
AD AOSS 745 IPeVT OUTPUT COMPUTtR ~L~~’ L INC CAM RID E MASS 1/0 9/2
5!t4~ .. !—“-‘%NNEL VOICE~~~ ~~~~~ STEM PROORAM DOCLMCtITATION. VCI.,—CTC(U)

-) DOT—TSC—11O7—2
UNCLASSIFZID 4A/R0 77 177 Pt.

aflu
END
‘lilt

4—18
0oc

1.0 ~~~
L ~lI~

I ‘• ‘ ~ IIOI~0

IIIII~8

(liii’ .25 lllll~ HWI 6

MICROCOPY R[SOLUT ION TEST CH~~ T

~~~~~~~ ~UR~ A 1J S~AN L APDS



- 
.— • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

u~~4 REPORT NO. FAA-R O -77 -1 77 , LI

4:ui SINGLE -CHANNEL VO ICE-RES PONSE-SYSTEM
PROGRAM DOCUMENTATION

Volume II: Program -Design Modules

Input Output Computer Serv i ces , Inc.
689 Concord Avenu e
Cambridge MA 02138

0-

~~~~~~~
DECEMBER 1977

FINAL REPORT

D D CPUSLIC

Prepared for

U.S, DEPARTMENT OF TRANSPOR TATION
FEDERAL A V I A T I O N A D M I N I S T R A T I O N

Systems Research and Development Serv ice
W a s h i n g t o n DC 2059 1

.~~J ~~~~~~~~~~~~
-__-

~~~~~ ~~~

p

NOTICE

This document is disseminated under the sponsorship
of the Department of Transportation in t he  interest
of information exchange. The United States Govern-
ment assumes no liability for its contents or use
thereof.

NOTI C E

• The Uni ted States Government does not endorse pro-
ducts or manufac turer s. Trad e or manufac turer s ’
names appear herein solely because they are con-

• sidered essential to the object of this report.

~~~~~~~~~~~~~ 
.~ :Ti~~_

- ~~~~~~~~~~~~- ~~~~~~~~~~~~

r —
~~~~~~~~~~~~~~~~~~

—-—-—-— - • •  - -
~~ ~~

• ----
~~~

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
- )

~~~~~~~~~~~~~~~~~ 

2 Go..,,,n.n, A ac.~~ ,,n No 3

(2J ~ NGL;-CHANNEL V9ICE-~ ESPONSE - ~YSTEMJROGR.AM /
~~~~~~~ 

_______________
\.......... ~ 

,~ OCUMENTAT ION . ‘— • ‘ • • v ~~~~~~~ od~

Volume II. Program—Design Modules . — ________________________
__________________________________________________________________________________ 8. P.,Io,msng O,gon ,set on R.po V No

7 .
• DO T— TSC — FA A—77 — 24 , 11”

9 . P.~fo.n.. ng O.pan.o.t.e n Na.,.. and Add ..ss ID. We.h’U~ ,t)do (T RA I S )  ‘7
• 

• FA8~.IT&1O9Input Output Computer Services, Inc.*~ ________________________

689 Concord Avenue I — 
~~~~~~~~~~~~~~~~~~~~~~~Cambridge MA 02138 _______________

I 2 . t~~~~~~~~~~~~~

Systems Research and Development Service II ~~~~~~~~~ A g.ney Co4.
Washington DC 20591

IS. Supp I.n..nto ry He... U.S. Department of Transportation
• *Under Contract to: Tran.sportation Systems Cei~ter

Kendall Square
Cambridge MA 02142-v,.

~rhis report documents the design and implementation of a Voice Response System(VRS) using Adaptive Differential Pulse Code Modulation (~~~ M) voice coding.Implemented on a Digital Equipment Corporation PDP— ll/2 0 , this VRS system
supports a single audio output channel. Vocabulary size is limited to 900 words
or phrases. Input to the system consists of text messages or sentences in ASCII
format transmitted to the 11/20 through a 300—baud asynchronous interface. A
preliminary design for a VRS for 10 channels is reported .

This is the second of three volumes . Volume I is a system description, and
Volume III is a user ’s guide.

• \

17. Kip We.d. 18 . Disi ~i but ~on SIot.a.snt

Voice Response System DOCUMENT IS AVA ILASLE TO THE U.S. POSLIC
VRS THROUGH THE NATIONAL TECHNICAL

INFORMATION SE RVICE. SPRINGFIELD .
VIRGINIA 22161

Speech Coding

19. $.c~ ,,,y Closs if . (of .1,., .po.’) 20. S.cu~ity CI.ssi f . (o f thi s ~.g.) 21. Ne. Cf P.g.. 22. P. c.

Unclassified Unclassified
68

Porm DOT ~ 1700.7 (8—12)
-

R.pr.~~ctiot~ .(compl.ssd peg, aut hor iz.d
S

~~~~~~~~~
• / / (i~

- . - 
~~~~~~~~~~~~~~~~~~~~~ .,f~~~ — --—-

~~ ~~~~~~ ~~~~~~~~~~~ - z~~• ~~
-

~~~
-
~~-~~~~- ~~~~~~~~~~~~~~~~~



____ “ ‘  I~~•~~

I I iiflit iii 111111

nIH III

F~~ 5~ .8.. i_ - . .
C
I-

U ft It 0* SI : 11 LI SI U SI LI *1 II CI C I L ~ I S C t

O 1~~ • ! ‘ I~~
I ~~I

DII )II~III( DhI h IHhI jI~I))?iIIIII!I)tfl))()IDII(Ij (III 1(11(111 (111 till (Ill Ill Ill Ull IlilulilhIUll M Ill UhI flU (((I Milfihhhhl lilt 1(111119 III 119 IN 111111 Ill III

~~~~~~~ ~~~. 1 S 2  .8 . .  i i i . .  — .‘C I  .‘~

9 . 1 i~ i PthI! ulli UI
• •~~ f• I ~~ — ~ .~~~ !!:!~ ~

I $
•

—

II ~JiI I j ii -I .
. ht~ h ilt ih~ Ih!Ilh! I

I •~~~t I ‘~~~~E°I p
.. S

ii

• PREFACE

• GUIDE TO THE PROGRAM DOCUMENTATION

This volume contains:

CALLING SEQUENCES

A brief description of the major f i l e management and text
buffering routine is provided. The description includes the
required arguments for the subroutines, error conditions , and
a list of subroutines called by the described routine .

FLOW CHARTS

A flow chart is provided for each of the user commands avail-
able in VEDIT and RECORD. These charts assume knowledge of
system operation , as described in the user manual (Volume III).

• Since copious reference is made to the listings , they should
also be consulted .

• LISTINGS

The program listings are found elsewhere. A running cominen-
tary is provided in addition to a short description of each
program module. An index for the listings is found in Section 3
of this volume. The first part of the index gives the program
names followed by the name of all source modules required to
assemble the program. The second part gives the source module

• name followed by the name of all subroutines •in that module .

•
- LINKING CONVENTION

The system linking programs can be found in the section de-
• scribing the module STKBUF. The conventions used are described

as an aid to understanding the attached flow charts .

• Subroutines in the VRS have two possible returns . The first is
the normal return. Execution continues after the call as nor-
mally would be expected from a subroutine return. The second

• is called an “error” return. This return is specified by pro-
viding an address the program should continue at , should the
error return be taken.

It is important to note that the error return can mean one of
• two things: an actual error may have occurred in the system ,

nuch as an attempt to write the disk with the write-lock on;
or , an error return can result from a test which fails. For
example , DCTBM is a routine to find the entry in the dictionary 9~which best matches the input string . If no match occurs ,

NI$~ White Sei~t(on U
• Buff Seet~on 0

U NANNOUNCED 0
JUSTIFICATION

BY
iii ImIIII IAY*LAMJIY ~ U

D&. AVAL and/ct SPECVL

L&- -
~
- --.

~~~~~

•

~~

- - -
- ~~ ~

-- — — - 
• — —U——- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ • •~~~ ~~~~~~~~~



-
~ 

-‘ - -
~

•••• •- •-• - •- - 
~~~~~

however , the error return is taken. This does not indicate
a program error, but rather is used to indicate that the
input string does not match any entry in the dictionary . In
the case of making sure that a new entry does not already
exist , the error return is actually the desirable return for
DCTBM .

The program flow charts indicate the error return by an arrow
leaving the subroutine call , which is labelled “error” .
Again, this always indicates the error return as described
above. Of course, the error return may be the desired return ,
thus , the reader should consult the listing or the calling
sequence description to determine theconditions which lead
to the error return.

iv

_ •

CONTENTS

Section Pag~e

1. INTRODUCTION 1

1.1 Hardware Environment 1
1.2 Software Environment 1

1. 2.1 Vedit 1
1.2.2 Record 1
1.2.3 Speak 2
1.2.4 System Subroutines 2
1.2.5 Data Base 2

2. SOFTWARE

2.1 Vedit 3
2.2 Record 15
2.3 Speak 19

Phrase Look-Ahead Algorithm 21

3. SYSTEM SUBROUTINES 26

• 3.1 Program Assembly module names 27
3.2 Subroutine Names 28
3.3 Subroutine Description 35

4. DATA BASE 59

File System

Descriptionv

-- -~~~~~~~ --~—---_~,_--_• _ •• ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~!-•~~~~~~~~~~

F

ILLUSTRATIONS

Figure Page

VEDIT - Main Program 5

Vedit Subroutines

LIST 6
TALK 7
PRINT 7

• INSERT 8
SN 9
SYNON 10
ENTER 11
RENAME 12
DELETE 13

Record Subroutines

LISTEN 16
• SAVE 17

SPEA K 20

3-1 POINTER SUMMARY ARROWS INDICATED DIRECTION OF 38
MOTION

4-1 SAMPLE FILE STRUCTURE 60

4-2 FILE SYSTEM PARTITION 62

TABLES

Table Page

2-1 Sample Dictionary 23

v3.
-

- ~::_i .
~ ~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~_i~
•
~

•
~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i~~i~~:—
5 -  •



_________ _____________________________________ - -

1. INTRODUCTION

• This documentation describes the operation of the
programs comprising the single channel Voice Response
System (VR S ) delivered under contract DOT/TSC 1107.
The descriptions include a short narrative of each
module and corresponding flow charts . The program

• listings are furnished under separate cover.

1.1 HARDWARE ENVIRONMENT

The single channel VRS system requires a PDP—l1/20
• computer configured as shown in Figure 1. At least

12K core memory is required.

1.2 SOFTWARE ENVIRONMENT

The programs described run under control of the DEC
• RT-l l  operating system, version 2. The single job

(SJ ) monitor is used. There are three main programs
callable from the monitor level as follows. Each
program is treated in detail in subsequent sections .

1.2.1 VEDIT

Program VEDIT comprises all modules required to create,
modi f y and update the dictionary which maps ASCII name s
to the disk resident voice files. VEDIT contains a
command string interpreter (CSI) for reacting to user
input . A complete description of VEDIT and other program

• commands is given in the user manual.

1.2.2 RECORD

Program RECORD comprises all modules required to enter
audio speech utterances into the system. It contains
modules which: (1) accept audio input and digitize it
into a temporary file; (2) process the file by the
ADPCM algorithm ; (3) auto-edit leading and trailing
silence; and (4) associate each utterance with a
dictionary entry and build the disk-based voice 

file.1



• 
• • - -

~~~~~~
‘-

~
-- •-. - ••-• •-- - — - • • -

~
•,- - -—• ---- .-- —_• .~~~~~ - •

I

• 1
1.2.3 !PEAK

Program H516 comprises all modules required to
generate audio from the voice files . The modules
accept ASCII text from the H516 computer, search
for the disk blocks containing the voiced text ,
and decode the voice file into the audio signal
which currently drives a speaker. H516 contains
the routines for parsing the input text, including
insertion of pauses , identification of the best
text match using phrase look-ahead , and proper
interpretation of numbers.

1.2.4 System Subroutines

All programs make extensive use of shared subroutines
which perform specific tasks, such as buffer manage-
ment, pattern matching , register saving, etc. All
subroutine modules of general interest are documented
fully , and those routines unlikely to be frequently
required have a brief description of the routine as• well as its calling parameters. All routines are
identified in the program listings.

1.2.5 Data Base

The dictionary and voice file are stored in a single• disk file : “DIRECT.DVF” . The generation and manage- •
ment of the data base is described below. •

2

• • .
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

. •



• ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •
— -  -~~~~~~~~~~~~~~~ •~~~~~~~~~

-— -  - - — --— - —
~~~~~~~~~~

2. SOFTWARE

2.1 VEDIT

VEDIT is entered through the global symbol “CSI” . Upon
entry the program version number is printed and the system
initializa* ion routine is called . The system initializa-
tion rou~ine opens file DIRECT.DVF if it exists or createsa new one if it does not. If an error occurs in system
initialization , the program exits, since the program is
unable to proceed without proper initialization . If no
error occurs, the main loop is entered.

Command input occurs first in the main loop. A question
mark is printed and type-in is accepted from the console
terminal. The command input routine does not return until
either a new character is entered or until an error occurs.
The only error likely to occur is an attempt by the user
to input a command which is more than 255 characters long.

• The command entered is now looked up in a table of commands.
The command is matched , character for character , with com-
mand names in the table until the first break character.
Only enough of the command name need be typed to prevent
matching more than one command . When the command is
matched , the command string is also checked for any switch
options to the command . If a switch exists , the switch
character is put in the global variable “SWITCH” . Finally ,

• a pointer to the matching routine is returned.

The routine selected by command lookup is executed . The
remainder of the entered command is passed to the routine
for use as an argument list. The command routine also has
access to SWITCH and other globals in the program to insure

• its proper execution. Upon completion of the routine , the
remainder of the command string not used is ignored and the
disk copy of file DIRECT.DVF is updated if any changes to
temporarily core resident sections have been made.

Errors occurring are of two types. The first can be called
“recoverable” . These are such things as user typographical
errors or undefined or incorrect arguments. In this case a
message is printed and a carriage return line feed is
printed . The second are errors such as a failure of the
initialization routine. Errors of this type indicate hard-
ware or an RT-ll operating system error. The program it-
self is incapable of handling such errors and so the pro-
gram exits.

The following section contains flow charts of the basic coin-
• mands callable from the VEDIT command string interpreter.

• 3

The description of the commands described in the V~S usersmanual provides guidelines for following the flow charts.r In addition , there are descriptions of the major subroutines
given at the end of this section . Consulting the program
listings is also helpful .

4

- •ii ... •i
~~

.

•
:~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ 
•



FEED
SYSINT

erro
• i n i t i a l i z e  B

system

Error Returns PRERR• Used Which TTYOT
Are Not Shown pr in t
Ret urn To Here pr int  error

/ PREER \ BYE
I ( print ) exit

• \ err~f J  get program
command

• A CLKUP

• 
-. ook up th

• command __________

Execute
Selected One

• )f Following
CRLF TALK , IN SER

rint CRLF E— KILL , BYE ,
then do SYNON , LIST
command DELETE ,

VMBKUP 
err

update —

ictionary

A

• 

. 

CROUT

Empty Buffer
• Characters

error

• BUFSET
set for

next
• 

. 

command

5

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- • -

-
~~~

--
~~~

---- - - - - - •~~—--- —• • • -~~~ •

C±IST
D

‘1’• /LSTHDR \
(list dict.)
\~header /

‘LI
• •~ I Decide 1• prom switch

type of
lookup

/ARGIN~~\
error /initialize\

\argument /• \jooki.~pJ

_

)cz) J
I 1 errorI

_ _• I / LSTFS \ *Note: All error

L / returns not shown
free / return to ERTRN

\storage / directly.

CRT RN
D

6

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~• i ~~• •~ •~~~~~ • • -~—~~-•••-- • • • • • ••



• —•-•••~~~-.-•-—••—-~~—.—•-•~ ••• . - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

_ _ _

ARG I NT NO

Code Word
• NXT ARG

—~~ e r r
—

Get next 1

thit~~~ffer~~~~~~~~~~~~~~~~~~~~~~~

_
_

_FI L SUF ,- ~~~~~~~~ I Get Next

• Keep core (~~~~~RT!) Core ~uf far (NT!

b u f f e r trt Chai.~ __________

f u ll L

C!1D

~~~~ X~~~~~~~~~ ockI

no
PDST RT Star ta ND Service

S t a r t  A/D

7

~~~~~~~~~~~~~~~ TT ~~~~~~~~~~~ . - - •-~ ~ - . - - -~~~~.~-~- . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~•••~~•••


C±NSERT~D

Name [~ CTBM \
already in ‘ ~~ et in:ert)

• dictionary \ p J
_ _ _ _ _ _ _ _ F

~errorERTRN)
Needs

C
ERT R~~~~~

/ CRDIR ~ \ Dict ionary

K, Create
~~~ error 

f u l l  or

\~~~~ t ry  J 1/0 error j

C ERTRN

RDDE
Read

• f i l e
info

arg count

H

8

~~~~~~~~

-

•~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • -, - ~~~ •

- 4

4~~~~~~~ ead~~~~~~~~~~~~~~

CRDIR Yes

[~~
TURN

D

RDWRD
Pointer To
File Name

WRDE
Write new
name but
id info

9

r
~~~~~~~~~~~~ - • -  ~ - • -~~~~--- -- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~YNON 
D

• 

_  

_ _ _ _

LE~~ D

[RDDE

cGet file
\ in f o

~iet count

of args

L~~~zero

F .

10

~~~~~~~~~ T 1  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-~~- •- ~~~~
• —-— ---

~~~~~~-



I

ENTER

CROUT
Empty

Remainder
Of Line

• error

BUFSET
Set b u f f er
to empty

GCOM [

get line error input

of text error

CROUT 
~~~
!TRN

DCRBKUP
Is Input A
Line Feed

RTRN

• No

INSERT I Retijrn
•

~~~~~~~~~~~~~~~ error~~ error
• dictionary ~~~~‘J from

entry 
[ 

insert

11!

CERT~~ 
)
~

11



- •~• - • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~-
-- •

(~~
enam)~~~~

No arg 1 [DCTBM
or arg ~~~_ e1r~r._ ..~/ Match

not in Dicti \ first

~argument

(~~~RTRN 
~~~~ J

/~~RDDE

~\• \get file /

arg 1 _ _ _

already in k ~~~
get

dictionaryj \i~~ ert ion

1 error

• CERTRN
~)

EOT es ERTRN

no

BUFRST
CRDIR error (dictionary
create ~•“1dictionary

i
f u l l

RDWRD
(

ERTRN
copy name

• pointer

WRDE

WRITE out
ld info

DELDE
Delete
old

entry

RTRN

12

•

-••—

~~~ 

. 

.
~~~~ ~~

•
•

•i•• ••_ • • • • -~~ •
—•

•

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ -

(~~Delete)

I!
(

~~~ GINT ~~~~~ error 
~~~C~~

RTRN
~~~)

(

~~~CTA RG 

~
error

(~~~ TRN
~)

~~~~~~~~ch?

~~~~~~~~~~~~~~~~~~~~~~~~~ no
t

®

• j yes ~yes / C RN \•

K~~~~~t~
J

error
Default

yes

DELDE

Delete
entry

DL

13

_
~~~~~~~~~~~

Pointer
To Name

J

fNFSPTi\

ç Get next )
- • \ s~~~n~ n /

no
aved Poi nt

To Name

yes

• Save

pointer

NFSPTR

~ Get next
synonym

DELDE

Remove 
es more

Synonym
0

Restore RDDE

saved get file
pointer info.

L j j l e

. .- . - - -
~~~~~~~~~~ •~~~~~~~~~~~~~~~~

- :

•——

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•
~~~~~~~~~

~-

I

2.2 RECORD

The record module is structurally identical to VEDIT.
• The command language is limited to the following :

LISTEN (for building a temporary f ile of
digitized speech)

SAVE (for encoding and editing the
• digitized speech, and cataloguing

utterances on the disk according
to dictionary entries)

No switches or arguments are required.

The flow charts for these commands follows.

15

_ _
- - ~~~~~~~~~~~~~

- •

C~sten)~~

fiRGIii~~~\ I(INIT \,..,error~~~ m i t

~~ s

•

•• \ PROC / error

1 _ _

_ _ _ _ _

C
ERTRN~~~)

Ring Bell

Pause
Start ~~~~rd

[DSKRCD~~\ I
f Record ~~~~~~~~ ~j Recording

\
~ i~~l

~~~~~~~~~~~~~~ 

error

CERTRN
D

Stop A/D
Ring Bell

[PRGFIN\~~
• ( Close

File

• 

(~~~ETRN~~~)

16

- -~‘-
. 

•_ • - •— •• — —i-- ~- • — —• -_  • -- -- - • • - • •



C ~~~~~~~
N

_____ 
I •- 

• ~nitia1izaUo
I n i t i a l i z e  e~ 1Qr,,.1 errors

ADPCM L

ERROR
RETURN

* Allocate

tora e 
____________

(~~ ERROR
• \~ RETURN

____________ 

1’

~ 

entries

~~~tiali~~t~~4 CRETURND
error ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~

• 4
ERRO R

~~~ RETURN 
____________

AUTORD
ADPCM End of

• 
~~~onvert Sampl 

error~~~ f i l e or
and Get disk error

c R ~~)

above
hresh.

yes

300
amp le 5

yes

• NT

17

LI. L ~~~~~~~~~~~~~~~
~~~~~~~ _______  ~~~~~~~~~~~ — J~ ~~~ - T ~~L1~~ - • - -



— 

~~~~~~~_~~~~~~~~~~~~~~~
“

— --- -- --

~

•- - .•-- —

~~

‘

~~
‘ “ ., — •_ -

~~~~~

-_•- .—- •-

~~~

- —- •—.

~~~~~~~~~~~~~~~~~~~~

4
CNT

ADPCM ~~~~~~ Disk 1/0
• 

I \~~~~~~~~~~~~~ f L error

~~~~~~
RTRND

yes

below

yes

WRCLS
PERMFL error closing

MAKE —

~~~ error
PERIANFNP

(~~
TRN D

18

• •. :~~ - . • 
. .-~~~-- _— ••~~ .—— •~ —~~~~~~~~-•,-•~ —— .~~ — -• 1 ~•__i~ 

—• -—- —— — — -
~

- •—~~• • - ~~~~~~ —~~~~~
• — .,•.•,••r•—•—•



N

2.3 SPEAK

The H5l6 module is flow charted on the fo l lowing
page. ASCII text is input  from the H5l6  computer.
The lookup algori thm described separate~y parses
the text, using look-ahead techniques , and returns
a list of pointers to voice f i l es  which are fed to
the playback routine .

The play back routine is identical to the TALK
routine which is used by VEDIT. The appropriate
flow chart can be seen there.

19

________• ‘.,. .—~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~~~~~~~~~~ -



LSPEAKD

1~Initialize
program

open files, etc.

V

• CPYLUD

Copy Dictionary
From Disk

CPYPBD
Copy File
Pointers

From Disk

GLIN
Get a line of
text fran H5l6

PRSLIN low Chart For
Look up ~~~~ 

lgorithm
ttached

• DAPLBK Structurally
speak voice Same As Talk

f iles Con~nand

20



• 
~~~~~~~

‘
~~~~~~~~~~~ • •• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

—‘-—----- ‘—‘---—
~
‘----—-—-- - 

~~~~=~~- • • •~~~~~ •~
—-- - ~~~~~~~~~~~~~~~~~~~

— —
~~= • • -

Phrase Look-ahead Algorithm

This section is devoted to an analysis of the “phrase
look-ahead” function of the 11516 program. Several

• problem areas will be dealt with. A familiarity with a
standard binary search is assumed.

Consider the dictionary listed in Table 2-1 and the text
string “NEW YORK CITY IS A LARGE PLACE” . There are two

• problems that must be dealt with. First, “NEW” matches
two entries - “NEW” if taken alone or “NEW YORK CITY” if
taken as part of a phrase. “NEW YORK CITY” is the better

• match , but if the binary search arrived at “NEW” first ,
a match would be detected and the search would terminate

• prematurely.

• The solution lies in the fact that a phrase which matches
• a string will always be alphabetically later in the dic-

tionary than a word or shorter phrase which matches the
- - same string. Therefore , whenever a match occurs before

• the end of the search , (before Log2N tries for a diction-
ary of N entries), the matching entry is stored . The

• • match is then treated as a mismatch which is less than
• the string input. At the end of the search the most

recently encountered match will be the best match .

The second problem is somewhat more subtle. Consider
again the dictionary in Table 2—1 , and the input string
“NEW YORK STATE” . The first try with the binary search
would compare the input string with “LASTING” after which
it would try “NEW JERSEY” . The character where the mis-
match occurs is at “Y” in the input and “J” in Jersey .
This would indicate that the input is greater than the
entry “NEW JERSEY” so the binary search would proceed
to “NEWARK ” . A blank is alphabetically less than an
“A” , so the binary search would next try “NEW YORK CITY” .
This would be its last try . But the “5” in “STATE” mis-
matches the “C” in “CITY” . Therefore , the binary search
would indicate no match even though “NEW” by itself does
match an entry.

• The problem occurred at the entry , “NEW JERSEY” . The
comparison indicated that the input is greater than the
dictionary entry because “Y” is greater than “J” . But
since this mismatch occurred after a blank was encountered ,
the matching entry will be greater than the input only
if a phrase with at least one blank will be the final
match . If the final match has no imbedded blanks, then
the matching entry will always be less than the entry
where the mismatch occurred after a blank was encountered .

21

• .

• -

~~~~~~~~~ 

- 

~~~~~~~~~~~~


- - - — - - — ---~~--- -~~—--- -- ~~~~~ - — - —-- --- --- - •

The binary search will go in the wrong direction after a mis-
match if several conditions occur. The first condition is that
the number of blanks encountered before the mismatch occurs is
greater than the number of blanks that will occur in the best

• possible match. The second is that the result of the mismatch
indicates that the matching entry is greater than the entry
just compared with the input string , as in comparing “NEW YORK ”
with “NEW JERSEY” .

The solution involves a “tree search ” of the dictionary whenever
no blanks are encountered . When a mismatch is encountered the
binary search proceeds as normal. If , however , one or more
blanks are encountered in the mismatch and the mismatch directs

• the search to proceed in the “greater than” direction , the
point in the search where this occurred is pushed onto the stack
and then the search is permitted to continue in the “greater
than” direction . At the end of the search done in that way , the

• location in the search which was pushed on the stack is popped
off and the search proceeds again from that point but in the
“less than” direction . As described in the first problem area ,
the searches are allowed to continue even if matches are en-

• countered . The best match will be the match containing the
most imbedded blanks.

This can occur any number of times , and several of these de-
cision points can be on the stack at once . Also note that if
one is proceeding from a point at which the mismatch contained
one blank and is moving in the “greater than ” direction , the
further mismatches must contain two or more blanks before they
can be saved on the stack. This simplifies the tree search
somewhat ana increases the speed of the search.

A flow chart of the algorithm aids in understanding this opera-
tion . It is helpful to draw a dictionary as a binary tree and
use it to trace the search for various inputs to find the path
followed .

22

• ~~•

—- •

• — ~~ — •• -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

. 4 I’ABLE 2 1 . ~A~IPL E DIC?IOH ARY
‘A

DENSE

DENSE AIR

DENSE FOG

DENSE SMOKE

LAST CHANCE

LAST ENTRY

LAST FLIGHT

LASTING

• M

N
- NEW

NEW JERSEY

NEW YORK CITY

NEWARK

YORK

23

I n i t i a l i z e - -

Phrase look-ahead pointers
algorithm, and best

-i iiatch info.

N
No Entries OnA Right Branc

yes

Take
Right

Branch

< entry

yes
take no

branch

*Note: Is the number of
yes imbedded blanks encountered

• r— -J —‘i in the matching process
Return error greater than the number en-
Best return. I countered in the last match

Match no match j pushed on the stack?

24

-. -
•,-

T

- -
a

U
• l j 45 —~

—4

• —
- S

1 •
)

I

/NN<z::::

• - I I 7 ~~

25

r

-

~~~~~~

‘I

3. SYSTEM SUBROUTINE

The following section provides an index to the system
subroutines . it consists of an index to assembly modules
used by each program and a lis t of subroutines in the
order they appear in the module listings . Subroutines
which are of general interest are provided with a working
description . The combination of this index and the pro-
gram listings provide the documentation needed for pro-
gram maintenance.

-

~~~~~~~~~~~~~~~~~~~~~~~~~

-

— - _ _ _ _ _ _ _ _ _ _ _ _

- • - — ~~~~~~~~~~ -~~ ———~ — -
~~~~~~~~

- - -
~
- - -  - -~~~~ ____________

4 1
N

3.1 PROG RAI4 ASSEMBLY MODULE NAMES

Program VEDIT
- 

~~
. Assembly modules VEDCSI

STKBUF

COMBLK
CTAB

DIRPAG

ERRORS

LIST

TALK

INSERT

DELETE

- 

. 
GARB G

Program RECORD

Assembly modules RECCSI
STKBUF

LISTEN

ADPCM

CTAB

- - GLOBAL

Program 11516

Assembly modules H5l6
STKBUF

LOKS16
PLY5 16
CTAB

SPGLBL

Other modules : PARAMS

Contains assembly parameters

27 



_ _ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _  
- -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

• 3.2 SUBROUTINE NAMES

Module VEDCSI

Subroutines SYSINT — system init ialize
CSI - main program loop
GCOM - get command

a CLKUP - command table lookup
CSMTCH - command string match

• SWTCHK - legal switch checking routine
FLBLK - flush leading break characters

BRKCH - check for break character

TTYOT - console output
CRLF - print carriage return line feed

OCTIN - octal number input

OCTOUT - octal number output

LISTNM - list a dictionary name

CNFRM - confirm a request for an
operation

AYS - “Are you sure?” command verif y
FCE - fatal consistency error

Module STKBIJF

Subroutines PUSH - stack push

RTRN - normal subroutine return

ERTRN - subroutine error return
• BUFINT - ring buffer initialize

RIN — ring buffer in

LINSET - ring buffer limit set

• RINC - input with limit set

RBKUP - input pointer backup

CROUT - conditional output

BUFRST - reset conditional output

BUFSET - output set
CRBKUP - conditional backup

ROUT - ring buffer output

28


~~~~~~~—_---•~~~- - -~~~~~~~~~ •-~~~•-— • ••~~----—----~~~~• - - _ - -~~~~~~~~~~~~~~~~~ • •  --- -~~~~~• • _  • • • • • • - • - -~~~

• Module COMBLK

Subroutines KILL - dictionary reinitialize

BYE - program exit
a Also contains command table used for

command lookup.

Module : CTAB

contains all tables used by both ADPCM
encode and decode.

Module DIRPAG

• Subroutines VMINT — “Virtual memory ” initialize

RDBYT
WRBYT 

- 
word and byte i/o on dictionary

RDWRD via “virtual memory ”
WRWRD

• VMNG - virtual memory manager

VMBKUP - back up vir tual  memory or disk

DIRINT - directory initialize

- directory entry read and write

— free storage entry read and write

NFSPTR - get next entry with same file
pointer

CRFSE - create free storage entry
FSPACK — pack contiguous free storage

DELFSE - delete free storage entry

GUID - generate unique identif ier  for
f ile

CRDIR - create a dictionary entry
CRDCT — create a text name for a

• dictionary entry
DELDE - delete dictionary entry
DCTBM - get best match in dictionary
DLKUP - binary search dictionary lookup

DMTCH - match single dictionary entry

STRMTC - as above best for wild card
option

29

~~~~~ 

•

.

. - •

- --~~~~~~~~~~~ —

•

•
- -~~~~ - •• --~~~~ ~~••- -

Module DIRPAG (Continued)

Subroutines FLMTCH - match entry with full command
string

-

ARGINT - ini t ial ize NXTARG routine

4 NXTARG - return successive entries in
dict ionary which match command• string

Also program global variables.

Module ERRORS

Subroutines PRE RR - print error message

PRCT - print current token in command

Also error messages (ASCII TEXT)

Module LIST

• Subroutines LIST - program list command
LSTCHK - check arg to see if it should

be listed
LSTHDR - pr in t l is t ing header
LSTPRT - pr in t f i l e name
LSTFS - list f i l e area free storage

Modu le TALK

Subroutines TALK - program talk command

SPINT - speaking b u f f e r in i t i a l i ze

PBFINT - b u f f e r set up
FILBUF - maintain speaking buffers

ADSTRT - start of A/D convertor (used as
clock)

PBINT - interrupt service and ADPCM
decode

30

_ _ _ _ _ _ _ _ ~~~~~~ •~~ _z
~~~~~~~~~~ —~~~~~~~~~

- - - • - - • • -  -
~~~~~~


~ -•- • -- - -~~-
_
~~-.~~•- •--—-.-

Module DELETE

• Subroutines DELETE - program DELETE command

Module INSERT

a Subroutines INSERT
SYNON
RENAME

- program commands

ENTER

Module GARBG

Subroutines GARBG - program command for free
storage “garbage collections ”

Module RECCSI

Subroutines CSI - program main loop
• GCOM - get command

CLKUP - command lookup
CSMTCH - command string match

FLBLK - flush blanks

BRKCH - check for break characters
TTYOT - console output

CRLF - print carriage return line feed
PRERR - print error message

PRCT - print current token

AYS - “Are you sure?”

FCE - fa ta l consistency error

Module GLOBAL

Contains all program global variab les

Module LISTEN

Subroutines LISTEN - program LISTEN command

PRGINT - initialize

BFRSTP - buffer set up

DSKRCD - disk recording routine
ADINT — program interrupt handler
PRGFIN - program close
GAIN - program command to set

• GAIN on A/D

31

•
_ _ _

_ •,_=t_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ••- • - - - • 4

I •

•

Module ADPCM

-

-•
-

Subroutines ADPST — i n i t i a l i z e

SAVE - program - main loop
4. • WDPACK - code word packing

DOPEN - dic t ionary open command

• FRALOC - free storage allocation

WRINT disk word at a time i/o
RDINT i n i t i a l i ze

-. - WRCLS - close write channel

WRTWAT
REDWAT word at a t ime disk i/o
AUTORD

ADPCM - ADPCM word encode

-~~ WBINS - insert sample in energy “window ”

FBSQ - compute (C(i)-7.5)2

PERMF L - make a permanent speech file

-
DCLOSE - close dictionary

DELFSE - delete free storage entry
NSFPTR - get next file with same file

pointer
THRESH - program threshold modi f ica t ion

32

L u _

•

~~~~~~~~~~~~

_

~~

•

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 

- - - - -

~~~~~

--- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~

- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -—--—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Module H5l6

Subroutine 11516 — program main loop
GLIN - input time of ASCII text

CPYLUD - copy in dictionary for lookup

CPYPBD - copy in dictionary for speaking

ALCCOR - allocate free core

TTYLOT - console output

CRLF — carriage return - line feed
PRERR - print error

PRCT — print current token

BRKCH — check for breaks
• -

• 
Module LOK516

Subroutines PRSLIN - look up text in a single line
PAUSE - pause handler for punctuation
AUTOWR - write pointer into ring buffer

NUMCHK - check if text string is a numeral

SINGLE - check if token is a single
character

PRSNUM - parse up a numeral

PRS3DG - parse up 3 digits of a numeral
- • - PRSWRD - spell a word

• PBLKUP - phrase look ahead binary search

PBMTCH - match single dictionary entry

— initialize word at a time i/o

WRCLS - close write channel
WRWAT - write disk word at a time
RDWAT - read disk word at a time
AUTORD - auto read of words

33

.•—~~~~~ ‘ 
~~~~~~~~~~~~~~~~~~~~~~ C — ~~~~~

•••

~
•-_ •—-—

~~
•-

~~
- — --. •- —~~~---r’•~~•-~ ’-

~1
- -~~~~~~

-
~~ - --

~~~—--- - -
~~~~~~~~

-- --
~
--- - • •-- -

~~
• —— • - -— ~~~

—
-

Module PLY516

Subroutines PLAYBK - main loop

SPINT - speaking in i t ia l ize
PBFINT — buffer initialize

• FILBUF - keep buffers full

ADSTRT - start A/D converter (clock)
-• PBINT - interrupt handler and ADPCM

decode

also variables and tables

• Module SPGLBL

Subroutines Speak program global variables

34

~~~~~~~~~~~~~~~~~~~ ~~• • •--• —
~~~~~~~~

• • •:~

• 3. 3 SUBROUTINE DESCRIPTION

4-
Macro : .CAL

-~~~ Function : .CAL1 subroutine. Provides uniform format
- for calling subroutines which have error

return .

Other Operations: .CAL sub, error.

Expands into:

JSR R7, sub

error
• •

-
- “sub” is the name of the subroutine to be

-

• called .

“error ” is the address of the error handler
concerned with an error return from the sub-

-

-
routine.

Name: PUSH

• Function : PUSH all registers on stack , also position
R5.

• Called : JSR R5, PUSH

Arguments : None.

-
• Other Operations : Upon return from PUSH , user stack looks

like this :

Return to Caller ~—(R5)

R5
• R4

Save registers
Ri
RO 4—(R6)

35

- ~~~~~~~~~~~~~~~~~~~~~
•. • -

•

~~~_~~~~ • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~

Name : RTRN

Function : RETURN fiom subroutine ; restores registers
f rom stack and makes a return , skipping
error return location in calling routine .

t,•l

Called : iMP RTRN

Arguments : R6 need not point to stack.

R5, however, must point as shown in “PUSH ”
description .

-: Other Operations : Stack before call a f ter

RTRN ADD *~(R5) RTRN ADD E(R6)

SR5 f SR5 (R5)  = SR5
SR4 P d 5R4 (R4) = SR4
SR3 oppe 

~ SR3 (R3) = SR3• SR2 k (R2) = SR2
SRi Stac 

. (Ri) = SR1
SR$ . (RØ )=SRØ

• R6 points (PC) = RTflN ADD + 2
anywhere
beyond SRØ

Name: ERT RN

Function: Error ReTuRN. Return from subroutine after
restorTng registers . Return made by in-

• directing through error address pointed to
• by return address in stack.
• 

Called : JMP ERTRN

Arguments : Exactly as “RTRN ”.

Other Operations : Exactly as RTRN except :

(PC) = ( RTRN ADD)

36

~~~~~~~~~~~~~~~~~~~~~~ 
::it ~~~~ii

-
~~~~: 

- •



RING BUFFER PACKAGE

The ring buffer package for the VRS is a versatile system of
routines for the buffering of data between two programs .
Features include those of a normal ring buffer as well as the
ability to examine the contents of the buffer without actually

• removing the item from the buffer , as would be desirable for
comparisons at an input stream with many text strings. An
additional feature is a limit pointer useful for line-at-a-
time editing . The limit pointer can be set to the point where
an input line ends. While this line is being processed , a new
line is composed . The buffer can only be processed up to the
limit pointer , even though the input pointer is beyond that
point. This prevents processing on a partially composed line .

Consulting Figure 3-1, the function of each of the pointers
is as follows:

-
• 

IN - this is the input pointer to the buffer . As data is
added , the pointer moves toward Out (clockwise). In-

• valid data can be removed by “backing up ” (counter clock-
wise). The limit on the clockwise direction , is the OUT
pointer . At that point the buffer is full. The back up

- • limit is the LIN pointer.

LIN — this is the input and output limit pointer. It is
usually pointed to the last new line character in the
input 3tream . Once set, the input pointer cannot be
backed up beyond it, nor can the output pointer move
forward past it; that is, the output pointer cannot
remove data beyond the limit pointer . LIN can only
move clockwise. It is set to the position of IN by a

- • subroutine call , and remains stationary until the next
call regardless of the motion of IN or OUT.

OUT - the ring buffer output pointer. Removal of data is
“final” in the sense that this pointer cannot be backed
up. It sets the limit up to which IN can insert data .
It is either moved one character at a time , or moved by
a subroutine call to the position of COUT.

COUT - this pointer allows examination of any data between
the LIN and the OUT pointers in the area shown on
Figure 3—1. It can move one character at a time in either
direction or be set to the value at OUT.

37 

~~~~~~~~~~~~ 


Ring Buffer Package .

COEJT

L

ring b u f fe r ,. _-‘

—

motion limit for OUT

- motion limit for COUT

- IN

_______ motion l imit for IN

FIGURE 3-1. POINTER SUMMARY ARROWS INDICATE DIRECTION OF MOTION .

- 38

-

-

~~~~~~~~~~~~~~~~~~~~ -- — -~~~~~~ • - -~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~ • —•- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ —~~~~~~~ -• 
- •



Name : BUFINT

Functions : BUFfer INiTialize . Set up a ring buffer
N in core .

Called : .CAL BUFINT , error.

Inputs: RØ pointer to 262 10 byte block of storage
• to be used as a ring buffer.

Outputs: None.

Othe r Operations : 25610 byte circular buffer is initialized
in core. 6 byte header is provided as
follows :

Initial
• Byte Name Function Value

• 0 LIN Line Limit. Sets 0
• limit beyond which

output pointers
cannot go.

1 IN Input pointer . 0
Points to next free
byte in buffer.

2 CFUL Conditional full- 0 —

ness. Distance
from conditional
output pointer to
Output pointer .

3 COUT Conditional output 0
pointer . Free-
flowing pointer to
examine any charac-
ter between LIN and
OUT without removing
from buf fe r .

• 4 FUL Actual fullness. 0
Distance from output
pointer to input .

F 39



_ _ _ _ _ _  • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In i t ia l
Byte Name Function Value

5 OUT Output pointer . 0
Final output pointer

N for characters .

Routines called : None .

Errors:  None . 

Name : RIN

Function : Ring b u f f e r  INput .  Places input character
in ring buffer .

Called : .CAL RIN , error .
I -

. * Args: Two .

Inputs :  RØ — pointer to ring buffer
Ri — character to be inserted right justi-
fied .

- ~

• Outputs : None.

- 
• 

Other Operations: Fullness count and input pointer incre-
mented af ter  character inserted . (Also- 

- conditional ful lness updated.)

Routines called : None.

Errors : B u f f e r  fu l l .

40

N- •~~~~~~~~ 
• 

- 
• 

.~~~~~~~~~ - ~~- -‘—~~‘ ‘c—- — — 1 — ~ - - S ---—- -~~~~~ e : ;~~~~ ,-: : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Name : LINSET

Function : LIN pointer SET. Limit pointer Set to
a current value at input pointer.

Call ed: .CAL LINSET , error .

Inputs : RØ - pointer to ring b u f f e r .

Outputs: None .

Other Operations : Contents of IN pointer placed in LIN pointer.

• Routines Called : None.

Errors : None .

• Name : RINC

Function : Ring buffer Input with No Check . Equivalent
to RIN followed by LINSET. Used when data
need not be checked before definitely entering
it.

Called : .CAL RINC, error.

• Inputs : RØ - pointer to ring buffer .

Rl - character to be inserted .

Outputs: None.

Results : If error - none.

• If no error, character placed Ia L,’iffer , con-
ditional fullness and fullness updated , limit

- pointer (LIN) and input pointer both set to
next character.

Routines Called : None .

• Errors : Buffer  already f u l l .

41

h&:-•n-- . - - - .. • - - -- 
. - • • -  

- :  

_ _ _ _ _ _ _ _  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . — — _  -



—

Name : RBKUP

Function: Ring buffer BacKUP . Removes last character
placed in ring S~i~ fer.

Called : • .CAL RBKUP , error .

* Args : Two .

Inputs: RØ - pointer to ring buffer  used .

Outputs: SRi - if no error , returns character re-
moved — if error , returns unchanged .

Other Operations : Pointer positions moved .

Routines Called : None .

Errors: Pointer already backed up to LIN limit
pointer.

Name: CROUT

Function: Conditional Ring buffer OUTput. Remove
• next character from buffer using the condi-

tional ring buffer pointer.

Called:. .CAL CROUT, error.

* Args : Two.

Inputs : RØ - pointer to ring buffer .

Outputs SRi - character removed from buffer . If
• error, no change.

Other Operations: Conditional pointer incremented, condi-
tional fullness decremented if no error,
otherwise no change.

Routines Called : None.

Errors: Buffer “empty ” .

Conditional output pointer COUT has caught
up to limit pointer LIN.

42

r
~~~~ 

— -

~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
.. - 

- 
_ _
~~•j ::. ~~

_
~~ _ _ _ _ _ _ _ _ _



_______________ - - - - - 7- —,--— • 
~uII~

Name: BUFR5T

- N - Function : BUFfer ReSeT. Resets conditional output
and conaiti~ nai fullness to value of outputand fullness.

Cal led : .CAL BUFRST , error .

* Args: None .

Other Operations : Covered in function .

Errors : None .

Name: BUFSET

Function : BUFfer SET. Moves output and fullness up
to condittonal output and conditional
fullness.

Called : .CAL BUFSET, error.

* Args: None.

Other Operations: Covered in function.

Errors: None.

43



F

- 
— —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— —- S.—--- 5- • S
~~ 

• 
- - 

-
~~~~~

Name : CRBKUP

Function : Condition Ring Buf fe r output BacKUP .
Back up to previous character.

Called : .CAL RBKUP , error.

.1 # Args : Two.

~ Inputs : RØ - pointer to ring b u f f e r .

Outputs : SRi - character removed from buffer .
If error , SRi is unchanged .

Routines Called : None .

Errors: Attempt to back up beyond output pointer .

Other Operations: Conditional fullness incremented if no
• error. COUT backed up one character .

Name : ROUT

Function: Ring b u f f e r OUTput. Removes next character
pointed to by output pointer.

Called: .CAL ROUT , error.

* Args. Two.

Inputs : RØ - pointer to ring buffer .

Outputs: Ri - no error: Character removed .
Rl - error : Unchanged .

Other Operations: Error - none.
No error - output incremented , fullness
decremented .

Routines Called : None.

Errors : Attempt to move output pointer past con-
ditional output pointer.

44

r

L--- . ~~~~~ - - —~—-•-
•- —

~~~~~ -~~~~~~ -•- ---•- - 
4



_ _

Name : VMINT

Function : Virtual Memory INiTialize . Sets up core
suffers Tor disE to permit read and write
of disk resident dictionary through a virtual

• memory system.

Called : .CAL VMINT, error.

Arguments : None .

Other Operations : Core Buffers  initialized to contain core
keys of f i rs t  five pages (256 words each)
of the dictionary. Core buffers brought
in by an LRU algorithm, so appropriate
variables for LRU are initialized.

Routines Cai.Led: None.
-

. 
RT-il monitor calls .READW

Errors: RT—ii errors only ~
- disk read .

Error mes2age pointer returned in ERPNTR .

45

~~~~~~~~

.

•
.

. -

~~~~~~~ 

••
~~~~~~~~

-
_ i

~~~~~- - - - • - - .  

S 

-- ~~~~~~~ - ~~ — _ _ _ _ _ _ _ _ _ _



_____  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•~~~~~~~~

—
~~~~~~ 

- - : : - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .i ~i~~- ’-

9

Name: RDBYT - read one byte
RDWRD - read one word
WRBY T - write  one byte

• WRWRD - write one word

Function : Basic input-output for dictionary .

• Called : •CAL name , error.

Arguments : R2 - points to word or byte on disk , if
it is a word , it should point to an even
byte boundary .

Ri - argument to be r~ ad or written .
Byte arguments should be r ight  jus t i f i ed .
On return from read byte , top byte cleared .

• 

Other Operations : LRU variables updated . If desired , data
not in core at time of call is swapped in.

• Routines called : VMN G

Errors: RT—ll errors.
Error  message pointer returned in ERPNTR.

4~



r 

- 

____ 

__________

-5--- - • —-----—--• -- 5- —5- -~~~~- -

Name: VMBKUP

- Function: Virtual Memory BacK UP. Updates disk
resident copy of drcaonary by swapping

- - 
out pages in core buf fe r s .

4 - -
Called : .CAL VMBKUP , error.

Arguments: None .

Other Operations: None other than described in function.

• Routines Called : RT-li monitor calls .WRITW

Errors : RT—i i errors.
Error message pointer returned .

I’ .

47

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - . 5- - - - -

• -- -5- — .--~- - -5--- • _
~~~~~~L- • _ - -

-

-S.



_ _ _ _ _ _ _  — - --
~~~ ~~~~ 

- -
•

‘
~~7~~

5- 1~~~~
__

~~~~~~• • •
5- 5-

~
-
~~

~ - -1

• Name : DIR INT

Function: DIRectory INiTialize.

Called : .CAL DIRINT , error.

I Arguments : None.

Other Operations: All variables in header at dictionary set
to indicate empty dictionary .

- 
- Routines Called : CRESE.

Errors : Error return from CRFSE returned directly .

V

48

r - - -

— 0~~~ 
-- -



- 

- 
. Name: RDFSE - Read free storage entry .

WRFSE - Write free storage entry .

4 Function : i/o on 2-word free storage information .

• Called : .CAL Name , error .

Arguments : R2 - byte pointer to f i r s t  byte of two-
• word descriptor .

Callers stack at call time:
• (R6 ) - address of block of free storage .

- 2 (R6 )  — size of free storage in number
of blocks .

Other Operations : Dictionary written via WRWRD.

Routines called : RDWRD

WRWRD

Errors: Returned directly from above routines.

49

~; —
.

~~~~—.- -— S . —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— 5 -- - -

- - -

Name : RDDE - read directory entry .

WRDE - write directory entry .

Function : • Read or write a three—word file information
1. block from dictionary .

Called: .CAL name , error .

-
- Arguments : R2 - pointer to f i rst byte at entry to be- - : accessed . (Offse t from beginning of dic-

tionary.) Callers stack as follows (at
call time):

(R6) - pointer to text name of file.
2(R 6) — file size information.

-
‘S. 4(R6) - pointer to f i r s t block of f i l e .

Other Operations: On WRDE, dictionary written through virtual
memory.

Routines called : WRWRD

• RDWRD

Errors: Returned directly from above calls.

50

r

~~~~~~~~~~~~~~~~~~~~~~ ii - - -~~ 



I _ _ _ _ _ _ 5 _ _ _ 5 - —--— — --- - • -_-——-?•,- -—__•_•_•••_•‘• _ • __ _ - - -••——— --_ -———_ •

- - • • Name: CRFSE

Function: Create a two-word entry in the table of
free storage space. F -

3’S ’
Called: .CAL CRFSE , error.

- Arguments: Stack as follows:
- - - (R6) - address of disk area to be returned

to free storage .
2 ( R 6 ) — size in blocks of disk area.

- 
~~ Other Operations : Free storage area sorted by address . Entries

moved to accommodate new entry.  If new
entry is contiguous with existing entry ,
the entries are merged into one entry.
Pointers to table of free storage space are
updated .

-
. 

Routines Called : RDFSE

WRFSE

FSPACK

Errors: Free storage space full. Error pointer
-

• 
returned in ERPNTR.

Other errors directly returned from called
- - routines.

51

_

~

1.1Et•I•.r1

~



- -

Name: DELFSE

Function: Delete FREE storage table entry.

Called : .CAL DELFSE, error.

Arguments: R2 pointer to entry to be removed .

Other Operations : Table of free storage updated by moving
remaining entries down over deleted entry
and by updating pointers to table.

- ~~
- Routines Called : RDFSE

WRFSE

Errors: Returned directly from routines called .

Name: GUID

Function: Generate Unique IDentifier used in file
creation.

Called : .CAL GUID, error.

Arguments : R3 - high order byte of unique identifier
returned in low order byte of R3. High
order byte of R3 cleared .

R4 - low order two bytes of uid .

Other Operati ,r~~: Current uid in file header updated .

Errors: None.

52

--- -5— . ’— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ - - _5-L - - - -

Name: CRDIR

Function: CReate DIctionaRy entry . Takes text argu-
a ment and creates a new dictionary entry .

File block size is initially zero. Synonyms
use three byte unique identifier copied
into last block size , and file pointer

• fields of entry.

Called : .CAL CRDIR, error.

Arguments: RØ - point..er ring buffer containing text
name for new entry. First call to CROUT
should return first character for name.
Name used until first non-blank break
character .

R2 - insertion point for new entry .

- . Other Operations : Text entry inserted after previous end of
text area. (File name area.) New three-word

• entry inserted in dictionary. Pointers
to dictionary updated .

Routines Called: CRDCT

RDDE

WRDE

GUID

Errors: Dictionary full (returned in ERPNTR) or
else error returned from routines called .

53

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



____________  ______  
—-::

~~~~~~~~~~~~~

Name : CRDCT

N Function : Inserts text name into f i le name area of
dictionary. Returns pointer to newly
created name .

Called : .CAL CRDCT , error .

Arguments: U - pointer to ring buffer containing text
name described in CRDIR.

Rl - returns pointer to location . Text name
was inserted .

Other Operations: File name area and appropriate pointer to
that area are updated .

Routines Called : CROUT

BRKCH

WRBYT

Errors: Dictionary full - returned in ERPNTR.
Or else error returned from routines called .

54

4;
f

—— -- ----
—- ~~~

_
~~~~~~~ 

-— ~- -
. . •  • 

• - 

- _S~__ _•4__•_..~__ 
~~~~~~~~~~~~~~ -- __5_~___

-- ~~~ --- _ - a— - - — - --S

~~~

_______



- Name: NFSPTR

a Function: Find next entry with same file pointer . Used
to locate synonyms to a file. When called ,
look for synonym which alphabetically follows
after entry provided as argument. If search

• runs past end of dictionary , restart at the
- - beginning of the dictionary . If an entry has

no synonyms, return original entry.

Called : .CAL NSFPTR, error .

Arguments: On entry R2 is pointer to three-word entry
block in dictionary ;
on exit R2 contains pointer to three-word
block of next synonym .

Other Operations: None.

-: Routines Called : RDDE.

Errors: Returned direc-41y from RDDE.

55

[5 

•

~~~~~~~~~ 
—--

_ _

_ _ _ . — - _— - - - -~~~~—• -- --- - - 5

Name: DELDE

Function: Delete dictionary entry - remove three-
word block associated with entry and the
text entry name .

Called : .CAL DELDE, error.

Arguments : R2 - pointer to three-word block of dic-
tionary entry to be removed .

Other Operations : Text entry removed from file name area.
Any names in higher core than removed name
are moved down to compress file name area.
The same is done for the information block
area. All pointers are updated . LCHECK
is also updated if entry it points to is

• moved by delete.

Routines Called : RDDE

RDBYT

WRBYT

RDWRD

WRWRD

-
• Errors : Returned directly from routi.nes called.

56

S_
I -

-

-

—5-----— L~~ - — _S~~~ _ . •

- •
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-- 
~~~~~~~~~~~

5- _ _~~~~~~~~~~~ -

N

Na me: DCTBM

a Function : Find best match in dictionary . Determines
if string provided provides a match with an
entry in the dictionary up until the first
non-blank break character.

Called : .CAL DCTBM, error.

Arguments: RØ — points to ring buffer with string in
-‘. it. If match output pointer points to be-

ginning of string with leading blanks flushed ,
conditional output pointer points to break
character terminating string . If no match ,
both output pointers point to beginning of
string with leading blanks flushed .

R2 - pointer to match. If match occurs,
R2 is pointed to entry in dictionary which
matches the string . If no match , R2 points
to place in dict ionary where new entry would
be inserted if input string were used for
test name. If end of text encountered in
input string before any other text encountered ,
R2 is set to all ones .

Other Operations: None.

Routines Called : FLBLK

DLKUP

CRBKUP

CRDUT

BRKCH

BUFRST

Errors : Text string does not match any entries or
end of text in input string.

ERPNTR unaffected by DCTBM. If set by
routines called, its value is returned

• unchanged .

57

I:

-

Name: DLKUP

Function : Dictionary L0oKUP. Performs a binary search
on dictionary to find entry which matches
input str ing.

Called: .CAL DLKUP , error.

Arguments: U - points to text string in ring buffer.
Both output pointers must point to the

- -
f i rs t character of the string. If no match
is found, output pointers are unchanged. If

-
•, match occurs , conditional output pointer

points to break character at end of match.

R2 — if match occurs in course of search,
R2 points to matching entry. If no match ,
R2 points to insertion point found for string.
If end of text, R2 is set to all ones.

R3 - if match found , R3 points to insertion
point for string. This is done because a
string which matches an entry may continue
beyond the match. For example , “NEW YORK
CITY” would match “NEW YORK” in the- diction-

-

-
ary but could still be inserted as a new entry.

Other Operations : None .

Routines Called : BUFRST

DMTCH

Errors: No match in dictionary or end of text in ring
buffer.

58

~-~~~~— - ‘~~~~ - - - ~~~ 5-5-—-’.-

4. DATA BASE

The File System for the VRS was designed to meet three
criteria :

-
• a. - The File System must be capable of a data

rate óf 7.5 disk reads per second .

b. Compact Dictionary - The File System eventually
must maintain a full dictionary of 4000 entries. To
permit file lookup to proceed at maximum speed the
dictionary must be core resident. The amount of in-
formation associated with each dictionary en’ry must
be minimized in order to keep a 4000 entry dic~.’onary
to manageable size.

c. Editing Flexibility - The dictionary must be easily
modifiable by the system programs . The user should not
be subjected to constraints due to limitations in the
file structure .

In addition to the above criteria , the dictionary forma t
must permit phrase look-ahead .

In general , these criteria conflict. Speed and editing
flexibility always require additional information , which
implies additional space. The design chosen provides
maximum speed in operation but permits the desired editing
capabilities through software which calculates the required
pointers, rather than storing them in the dictionary.

-
-

File System Description

The VRS f i l e system is divided into five major storage
areas. These areas (illustrated in Figure 1—2) are :

a. Header Block — This area contains a
~~~ 

byte de-
• scriptor for the file system. This includes an 8 byte
• name block and information concerning the size of the

remaining 4 areas.

b. File Name Area - The text names for the various
dictionary entries are stored in this area. As the names
can be of any length , no fixed size is set for an entry .
Instead , each name is followed by a zero byte .

c. File Description Area - The size and location of
each dictionary entry is stored in this area .

59

~~~~~~~~~~~~~~~~~~i~~~~~~~S• i~~
_
.
.

_

~~i S _ ~~~
•- • . -:

~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ----S-S - - - -


-• —
~~~~~~~~~~~~~~~~

—-
~~~~~~~~~~~~~~~~ T~~~~~

’
T
’. -

-
- --5--’-—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -

FDA
-

- -; pointer  to name bla nk W
I size in last block p 

______
• ~~~ ~~j~~locks~~ size 137~ 

R

pointer  to f i l e  C blank 
~ DVF

ø~~ yte 

___ 
1’

poi nter  to name 
zero 

~ 

— 

3
1 Z7 in file name1 
~~~~~~~ area — —-

, 4— I 1po in ter to f i l e

in f i l e descriptor
1area

~~~~~~~~~ 
unused 

~~~~~~~~~~~~~ J 5

FIGURE 4-1. SAMPLE FILE STRUCTURE CREATED FOR THE FILENAME “ NEW YORK CITY” AND ITS ABBREVIATION (synonym) “NYC”

60

• -~~ - •
- -- • -

~~~~~~~~~~~~~~~~~~~~~~ 
- - • - - - -- -- 

~~~~~~
- - -- -

____ -
- _

~~~~~~~~~~
‘.

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -- ~~~~~~~_ ‘ ..- --~~~~ -- —.----- —~~

cj. Fr~ e Stot~ ge Description Area - Unused disk storage
is described in this area.

e. Digitized Voice File Area - Contains the encoded
5- speech.

These areas are all on disk in the layout shown in Figure 4-2.
The descriptor areas are copied into core memory as needed by

— the particular program using the f i l e system. (For example
see flowchart for “SPEAK ” in Section 2.)

To visualize the functioning of these various areas it is best
to examine a typical dictionary entry (Figure 1-3). The entry
shown is an example of how the encoded utterance “Ne w York
City ” might be accessed by that name as well as by the abbre-
viation “NYC” . The files are accessed first through the file
descriptor area. This area consists of a number of three-
word blocks which appear in detail in the example. Most of
the important capabilities are provided by the information in
these blocks.

The first word points to the f i le name , the second contains
the f i le status and size information , and the third points to

• the disk location . Alphabetic sorting is accomplished by
moving these descriptor blocks, rather than directly moving
the variable-length entries in the f i le name area.

The f i l e name can be of arbitrary length, contain embedded
blanks , and must be terminated by a zero byte. New names are
added to the end of the name area, while the corresponding
three-word block is inserted in the correct position in the
block area as determined by the sort.

The f i l e status and size (second word of descriptor block)
contains the following information : The f i l e size (in 256
word blocks) is contained in the low order 7 bits of the hi gh
order byte. The number of words actually used in the last
block is contained in the low order byte . The high order bit
of the word is used for abbreviations. When a dictionary
entry is first created , the high order bit, called a “synonym
flag” is left zero. If an entry is being created as an ab-
breviation for an already existing entry , the remainder of
the second and third words are copies from the original entry .
During editing , an entry ’s synonyms are found by comparing
the f i l e pointer and size words for a match with other dic-
tionary entries. Note that an abbreviation entry is identi-
cal in every respect to other entries except for the flag.
When an empty file is created , a three byte “unique identi-
f ier ” maintained in the file header is copied into the file
pointer and size of the last block portions of the dictionary
entry. This provides a means of distinguishing synonyms be-
fore a file is created . When a file is deleted , the block
size and the file pointer are copies into the free storage
area to give information about available space in the file
storage area.

- 61

- - ~~ - : -
- 5-

~~~~~
—-  - 

_ _ _ _



— -~~~~~~~ —_ • -- - ~~~~~~~~~~~~~~~ -- - ----S- -_~~—•’.--- -55-~ •~~S~~~, - 
~~~~~~~

- Header Block

-
FNA (F il e name a rea)

I’

- ‘ S
•

-
• S ‘S - Free area for FNA

• File descriptor area

Free space for FDA , FSDA

- ~-
S •

•

Free storage descriptor area

Voice file area

FIGURE 4-2 - FILE SYSTEM PARTITION

62
180 Copies

_ _ _ _ _ _ _ _ _ _ _ _

