5), we used the following relation that Bloch

f unctions satisf y

_____ 
(6)

In what follows we shall prefer to work with the periodic part
U(~,~) of the wave function C(~,~)

--S SS-~* — - — ~~-~ 5~~5A~~• ~~~~~~ _ • •_ ~~~~~~~~ • ~~~~~~~~_ •  ~~••
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— exp(it•~ )U(t,Z), (7)

where U(t,~) is periodic in with the period of a Bravais lattice

vector tn and ~loch periodic in

U(t + t
m~~~ 

exp(-i~~l)U( ~~~~),

with tm a reciprocal—lattice vector. In an unperturbed crystal we
have

( (-i(a/) + ~]2 + V(~)) U~~~(~~~) C
~~~~

)Un~~
(t
~~

) (8)

where ~~~~~~~ is the periodic part of the Bloch function in the kq

• representation

1/2

~~~~~~~ 
.... ((27r)

3

) 
uflk(;) .Z 6( ~ - - 

~~~ ~9)

and c~(~~) are the energy bands (
*
~B being the conserved quasimoment~an) .

The periodic part of the Wannier functions aum(i~,~) is therefore

aum(~,~) = exp (_i~lm)uflk(Z) (10)

In what follows aum(L~) [and not the a~~(~,Z) in (4)] will be
called the Wannier functions. It is obvious that the Wannier functions

(10) satisfy in the kq representation the Bloch equation

• 

(
[_i~~/~~~ + + V())aum(~~~) - c~~~~a~~~~~~) (11)

I-

I ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~—•_ -• - - --•- • • 5 - ------- - _5 
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• It is of interest to compare Eq. (8) for Bloch functions with Eq.

(11) for Wannier functions. In Eq. (8), E (k~) is a constant

independent of the kq coordinates while on the right—hand side of

t * 
Eq. (II) we have Cn(~

)
~ 

a function of t. We see that the only

• difference between the equation defining Bloch functions (Eq.

- 

* 

(8)] and the equation defining• localized functions [Eq. (11)] is in

the factor multiplying the function on the right—hand side. This

fact will - be used in postulating an equation for localized states

in perturbed crystals.

.The Schrodinger equation for a Bloch electron in a constant

magnetic field and perturbation v(~) in the kq representation is
u

( [_i~/~~ + t +(e/2c)~xi9/~ I~i + V(~) +
2m ~.‘J

~ ~U(i~,~) (12)

-

Equation (12) is the eigenvalue equation (c is a constant). for an

electron in a perturbed crystal. The solutions U(~,) are eigenstatea

of the problem. In order to obtain an equation for localized states

we shall use the analogy with equations (8) and (11). Equation

(8) is an eigenstate equation [with a constant €~ (~~ ) multiplying
the function on the right—hand side], while Eq. (11) defines localized

states aum(~,~) [the energy c~ (~ ) multiplies aum(
~,Z) on the right—hand

side]. -Having this in mind we shall postulate in correspondence with

Eq. (12) the following equation for localized functions in a perturbed

crystal

• 
( [_ ia/a~ + ~ I2c)~x13/ 12 + V(~)

- En(~~tm)Aumd~~ ) (13)

L ~~~~~~ —~~• * -~~--_—-  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _  _ _ _ _ _ _ _



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ,,. * - ~~~~~~~~~~~~~~~~~

- 8 -

where A ~~~~ are the perturbed localized functions and
En(~~lm) are the effective band energies. The explicit dependence
on the site t~~ appears in the equation if one follows the structure

• of localized functions (10) in the kq—representation

Amu(~~~) 
— exp(_i

~
sl

m)Uum (i
~,~~

) (14)

with Uum(~~~) satisfying the equation

,, [—ia/ az + + (e/2c)i~x(~ + ~3/~~)] 2

2m

+ V(~) + v(i_f + 1m~)) Uumdt
~~
) - E ( ~,l)U (~~~) (15)

In the absence of perturbations (H — 0, v = 0) Eq. (15) goes over into
Eq. (11) for localized states of a perfect crystal. In the latter

case the localized functions Unm(i~~) and the effective band energies
En(k

~
Rm) are site Rm independent

Uum(i
~
,;) = u~~ (~ ) (16)

E(~,~~) = (17)

This Is no longer so when a perturbation is present. As is seen
from Eq. (15), both the localized functions Uum(

~~~
) and the effective

band energies En(~
,
~m
) will, in general, be 

~m 
dependent (an exception

is the homogeneous electric field case). One should expect Eq. (15)

to lead to localized states because the solution of the unperturbed

.• equation (Eq. (11)] are localized and they should not be strongly affected

by the perturbations. -It is therefore possible, in principle, to solve 

~~~~~~~~~~~~~~~~~~ - S • - 5-S *• ••~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _
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Eq. (15) -by a perturbation procedure - starting with the unperturbed

equation (11). This is the main advantage of the localized

equation (15) over the eigen—value equation (12). The eigen—
+ 9.

functions U(k,q) of the latter are very different from the eigen—
• 4. .4.

functions U~~~(k ,q) of the unperturbed problem (8) and a perturba-
tion procedure can , in general , not be applied to Eq. (12) .

For comparison reasons let us write Eqs. (11) and (13) for
4*

localized states in the regular r representation. The left—hand sides

of Eqs. (11) and (13) will just be the corresponding Hamiltonians
9.

applied to the function in the r representation. In order to obtain

the right—hand side we expand the band energies Cn(~) and En(~~
tm) in

Fourier series and use formula (1). Equations (11) and (13) in the

representation will be

(
~~~ 

+ V( )) a~(~ - R )  = ~~~~~ h (1 )a ( - 

~m +

( 
[ + (e/2c)~x~]

2 
+ V ( )  + v(~)) A ( ;  -

- ~~~ Rn (~s~~m)AnmG 
~m + 1~)~ (19)

where

V / 4 +

h (~ ) = 0
3 c e 11 Rac (~) di~ (20)n s  (2w) P n

H (~ 
~~‘ ) — 

V0 
(e~~~

’
~ sE ~~~ )d~ (21)

fl 5~~ m (2~r)~ 
Ta

and a~( - 

~~~~~~ 
Aum( — are the localized functions for the

- perfect and perturbed crystal, correspondingly. Equation (18) is well 

-•- 5~~~~~~~~~~~~~~~~~ _ _ _
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known and is the equation for Wannier tunctiona an(~) in a perfect
crystal. In this case the shape of the function a~(~ 

— does

not vary with the site and all the Wannier functions for a given

band are derived from a single function a~(~). In the perturbed

crystal the shape of the localized function Aum (~ — It) depends also

on the site

— — ( 2 ;
~~

h12

f 
d~ exp(_i~•I&)Cum(~,~

) (22)

where ~~~~~~~ — ~~~~~~~~~~~~~~ [see Eq. (1)]. In the regular

r-representation, Eqs. (18) and (19) appear to be more complicated

than Eqs. (11) and (13) and we find it more convenient to work in

the kq representation.

4. TIlE IMPURITY PROBLEM

In the presence of an impurity perturbation v (~ — 0), Eq.

(15) for localized states becomes

( 2m 
~~2 

+ V(~) + V (i
~~ 

+

E d
~
,I)U

~~
d
~~
) (23) 

j

We shall solve Eq. (23) by a perturbation procedure assuming that the

unperturbed bands Cn(k) are well separated. 
This will be needed for

defining a parameter of smallness for the perturbation theory . Any

• function U(~,~) can be expanded in the complete set of f~mctious (10) ,

U(~ ,~ ) - Bum exp(-i~’I~)u1g~~)

- L Bn(~~
mnk(Z) (24)

~~~ - -  ----- ~~•••.~~~ 
_ 

-
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which is a well known expansion in the kq representationU. For

the solutions Uum(tp
~
) of Eq. (23), øxpansion (24) will be

— 
~~ 

Bfl&(t,I~)u 1k(~
) (25)

I

En this case the expansion coefficients are site dependent. We

substitute expansion (25) into Eq. (23), ~~ltip1y it by u k(~
) from

the left, and integrate over ~ . We arrive at the following equation

for the coefficients Bni(~
,
~~
)

+ ~~ v~~ t, i4 + I~) B~~(t~Im)

— En(~~Im)Bns(t p Rm)
~ 

(26)

where

~~~~~~ (~~~
, i-~ + = ) 3 

c 
u~~( ) v  (i4 +

(27)

Expression (27) defines an operator which is to be applied to the

coefficients B
~~
(
~
,Im), and the Integrand from point of view of the

quasimoment~an t is a product of three operators. Equation (26) can

be solved by perturbation theory . Let us intro duce the fol lowing

notations

— B1~~(~,I15) + B~~~(~i~
) + B~~(~,I~) + ...

(28)

- c~ (~) + e~~~~~~~(I,I~~) + e~2) (~ ,I~) + ... (29) 
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where the superscript denotes the order of perturbation. Up to

second order in the perturbation we have (we apply perturbation

theory to band n)

~~~~~~ — 6xis

~~~~~~~~ ) 
v8~
(
~,t~?~~ s n; B~~~(~,I~) — 0 (31)m Cn Ot) — c8 (k) flU

B~~~
(
~~~~) ~~ v51(~ ,ia/ 3~ +

C (k) — e (k)n S

• 
.

— 

~~2 
s # n  (32)

~~n
(l

~ 
— e5(k)

= 
~~~ ~~~~~~~~~~~

— Vnn(~ p
~m

) p  (34)

~~~ v 1(I,i — + I ) B1y(k ,~~ ) (35)
t#n

In the above formulas in addition to the matrix operator (27) also the
matrix v&5 (

~ ,I~) appears. The latter is a special case of the
opera tor (27) when it no longer operates on a function of ~ [the
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operator v(ia/a~ + in the integrand of (27) operates in this
case directly on the function utk (Z) ]

v5t (k ,R~) - 
I 

exp(-i~~~) x d a ~~~
_I

~v( 4Ia)at (~~

• 
— 
Z 

exp(i
~~i)v5&(~~+LI ) (36)

R
with

v51(R,R )  = ~~a ( ~—I) v(~)a1( —I’) d~ (37)

For results (30)—(35) to have the meaning of perturbation corrections
we have to assume that

— Vsnd~
ptm)/[Cn(~

)_C
s(~

)] << 1, (38) - •

where 11 Es in some sense the expansion parameter of the perturbation

theory.

When (38) holds the localized functions Aum (~~Z) for a crystal
with an impurity up to second order in per turbation theory will be

- exP (_i
~

•
~~ ) x ([l + B~~~ (~ ,I~)]u~~( )

+ 
1 

[B~’~(t,~~) + B~~
) (i~ Im)]usk(;))

s#n
where the coefficients Bns (

~~t,~) are given by (3 1)—(33) .

The functions (39) by the construction of perturbation

theo ry are normalized to second order in the perturba tion

- ~~ -~~~~~5-—• - - -,- -_ -• - - - - -. - S  -• ••~- - -~~~---Sm-------_-S-•—5- •
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SIA n~~~~~~~
2d1~ 1~~~1 + B

~~
) (t~Ia) +

+ 
~~~ 

B
~~~~~

(t ,I
~~

)I
2 — 1 (40)

sin

The last equality in (40) is a consequence of (31) and (33).

- 

- 

. By using these results a one hand effective Hamiltonian
can be derived for the impurity 

- 
problem. The derivation will be

based on the localized functions Aum(~~) [Eq. (39)] and the
effective one band energies (39) and (35). Following some simple
physical. assumptions of Ref. (6), the localized functions Aum(t~)
assume the following form to first order of the perturbation

Ans(i~~~) - exp (-i~~~~) x (u~~(Z~) +
• 

v (I)

1... C 
u
k(s)) (41)

Ussin

The structure of the localized functions (41) is very simple and they
can easily be written in the representation

- 

~~) - a( - ~~) + ~~ “ns~~a~ a (  - ~~) (42)
sin ~ns

Hers , Aum( — L,~~) are the localized functions for a crystal with an
impurity. It is seen that Aum (r — Rm) depends not only on the
difference r — as in the unperturbed Wannier functions a~ ( — I~

)
but also explicitly on the site I~• As should be expected, the
stronger the perturbatio n is on site ~~~~ the more will the perturbed
function Aum( — L~) differ from the unperturbed one a~( — ~~) on this
particular site

The assumptions simplify also considerably expressions (34)
and (35) for the effective energies. To second order in perturbation
theory we have

-- •~__--_ -~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ S~~~~~~~~~~~~~~~~~~~~~~~~ - s~~~~~~~ ____
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l)(~, 1~

) — vnn(ii~
) (43)

- - 

c (2) (~ , a~ 
— z lv

~8 (R
~

)I2

Let us now construct a one—band effective Hamiltonian for the
9 +

impurity problem. For this purpose we expand the solution U(k, q) of
Eq. (12) (with H — 0) in the localized function A~,(k, ci),

U(k , q) a7 F
1
(R )A

w
(k, q), (45)

9
F where the expansion coefficients F (1 ) depend on the band index I and

-I. £ p
the site R

~
. Substituting (45) into (12) we have

Z. E1(k, R~)F1(%)A1 (k q) — ~~~~. F1(R~)A 1~0~ q) (46)

where

(2
+ 9 9. + v (R)

E1(k , R~) = C
1
(k) + v

1 
CR ) + P 

• (47)
~ s~I Is

Up to the order of i12 
the one—band eff ective Hamiltonian equation for the

impurity problem will be

h~ (R~ R)F (R ) 

(R )12
+ (v (R ) + 

~~~ 
— EF~( R )  . (48)

• Equation (49) has a correction term

I V ( ~ ) I
• Us

to the well—known one—band classical equations for localized impurities of

Koster and Slater 1 and for shallow impurities in the effective—mass

approximation. Equation (48) reproduces both mentio ned equations when

~FIIIIl_ .&•__• I ~~~~~~~~•~•— — - -••-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5- - __-5 •— •—-••..•~~
_—_— •_• -••—•— —~~~~~ • -••-•- _-•-•• --• -—~
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the correction term is neglected. However, the- second—order perturbation

term in Eq. (48)- is of very simple structure and can lead to significant

contributions In the one band impurity potential. The significance of

this term follows from the fact that while being a one—band band term

it is Influenced by the explicit band structure of the solid. This can in

particular be easily seen in solving the I(oster—Slater localized impurity

- 
- 

problem. Thus by assuming that only two bands interact in Eq. (48)

(band s influences band n) and that the impurity is localized at the

origin, we find that the effective impurity potential at I — 0 is

V ( 0) + Iv~~ ( O ) I 2 / c  . (49)

This potential depends explicitly on the band gap E~~ and the interband
matrix elements v (O). The second—order correction term in (49) can be
large and is restricted only by the applicability of perturbation theory.

Both the binding energies of the impurity and scattering cross sections

will be modified by the band structure.

Similar remarks can, in principle, be made about the significance

of the correction term in Eq. (48) for the shallow impurity. In this case,

however , one should ,in general , expect that for gentle potentials v ()
the second order term in (48) will be very small. One could, however,

imagine cases when v52(I) is not negligibly small. This Is only a guess

and it should be checked on real problems.

5. BLOCH ELECTRONS IN A MAGNETIC FIELD (REF . (10))

In the presence of a homogeneous magnetic field H the equation for

localized states becomes

(-1 ~~~i + ~~~~~xi ~~ 
+ V(~)J A ( ~~)’. E (t,~~

) Aum~~~
) (50)

•• •• - 5 5 • -5

~
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I 
where A~~(kq ) is the perturbed localized function for band n and site

and E(
~~
tm) is the site dependent effective energy. In the absence of

the magnetic field,Eq. (50) goes over into Eq. (1]) and correspondingly

Aum(kq) go into aum(~~
) (Rel. (10)) and the EU&Rm) become the

unperturbed energies c~C~). One can look for Aum(t~ in the form

Ans(kq) = exp(_ik•Rm) U~~(kq) (51)

5where Uum(kq) satisfies the equation

~ 
~~~~ e~~ ~ 2(_L

~~~
+ k +

~~~
HXR

m +~~~
BXi W) +V (~)]  U (k~)

• 

E~(k~R~) U~~(kq) (52)

The Hamiltonian in (52) depends on the combination

t 

- m~~~~~~~~~ H m (53)

which means that (51) can be rewritten as

Aum(k:) = exp(_ lksRm) U~~~ (q)

and E (kpRm) in (52) will be

E~~~,R )  = E~~~~) (55)

The results (50) — (54) can be written in a more compact form by
— ausing the notatiou ~~X) for a function of the operator x — k + UXi

is defined as follows

— a ~A(X) I dA F(A) exp {i(k + Hxi ~~~~~~ 
(56)

- - 5-----—- -r~~~~~~ --— - _ - - - - - ~~~~~~~-
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H where F(A) is the Fourier transform of A(k). In Ref, (9) a simple multi—
— 

- plication rule was shown to hold for a product of two operators

• 
A&) B~~) — C(X) (57)

where

C(t) —

• 

A(t) B(k) — 

2

1h

:B 

~~~~ —

h h a A(k) a B(k) + 8— 

2 a~ ~ ‘B’ ak~aka , akBakB~
and

eN
h E (59)a8y 2c

In (59) - is the ant byametri~c unit tensor and in (58) and (59) ther e
ar~ summations over repeated indices. -Rel. (57) together with (58) and

- (59) give what is called the commutator expansion in powers of the magnetic
for a product of two functions of X.

By using notation (58) the localized functions (54) can be written
as follows:

• Aum(kq) — U~(Xq ) exp(—Ik•R ) (60)

where U (Xq) operates on exp(—ik.R). Similarly, Eq. (50) can be rewritten as

~~H(
~
q) U~~~q) exp(_iksRm) = (E~(k) U~(kq))~ _~ exp (_ ik.R

~
) (61)

where H(kq) is the Bloch Hamiltonian. On both sides of Eq. (61) there are- 
I - 

•

• operato r8 which are applied to the function exp(_ik.R
~
). ~M~thout the latter

Eq. (61) is an operator equation. For reasons that will become clear bslow it
-• 

. is convenient to write this operator equation in a somewhat different for.

.&3 .~~~~~ a
H~~q) U~(xq) - U~(xq) H~ (x) (62) 

-~~~~~~~—-55-5 5-~~--~ --5 
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On the right hand side of Eq. (62)- the Operators are rearranged in comparison
with Eq. (61) and this is the reason for writing R~(k)-~. instead of E~(k).
Eq. (62) will be the main equation for -deffning -Wannier 1~saetions and one—

• band effective Hami1tenians- fe! e•Moeh e~eetren in- s- agnetic field.
- -

One can now prove that the functions A~~~
kq)- -. - -in (60) - are the

Wannier functions of the problem.

Before turning to the solution of Eq. (62) let--us show its con—

nection with the eigenvalue problem for a Bloch electron in a- magnetic field.

The SchrBdinger equation for the latter in the kg—repres entation can be
written as follows

H(Xq) U(kq) — e U(kq) (63)

where H(kq) is the Hamiltonian and H(Xq) is obtained from H(kq) by
-~~ .a

replacing in it k by k + -~~~~~ HXi .~~~ i .  It can be assumed- that the Wannierc -

functions A (kq) in (61) form a complete set and the following expansionnm
holds for the eigenfunction U(kq)

.&.
~~ ..

~~~

U(kq) - I F~(R~) A~~(kq ) - 
~ 

U ( X q) Bn(k) (64)

where B (k) and F ( R
m) are Fourier transforms of one another. Let ~~

•ubstitute Exp. (64) and (63) and use Eq. (62). We find

2 
U~(Xq) H~(X) B~(k) = c~~~. U~ (Xq) B

~
(k) (65)

By multiplying Eq. (65) by U~(xq) from the left, and by integrating it over
one finds

.~~ .~~~t H (x) B (k) — c B (k) (66)

which is a one—band effective Hamiltonian equation for a Moth electron in a

magnetic field . Eq. (66) shows that H (k) in the equation for localized

states (Eq . (62)) is the effective Ramiltonian of the probl em. This means that
by knowing the solutions of Eq. (62) one knows directly th. one—band 

-- - 5 5 -  --— --5 - ~~~~ •-~~~~-- - - - —-- -——-- - -——~~~~~ —---~~~~~~-—5-- - —— --
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effective Hami.ltonian. In addition, from Eq. (66) together with Exp. (64)

one can find the eigenfunctions for a Bloch electron in a magnetic field.
Since the operators U (Xq) diagonalize the Hamiltonian , only one termn
should be kept in the Exp . (64) and - the eigenfunction -U(kq) corresponding

to the band n becomes

~~~~~~~

U (kq) = U (xq) B~ (k) (67 )

In the kq—representation the eigenfunctlon U(kq) exhibits therefore a
separation of the envelope function B (k) and the crystalline operatorn
U ( ~q) . Rel. (67) shows that in the kq—representation the separation of
the eigenfunction into a product of a known crystalline operator and an

envelope function is a general one band feature without any additional
assumptions. This general feature of the kq—representation is a consequence

of the fact that k and q are the symmetric coordinates in an ideal crystal.

The solutions of the main equation (Eq. (62)) can be found as a

power series of the magnetic field In the framework of the commutator expansion
(57) — (59). It was already shown that these solutions give the one band
effective ILamiltonian and the Wannier functions In the presence of a

1- •
~
-

~~magnetic field . For solving Eq. (62) multiply it by U1(Xq) from the left
and integrate over q

V _ ~~~~~ .~~a ~ V

~ 
H1 (x) = I U1(~q) H(Xq) U (xq)dq = ° 

~ 
H (X) (68)n n ~‘ (2ir)

The next step is to expand the function U (kq) in Wannier functions of

the ideal crystal

U (kq) = 
~~ 

B~~ (k) u9~ (q) (69)

The unknowns are now the effective Hamiltonian H (k) and the coefficients
B
~5
(k). One can look for them in the form of a perturbation series

11 (k) ~~°~(k) + ~( 1)~~ ) + (2)~~ ) + (70)

____________________ (71)
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where the superscripts denote different orders in the magnetic field
according to the commutator expansion (57) — (59). - It can be.ikowu (Ref. (10))
that the effective Hamiltonian (Rd . (70)) and the coefficients (Rel (71))
can be determined to any order of the magnetic field from Eq. (68) together
with the orthogonality relation. By solving these equations it is shown with
what ease one can reproduce the well known results of constructing one—band

*
Hamiltonians for a Bloch electron without the need of using- diagonalization
procedures, Thus, the zero order effective Hamiltonian is

C
(0) (k) — c Oc) (72)

while the first order results are

c~
1
~(k) = (73)

(l)~~ 1 (1)>• B (k) — - 

~ 
N ~~~~ (74)

while for £ # n one finds

I1~~~~~~V~~’(k)(1) Lii—

The effective Hamiltonian (73) is identical with the one given by Formula (73)

of Ref. (9). It is interesting that both the effective Hamiltonian (Ref. (73))
and the coefficient (Rel. (75)) to the first order in the magnetic field are
deter mined by a unique non—}Iermitian matrix. The expressions (73) and (75)

look like first order perturbation formulas .

With the same ease one finds the second order terms in (70) and (71)
(see Ref. (10)):

I

(2)~~ (2) ~ ~ (2)~~ 
~~ v~~~~~~I

2 
(1) (l) -~

• 
£~~ ~~~~~~ 

- - tn(~~ ~~ 
(k) + L.. E C ~) - c ( ~) - (k) V~~ (k)

(76) 

- - --~~~~----~~~~~~~~~~~~~ - - - ~~~~~~~~~~~ 5- --— 
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B~~~(k) - - ~ {N~~~(k) + I B~~(k) I 2 + h
8 ~~~~~

— 

~ 
(BW (k) X (k) + h.c.)

(77)

By using the latter expression s one can show that the effective Hamiltonian
-
- 

- 

~
‘2
~(k) in (76) is identical with the one given by Formula (74) of Ref. (9).

Similarly, for L n we have

B~~~(k) C~~~~~tY~~~~ Ci ()
~~ 

{G~~~(~) - E~ (k) N~~~(k) +

(l)* ~ (1) 
~~~ (1) ~ (1) ~+ t_ B~, (k) B (k) (c&(k) - £ (k)) + (B~1 (k) Vii (k) + b.c.) +

+ fl~~ 
.
~~~~

— (i B9~ (k) v8&& (k) + h.c.) + h
8 ~~~~~~~ 

~~ B1~~ (k) XBLs(k) (78)

It is therefore seen that with very little algebra one f inds from
the Eq. (44) both the effective one—band Hamiltonian and the coefficients
B &(k) . The latter determine the Wannier functions in a magnetic field
CRete. (61) and (69)). Thus, to the zero order of the magnetic field one has

‘nL “ni

A ( k q) — u~~~(q) exp(_ik Rm)

where k is given in (53). The zero order Wannier functions in the presence

of a magnetic field (Rel. (79)) are very similar to the corre.pond~ng functions
in an ideal crystal. The former are obtained from the latter by replacing k

in the periodic function u~~(q) by km~ 
The functions (79) are modified

Wannier functions for the magnetic field problem and they were already used for - -

describing the motion of a Bloch electron in a magnetic field.89 Similarly,

one obtains the Wannier functions to higher order , of the magnetic field. 
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In summary , the use of localized functions- that correspond to non—

ideal crystals enables- one to take directly into account- mu-ltiband effects
• In the impurity problem and in the problem of external fields. Wannier

f 
. functions in ideal crystals have been known as an extremely useful tool in

— 
- 

general theoretical proofs and model calculations in solid state physics.
‘ The work reviewed in this report shows that a similar role is played by

perturbation adapted localized functions in imperfect crystals.

I
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