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I. INTRODUCTION

The U.S. Navy's impact acceleration research program being
conducted by the Naval Aerospace Medical Research Laboratory (NAMRL)
Detachment is accumulating an extensive data base on dynamic response,
for both humans and subhuman primates, under stringently controlled
experimental conditions. This wealth of empirical data offers the
possibility of developing a statistical model of head/neck impact
acceleration injury based primarily on information obtained from the
data base. The framework of such a model has been discussed in a
previous technical report [2]. The following sections of the current
report address the topic of estimation accuracy when this type of
empirically-based model is used.

The NAMRL research is focused on the head/neck system, which is
the most vulnerable body segment in terms of impact acceleration injury.
Because the NAMRL data base is comprised primarily of head and neck
dynamic response data, the discussion in this report will be restricted
to consideration of injury in that body segment. However, the general
procedures proposed for model construction should be adaptable to injury

prediction models for other body segments.
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II. BACKGROUND

Most head injury models, of necessity, are mathematical models
based on a number of underlying assumptions about head/neck movement,
forces, and overall injury mechanisms. The existence of a well-
controlled data base from animal and human impact acceleration
experiments permits consideration of a probabilistic injury model
derived from empirical data embedded in a statistical framework. This
type of model, unlike a standard mathematical model, is based primarily
on information contained in observed data, rather than on that derived
from theoretical assumptions about the mechanical structure and dynamics
of the head/neck segment. Thus, the modeling approach discussed in
this report should offer new insights into the injury prediction problem

by complementing those approaches usually used.

A. PROBLEM DISCUSSION

Consider the impact acceleration situation in which the torso is
well-restrained, but the head and neck are unrestrained. In this
situation the problem is one of predicting whether a human of given
anthropometric characteristics will sustain injury if exposed to impact
acceleratfon which results in given dynamic response of the head/neck
system. A number of difficulties must be overcome to develop an injury
prediction model from empirical data. If enough instrumented human

subjects were available, and could be subjected to various acceleration
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time traces, a reasonable prediction model would eventually result. Of
course, this procedure is not possible--human subjects cannot be pur-
posely injured.

Because experiments involving humans cannot be planned for poten-
tially injurious regions of the data space, any empirical data gathered
in those regions must be from human analogs (for example, subhuman
primates). The results must then be scaled or extrapolated to humans.
This topic will not be discussed in this report.

In any event, it must be realized that the situation is not deter-

ministic. For example, even with a restrained torso, the same impact
acceleration will result in different head/neck response (for example, ) i
because of initial head position), and even apparently identical head
response for the same person may result in injury sometimes and not at

other times. This binomial aspect of injury occurrence defines a discrete

random variable which must be considered. To further complicate matters,
the acceleration and dynamic response data under consideration is time
trace data.

Despite the problems mentioned here, it should be noted that, in
general, construction of a model is relatively easy. It is the validation
of that model which is difficult., Validation may be defined as establish-

ing acceptable agreement between model predictions and observed data.

B. MODEL ASSUMPTIONS AND FRAMEWORK

To construct any injury prediction model, some assumptions must be

made. The trick is to make assumptions which are at least approximately
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correct. Hopefully, this is true of the assumptions made in this
section.

Because dealing with the complete acceleration time traces of the

cpn e X

head is an impossible analytic task, a set of univariate head dynamic
response variables which may be expected to be related to injury will
be considered. Likely candidates include, for example, linear and
angular velocities and accelerations (average or peak). Although a

number of anthropometric variables can also be postulated, it is

R L

probably reasonable to assume that their effect within a species will
be minor when compared to that of the dynamic response variables. Thus,
it is suggested that only these latter variables be considered in initial
model development. At a later stage, the anthropometric variables should |8
prove important in scaling. (See the discussion in [2].)

Exactly which variables to include in a model will not be discussed
here. If the total set of potential variables is large, some preliminary

screening will, of course, have to be done. Should important variables

be excluded from consideration, this should become apparent as model
development proceeds. If all experimental data is saved, the primary
penalty imposed by such an occurrence would be the requirement for addi-
tional analysis time.

In general, then, a set of k variables, which will be denoted by
x= (xl,...,xk), is being considered. It is postulated that the probability
of injury is some (unknown) function of these variables. Furthermore,
although the function is unknown, it will be near zero in part of x-space,

near one in another part, and will increase from near zero to near one

over an intermediate part. Experimentally what is observed in a given
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situation is only an estimated value (either O or 1) of the true
probability.
In summary, the probability of injury is being considered as a

function of x. Thus, this probability may be denoted by:
P = P(l{_) = P(xl,...,xk).
Furthermore, the observed value of P will be denoted by y, where:

1 if an injury is sustained

0 if no injury is sustained.

It will be assumed that a logistic function provides a reasonable
approximation to the function defining probability. The logistic
function is given by:

k -1
P(x) = {1 + exp[-(B) + zl:sixi)]} (1)

When this function is used, all predicted probabilities are restricted
to the range (0,1). Furthermore, this function satisfies the conditions
of being near zero in a part of x-space, near one in another part, and
increasing from near zero to near one over an intermediate part. It

is also tractable computationally.

Figure 1 illustrates a representative approximating probability
prediction function for two x variables. As can be seen, the predicted
probability is near zero for X small and x2 small, near one for Xy large
and X, large, and intermediate in other regions. The logistic function

can represent a variety of shapes by adjusting the coefficient values.

Thus, it is quite flexible.
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III. EVALUATION OF ESTIMATION ACCURACY

From a set of observed data, the coefficients (i.e., BO’ Bl""’Bk)
of the logistic model may be estimated. The estimation process is
fairly complex, involving an iterative procedure which provides the
maximum likelihood estimates. This does not pose an insurmountable
problem, however, since the computer is available.

Nonetheless, the data input to a model of this kind is of necessity
dichotomous, requiring the use of larger samples than required to obtain
a desired degree of predictive accuracy if the data were continuous.
Thus, it is of central concern to investigate the degree of accuracy
which may be expected for predictions derived from the model, and to

examine the sensitivity of such predictions to sample size.

A. EVALUATION PROCEDURE

A Monte Carlo simulation study was undertaken to provide informa-
tion relating accuracy to sample size for selected model configurations.
Two specific sets of model parameters were considered, Monte Carlo
samples of various sizes were generated for each, and the accuracy of
the resultant predictions were evaluated with respect to the true prob-
abilities.

Two models were considered, each employing six variables (xl,...,x6),
which were allowed to take on values in the intervzl (-1,1). These
models, which are hereafter referred to as Model A and Model B, differed

only in the value of the parameter B, . For Model A, B, = 0, while for
0 0

-




Model B, B = -2.

The remaining six coefficients were assigned the same values in

¢ ol >

both models:

-
"

L

-

[ B, = -0,25, 8, = 0.50, B, = -0.75, B, = 1.00, 85 = -1.25, 86 = 1.50 .

1 2 3 4

S

These particular coefficient values were chosen to produce models with
certain properties. Specifically, these models are such that the

minimum attainable probability over the x region is near zero, while the

-y

B maximum is near one. In addition, while the average probability for
Model A is moderately high (.500) over the x region, the average prob-
ability for Model B is relatively low (.225). Thus, the observations

* generated by Model A would, in general, consist of more values of y = 1

than would Model B.

Monte Carlo procedures were used to generate two series of ten
overlapping samples (one series for each model) with sample sizes of
n = 100, 200,...,1000 . Each individual sample contained all of the
observations in the preceding samples plus an additional 100 observations
(i.e., the first sample contained 100 observations, the second sample
contained the 100 observations of the first sample plus an additional 100
observations, the third sample contained the 200 observations of the second
sample plus an additional 100 observations, etc.). Each observation was
defined by generating a uniform random number over the interval (-1,1)

for each of the six variables xl,...,x6 . The true probability associated

with any observation x was then determined by calculating P(x) from model
equation (1) using the true coefficients for the respective model being

considered. Each observation was defined as resulting in an "occurrence"
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or "nonoccurrence" (e.g., an injury or noninjury) by generating a uniform
random number r in the interval (0,1) and defining y such that
11if P(x) > r
g 0 if P(x) <r .

Each sample was then input to a computer program for estimating the
coefficients of the logistic function. Two such programs were used. One,
adapted from a program developed at the National Institutes of Health,
uses the Walker-Duncan method [3] to obtain estimated coefficients and
their estimated standard errors. The other program developed by Jones [1],
solves for the maximum likelihood estimates. Both programs were found to

yield the same results; the primary difference is in the output provided.

B. RESULTS

In order to evaluate estimation accuracy, the estimated coefficient
values for Model A and Model B were compared with the respective true
coefficient values. Figure 2 provides this comparison, and indicates
general convergence of the estimated values to the true values. Conver-
gence may be seen more clearly in Figures 3 through 16, which graph the
estimated coefficients and their estimated standard error as a function
of sample size. The true coefficient values are shown as straight
horizontal lines. It may be observed that, in general, the estimated values
approximate the true values more and more closely as sample size increases.
This provides a clear indication that the estimation process works.

Although comparison of estimated and true coefficients provides
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some measure of accuracy, a more useful measure results from a comparison
of predicted and true probabilities. To provide a common basis of com-
parison across sample sizes, each set of estimated coefficients was used
in conjunction with equation (1) to derive predicted probabilities for
the first 100 observations. Each set of estimated probabilities was
paired with the corresponding set of true probabilities, and a linear
regression equation was fitted to the data using a weighted least squares
procedure.

The results are summarized in Figure 17, which tabulates the
intercept, slope and estimated standard error about the regression line,
taking the weights into account. In general, the slope of the regression
line is near one, the intercept is near zero, and the estimated standard
error becomes smaller as sample size increases. The improvement in
prediction with increasing sample size can be more dramatically seen by
comparing plots of estimated versus true probabilities for various
sample sizes.

If the estimated probability prediction model were working correctly,
predicted and true probabilities would be expected to cluster about a
45° line between (0,0) and (1,1), and in fact they do. Furthermore,
with increased sample size, the clustering about the 45° line becomes
tighter. This can be seen in Figures 18 through 23, which correspond

to sample sizes of 100, 500, and 1000 for Model A and Model B.
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IV. DISCUSSION

Based on the Monte Carlo study discussed in this report, it
appears that the procedure used for estimating the coefficients of
the logistic model works well. This procedure provides convergence
to the correct coefficient values and true probabilities as the sample
size increases. Thus, if injury probability as a function of head
dynamic response variables may be approximated by a logistic function,
the estimation procedure described in this report will yield a satis-
factory approximation to that function.

Nonetheless, a major question remains. That question refers to
sample size requirements. Of course, larger samples tend to result
in better estimates. Also, from the results of this study, it can be
seen that overall probability predictions for Model A were better, in
general, than those for Model B. This is not surprising, since it would
be expected that the best discrimination would result in a data region
where the split between occurrences and nonoccurrences was close to
50%-50%.

In general, then, no strong conclusions can be made about required
sample size. However, it will be noted that, in both Model A and Model B,
agreement between estimated and true probabilities is reasonable even
for a sample size of 100, particularly for low probability values.
Although there is interest in the overall agreement between estimated
and true probabilities, low probability values would constitute major

interest. This is because it is desired to exclude those dynamic
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4 response conditions for which the probability of injury is greater

?ﬂ than some specified small value (for example, 1%, 5%, or 10%Z). Planned
§§ future research will explore, in detail, estimation accuracy in regions
%; ¢ of low probabilities.

%

%

4

-

]

.

5

T




-

RPRGEN i il

ot AL

B el

V. REFERENCES

(1] Jones, R. H., "Probability Estimation Using a Multinomial Logistic
Function", J. Statist. Comput. Simul., Vol. 3, pp. 315-329
(1975).

[2] Smith, D. E., "Research on Construction of a Statistical Model
for Predicting Impact Acceleration Injury", Technical Report
No. 102-2, Desmatics, Inc., 1976.

(3] Walker, S. H. and Duncan, D. B., "Estimation of the Probability of
an Event as a Function of Several Independent Variables",
Biometrika, Vol. 54, pp. 167-179 (1967).

S . .




! UNCLASSIFIED

3 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
, REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
‘ 1. REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
Eiy 102-5 /’
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
» A STUDY OF ESTIMATION ACCURACY WHEN USING Technical Report
N _ A LOGISTIC MODEL FOR PREDICTION OF IMPACT
2 ACCELERATION INJURY 6. PERFORMING ORG. REPORT NUMBER
‘?) 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
B Dennis E. Smith
Robert L. Gardner N00014-74-C-0154 e
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Desmat:lcs Inc AREA & WORK UNIT NUMBERS
’ . o
L P. 0. Box 618 NR 207-037
' State College, PA 16801
’ 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE v
¢ Biophysics Program (Code 444) March 1978
¢ Office of Naval Research 'a.;guaeaorpAces

Arlington, VA 22217

. MONITORING AGENCY NAME & ADDRESS(/! dilferent from Controlling Ollice) 1S. SECURITY CL ASS. (of this report)
Unclassified

1Sa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

ON STATEMENT A

' Approved for public release;
Distribution Unlimited

Distribution of this report is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. XEY WORDS (Continue on reverse side il necessary and Identity by block number)
Impact Acceleration Injury

Empirical Injury Prediction Model

Statistical Model

\ Estimation Accuracy Evaluation

20 ‘Q’YRACT (Continue on reverse side Il necessaery and identify by block number)

This report addresses the topic of estimation accuracy in the development
of an empirically-based logistic model for predicting impact acceleration
injury. Two items of central interest are the degree of accuracy which may be
expected for predictions derived from a model and the sensitivity of such pre-
dictions to sample size. A Monte Carlo simulation study was undertaken to
provide information relating accuracy to sample size for selected model con-
figurations. Two specific sets of model parameters were considered, Monte —p e

DD ,"5%"%; 1473  €ormion oF 1 o 68 15 oBsOLETE UNCLASSIFIED /ca‘(f-'k—

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enterer




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

“Carlo samples of various sizes were generated for each, and the accuracy of
¥ the resultant predictions were evaluated with respect to the true probabil-
ities.

Based on this Monte Carlo study, it appears that the procedure used for
estimating the coefficients of the logistic model works well. This procedure
provides convergence to the correct coefficient values and true probabilities
as the sample size increases, Thus, if injury probability as a function of
head dynamic response variables may be approximated by a logistic function,
the estimation procedure described in this report will yield a satisfactory
approximation to that function.

N
5!

IVRNTEX

UNCLASSIFIED

SECURITY Ci, ASSIFICATION OF THIS PAGE(When Date Entered)




