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PREFACE

The investigations reported herein were performed for the Office,
Chief of Engineers (OCE), under Item ES 526 of the Soil Mechanics Engi-
neering Studies Program and Items CWIS 31202 and 31171 c<f the Civil Works

Investigation Studies Program. Authorization for the work was by multi-
ple letter ENGCW-EC, 1 November 1962, subject: "Civil Works Investiga-~
tion - FY 1963." Since July 1973, funding of the studies has been from

the U. S. Army Engineer Waterways Experiment Station (WES).

The studies were performed under the general direction of Mr. A. L.

0'Neill, Chief, Geology, Soils and Materials Branch, South Pacific Divi-
sion (SPD); and Mr. D. D. Leslie, former Chief.

The testing and preparation of this report were performed under the
direction of Mr. M. W. Cohen, Chief, Soils Section, under the supervision
of Mr. E. A. Hein, former Chief, Soils Section, and direction of
Messrs. J. E. Ott and R. A. Chisolm, former Directors, and Mr. C. V.
McNicol, Director, all of the South Pacific Division Laboratory. This
report was written by Mr. R. T. Donaghe of the Soils Research Facility,
Soil Mechanics Division, Soils and Pavements Laboratory (S&PL), WES,
and Mr., Cohen. It was reviewed by Mr. S. J. Johnson, Special Assistant
to the Chief, S&PL, WES.

Directors of WES during the preparation and publication of this

report were COL G. H. Hilt, CE, and COL J, L. Cannon, CE. Technical

ACCESSION for

IS White Section #
DOC Buff Section 3
UNANNOURCED a
JUSTIFICATION

Director was Mr. F. R. Brown.

ﬂﬂﬂ'm.unnmuunlﬁ%{_
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fl‘ ¢ CONVERSION FACTORS, U. S, CUSTOMARY TO METRIC (SI)
E* UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be con-

verted to metric (SI) units as follows:

Multiply By To Obtain

Y € inches 2.54 centimeters

A

! pounds (mass) 0.45359237 kilograms

}é pounds (mass) per 16.0185 kilograms per cubic
3 cubic foot meter

s' : pounds per square 689L. 757 pascals

“ inch

]
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STRENGTH AND DEFORMATION PROPERTIES OF ROCK FILL

PART I: INTRODUCTION i

1. The increasing use of rock-fill materials in the construction
1.51' of dams created a need to obtain more knowledge of the strength and
deformation properties of such materials. The South Pacific Division

(SPD) Laboratory of the U. S. Army Corps of Engineers (CE) has been

il

engaged in developing equipment and methods to provide such information
since 1963.

2. Table 1 lists titles and publication dates of reports previously
published by the SPD Laboratory dealing with the following: the influ-
{‘ ence of gradation, confining pressure, and relative density on the
| consolidated-drained strength and deformation characteristics of gravelly
27 materials; the influence of engineering properties of individual aggre-
gate particles on consolidated-drained strength and deformation proper-
ties investigated; and a preliminary study of the behavior of a rock-
£i11 material under consolidated-undrained conditions. These reports
were published in limited quantities and are not generally available.
Summaries of several of the more fundamental investigations contained
in these reports are given in Part II of this report.

3. Since March 1972, several additional unpublished laboratory
investigations have been completed by the SPD Laboratory on rock-fill
materials. These investigations were meant to supplement the previously

E published investigations and deal with the influence of end restraint

L and particle shape on consolidated-drained characteristics, and with the
: influence of particle size on one-dimensional consolidation characteris-

tics. Results of these investigations are given in Part III of this

report.
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PART II: SUMMARY OF PREVIOUS INVESTIGATIONS
PRIOR TO 1972

@

ﬁ Investigation of Effects of Gradation

;

= 4. The purpose of this investigation described in the report en-

1f4' titled "Shear Strength of Rockfill, Alluvial Gravel, Engineering Study

'? No. 526," was to determine the influence of gradation on the strength

i" and deformation properties of rock fill. Two types of straight-line

: gradations were tested: (a) modeled gradations having a constant coef-

4 ficient, Cu , with maximum particle sizes from 2 in.* to 1/4 in. and

: minimum particle sizes from No. 4 to No. 30 (Figure 1), and (b) variable

; coefficients of uniformity, C, , with maximum sizes from 2 in. to 1/k

: in. and a minimum size of No. 30 (Figure 2). The material tested was an
alluvial gravel having subangular but fairly well rounded edges obtained

% from the site of Black Butte Dam located on Stony Creek, a tributary of

the Sacramento River in California. Six-in.-diam specimens were tested
fer the 1/4-, 1/2-, and l-in. maximum particle size gradations and 12-in.-
djam specimens were tested for the 2-in. minimum particle size gradation.
Specimens were tested at high relative density (Dr = approximately 100
percent) at 60-psi confining pressure.

Angle of internal friction

5. The values of the angle of internal friction, ¢' , plotted as
a function of maximum particle size are shown in Figure 3.** From this
figure (Figure 3) it may be seen that in the case of the constant Cu
tests, strengths were approximately the same for all gradations. There
was, however, a tendency toward a decrease in ¢' with increasing max-
imum particle size. The difference in ¢' in the case of the constant

Cu between the 1/k- and 2-in. gradations was 1.4 deg. For the variable

* A table of factors for converting metric (SI) units of measurement
to U. S. customary units is presented on page 3.

*¥%¥ Tn all of the investigations, the angle of internal friction was
defined as the angle formed by a line through the origin and tangent
to the Mohr circle taken at the maximum deviator stress.
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Cu tests, Figure 3 shows that ¢' increased 2.4 deg between these same
gradations. The curve for the variable Cu tests indicates little
change in strength (¢') for maximum particle sizes above 1 in.

Axial strain at failure

6. TFigure 4 shows curves for the relationship between axial strain
at failure and maximum particle size. This figure shows that axial
strains at failure decreased with maximum particle size for the variable
Cu tests and increased with maximum particle size for the constant Cu
tests. Between the 1/L~ and 2-in. gradations, the increase in strain
for the variable Cu tests was 3.8 percent and the decrease in strain
for the constant C = tests was 3.4 percent.

Volumetric strain at failure

T. Plots of volumetric strain at failure versus maximum particle

size are shown in Figure 5 for = 60 psi. This figure shows that

o
volumetric strains at failure incieases with increasing maximum particle
size for the constant Cu tests and remained almost unchanged with in-
creasing maximum particle sizes for the variable Cu tests, with a tend-
ency toward smaller volumetric compression with increasing particle size.
The difference in volumetric strain at failure between the 1/L4- and 2-in.
gradations was 1.9 percent for the constant Cu tests and 0.4 percent

for the variable Cu tests.

Conclusions

8. The following conclusions were made from the investigation of
effects of modeled gradations with a constant Cu 3

a. Strength does not change significantly with increasing max-
imum particle size. Consequently, modeled gradations may
be used for strength determinations for materials having
larger maximum particle sizes.

b. Axial strain at failure increases with increasing maximum
particle size.

c. Volumetric compression during shear increases with increas-
ing maximum particle sizes.

d. Since axial and volumetric strains during shear change
significantly with increasing maximum particle sizes,
modeled gradations may not be used to determine deforma-
tion properties for materials having larger maximum par-
ticle sizes.
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9. The following conclusions were made from the investigation of

modeled gradations with a variable Cu

a. Strength increases with increasing maximum particle size
up to about 1 in. and increasing C_ . Little increase
in strength was found above 1 in. maximum particle size.

b. Axial strain at failure decreases with increasing maximum
particle size and increasing Cu 5

c. Volumetric compression during shear decreases slightly
with increasing maximum particle size and increasing Cu :

Investigation of Effects of Confining Pressure

10. This investigation, contained in the report entitled "Shear
Strength of Rockfill, Alluvial Gravel, Engineering Study No. 526," had
the objective of determining che influence of confining pressure on the
strength and deformation properties of rock fill. Gradations having
variable coefficients of uniformity, Cu , with maximum particle sizes
from 3- to 1/4-in. and a minimum particle size of No. 30 (Figure 6) were
tested. The material tested was the same Black Butte alluvial gravel
used in the gradation study. Specimens were tested at both high and
medium relative densities using confining pressures ranging from 60 to
500 psi. Six-in.-diam specimens were tested for the 1/L4-, 1/2-, and
l1-in. maximum particle size gradations, and 12-in.-diam specimens were
tested for the 2- and 3-in. maximum particle size gradation.

Angle of internal friction

11. Values of the angle of internal friction, ¢' , adjusted to
100 percent relative density* and plotted as a function of confining
pressure are given in Figure 7. As shown in this figure, ¢' decreased
with increasing confining pressure for all gradations. The average
reduction of ¢' with confining pressure for the gradations tested was

9 deg. The rate of change in ¢' with confining pressure decreased

*

Since the strength of specimens varied with density, angles of inter-
nal friction were normalized by interpolation at 100 percent relative
density using relative density values taken after consolidation for
high and medium density specimens.




with increasing confining pressure and suggests there may be little
effect on strength due to confining pressure at higher confining pres-
sures (> 500 psi). Plots ¢f ¢' versus the logarithim of confining
pressure given in Figure 8 show that the decrease in ¢' is linear with
log increase in confining pressure.

Axial strain at failure

12. Figure 9 shows the curves of axial strain at failure plotted
as a function of confining pressure. As may be seen, the curves indi-
cate an increase in axial strain at failure with increasing confining
pressure for each gradation tested. The total change in axial strain
at failure with increasing confining pressure increased with decreasing
maximum particle size. The toial change for the 3-in. maximum grada-
tion was approximately half that for the 1/4-in. maximum gradation.

Volumetric strain at failure

13. Plots of volumetric strain at failure versus confining pres-
sure are shown in Figure 10. The curves for these relationships indi-
cate that volumes of specimens increased at failure for the lowest con-
fining pressure (60 psi) and decreased at failure for each of the higher
confining pressures. The finest gradations, i.e., specimens with the
lowest Cu values, exhibited the greatest volume change at each con-

fining pressure.

Conclusions

14. The following conclusions were made from the investigation of
effects of confining pressure:

a. The angle of internal friction, ¢'

a , decreases with in-
creasing confining pressure.

b. Axial strain at failure increases with increasing confin-
ing pressure.

c. The change in volume of specimens at failure is positive
(volume increase) at low confining pressures and negative
(volume decrease) at high confining pressures. Finer
gradations exhibit the greatest change in volume at each
confining pressure.

Investigaticn of Effects of Physical Properties

15. The purpose of this study, which is contained in the report
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entitled "Shear Strength of Rock Fill, Physical Properties, Engineering
Study No. 526," was to correlate physical properties of rock-fill mate-
rials with strength and deformation properties. Seven varieties of
crushed rock of varying hardness and mineralogy were tested. In order
to eliminate the variable of gradation, all tests on all varieties of
rock were prepared using the gradation shown in Figure 11. Table 2
summarizes results of the physical tests performed on each rock type.
Twelve-in.-diam specimens were tested under consolidated-drained condi-
tions at both high and low densities using confining pressures of 60,
125, 300, and 400 psi. Test results were normalized by interpolation
at 100 percent relative density so that effects of physical properties
could be isolated.

Angle of internal friction

16. Relationships between the angle of internal friction, ¢' ,
and confining pressure are given in Figure 12. This figure shows that
for all materials ¢' decreased with increasing confining pressure and
that the rate of change of ¢' was lowest at the higher confining pres-
sures. Figure 12 also shows that as confining pressure increased, the
difference in ¢' Dbetween materials diminished; at a confining pressure
of 60 psi, the maximum difference in ¢' was 10 deg, whereas at a con-
fining pressure of 400 psi, the maximum difference in ¢' was only
3 deg. If results for the Napa basalt material are neglected, the dif-
ference in ¢' for the remaining six materials at a confining pressure
of 400 psi is only 1.5 deg. The shape and relative positions of the
curves for the softer materials (Laurel sandstone and Buchanan granite)
indicate that they were less affected by confining pressure than the
harder materials.

17. Graphs showing plots of ¢' versus results of the physical

tests are shown in Figures 13 and 14. As may be seen, ¢' increased

with decreasing abrasion loss and with increasing compressive strength
(Figures 13a and 13b). Except for the two softest materials, ¢' was
not affected by soundness (Figure 13c). The angle of internal friction,
¢' , also increased with harduess (Figure 1lhka), and there was a trend of

increasing ¢' with increasing shape factor (Figure 1kb).
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Axial strain at failure

18. Plots of axial strain at failure for tests at 60-psi confining

.

pressure versus results of the physical tests are given in Figure 15.

Plots of axial strain at failure at confining pressures greater than

60 psi are not shown since many low-density specimens did not reach peak

I b s

strength before the strain limit of the testing apparatus was reached.
" 3 From Figures 15a and 15c¢, it may be seen that axial strain at failure
generally decreased with increasing shape factor and compressive strength.

There was, however, no conclusive trend in axial strain at failure with

yo Jreer ik

abrasion loss or hardness as indicated by the scatter of points in
Es Figures 15b and 15d.

Volumetric strain at failure

L 1 19. Figure 16 shows plots of volumetric strain at failure versus

": physical test results. These plots (Figures 16a and 16c¢) show that com-
pression of both Ligh and low density specimens during shear generally

& increased with increasing shape factor and compressive strength. As may

3 be seen by the scatter of points in Figures 16b and 16d, however, there

E was not a definite relationship between volume change at failure and

abrasion loss or hardness.

- Conclusions
’ 20. The following conclusions were made from the investigation of
effects of physical properties:

a. The decrease in the angle of internal friction, ¢' , with
increasing confining pressures was greater for hard mate-
rials than for softer materials.

b. Compressive strength, resistance to abrasion, and hardness
were found to best define strength.

c. Physical properties of soft rocks did not correlate as
well as hard rocks. Low values of compressive strength
and hardness, and the inability to resist abrasion were
the overriding characteristics of Laurel sandstone and
Buchanan granite. For these materials, the effect of
shape factor on axial and volumetric strain was greatly
reduced by their inability to resist applied axial and
confining stresses.

d. The best indicator of volumetric and axial strain at fail-
ure was shape factor; however, shape factor was not a good
indicator of strength.

10
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PART III: TESTS OF ROCK-FILL MATERIALS SINCE 1972

Objectives

21. The objectives of the tests described in this Part were to

» supplement previous investigations by determining the effects of several

: ' additional variables on strength and deformation properties of rock fill.

# 2 The additional tests described herein have not been previously published.
¥ Specifically, the effects investigated were:

a. Influence of end restraint and particle shape on strength
and deformation characteristics of rock-fill materials as
ascertained by consolidated-drained triaxial compression
tests.

b. Influence of particle size on one-dimensional consolida-
tion characteristics of rock-fill materials.

Scope of Testing

22. These effects were investigated by comparing the results of
tests performed on specimens of a single rock-fill material using stand-
ard and low-friction end platens with results of tests of three rock-
£i1l materials in which the angularity of particles was varied by crush-
E ing or abrasion. Effects of particle size in one-dimensional consolida-
! 8 tion tests were determined by comparing results of a series of tests
performed on a single rock-fill material in which the maximum particle

size was varied.

Materials

23. Rock-fill materials tested in the investigations are referred
to by names related to their location and rock type. A brief descrip-
tion of the materials tested is given in the following paragraphs. The

gradations of all samples were made up and controlled to provide desired

TR

characteristics.

? Napa basalt
2. This material was obtained from Blue Rock Quarry of Basalt

Rock Company near Napa, California, and was produced primarily for

1L
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aggregate. It is a grayish-black, dense basalt in fresh and hard condi-

tion with cubical, pyramidal, and tabular particle shapes. X-ray dif-
fraction of this material indicates that it is composed principally of
plagioclase feldspar with interstitial glass and lesser quantities of
labradorite and andesine with traces of montmorillonite clay. Photo-
graphs of pit run and abraided (less angular) samples are given in
Figure 1T7.

Carters Dam quartzite

25. This material was used in the construction of a dam located on
the Cossawattee River, 80 miles northwest of Atlanta, Georgia. It is a
fresh, bluish-gray, medium grained, hard, impure quartzite composed
primarily of interlocking, irregular quartz grains. Particle shapes are
predominantly cubical, pyramidal, and tabular with a tendency toward
flattness in the smaller sizes. X-ray diffraction of this material in-
dicates that the predominant mineral is quartz; however muscovite,
biotite, calcite, and pyrite are also present. Figure 18 shows photo-
graphs of crushed and abraided samples of this material.

Bear River gravel

26. This material was obtained from a source located on the Bear
River in northern California. It is a white to dark gray river gravel
in hard condition composed principally of quartz. Particle shapes are
generally cubical, tabular, and pyramidal. Photographs of crushed and

uncrushed samples are given in Figure 19.

Testing Program

Consolidated-
drained triaxial tests

27. Effects of end restraint. Tests to determine effects of end

restraint were performed on 6-in.-diam specimens of pit run Napa basalt
having the straight-line gradation given in Figure 20. Two series of
tests were performed using low-friction and standard end platens. One
series was performed on specimens compacted to approximately 100 percent
relative density and the other to approximately TO percent relative

density (maximum and minimum densities were 124.1 and 98.5 pecf,

Le




respectively). Confining pressures in each series were 60, 125, 300,
and 500 psi.
28. Effects of particle shape. Effects due to particle shape were

determined in tests of Napa basalt, Carters Dam quartzite, and Bear
River gravel having the gradations given in Figure 21. Specimen diam-
eters were 6-in. for the Bear River material and 12-in. for the Carters
Dam and Napa basalt materials. Two series of tests were performed on
specimens of each material compacted to approximately the same relative
density. One series was performed on specimens having more angular
particles and the other on specimens having less angular particles.
Particles of each material were either crushed or abraided to increase
or decrease their angularity. Confining pressures for each series were
60, 125, 300, and 400 psi except for tests performed on specimens of the
Bear River gravel material where the maximum confining pressure was

450 psi. The Bear River gravel was tested at both high and medium rela-
tive densities (approximately 100 and TO percent, respectively), where-
as the Napa basalt and Carters Dam quartzite materials were tested at
only a high relative density.

One-dimensional
consolidation tests

29. Effects of particle size on one-dimensional consolidation
characteristics were determined in both dry and inundated tests per-
formed on 12-in.-diam specimens of pit run Napa basalt at high and me-
dium relative densities for each of the gradations shown in Figure 22.
Maximum particle sizes varied from 1/4 to 3 in. The maximum vertical

consolidation stress was 800 psi in each case.

Equipment

Consolidated-drained
triaxial compression tests

30. Triaxial compression tests were performed on 12-in.-diam
specinens of the Napa basalt and Carters Dam quartzite materials using

the SID Laboratory apparatus shown in Figure 23. This equipment

13




accommodates a specimen 12-in. in diameter by 27.7-in. high and is

designed for a maximum chamber pressure of 50C psi and an axial load of
200,000 1b. The apparatus shown in Figure 24 was used to test 6-in.-
diam specimens of the Bear River gravel and Napa basalt materials. The
chamber shown in Figure 24 accommodates specimens 5.87-in. in diameter
by 13.80-in. in length and is placed in the loading device shown in
Figure 23 for the shear phase of the test. Low-friction caps and bases
used in tests to determine effects of end restraint were slightly larger
in diameter than the specimen and had plane bearing surfaces. Low-
friction characteristics were obtained by applying a layer of silicone
grease between two rubber disks separating the specimen from the cap

and base. Specimen drainage was provided through holes located in the
center of the disks and a small porous insert located in the center of
the end platens. Standard caps and bases used in the investigation were
those normally used for routine testing. They have the same diameter

as the spocimen and have bearing surfaces made of phenolic (layers of
canvas impregnated with epoxy).

One-dimensional
consolidation tests

31l. Consolidation tests were performed only on specimens of the
Napa basalt material using the apparatus shown in Figure 25. The appara-
tus contains a 12-in.-diam fixed-ring, steel consolidometer that accom-

modates a 10-in.-high specimen.

Material Processing

32. Crushed samples of the rock-fill materials were obtained
using an 8- by 10-in. jaw crusher for production of sizes larger than
1 in. and a gyratory crusher for smaller sizes. After crushing, the
material was separated into six gravel sizes and four sand sizes using
a trammel and sieve shaker, then washed and dried. Rounded samples
were abraided in a concrete mixer until sharp edges were worn away. Pit

run samples of the Napa basalt material were washed and sieved from

material as received.
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Specimen Preparation and Testing Procedures

Consolidated-drained
triaxial compression tests

33. Triaxial specimens were prepared by vibrating each of four
equal weight batches of air-dry material to the required density in the
appropriate mold (6- or 12-in. diameter). After removal of the mold,
the height and circumference of each specimen was measured and a second
membrane was placed over the specimen. Membrane thickness varied from
0.048- to 0.063-in. In order to prevent puncturing of the membranes by
sharp particles at the higher lateral pressures, specimens tested at
lateral pressures of 300 psi and above had strips of 0.020-in.-thick
low~density polyethlene between the membranes. These strips were 2-
1/8-~in. wide and extended the full height of the specimen. The spec-
imens were saturated by allowing water to flow from the bottom to the
top of the specimen under a differential vacuum head controlled by apply-
ing a vacuum of -14.5 psi to the top of the specimen and a regulated
lower vacuum to the water reservoir connected to the bottom of the spec-
imen. Consolidation of the specimens was accomplished by applying the
desired chamber pressure and recording volume changes in a burette
connected to both the top and bottom of the specimen. Generally, 30 to
60 min were required to complete consolidation. Specimens were sheared
by applying axial load at a strain rate of 0.25 percent per min. Load-
ing continued for at least 8 min after the peak deviator stress was
developed or until the limit of the pinton travel was reached. After
completion of shear, the entire specimen was oven-dried at least 16 hr.
Density, moisture content, and gradation were then determined.

One~dimensional
consolidation tests

34. Consolidation specimens were prepared by placing the required
air-dry weight of material into the ring in two layers, vibrating each
layer to the desired density. The specimens were loaded incrementally
with each load increment remaining on the specimen for at least 2L hr.

After completion of consolidation under the final load (800 psi),

15
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specimens were unloaded incrementally and removed from the apparatus.
Specimens were oven-dried at least 16 hr. Density, moisture content,

and gradation were then determined.

Test Results and Discussion

35. Results for the consolidated-drained triaxial compression
tests are summarized in Tables 3 through 8 and presented graphically in
Figures 26 through 49. One-dimensional consolidation test results are
summarized in Table 9 and presented graphically in Figures 50 through

75. The tests are grouped in the tables and figures according to the
effect investigated.

Effects of end restraint,
consolidated-drained triaxial tests

36. Angle of internal frictjon. Curves showing the relationship

between confining pressure and angle of internal friction, ¢' , for
tests performed on specimens of Napa basalt having the gradation given
in Figure 20 using standard and low-friction caps and bases are given

in Figure 39. Values of ¢' were normalized by interpolation to a void
ratio value of 0.398 so that effects due to variations in density could

be neglected. This figure shows that ¢' varied similarly with increas-

ing confining pressure for both boundary conditions. In both cases
angles of internal friction were reduced by 12.2 deg when confining
pressures were increased from 60 to 500 psi. As may be seen, ¢'
values for specimens tested using standard caps and bases were approx-
imately 1 deg higher than those for specimens tested using low-friction

caps and bases.

37. Axial strain and volumetric strain at failure. Plots of axial

and volumetric strain at failure versus confining pressure are given in
Figure 40. The axial strain at failure plots show that strain values

at failure increased with increasing confining pressure for both bound-
ary conditions. The rate of increase, however, was lower at the higher
confining pressures. With the exception of tests performed at a confin-

ing pressure of 500 psi, specimens tested using standard caps and bases

16
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33 failed at slightly lower strain values than those tested using low-

2 friction caps and bases. Axial strain values at failure ranged from

! 7.9 to 17.8 percent for specimens tested using standard caps and bases
g’; and from 9.0 to 15.1 percent for specimens tested using low-friction
igﬁ caps and bases. The volumetric strain at failure plots show that vol-
n& umetric strains at failure decreased with increasing confining pressure

4 for both boundary conditions. The boundary conditions, however, did

?, not have a significant effect on the magnitude of the strain values.

;- Valves of volumetric strain at failure ranged from +0.6 (expansion) to
¥ -T7.6 percent (contraction) for specimens tested using standard caps and
| bases, and from zero to -7.0 percent for specimens tested using low-

AE' friction caps and bases.
iﬁ Effects of particle
shape, consolidated-drained

1 triaxial compression tests

& 38. Angle of internal friction. Relationships between confining

pressure and the angle of internal friction, ¢' , for tests performed
on crushed and abraided specimens of each material are given in Figures
L1 through 43. Values of ¢' were normalized by interpclation to

100 percent relative density so that variations in density could be
neglected. The interpolation was accomplished using ¢' values from
high and medium or low relative density tests and the corresponding
specimen relative densities after consolidation. Where necessary, data
from previous investigations were used to accomplish the interpolation.
As may be seen (Figures 41, L2, and 43), although both more and less
angular specimens of each soil had the same gradation, there is a sep-
arate relationship for each condition. This should have been expected,
of course, since the maximum density of the materials (and therefore the
strength) varied with the change in angularity of the particles result-
ing from crushing or abraiding. Maximum densities obtained for less

angular and more angular specimens of each material are as follows:

iy
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More Angular Yd s

Less More
Angular Angular Minus
Y4 max Yd max Less Angnisar Yd max
Material _pef pcf pef
Napa basalt 130.T 131 .4 +0.7
Carters Dam quartzite 132.2 il bAl) -15.2
Bear River gravel 122.7 116.2 -6.5

It is interesting to note that this tabulation shows that less angular
specimens of the Carters Dam quartzite and Bear River gravel materials
had significantly higher maximum densities than more angular specimens
whereas maximum densities for both crushed and abraided Napa basalt

specimens were approximately the same. Figure Lk, which is a plot of ?

the change in ¢' due to the increase in particle angularity (more
angular ¢' minus less angular ¢' ) versus confining pressure for all
three materials, shows that increasing particle angularity may result in
either a positive or negative change in ¢' and that although the change
in ¢' varies with confining pressure, the relationship between them is
such that no conclusions may be made.

39. The effect of the differences in maximum densities on ¢'
values may be seen in Figure 45. For the Napa basalt material where
the change in maximum density due to increased particle angularity was
only +0.7 pcf, Figure 45 shows that the average change in ¢' for con-
fining pressures ranging from 60 to 400 psi was +2.0 deg. Since there
was little difference in maximum density, most of the change in ¢' was
probably due to the change in particle angularity. In the case of the
Carters Dam quartzite specimens (Figure 45) where there was the greatest

difference in maximum density (15.2 pcf), the average change in ¢' due

to increased particle angularity was -3.8 deg. The major portion of
this change in ¢' was probably due to the large difference in maximum
density rather than the change in particle angularity. According to
this figure, ¢' may be increased by approximately 1 deg in tests on
specimens where particle angularity is altered without changing the 3
maximum density. It is interesting to note that in the case of the Bear

River gravel material which had naturally rounded particles, crushing

18




B particles (increasing their angularity) actually decreased the average
¢' value taken at 100 percent relative density.

L40. Axial strain and volumetric strain at failure. Plots of axial

- a versus confining pres-
il 3)max’ g P

sure are given in Figures 46 through 48. The plots show that in the

and volumetric strain at failure, (o

R At S

case of both angular and less angular specimens, axial strains at fail-
ure increased and volumetric strains at failure decreased with increas-
5 ing confining pressure. In both cases the rate of change in strain
values was less at the higher confining pressures. Curves showing the
relationship between the change in axial strain at failure due to in-
creased particle angularity versus confining pressure are given in
Figure 49. These curves indicate that the change in axial strain at
failure due to increased particle angularity generally increased with
confining pressure for the Carters Dam quartzite and Bear River gravel
materials, and remained relatively unchanged for the Napa basalt mate-
rial. The relationship between the change in volumetric strain at fail-
ure due to increased particle angularity, also given in Figure 49, shows
that increased particle angularity resulted in only slight differences
in the changes in volumetric strain at failure with increasing confining
pressures. Figure 45 shows the average change in axial and volumetric
strains at failure plotted as a function of the change in maximum density
due to increased particle angularity. As may be seen, the greatest
change in axial and volumetric strains at failure due to increased par-
ticle angularity occurred for the Carters Dam quartzite material for
which the greatest change in maximum density occurred. Napa basalt,
which had the smallest change in maximum density due to increased par-
ticle angularity, showed the least change in strains at failure. Aver-
age changes in axial strain at failure due to increased particle angu-
larity ranged from -1.0 percent for the Nape basalt material to +7.8
percent for the Carters Dam quartzite material. Averag: changes in
volumetric strain at failure due to increased particle angularity ranged
from +0.7 percent for the Napa material to -3.8 percent for the Carters
Dam material. It is interesting to note that for specimens where rar-

ticle angularity is altered without changing the maximum density
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(Figure 45), the average change in volumetric strain at failure due to

increased particle angularity is +0.L4 percent and the average change in

1'. - :

axial strain at failure is -0.5 percent.

Effects of particle size, one-
dimensional consolidation tests

ot

-

-1 L41. Percent consolidation. Values of percent consolidation plotted

as a function of maximum particle size are shown in Figure 70. Percent
consolidation is defined as the vertical deformation from the initial

no-load condition to that under the maximum pressure times 100 divided

L5 5 ads

by the initial specimen height. In the case of these tests, the max-

imum consolidation pressure was 800 psi. From this figure, it may be

- ey

seen that percent consolidation decreased with increasing maximum par-
ticle size; i.e., with increasing Cu values, for both high and medium
density specimens tested both dry and inundated. In all cases the great-
est reduction in percent consolidation occurred between maximum particle
L sizes of 1/4 in. to 1 in., with only slight reductions occurring for
particle sizes greater than 1 in. By comparing curves, it may be seen
that percent consolidation for medium density specimens was greater than
that for high density specimens, and that inundating specimens resulted
in higher values of percent consolidation for both high and medium den-
sity specimens. Values of percent consolidation ranged from 4.9 to 9.7
percent for inundated, medium density specimens, and from 1.9 to 3.9
percent for dry, high density specimens. The difference in percent
consolidation values between dry and inundated conditions for both high
and medium density specimens was approximately 2 percent and did not
vary significantly with maximum particle size.

42. Relationships between percent consolidation and the coefficient
of uniformity, Cu ,» shown in Figure 71 indicate that, as would be ex-
pected, values of percent consolidation for all tests also decreased
with increasing Cu values. The greatest reduction in percent consol-
idation occurred between coefficients of uniformity of 2.9 and T.0.
There was little change in values of percent consolidation for coeffi-
cients of uniformity above T.

L3. Curves 1 and 2 in Figure 72 show differences between values
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of percent consolidation for dry and inundated specimens plotted against
coefficient of uniformity. These curves indicate that effects of inunda-

tion were greatest for medium density specimens having coefficients of

“a

uniformity, Cu , less than about 9 (specimens'having maximum particle

sizes less than 2 in.). Effects of inundation were approximately the

e b g 56

same for both medium and high density specimens at a Cu value of 10

and were slightly greater for high density specimens at Cu values

greater than 10. The greatest difference between the change in values

~

of percent consolidation due to inundation was approximately 3 percent.
Curves 3 and 4 in this figure (Figure 72) show differences in percent
consolidation between saturated and unsaturated specimens computed

using changes in height based on a consolidation pressure of 120 psi.

e |

These curves were included to indicate effects due to inundation at a

lower consolidation pressure. As may be seen (from curves 3 and 4),

. effects due to inundation were slightly greater for medium density spec-
imens over the entire range of coefficients of uniformity tested (from

Y 2.9 to 12.3). 1In this case, however, the greatest difference between

the change in values of percent consolidation due to inundation was

approximately 0.4 percent as compared to a difference of approximately

1 percent based on the 800 psi consolidation pressure, thus indicating

that effects due to inundation may not be as great at lower stress

levels.

4y, Compression index. Compression index, Cc , was calculated
from the void ratio-pressure curves using the following equation:

i R

e LogaPs = OB GE)

c

where pl and D are selected pressures from the straight-line por-

tion of the curve? and e and e, are the corresponding void ratios.
Since the void ratio-pressure curves did not develop a straight-line at

. higher pressures, the 250- and 800-psi pressures were used to calculate
compression index.

45, Curves showing the relationship between compression index and
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) maximum particle size are given in Figure 73. These curves show that

i compression index values for inundated specimens are reduced by approx-
imately 50 percent and those for dry specimens are reduced by approx-
imately 30 percent when the maximum particle size is increased from

&3 1/4 in. to 2 in. In both cases the values are relatively unchanged

{ when maximum particle sizes are increased above 2 in. Compression index
values for the dry specimens varied from 0.15 to 0.06 for the medium
density specimens and from 0.08 to 0.05 for the high density specimens.
i' In the case of inundated specimens, compression index values ranged from

0.20 to 0.09 for the medium density specimens and from 0.13 to 0.07 for

* the high density specimens.

g L46. Plots of compression index versus coefficient of uniformity

for all tests are given in Figure T4. As may be seen, in each case the

compression index values decreased with increasing values of coefficient

of uniformity. The greatest reduction in compression index values oc-

e curred between coefficients of uniformity of 2.9 and 9.5. There was no
significant change in compression index values for coefficients of
uniformity above 9.5.

47. TFigure 75 shows differences between dry and inundated CC

values plotted against maximum particle size. These plots (Figure 75)
show that effects on Cc values due to inundation were greatest for
maximum particle sizes lower than 1 in. Differences between Cc values
for dry and inundated specimens ranged from 0.055 to 0.082 for medium

density specimens and from 0.048 to 0.015 for high density specimens.
Conclusions
48. Based on the results of the tests performed in these investi-

gations, the following conclusions have been drawn.

49. Consolidated-drained triaxial compression tests.

a. End restraint.

(1) There was a slight reduction (approximately 1 percent)
in the valve obtained for the angle of internal fric-
tion, ¢' , due to the use of low friction end
restraints as compared with standard caps and bases
and specimen height to diameter ratios of 2.
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(2) Generally increased end restraint imposed by standard
caps and bases results in slightly lower axial strains
at failure.

(3) 1Increased end restraint imposed by standard caps and
bases does not significantly affect volumetric strain
at failure.

b. Particle shape.

(1) Where specimens of a given material and gradation are
prepared at 100 percent relative density, the change
in angle of internal friction, ¢' , due to increased
particle angularity may be positive or negative,
depending on the change in maximum density resulting
from crushing or abraiding particles. The magnitude
of the change in ¢' due to increased particle angu-
larity may be as high as +3 deg.

(2) 1In tests where the angularity of particles is altered
without changing the maximum density, there may be an
increase in the angle of internal friction of approx-
imately 1 deg due to increased particle angularity.

(3) In the case of a material having well rounded par-
ticles, crushing particles (increasing their angu-
larity) may actually decrease the angle of internal
friction taken at 100 percent relative density since
the maximum density of the crushed material may be
much lower than that of the uncrushed material.

(L) Where specimens of a given material and gradation are
prepared to 100 percent relative density, the change
in axial and volumetric strain at failure due to in-
creased particle angularity may be positive or nega-
tive, depending on the extent to which maximum den-
sity is changed by the increased particle angularity.

50. One-dimensional consolidation tests.

a. Compression index and percent consolidation values
decrease with increasing maximum particle size, i.e.,
increasing C values, for both dry and inundated spec-
imens tested At both high and medium relative densities.
The greatest reduction in these values occurs between
maximum particle sizes of 1/4 and 1 in.

b. Compression index and percent consolidation values are
not significantly changed when maximum particle sizes are
increased in the range from 2 to 3 in., thus suggesting
that compression index and percent consolidation values
determined from tests performed on specimens having 2-in.
maximum particle sizes may be used to represent those
having greater perticle sizes.




c. Compression index and percent consolidation values based
on a maximum consolidation pressure of 800 psi are in-

; creased approximately 30 percent when specimens are inun-~
b dated. At lower consolidation pressures, effects of

s )
f’) inundation may not be as great.
£
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Table 1

Previous Reports by the South Pacific Division Laboratory

on Rock~Fill Materials

Title

Shear Strength of Rock Fill, Physical
Properties, Engineering Study No. 526

Shear Strength of Rock Fill, Alluvial Gravel,
Engineering Study 526

Shear Strength of Rock Fill, Engineering
Study 526. Crushed Basalt and Metavolcanic
Straight-Line Gradations

"R" Type Triaxial Compression Tests on
Gravel, Civil Works Investigation No. 521-C

Triaxial Shear Tests on Sands and Gravels.
Civil Works Investigation No. 521-B,
Combined Report

Effect of Rock Sizes on Shear Strength, Civil
Works Investigation No. 488, Interim Report

Shear Strength of Gravelly Soils, Civil Works
Investigation No. 512

Publication Date

October 1975

March 1972

December 1967

November 1963

September 1961

February 1956

March 1953
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Figure 3. Angle of internal friction, ¢' , versus maximum

particle size, effects of gradation study
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Figure 7. Angle of internal friction, ¢' , versus confining

pressure, effects of confining pressure study
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Figure 9. Axial strain at maximum deviator stress (rl -r )ma.x §
versus confining pressure, effects of confining pressure study
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Photographs of crushed and uncrushed samples of Bear River gravel

Figure 19.
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Figure 23.

Figure 2k.

SPD 12-in.-diameter triaxial shear apparatus

Six-in.-diameter warlam triaxial shear apparatus




Figure 25. ©SPD one-dimensional consolidation apparatus for
testing 12-in.-diameter rockfill specimens
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Test report sheet for Napa basalt high density speci-

mens, 6-in.-diameter, low-friction ends, effects of end restraint




ey r— v

Kl TRIAXIAL COMPRESSION TEST FAILURE
» 1000 = SKETCHES
¥
3 [y
i
2] & 272 273
"
w
N x
o o
. x
o] <
o
dios I |
3¢ @ |
29 5
B 274 275 |
| | | A 1 ] 1 |
;' o 200 400 600 800 1000 1200 1400 1600 1800 ]
b5 NORMAL STRESS, PS| 1
v 1800 =
5 1600
L4
Z 1400 TEST O, DRY DENSITY, PCF
e e EL
Fl NO. PSI 4 INITIAL TEST
A 272 60 127 128
_ 1200 273 125 127 129
& 274 300 127 130
5 275 500 127 133
o
\ w
W 1000
=
w
o
@ 800
<
>
w
3 9  so0
400
1 200
o
z
<
o
bk
20
EE
ww
P :l
2
-
]
>

] ] 10 15 20 25 30
AXIAL STRAIN, PERCENT

Figure 27. Test report sheet for Napa basalt high density specimens,
6-in.-diameter, regular ends, effects of end restraint
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Figure 4L. Change in angle of internal friction due to
increased particle angularity versus confining pressure,
effects of particle shape
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CONSOLIDATION, PERCENT
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Figure 71. Percent consolidation versus coetficient of uniformity,
one-dimensional consolidation tests
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Figure 72. ©Saturated percent consolidation minus un-
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Figure T4. Compression index versus coefficient of
uniformity, one-dimensional consolidation tests
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E In accordance with letter from DAEN-RDC, DAEN-ASI dated
'jk 22 July 1977, Subject: Facsimile Catalog Cards for

s Laboratory Technical Publications, a facsimile catalog {
card in Library of Congress MARC format is reproduced |

; gg ! below. 1
"g< é
E &

3 |
E i Donaghe, Robert T

b Strength and deformation properties of rock fill / by |

Robert T. Donaghe and Melvin W. Cohen. Vicksburg, Miss. : |
U. S. Waterways Experiment Station ; Springfield, Va. : '
k< available from National Technical Information Service, 1978.
% 24, ¢847 p. : ill. ; 27 cm. (Technical report - U. S.
Army Engineer Waterways Experiment Station ; S-78-1)
Prepared for Office, Chief of Engineers, U. S. Army,
Washington, D. C.

e

: 1. Aggregates. 2. Consolidation. 3. Deformation.

g 4. Gravels. 5. Rock fills. 1I. Cohen, Melvin W., joint
author. II. United States. Army. Corps of Engineers.
II1. Series: United States. Waterways Experiment Station,
Vicksburg, Miss. Technical report ; S-78-1.
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