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ABSTRACT

For a subset A of Euclidean n—space , the location problem of finding the

point x which minimizes the maximum distance d(x, a) for a in A may be inter-

preted as finding the smallest sphere which encloses A. Algorithms have pre-

viously been developed for the situations when A is finite or a polytope .

Here we concentrate on interpretations and properties of the problem , particu-

larly its relation to other problems: cases where the sphere problem is dual

to that of finding a shortest vector in A , where there is a connection with a

maximum moment—of—inertia problem , etc. Conjectures , relating the minimum

sphere to points in A which define the diameter of A , are also discussed

.i
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1. Introduct ion

For a subset S of E
n
, the location problem of finding the point x which

min imizes the maximum of li x — a ll for a € 5, may be interpreted as finding

the smallest sphere which encloses S. Previously, algorithms have been

developed for solving this problem when S is finite or a polytope [4, 6]. In

this note we concentrate on interpretations and properties of the problem ;

particularly its relation to other problems. For example , we show a case

where the sphere prob lem is dual to the problem of finding the vector of

minimum norm in S. As another example (in E2) we show the relation to a

maximum moment of inertia problem. Other aspects discussed concern conjectures

relating the minimum sphere to points in S which define the diameter of S.

1
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2. Prima l and Dual Formulation

The minimum sphere for a given finite set of points a~ c E1’, i = 1, 2, . ..,  a,

may he determined by solution of the mathematical program

(P1) mm r
(r,c)

s.t. r > I Jc  — a
11 I i = 1, 2, .. . ,  a

with variables r and c. The solution of (P1), (r*, c*), gives the radius and

center of the sphere (the existence and uniqueness of (r*, c*), for any bounded

set is guaranteed [1]). Problem (P1) is equivalent to

(P2) mm s

s.t. s 
~~~ l i c  — a1 11 2 

i = 1, 2, . . . ,  m

where s = r2. By introducing the variable z s — c
T
c[9], (P2) becomes the

convex quadratic program

T(P3) mm z + c c
(z,c)

T T
s.t. z + 2a. c > a. a. i = 1, 2, . . . ,  a

1 — 1  1

The dual of (P3) is the concave quadratic program [4]:

(D3) max h(v) = ~~ vj(aj
T
aj) — VTATAV

s.t. ~ v~ = 1 v
1 .? 0 i = 1, 2 , ...,  a

where A has columns a . .
1

A short note by Kuhn [8] shows that  these problems (P3) and (D3) are

“hybrid ” programs . i.e., they are linear programs with a sum of squares added

to the objective function . (P3) has this form and so does (D3) if we define

w Av so the second term in the objective is wTw.

If v* solves (D3) and (~~ *, c*) solves (P2) then

5* = h(v*)

and C ” = ~ v1 a1

. 2
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Note that the latter equation and the conditions on v in (D3) express the

intuitively obvious fact that c* is a convex combination of the ai. The

coefficients expressing the optimal combination are the Kuhn—Tucker multipliers

which solve (D3). By a theorem of Caratheodory [10], the convex combination

may always be expressed with at most n + 1 positive coefficients. These facts

are easily visualized for a1 c E
2
. The minimum circle will either be defined

by the two most distance points , or it will pass through the vertices of three

points which define a non obtuse triangle. Of course, more points may lie on

the circle , ~ut two or three suffice to express the center as a convex 

combination.3
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3. Duali ty In te rpre ta t ions

In this section we show that two problems , one in mechanical physics and

the other a geometrical “least distance” problem , are dual to the minimum

sphere problem.

The first of these might be called a maximum moment of inertia problem.

(I am grateful to my colleague , E. J. Muth , for pointing out this problem

and its relation to the sphere problem.)

It is a basic principle of physics that a body set into rotation will tend

to rotate about its center of gravity. This happens, for example , when a

frisbee is sent spinning through the air. The physical principle involved is

that natural forces tend to minimize the rotational energy of the body by

choosing the center of gravity as the axis of rotation.

Consider now the following problem: Suppose we wish to assign masses a1

to a finite set of points a. on a body so as to maximize its moment of inertia.

We assume that the a. are connected by thin rods or in some other manner in-

volving negligible mass. For example, the a1 may be points on a thin lamina.

Without loss of generality , we may assume the total mass to be distributed

among the points is equal to one. Then , since the formula for moment of

inertia , I, is

r 2
I L m .r 1

where r
1 is the distance from the point ai 

to the axis of rotation , we may

write the problem as

(P1) max ~ m~ I Ia~ 
— ~~~~ 1

2

m~

s.t. ~ m1 
= 1 m

i 
> 0 i = 1, 2, .. . ,  m

where ~ is the center of gravity . But owing to the minimizing feature of the

center of gravity we may write
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2(P11) max nan ~~ m~!Ja . — x Il

s.t .  a1 = l~ a1 .~~. 0 i = 1, 2 , . .. ,  a

Thus the moment of inertia problem , (P1) , Is a maximin problem, and by a well

known theorem [10, Corollary 37.3.2], the max mm in (P11) may be interchanged

to mm max. This yields

2(Dli) nan max ~ m~j Ia~ 
— xj I

s .t .  m . = 1 m . ?~ 
0 1 — 1, 2, .. .,  a.

The inner maximization is easily solved by setting iii~ = 1, where I la~ — xj 
2 

4

• max . I Ja. — x J 
2
, thus we obtain

(D12) 

1 

mm max I I a~ — xl 1
2

Which is equivalent to (P2) where c = x and c* = x. Thus we have proven that

the solution of the problem (P1) is obtained by constructing the minimum circle

for the given a~ and assigning the weights m~ = v~~, where v is the vector of

optimal Kuhn-Tucker multipliers.

It is interesting that the theorem of Caratheodory quoted earlier states

that , for this problem , the maximum number of points with positive weight need

be no greater than three. Also, the angular kinetic energy and the radius of

gyration of a rotating body are proportional to the moment of inertia, so

maximizing these quantities yields the same result.

The interpretation given above does not extend directly for ai 
c E3 because

the axis of rotation is a line rather than a point.

Our second problem arises in the minimization of nondifferentiable convex

functions [13]. An Important subproblem Is to determine the vector , d*, of

minimum norm in a given compact convex set S, i.e., solve the problem:

S 

, - . • -.



(PM) mm H d H 2

s.t. d € S .

If we make the assumption that S is a polytope with extreme points ai,

i = 1, 2, .. . ,  a, then we have

(PMt ) I jd *
l 1
2 

= tom I I~ v~a~ } 
2

s.t. 
~ 
v~ 1 v. ~~. 0 1 = 1, 2 , . . .,  in.

if we further assume that the a. have the same Euclidean nor~n~ say I la~ I I 1,

then from (PM1) we obtain

* 2  21 — I J d H = 1 — mm I t~ 
v .aj I

= 1 + max — I I~ v .a.l 1
2

max 1 — I I~ 
v .a.1 1

2

T 2
= max 

~ 
v1(a

1 a .) — I l~ vi
a1! I

s.t. ~ v1 
= 1, V .  ~~~. 0.

Comparison with (D3) gives the (Pythagorean) dual relation

H d * 1 I 2 + s* = 1

where c” is the radius squared of the minimum sphere covering the a~ and 
dA = c*.

See Figure 1 for a sketch. See [ 7 ] for computational experience where such

normalizing of the ai has proven helpful in nondifferent iable  optimization.

It would be interesting to know whether there is a geometrical interpretation

for the case when not all Ha1II = 1.

6 
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As an aside on problem (PM 1), we note that it may be written as

(PM2) max [ — d
T

d + 2 mm aj
Td] .

d I

This formulat ion calls for  the unconstrained maximization of a strictly

concave function , but as far as we know, it has not been exploited in any

solution procedure. To obtain (PN2) from (P1’U), one has only to regard

the latter as a quadratic programming problem and formulate Dorn ’s dual [3 ].

We omit the details of the derivation.

a1

(
d* S 

a4 

Note: (r *)
2

= s*

l l d * l ~~÷ (r *) 2 
= 1

FIGURE 1

7
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4. Solution Methods

Sin ce both (P3) and (D3) are quadratic programs , either could be solved

by one of the well known algorithms designed for such problems . Care should

be taken , however, because both objectives are sernidefinite . Thus methods

such as the Theil—Van de Panne procedure [12) which require a definite

quadratic objective are not directly applicable , but others, such as Dantzig ’s

procedure [2 ] are. If m is small, then (P3) or (D3) could both be solved

with about the same effort. If, however, a is very large, (D3) is more attrac-

tive because there Is only one constraint. In [4 1 Elzinga and Hearn give

a decomposable solution procedure for (D3) which uses the Dantzig algorithm

and for which the size of the tableau is independent of a. The basis for the

decomposition is Caratheodory ’s theorem. A similar algorithm for the case

when S is a polytope is described in [61 .

For the problem in the plane one could also employ quadratic programming,

but the following geometrical procedure quoted from [5 J is more efficient :

“1. PIck any two given points and go to step 2.

2. Let the two points define the diameter of a circle. If this circle

covers all points, stop. Otherwise choose some point outside the

circle and the two defining points and go to step 3.

3. If the three points define a right triangJ -~r an obtuse triangle,

drop the point at the angle ?~ 
900  and go to ~p 2 with the remaining

two points. Otherwise if the triangle has strictly acute angles, go

to step 4.

4. If the circle defined by the three points covers all points, stop.

Otherwise choose some outside point , call it o , and label as a a

point from among the three defining points that is farthest from a

Extend the diameter of the current circle through point a to divide

8
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the plane into two half—p lanes . Label as ~ the defining point in the

same hail—p lane with a and as y the remaining point. With points a, y,

and a, go to step 3.

In step 3 if the three points are on a straight line, we con-

sider this a ‘triangle’ with a 1800 angle at the intermediate point.

Also note that by considering a right triangle as a two—point case

we assume that in step 4 the point ~ is strictly contained in the

half—plane with a. In practice it seems reasonable to choose the

farthest point outside the current circle rather than just some

point as indicated in steps 2 and 3.

Convergence of this algorithm is based on showing that the

circles created in each iteration are monotone increasing in radius.

Then since there are only finitely many two—point and three—point

circles, the process is finite.”

We quote the algorithm here (but not the convergence proof) to emphasize

(a) that it is initiated with an arbitrary pair of points , and (b) that once a

point is covered, it need not remain covered (see Figure 2). All the pro—

cedure guarantees is that successive circles strictly increase in radius.

Point a
1 uncovered 

by third

circle.

FIGURE 2

9
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The efficiency of this geometrical algorithm, as measured by empirical

testing , appears to be good for m ~ 100. (See Figures 3 and 4.) For large m,

however, the time is probably of order a
2
; in fact , this is suggested by

Figure 4.

Whether a more efficient method can be devised is an open question .

Certainly, an algorithm which kept all prior points covered would be of order

m*, but would require that each circle be efficiently constructed from the

previous one. In other words , the critical question would be how to construct

the minimum circle for k + 1 points , knowing the minimum circle for k points.

The answer is trivial for k + 1 = 2 or 3, but for k + 1 = 4, there are

(~) + (~) = 10 possible circles to consider, and for larger k the subproblem

seems no easier than the original .

* Shamos and Hoey [11] have conjectured that an algorithm of order a log2 mis possible.

10 
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5. The Minimum Circle and Far Points

For a finite poInt set S = {a1, a2, • . . ,  a~}, ai ~ E
2
, we def ine as far

points  any pair (a.K , a1) for which I la k — a111 = max 1 Iai — a H — diameter of S.
ij j

It Is natural to conjecture that the minimum circle passes through at

least one far point. Figure 5 represents a counterexample. The far points are

a1 and a2 because the two arcs, Arc 1 and Arc 2 enclose all ai. Clearly, however ,

the minimum circle is defined by a
3
, a4, and a5. (The distances from a

5 
to

a
3 and a4 are less than the diameter of the circle.)

Minimum Circle defined by

{a
3
, a

4
, a

5
).

FIGURE 5

The same figure enables us to determine the probability that a circle

defined by two points will enclose a random third point.

13
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Theorem Let a
1 and a2 be fixed points and assume a random third point is no

farther from a
1 and a2 than h a 1 — a

2J . Then the probability P, that the

circle defined by a1 and a2 covers the third point is

~~ .64 .
8-6 (~~~ 

-

Proof: Consider Figure 6 where a1 and a2 (distance d apart) represent the two

fixed points so that the third is enclosed in the area bordered by Arc 1 and

Arc 2. The probability of it not being exterior to the circle defined by a1

and a2 is simply the ratio of the area of the circle to the area between the

arcs.

Point a2 is placed at the origin and the arcs each have a radius of d.

We determine the area between the arcs by integration over one—quarter of the

area (shaded portion):

Area between arcs = ~~ ((d
2 

— x
2
)
1
~
’2 

— 4) dx ,

where x is determined by

d2 
+ 
-2 

= d2 =~~ ~ = ± 4 rr.
So,

2 2 1/2 darea between arcs = 4 ~.2 ((d — x ) — -~) dx

J O

= 2 { x Id2 
- x

2 + d2 sin -1

—4d I ~ I 2
L 2 J 0

= 2( (4 ~~~) /d2 - ~~
2 

+ d2 sin -1 
- d2~~~~

1.4

___________________  A
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2 1T  ~i / ~~~ /~~= 2d  ( ‘
~~ + sin -

~~ —

_ 2 2 w
d (3 4 ).

2
Since the area of the circle is ii -i-- , the ratio is

iT = 3/2 w = .64

8 ~~- 
— 3TT 8w — 6rT 

—

(
3 — 4 )

f (x)

f(x) = /d2 — x2 —
2

a
2 (d, 0)

FI GURE 6

This result suggests further problems of the same sort. For example , what

is the probability that three points uniformly dist ributed over some convex set

in R
2 
will form a trIangle with an obtuse angle (so that the minimum circle is

defined by the two far points)? When the set is the unit square, Monte Carlo

simulation shows that the answer is approximately .70. To our knowledge , the

question posed has not been answered analytically . For the interested researcher,

the monograph by Kendall and Moran [14) is a starting point .

15
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