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RESUME

La diffusion d’un faisceau gaussien TEM00 par un objet sphérique
est traitée de façon exacte en termes de fonctions d’onde vectorielles

sans aucune restriction de la dimension ou de la position du diffuseur.

Les express ions obtenues pour Ia puissance absorbée et diffusée sont
présentées sous forme de combinaisons linéaires des coefficients de Mie

et peuvent être d~s lors évaluées numériquement. Le problème correspon-

dant a la diffusion d’un faisceau produit par un laser fonctionnant
dans le mode TEM01 est aussi résolu. (NC)

ABSTRACT

The scattering of a Gaussian beam TEM00 wave by a spherical

object is treated exactly in terms of the vector wave functions without

any restriction on the size or the position of the scatterer. Expressions

obtained for the powers absorbed and scattered are given as linear com-
binations of the well-known Mie coefficients and can be readily applied

to numerical computation . The corresponding problem for the scattering

of a beam produced by a laser operating in the . TEM01 mode is also

solved. (U) r - . .
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1.0 INTRODUCTION

In infrared system des ign and optical countermeasures it is
important to have available quantitative information on the extinction

properties of aerosols , both of military and non-military origin , in th~
atmosphere. To obtain the extinction coefficient and the scattering

phase function , one of the most basic physical quantities to he measured

is the aerosol particle size. For this purpose li ght scattering from

laser beam is a techn ique commonly used . The standard theoretical tool

in deducing the size of a spherical scatterer from the experimental

result is the Mie theory developed at the turn of the present century .

To ensure a sufficiently strong scattered signal , the incident electro-

magnetic field is often in the form of a collimated laser beam , whose

characteristic width may be comparable with the size of the scatterer.

In such cases the assumption in the Mie theory [1] that the incident

field is an infinite plane wave is evidently not valid. The scattering

of a Gaussian beam has been considered by Morita et al [2] but they have

assumed that the scatterer was small compared to the beam waist. A more

satisfactory approach to the problem has been given by Tsa i and
Pogorzelski [3]. Using the cylindrical vector solutions of the wave

equation , they studied the scattering of a Gaussian beam from a laser

operating in the fundamental mode by a spherical particle of arb itrary
size. The particle , however , is assumed to be on the beam axis. In
many physical applications - aerosol particle size measurement, for

example - it is important to know the effects of the variation in intensity

of the laser beam in a given sampling volume to properly design the
experiment as well as to understand the measurements. Because of the lack

of a more general theory, the interpretation of the results of a recent
experiment [4] has to be limited to scatterers on the beam axis.

II - ~~ ________  - -~
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In this report we present theoretical results for the scat-
tering of a Gaussian beam produced by a laser operating in the fundamental

TEM00 mode . Some of the preliminary results have been presented in Ref. 5.

The spherical scatterer is arbitrarily situated and its size is also

arbitrary . For the measurement of aerosol particle size by intracavity

scattering [6,7] the use of a beam in the TEM01 mode has been suggested.

The power scattered and absorbed from such a beam by a spherical particle
will also be given. This work was performed at DREV during 1976 under

PCN 33A11 (formerly PCN 15B34), Aerosols Studies .

2.0 EXPANSION OF THE ELECTRIC FIELD OF A GAUSSIAN TEM00 BEAM

Before discussing the more general theory we briefly sketch the

results of Ref. 3. It is assumed that the intensity of the electromagnetic
beam I(z=-z

0) measured at a plane z=-z0 
normal to the beam axis is given by

I ( z =-z0) e_2T 2
~~~

2 
(1)

and the corresponding electric field is

* +
= u e 0 . (2)

Since , as pointed out by Carter [8] , (2) does not satisfy the Helmholtz
equation except when r is small compared to w0, it gives only the near
axis behavior of ~ in the plane z=-z 0 . In fact , Tsai and Pogorzelski [3]
have shown that the electric field satisfying (2) near the beam axis
can be derived from a Hertz potential :

= L ~~~~~ sin~ j e
2
~v~

2
~ 4 J1(Ar) e~~~

1
~~ O) A 2dA (3)
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with -P (4)

In (3) the cylindrical coordinates (r , •, z) refer to a frame with its
origin on the beam axis , h = k f l -CA/k)2 and k2 = + jpaw , where

i, c and a are respectively the permitt ivity,  permeability and con-
ductivity of the medium of propagation . Except that we have chosen a

beam wave propagating in the positive z-direction , the symbols used here
are the same as in Ref.  3. With (3) the magnetic field can also be
written down from

+ + + +H = V x V x U  (5)

In fact , the electric field ~ given by (3) and (4) can be wri t ten as a
linear combination of the first-order cylindrical wave eigenfunctions

m [9]

= 

~~ 
f  e

2W O~ /~ 
~ O1~~ 

jh (z +z~ ) A 2dA (6)

To solve the scattering problem with the spherical particle on the beam
axis Tsai and Pogorzelski [3] established the following relationship
between 

~olX and the spherical wave eigenfunctions

e~ = 

~ 9~.(~+1) ~::~ 
~~~-‘ ~(dPt

1 (cosa) 

~o9.1~ 

P~’(cosa)

The scattered fields were then determined through the continuity condi-
tions on the surface of the scatterer.
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BEAM AXIS
0(r 1, ~P 1, z 1) ~~ Z

FIGURE 1 - Geometrical Confi gurat ion
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For the general problem where the scatterer is not restricted

to the beam axis , we choose the center of the spherical particle as the

origin 0’ of another coordinate system obtained from the old system by

translation . Relative to the new system , the origin of the old system

is situated at 0(r1, 
~~~~
. z~) (Fig. 1). To rewrite the Hert z potential

of (3) in the new coordinates , the addition theorem for Bessel functions:

~~~~ J (Ar)= J (Xr~) 
~n+m 

(Ar ’) ej(m+n)~~
’ 
e jm

~l (8)

can be used and

= -
~~~ 

~~~~
— ~~~~~ e

_A 2w
o
2d~4 ~~h ’ i~~~

) x

~ ~~C~~1) e3S~~~~~i) [Js+1 (Ar~) e~~ + J5 1 (Ar ’) e~~~~] 
A2dA (9)

It is more convenient for our purpose to combine the cylindrical vector

eigenfuriction of even and odd parities so that

ni x = m
OSA 

- 
~ 

mesA, 1
~sX ~osA 

- 

~ 
1
~esA (10)

The electric field ~ becomes

= ~“O’~ ~ j wtJ~ ~~~~~~~~~ ej z ’ +z 1+z 0) 
~

~~~~~J 5 (Xr 1) e~~
S
~ l 

~~~ 
+ m 5_ 1 ,~] 

x 2dA ( ] ) )
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Unl ike  the e lectr ic  f ie ld referring to an on-beam axis system , the

f ie ld  ~ now contains cylindrical vector waves of a l l  orders .

To express (11) in terms of the spherical waves 

~
,

defined in a way similar to (10) it is necessary to generalize (7). It

can be verified that for any integer s (Appendix A)

jhz-+ 
— 

29~+l (9.-s)! .Q-s+1 
~ 
1dP~~(coscx)e m~ — 

2.. ( 9.+ l)  (9.+s ) ! 
~ 

dcx 2.s

z=i L.

+ sii~ct 
~~~S 

~~~~~ ~ts1 
(12)

where P ,~
’ :~re the Legendre polynomials.

Substituti:~g (12) into (11) we obtain

E = 

~~~~ 

‘

~~ 
DA (

~~,
S) i~~ + D

8(2 ,s) 
~~~ 

(13)

where

= 
~~~~~ ~~~~~ f dAe WO /4 ejh(21~~0

) 
~
2 x

([3
(Z~s) 0

1 1(Ar 1) ~~~~~~~~~~ + J 1(Ar 1) e~~~~~
1
~~ i]x 

~~~~~~~~~ 
(14)  

— .
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and

S -

MR. s~ A~ 
dP~ (coscx .

— 2 9 L + 1  (R.— s ) !  .Z-s÷1 dct

B( & , s ;X )  
— 9 + 1)  (R.+ s) ! ~ s (15)

sP 2 (co~c~
sina

In an on-beam axis cdordinate system , E is a linear combin ation of the

spherical waves rn~ 1 
and only.

3.0 SCATTERING OF A GAUSSIAN TEM 00 BEAM

To find the scattered fields ~, ~r produced by the snherical
particle at 0’, the continuity conditions on the surface of ‘h~ -~catterer
(R = a) ‘~iav be used

x + = “R ~~ 
I L )

-* -
~

- 
~ -1~ +x (H + H) = uR x H (F )

±
~where E , H arc induced fields inside the sphere. For E ~ E we write

D~ (R.,s) a~5 
~~~3) + D

B
(R.,s) b~5 

~~~~ (18)

and

= ~~ 
DA (Z ,s) a

t
~ 5 

~~~ 1) 
+ D

8(~ ,s) btR.s ~~
Cl) (19)

R.= l s=-~

L -~~~~-—- -~~~~~~~~~~ - --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~ 
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The spherical waves n~ 
(3)

, n ~~~~~‘
, ~ and ~ are ob’ained fr2 S  ~s Q s

the corresponding even and odd parit y waves g iven in Ref. 7. The coe~I~-

cients ar , b~
’ t 

, b~~, can now be determined from (16) and (17 . .Qs ~s cs ~s
It can be shown that the coefficients are independent of s such that

r r r r
a = a  ,, b = h , ,is ~s Is

t t t t - ‘ Sa = a  , b = b  ~~~~1~~is is ’

Furthermore , a~~~, b~~ arc just the well-known Mie coeffici ?nts given 
~
y

(App end ix B)

ar 
= - 

!i ~~~~i )  [P 3~~~~~~)]  3~~~(~~~ [p~~~
(
~1)1 ’ ( 2 )

Zs 3 R. (~l) [p h~z~ (p)j  - h~~~(p ) [p1j~ (p1)]

= - 
j 2 ( p ) [ p 1 i~~(p 1 ) J ’  - (kt/k) 2j~~(e 1)[pj~~(o)]’ (23)

- (k~ /k) 2 j R. (p l ) [ p h ~~~~(p ) ] ’

where p = ka , p 1 k ’ a and k ’  is the propagation constant for the scat terer .
Therefore , no scattering coefficient other than the Mie coefficicnts in (2~~
and (23) are involved in ~~~~~

. Dropping the unnecessary subscripts s in
r r

4 a and b - we can write

= ~ {ar ~~~~ D ( Z s) + b~ ~~~~
DB (R.,s) ~~

3
)] (24)

.1
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The magnetic fields and j~r are given by

= ~~~~ D~~(L ,s) 
~ Ls + D8(t ,s) 

~ R.s (25)
L=l s=-~

and

= 

~~~~~ 
[a~ ~~~ 

DA (R. ,s) ~~~~~ + b~ D B (L ,S) (26)

With the expressions (24) and (26) for the scattered fields

we can write down at once a generalized expression for the power

scattered in a given direction .

The rate W5 at which energy is being scattered by the particle

can now be obtained by integrating the Poynting vector corresponding to

and 1~r over the surface of a large sphere of radius R centered at 0’.

In fact ,

it 2ir

W = f  ,[ R 2 (E~ H~ - E~ H~~ ) sinOd8d+

— 
2,r ~ ~ &(9.+1) (9.+s)! ar DA (L ,s)J2— kw 2L+ 1 (L-s) ! 2.

2= 1 s=-~

. 
+ I b ~ D B (R. ,s) I2~ (27)

~

- - ~~~~~~~~~~~~~~~~
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In deriving (27) , we used the following relations

j

lT 

j
2(m( 

~~~~~~ - ~~~~ m~~~
’
~~) sin8d8d~ = 0 (28)

f

ir j 1Te~ ~~~~~~ - n~~~ n~~ )’~~
) 

sinOd9d$ = 0 (29)

and

it 

•j

fl

(

~~~

( 

~~~~~~ - ~~~~ ~~~~~~~ sinOd8d~

= & t ,2 1~~s ,s~ ~~~ l (2+1) ~~~ h W (~ ) ~ ~~ [Qh ~~~ * (p ) ]

(30)

In a similar manner , the rate Wt at which energy is being scattered and
absorbed by the particle can be found by eva1uat~ ng the integral

W~ = -
~~ 

Ref j R
2 sino (E O Hr+ E~H - E,H~* 

- E H ) d e d $  (31)

to give

Wt = Re ~~~ !~~~
i) +s~ ! 

~a~ IDA (L,s)I2

+ b~ ID0(t,s)I2~ (32)

IlL
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For the special case when the beam axis passes through the
center of the spherical scatterer r 1 = 0 , (14) becomes

DA (2 ,s) 
= ~~~~~~~~ ~~~~ f e~ ”~

2
”~

2
”~ ejh

~~ i~~ o) x
DB( L ,s) J0

A(9. ,s ;A)

~~s ,1 ~~~~~~~~ 
1B(L ,s ; X )  

A 2dX (33)

After some straightforward algebraic manipulation we arrive at the following
results for on-beam axis scattering

= [Jd A (L)a~~I 2  + IdB(L) b~~l2 ]  (34)

and

2(22+1) 1
W = 

2=1 
I2.(~~ l) ]2 

[a~ Id A ( t ; i 2  + b~ Id8(L) t 2j (35)

where

dA (L) = 
._
~
_ _f e

_A
~~10

Z u/4 
~~~~~~~~~ 

dP ’1(coscz) A 2dA (36)

and

dB (L) = 

~
__[ e~ ’

2
”~

2”
~ e

j )
~~~i

1Z
~

) ~~~~ osci) X 2dX (37)
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In the inf ini te  plane wave l imit  corresponding to w0 ~, both dA (R.) and
dB (R. ) approach to a common value 2(2+1)12 and the well-known results

W = (2t+1) ( I a~ t~ 
+ Ib~ I2) (38)

and

= Re (22+ 1) (a~ + b~) 
(39)

are obtained.

4.0 EXPANSION OF THE ELECTRIC FIELD OF A TEM01 BEAM

The first-order oscillation mode in a laser cavity with cylin-

drical symmetry about the bean axis is often referred to as the TEM01

mode . Its intensity distribution in a plane normal to the beam axis is

I(z=~ z0) r2 e 2r 21~ o
2 

(40)

and the electric field near the beam axis is

.,. 2 , 2
~ (z=-z0) = U r e r ,w0 (41)

In contradistinction to the fundamental mode discussed above, such a field

cannot be derived from a single Hertz potential. Two complementary Hertz
potentials j~ 1) and j~(2) of the electric and magnetic types [9] are

required and the corresponding partial fields are given by

~(1) 
= ~ 

j~~~) j~
(l) 

= X (42)

_ _ _ _ __ _ _ _ __ _ _ _ __ _ _ _ __ _ _ _ _ _  - - -- - 
j
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and

= _u h - V x i t ~
2
~ , ~ (2) 

~~x~~~x j t~
2
~ (43)

From the general theory of vector potentials , it is sufficient to consider
+(1) +(2~II , I1’ ‘ of the form

= 
~~~~~ 

~ (2) 
= (44)

An immediate consequence of using a Hertz potential of the electric type

is that is not completely transverse. However, the longitudinal compo-

nent of ~ does not contribute to I(z=-z0) and it will be 
seen that the

field is dominated by its transverse component near the beam axis.

The Hertz potentials b , x can be expressed as

= e -3’
~ ~~

— cos2+ e~T~ ’%b O f ( z ) (45)

x = ~~~~~~ e_ 3
~
)t r2sin2$ e~~~~”0 g(z) (46)

The functions f(z) , g(z) are chosen such that ~ and x satisfy the
scalar wave equation as well as the boundary conditions 

~ ~~
=_

~~ 

= 1,

g(z=-z 0) = 1. As in the case of the fundamental mode , i~ and x 0

can be expressed in terms of the solutions of the scalar wave equation
in cylindrical coordinates . Let us define the functions q2 (A) , q0 (X)

and q 2 (A) to be

I
q . (A) = I r2 e

_r 
‘ 0 ~ (A) rdr (47)

Si J Si
0
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where i=l , 2, 3 and s1=2, s2=0, s3=-2. Using the boundary conditions
of ~p and x and the Fourier-Bessel theorem , we can obtain

* = e~~~~~~i~ 
~~~

- J~ 
q51 ) 

J51
(Ar ) ~jh(Z+Z0) AdA (48)

and

x = - e J~~t+J 5i* (~~~~ 6~ f q5~ (A) Js~
(AT) eJ Z O ) AdA

(49)

where 6l~~3
1, 62=2.

The partial fields and ~ (2) are then given by

e~~~
)t 

~~~~~~~~ eJSj4) 

~~~~~

. f q~~ (A) ~~~~~~~~ x

) aJ s .(Ar)  
- 351(Ar) + 4 Jsj (A r ) 

~~ 
AdA (50)

1(2) __e JWt 

i=l 
~~~~~ ~~~~ j • q5 .(A )  e~~~~

Z 1Z
O 1 

x

is. 
.+ 

3J . (A r )~~
- _r 

~
1s~ (A1 ) U

r 
+ U

, 
AdA (51)
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The partial f ie ld  ~~ 2) is transverse but has a longitudinal  component .

It is clear from (SO) that near the bean axis (r-+O) the transverse compo-

nent domina tes. Both and ~~2) can now be express ed in terms of the
cyl indr ical eigenfun ctions so that

= ~(l) + ~(2) = e~~~
t 

~~ l 

t5 3 f q5 (A ) eJ~~~~~+2& x

k+ i +
j~ “SjA + (-1) .lms~ A AdA • (52)

*5.0 SCATTERING OF A TEM 01 BEAM

The electric field in (52) is expressed in terms of the

on-beam axis coordinates. To find the fields scattered by an arbitrarily

situated sphere we again introduce an off-axis system with coordinates

(r ’ , 4 ’ , z ’) as before. By applying the addition theorem for Bessel

functions , the field in the off-axis system becomes

I = 
e
_ t  

~~ 1 ~~~ 

~~~~~~ e~
l1Z ’

(53)

where

~(s ,i,A) = 6~ Aq5 .(A)  e~
1
~ 1~~ 0) J5 (Ar 1) e - ~~’l (54)

and the coordinate variables in 
~~ 

in (53) are (r ’, 4~ , z ’).

- - --

~

-

~

---

~

-- - - -  

- -— -~~- - - - . - _ _
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~~~ 1

To transform the cyl indr ical  wave functions ~ , to the
+ 

sA sA
spherical functions , we need an identi ty for n~~ similar to that for
1
~sA given in (12). It can be shown that (Appendix A)

Ijhz + 
— ç’ 22+ 1 (L-s) ! .L .-S+l

~ 
1dP~t(cosci)e n5~ 

— L~ 9.(9.+ 1) (2.+s)! ~ 
L 

dci Ls
2=1

S S + 1+ ~‘ 2.(cosc&) n2 . j  (55)

and hence

= ,~ ~~~~~~~~ 
~~ 

+ K(t,s) (56)
2=1 s=-~

where
4

3
= f ~(s -s1, i ,A) B( L ,s ;A ) — ( - l ) 1 A(L~s;A) ] dA

(57)

and K(L,s) is obtained from J(L,s) by interchanging A (2,s;A) with
B(L,s;A ). Because I in (56) has exactly the same f,rm as (13), the
scattered fields can be written down at once

= ~~~ [a
1

2 J(L,s) ~(3~ + b’
~ 

K(L,s) (58)
2=1 s=-~

and 
~r 

= ~~ ~ ~ [a
’~ J(t,s)i~

3
~ + bT2 K(t,s) ~~3~~] (59)

£ 1  ~~~~



UNCLASSIFIED
17

The rates at which energy is being scattered away from the beam are

= ~~ ~~~ ~Ia~ J(L,s)I + lb
?

2 K(L,s)I~~
t=1 s=-~

(60)

and W~, the rate at which energy is scattered and absorbed, is

= 
~~~~~ 

Re~~~~ 
~~~~ 

L :~~ 
(L~ ~a

r
2lJ(t ,s)l + bT

L I K ( L ,s ) l
I

L=l s=-~
(61)

The coefficients a12, b~~ in (58) 
- (61) are again the Mie coefficients

given in (22) and (23) .

6.0 CONCLUSIONS

The results of Tsai and Pogorzelski [3] derived for a Gaussian

beam corresponding to the fundamental mode TEM 00 have been generalized .

In the first place, the incident fields are expressed in terms of the

cylindrical and spherical vector wave eigenfunctions respectively in

an off-beam-axis coordinate system. This enables us to obtain the

scattered fields as well as the powers scattered and absorbed from the

beam by an arbitrarily situated spherical object. We have shown that

although the incident and the scattered fields in an off-beam-axis
systei~ are linear combinations of spherical wave functions of all

orders (i.e. 
~~ 

with s equal to any integer), the scattering

coefficients are independent of s and are just the Mie coefficients. 

- ——- - --
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Parallel results are also obtained for the cylindrical symmetric mode

TEM01. These theoretical results together with a standard program for

calculating Mie coefficients [10] can be readily applied to nimierical

computations for the scattering of beam waves wi thout imposing
restrictions on the size or position of the scatterer . With the more
general theory , aerosol particle sizing can be more efficiently carried
out using the laser scattering technique.
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APPENDIX A

In this appendix we sketch the proofs of the two formulas:

jhz 
— ~~ 2t+l (Z -s) ! .Z_S+1

~ 
1dP~

(cosci)e m A 
- 

~~ 
Z(Z+l) f~~s)! ~ L dci mt

+ 

~~ 
P~~(cosci) 

~~ 
(A - i)

and

jhz .+ 
— ~~~ ‘ 2L+l (-t-s) ! .~

e_ s+l
~ IdP !(cosci)

C - j
~ 

.~(Z+l) (Z+s) ! L dci

+ 

~~~ 
P~ (cosci) (A -2)

We begin by proving (A-2) from which (A-l) can readily be obtained .

Let us denote the vector ~~~~ e~
1
~ ~ 

by i~ and its componen t along

~~ by- -N a . Then from eq. (2.14) we have

5hz / a~ tAr~’NR 
= 

e
k (,~h ~~ ‘ sinO - j A 2 J5(Ar) cosO) (A-3)

Using the identi ty

J
~~

0tr) ~j ’~ ~ ~-t _ S
(~~~+fl ~~ P~ (co sci) P~ (co sO) j~~(kR)

(A -4)

and recurrence relations of J5(Ar), 31(kR) , p~(cosci) and P~(cos8),

_ _ _ _  _____ ----
~.--~~~ ~~~~~~~~~ _ -- ---
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we can show after  rather lengthy but elementary manipulations that

N = ~ .1-s÷1 21+1 (Z_ s)!
~ 

dP~ (cosa) A SR -e(-t+l) (-e÷s) ! dci ~~ sR.

Hence defined by

— 
+ .-t -s+l 2-e+l (i-s) ! dP~ (coscz) +

— L(Z+l) (~ + s) !  — n~ (A-6)
dci

is a vector which has no component along 
~R ’ In a similar manner , the

component of ~ can be proved to be given by

‘~~~‘ .~e-~ +l 2~e.+l (-t-s) ! As
= £(~ +l) (1+s~~i. sinci p~ (cosci) ~~~~ (A-7)

From the fact that contains no 
~R 

component, it follows that

j 
~~~ ‘‘ . ~ ‘c~ ’ .~e-s+1 21+1 (1-s) ! A 1dP~

(cosa) +
- -e’~ 

~ £ (1+1) (E+s)! L ~
+ _

~~~~
_. P~ (coscz) m

Is]

may only have a non-zero component along 
~~~~~~

. To complete the proof

that ~ is indeed a null vector , we note that since must be divergence

free (as 
~
, 

~~~ 
are all divergence free) it can only be expressed as

a linear combination of and i.e. -
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+ +
= ~~~~ 

~ts ~ I 
n15. (A-9)

In (A-9) only ~~ (0<t~c~) has it~ component and hence ~~=O following from

linear independence of the vectors i~15. Similarly, since has

U
q 
components while does not, the coefficients must also vanish.

This proves (A-2) and (A-i) can be obtained at once from (A-2) and the

fact

V x (e~~
Z 
~sA~ 

= ke~~ ~sA 
(A-b )

V x j ~~~~= k j ~~ and

V x ~~1 = k ~~~~.
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APPENDIX B

Let

R~~~~L s s ’ UR X f lIS NIS

From the boundary cond itions (16, 17) on the spherical surface R = a ,

we obtain the following equations:

~~ 
D~(I,s) (~ts 

+ ~~ ~~~~~ 4~ ~L s)~ R=a

+ D8(L ,s) 
(~1s 

+ b~ 5 j~~~) _ b~5 ~41s)IR=a
0 (B-i)

and

E DA (I,s) (~Is + ~~ ~~ ~ 4 s ) J R = a

+ DB(L,s) (~Zs 
+ b~5 

~~~~~~~~~~~~ 
~~ .— bL ~~I Ra =° (B-2)

If we write

mIs = Ifl
158

U
8 

+ m1~~~~ 
(B-3)

and 
~1s 

= I
~1SRUR 

+ n
158~0+ n15~~~ 

(B-4)

than 
~es = - m15~~ 0 + m1~ 0~ , 

(B-5)

_______ 
_ _ _  

__________________________ 
-
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N
1 

= - n15,i~0 + n16 u, (B-6)

It can be seen at once that

rn
15 

. 111, ,  = MIs . N11 5, (B-7)

and m
~es . rnl, s , = ~~~~~ (B-8)

Furthermore , using the orthogonal properties of 
~Is 

and i~es , one can
prove that

f f ~~ . 

~~~~~~~~~~~ 

sinOd~dO = 0 (B-9)

J J M1 F~;,5 ,

:~ = J d~ J sinOdO 
~~~~ 

. 

~-e’ + . ;~ , 
,)

= 61,I’6s,s’ (1+6) 21+1 ~~~~ 1(1+1) Izt(kR)1
2 

(B-b )

and

f  d$f sinOdei~15 .

— 6L,I,65s ,(l+6) 21+1 ~~~~ t(t+l)~ 
~~~~~~~~~~~~ 

[Rz
1
(kR)]J2 (B-il)
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In eqs (B-l0) and (B-li)

0 s~~~ O
= for1 s = O

since the two sets of vectors 
{~1s

’ ~~
1.)
, ~~3)} and {i~1,  

~4s ’ ‘~es}

have respectively the same angular dependence . Relations similar to

eqs (B-9) - (B-il) can readily be written down for any two of the six

vectors. From these relations and eqs (B-i)  and (B-2) , we obtain that

jt (ka) = a~5h~~~ (ka) - 
455e(k’a) = 0 (B-l2)

[p 5 1(p)] ’ + ~~~[ph~~)(p)] ’ 
- 4[p151(p1

)] ’ 
= 0 (B-13)

jI(p) + b~5h1
(p) - ~~

--  b~~ j L(P 1) = 0 (B-14)

(-1) ‘ k *
[pjl(p)] + b15 {ph1 ( p ) J  - ~,-b15 

[p 1j t (p 1)]  = 0 (B-iS)

where p = ka, p
1 = k’a.

It is clear that the unknowns a~5, b~5, 4~ 
and b~5 in the above

equations are independent of the values of s. Furthermore, for any

arbitrary integers

jI(p ) (pjt(p)] ‘ — jt(p) (p jt(p )]
1 

1 1 ~ , (B—16)
jI(p1) ~p

h~ 
) (~)] - h~ 

) (~) [p 1jt(p1
)] 

-~~ --.~~~~~ - _ - -  ~~~——~~~~~~
-
~~=
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2
jt(p) [p 1jI(

p
1) J  — (k’/k) 51(p1) [pjl(p)]b~ = — 

‘ 2 
~~~~~~ 

, (B-17)(p) [p 1j -e(p 1)] - (k’/k) 51(p
1) [phi ‘(p) I

which are just the Mie scattering coefficients.

_______-- - -  
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