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An Efficient, Accurate Numerical Method for the
Solution of a Poisson Equation on a Sphere

1. INTRODUCTION

The need for efficient and accurate methods for the solution of Poisson-type
equations in mathematical physics is well established. Important texts in numer-
ical analysis such as Matrix Iterative Analysis (Vargal) are not only eloquent
testimonies to the magnitude of the problem, but also vivid evidence of the extent
of the interest. In the case of numerical weather prediction, where solutions to
the Poisson equation are required in daily routine operations, it is paramount that
the solution procedure be efficient. In anticipation of the development of global
numerical weather prediction models, we developed earlier an efficient shooting
algorithm for the solution of a discrete Poisson equation on the surface of a sphere
(Yeez). This report presents the most recent development in our work along this
line.

We seek a numerical solution to the Poisson equation on the surface of a unit

sphere,

(Received for publication 28 October 1977)

1. Varga, R.S. (1962) Matrix Interative Analysis, Prentice-Hall, Englewood
Clifts, N.J.

2, Yee, S.Y.K. (1976) An efficient method for a finite-difference solution of the
Poisson equation on the surface of a sphere, J. Comput. Phys. 22:215-228.
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Here 0 < 6 = 7 is the colatitude and 0 = A< 27 is the longitude. Discretization of
this equation using a five-point centered-difference operator for the Laplacian
gives the following I X J linear algebraic system
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Here we have excluded from consideration the coordinate singularities at the poles
by adopting the spherical grid system proposed by Merilees.3 We have also
gridded the surface of the sphere with I grid points along a meridian and J grid
points along a latitude. Note that a solution for Eq. (2) exists only if its right-
hand side satifies the compatibility condition

I J

z sin 6; z fi'j=0 . (3)

i=1 i=1

Even then, since the coefficient matrix of Eq. (2) is singular, with its rank one less
than its order (a1 = bI = 0), the solution can be determined only to within an add-
itive constant. This is consistent with the fact that, for the lack of lateral bound-
aries on a sphere, a solution to Eq. (1) can only be determined to within an additive
constant.

Equation (2), however, is prone to numerical instability. First, the coefficient
matrix of Eq. (2) has a spectral radius that is larger than unity. Furthermore,
because of the convergence of meridians on a sphere, the condition number of the
system increases rapidly with increasing spatial resolution of the computational
grid. These instability properties severely limit the usefulness of the simple
shooting method reported earlier to relatively coarse grid resolutions. For larger
systems resulting from finer resolutions, because of the inherent numerical insta-
bility mentioned above, direct application of this method will give inaccurate re-
sults. It is the purpose of this report to demonstrate that this numerical instabil-
ity problem can be remedied by a two-pronged approach. The instability due to a
spectral radius larger than unity is alleviated by the use of a multiple shooting
technique, while that due to a large condition number is overcome by the use of a
flexible grid.

2. SYNOPSIS OF METHOD

To view the shooting method described here from a proper perspective, we
shall first review in this section a classical method for the solution of differential
equations. It will then be easy to see that this method is indeed no mcre than the
implementation, in the discrete domain, of a solution method in differential equa-
tions. The classical approach for the solution of a differential equation separates

3. Merilees, P.E. (1973) Pseudospectral approximation applied to the shallow
water equations, Atmosphere 11:13-20.

e




the complete solution into two parts, a particular part and a homogeneous part.
For example (Berg and McGregor4), for the boundary value problem

Yu=!f IR ,
(4)

it is often easy to find a particular solution u_, which satisfies only the differential

P
equation

v uP=f

%
Continuity requirements on the boundary then give us up values of up on the bound-
ary. We solve next for Uy in the homogeneous system

(5)
Uy
a1

The complete solution for Eq. (4) is then given by

u = up Uy
Equation (2) is a discrete form of an inhcmogeneous two-dimensional linear elliptic
equation applied in a closed region with no external boundary. It may be looked
upon as a discrete boundary value problem in the sense that, although subject to no
explicit external boundary constraints, it must satisfy the global constraint Eq. (3).
We, therefore, propose to solve Eq. (2) in two steps. First, we construct a par-
ticular solution which, except at certain preselected grid latitudes Oi, satisfies

Eq. (2). One way of constructing such a particular solution for Eq. (2) is to assume
arbitrary values for the components of ffl, at 6,. We may then compute by a march-
ing procedure a solution of the equation for the rest of the region. At 91' the forc-
ing function TI* computed from the particular solution will be different, in general,
from the given fI. The particular solution, therefore, does not satisfy Eq. (2) at

91.
homogeneous solution to Eq. (2). Since the homogeneous equation has only J non-

We next '"correct'" these discrepancies by adding to the particular solution the

%
zero components (TI - TI ) in its forcing function, it can be solved with less com-
puting effort than that required for the inhomogeneous equation.

4, Berg, P.W., and McGregor, J.L. (1966) Elementary Partial Differential
Equations, Holden-Day, San Francisco, CA.
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Instead of computing the homogeneous solution for the entire region, the
shooting method computes first the complete solution at selected grid latitudes
(the ""missing initial conditions'). The complete solution for the remainder of the
grid is then obtained by a marching procedure (shooting). The key idea here is
that, by the use of shooting, we avoid most of the transform operations needed to
compute the homogeneous solution for the entire region.

Although the idea here is to avoid the need of calculating the entire homogen-
eous solution, looking at the shooting method as just a way of implementing a
classical method in differential equation is useful because it provides us with the
insight to compute easily the ""missing initial conditions" through the judicious
use of Fourier transforms. This is especially desirable in the case of multiple
shooting where we have to seek the ""missing initial conditions' at a number of
grid latitudes. We emphasize here that the construction of a particular solution
for Eq. (2) is accomplished simply by marching in the two-dimensional physical
domain. Details of computing the '"missing initial conditions" are described in
Section 3 in connection with the multiple shooting algorithm.

3. THE USE OF MULTIPLE SHOOTING

We mentioned in Section 1 that the shooting method is inaccurate for the
numerical solution of Eq. (2) when I and J are large. This difficulty can be
alleviated somewhat by the use of a multiple shooting technique, a straightforward
extension of the approach described in Section 2. With this approach, a sphere is
divided into subregions by pairs of internal computational boundaries. A partic-
ular solution is then constructed for each of the subregions. Again these solutions
satisfy Eq. (2) except at certain prespecified Gi. They, therefore, constitute a
particular solution for the sphere as a whole. To this particular solution, we
now add the homogeneous solution of Eq. (2) to form the complete solution. This
time, the forcing function of the homogeneous equation has, however, a number
of pairs of nonzero component vectors due to the arbitrarily picked internal com-
putational boundary conditions.

For pedagogic purposes, we shall detail here a method for obtaining a homo-
geneous solution to Eq. (2). The method makes use of similarity transforms to
reduce first the block-tridiagonal system Eq. (2) to a system of tridiagonal sys-
tems. The homogeneous solutions to these reduced systems are then computed
by an efficient Gaussian elimination algorithm (Vargal). The motivation of such
an approach has been discussed earlier (Yeez).

If we perform a discrete Fourier transform on {fi and 'fi and let

waPw , goep R (6)
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we may write Eq. (2) in a space-Fourier domain for 1 < i< I,

g~ thlw bR~ Dw =] il
where
% 3 i1
Wy Yk i~ | &,k
X z
wl’ K i, K

and D = P'l RP, K =J. Here the diagonal elements of the diagonal matrix D are

the eigenvalues dk g ©f R, and P is a J X J orthogonal matrix whose columns are

the normalized eigenvectors associated with dk K’ that is,

dk‘k=2(1-cos7tk) =k K

cosjlk . ISkS(K/Z)‘l ,
(2>1/2 (cos pI/2/2 | k-x/2
p‘ = —
i, k J - sin gy, (K/2)+1<k=<=K-1 |, = gi=J
HohiE K=K
(8)

Grouping LN by components and defining

Y1,k 81,k
bl el 0 + Bk T | 8k ’
Wik 81, k

10




O

3

e = RS . 2 il A o i . i e A S0 N A 3 2 o 0 B 5 A 5 i 38 T ML b mio

Eg. (7) becomes, for each 1 < k < (£,

TL¥% = & (9)
where
5 M
a
T = 2 \ )
k b
\ I-1
i
and
e

=" thite d )
For k < K, Tk is nonsingular, and Eq. (9) can be solved efficiently by Gaussian

elimination. For the case of k = K, since d = 0, the system

K, K
Tk "k = 8k (10)

is singular and thus has no unique solution. This merely confirms that the finite-
difference system Eq. (2) is consistent with the differential system Eq. (1). We
K to solve Eq. (10).
Following the approach outlined in Section 2, we construct first, by marching,

may pick arbitrarily a value for one of the components of w

a solution vector WIL which satisfies

-

T, Wi =g . (1)

Here Eﬁ differs from §k only in as many components as there are internal compu-
tational boundaries on the sphere. For example, for the case where the surface of
the sphere is divided into two halves at the equator, and where the matching-in-

the-middle technique has been used to halve the shooting subrange (Foxs), we have

5. Fox, L. (1957) The Numerical Solution of Two-Point Boundary Problems in

Ordinary Differential Equations, Oxford University Press, Fair Lawn, N.J.

11
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Here Aw{ Kk is the discrepancy of the kth component, at Gi, of the two marching
solutions ’from opposite boundaries of a subregion. Thus if §k is a solution to the
homogeneous system for Eq. (9),

Ty Sk = 88 » (13)

then the complete solution to Eq. (9) is

-

\Zk= Wi{* S, - (14)

Once Wk is available for all k, 1'1"1 may then be computed from the inverse trans-
form to Eq. (6),

u=Pw . (15)

At this point, it is appropriate to point out that the derivations detailed here
serve only to demonstrate that in the case of multiple shooting, the ""missing
initial conditions'" can easily be obtained by solving tridiagonal systems such as
Eq. (13). As mentioned earlier in Section 2, for reasons of computational

12
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efficiency, we use neither Eq. (12) to yield AEk, nor Eq. (15) to obtain \’.1‘1 In
practice, ffi may be computed by the use of a much more efficient shooting algo-
rithm (Yee?).

Test computations, using the multiple shooting technique, have been made for
system (2) for various n, the number of shooting subregions, and for several
values of I and J. The design of the numerical tests is the same as that reported
in Yee. 2 Namely, we create a set of true solution Vi,j for Eq. (2) by computing

f, . from
L]

’

R

=2l v. .- (ai + bi + 2ci) vi.

b= %% 4 Fhyr

TR T T L

Here values for vi j are obtained from a random number generator and have been
subjected to the constraint r,)j‘, Vi ¢ " 0 so that fi . satisfies the compatibility con-
dition Eq. (3). With the forcing function t’i j cor;lputed in this manner, a normal-

ized error norm defined by
Ell, - lla - vl /1ol

may then be considered as a measure of the accuracy of the numerical procedure.
The number of digits of accuracy in u is then given by

Z = -log10 HEH2 y

Table 1 gives sample results for a 64 X 64 grid in terms of Z, “ EH2 and
lE(Max)] , the magnitude of the maximum error over the entire computational
region. Here n is the number of subregions into which the surface of the sphere
is divided and m is the number of grid latitudes within each subregion. Thus for
n =1, m =32, for example, the entire surface of the sphere is treated as one
region, and shooting is conducted from both poles over a shooting range of 32 grid
latitudes toward the equatcr. Inspection of Table 1 gives us the impression that
for the case of a 64 X 64 s, "~ v this method is useful only when the sphere is
divided into a relatively large ‘.mber of latitude bands. For example, for the
case of n = 4, we have Z = 1.6, that is, less than two-digit accuracy in our results.
Careful study of the distribution of the error fields suggests, however, that due to
the convergence of meridian on a sphere, the largest local errors invariably
occur in the computational subregions containing the polar caps. Furthermore,
these errors are considerably larger in magnitude than those in other subregions.
This phenomenon is well borne out by Figure 1 which depicts typical error dis-
tributions as a function of ei for the cases of n = 4 and n = 8, We see from this
figure that, except for the subregions containing the polar caps, we have for the

13 |

e e bl e e




Table 1. Error Norms in the Computed Solution* as a Function of m

m n z ||E||2 |E(Max)|
2 16 9.6 2.2x 10710 1.0x1079
4 8 6.4 3.6 1077 2.8x10°8
8 4 1.6 2.3%10°2 2.0x107!
16 2 -6.2 1.7 x 10° 2.4 %10

32 1 -21.4 2.2 x 10%1 3.4 x 1022

Z Number of digits of accuracy in computed solution u.
* For a 64 X 64 grid witk constant AA,

Z

DIGITS OF ACCURACY.,

Z Z
"o
@ 4

e

30

Figure 1.

0 90 120
GRID LATITUDE

150

Effect of Subdivision, Standard Grid

14
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case of n = 4 more than two-digit accuracy in our results. Comparison of the

error distributions of these two cases also suggests that increasing the number of
subregions is not an effective way to reduce the deleterious effect due to the con-
vergence of meridians. Other more effective means must be sought if we want to
use a grid with high resolution.

L. THE USE OF FLEXIBLE GRID

It is easy to see that the numerical instability inherent in the solution of
Eq. (2) is due in part to the convergence of meridians on a sphere. From the
definition of ¢, in Eq. (2),

1

e ———
L B 6,

we see that ¢, » 0 as sin2 Gi > 0. Thus if AX is not a function of Gi, increased
resolution in Af tends to destabilize the solution through the rapid increase of the
condition number of the coefficient matrix of Eq. (2). We shall demonstrate in this
section how this difficulty can be circumvented by the use of a flexible finite-
difference scheme.

Consider the following finite-difference approximation to the second term of
Eq. (1),

2
3 0 u 1 1 2
e R R RO T S R
sin® 0 a2 . P 82 sin® SR T A T

where Bi = Aki. From the numerical stability point of view, it is desirable to keep
the value of (Bi sin ei)2 from approaching zero. The simplest way of achieving

this is of course to set Bi = 1/sin ei. This is, however, impractical because the
points (i, j'Bi)' (i, j+3i) in Eq. (16) will not in general coincide with the regular

grid points. To insure that the points (i, j-_tBi) coincide with. the grid pcints, we
must have Bi take on only multiple values of AX, that is,

By=h; A

where hi are positive integers. Since considerations of maintaining a uniform

increment in actual distance on a sphere give us




1

By = sin 8 "

1

-
HIL4

we therefore simply pick as hi the integer values which are closest to h!l. Under

L e

these restrictions, we may now write Eq. (16) as

: 2

4 3 o u 1

28l N~V (u. ., -2u .+u ., )+
sin® 0 a2 & hi2 22° gin® o, Li-hy L3 TLjth

‘ 2
oth? ax? .
sin /Ii

E i (17)

Table 2 gives the values of h; determined in this manner for the case of a

64 X 64 grid. Thus, for example, for i = 1, we have hi = h64 = 16, indicating that

at the grid latitudes next to the poles, our spatial increments in A are taken over

{ ‘ a distance of 16 AA, In cases where I is very large, precaution should be taken to
insure that the values of hi near the poles are small compared to J. L |

Table 2. Spatial Increments in A as Func-
tion of Latitude for a 64 X 64 Grid

By, hgsi
i (unit: AY)

16
14
8

(=]

W

D O I O U R W NN -

-
e
- N W s W

With the use of this differencing scheme, Eq. (2) becomes

Ca {

—_— = - - = 1 s —._. ‘

ag vy -l +b)w+bu,, -—-Ru =k (18
i

=3

16

{
i
|




where Ri are band-tridiagonal J X J matrices with their nonzero off-diagonal ele-

ments separated from their diagonal elements by hi zeros. The element ry i of
R j are given by

|
' rt,j:2 . by 1sis 3 3
4]
==l t=j-hi+J . lsjshi
& t=jth ’ hi<j<(J-hi) ;
® t=j+h -J , @-h+=j=<J
=0 , otherwise.

i Note that when hi =1, Ri become the matrix R in Eq. (2). Furthermore, just as
R is orthogonally similar to a real diagonal matrix D, Ri are orthogonally similar
to real diagonal matrices Di'

Here the elements of P are given in Eq. (8) and the diagonal elements of D, are
the eigenvalues di k of Ri' that is, for a given hi'

di'k=2(1-coshikk) 1= k= K .

Thus with the exception that Ri are now latitude dependent and we must compute
the eigenvalues di, Kk for different hi' Eq. (18) may be solved in exactly the same
manner Eq. (2) is solved.

Table 3 tabulates sample results when Eq. (18) instead of Eq. (2) is used as
the finite-difference analog of Eq. (1). Again the results are for a 64 X 64 grid
and the accuracy of the results is measured in terms of error norms. For exam-
ple, for the case of n = 4, we now have Z = 9.9, almost 10-digit accuracy in our
numerical results. Comparison of Tables 1 and 3 clearly shows that Eq. (18) is
numerically far more stable than Eq. (2). Note that for a given grid resolution,

we may choose from tables such as these values of n to suit our needs, depending

3 on the desired accuracy in our results and the number of digits of accuracy carried ;
by the computer. (Our CDC 6600 carries roughly 15 digits.)

A typical error distribution as a function of latitude for the results of Eq. (18) ]
is given in Figure 2 for a case of n = 4, Also plotted in Figure 2 is the error curve
for the case of n = 4 from Figure 1. Comparison of these two curves clearly
demonstrates that the difficulty we had with the use of Eq. (2) has now disappeared.

17




Table 3. Error Norms in the Computed Solution* as a Function of m

&
i m n Z lIEHZ lE(Max)l
:
# 2 16 11.0 9.4 x 10712 1.1x1071!
4 8 11.0 9.8 x 10712 2.6 x 10711
: 8 4 9.9 1.3 x10°10 1.5x107°
16 2 6.5 3.3x1077 5.0 x 1076
i
1 32 1 2.2 6.3 x1073 7.0 X 1072
1
| Z Number of digits of accuracy in computed solution u.
! * For a 64 X 64 grid with flexible finite-differencing in A.
9. ]
™~ N=4
2l A STANDARD
e & FLEXIBLE
o
&
=
[
& 51
[V,
o q .
5
o 41
o
3 w‘ |
2 e
1 %
i 0

0 30 60 20 160 180

90 1
GRID LATITUDE

Figure 2, Effect of Flexible Grid
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5. CONCLUDING REMARKS

The following observations are given as concluding remarks for the work
reported here:

-

(1) The flexible finite-difference scheme described in Section 4 is valuable
not only as a means of stabilizing the finite-difference shooting solution for a
Poisson equation on a sphere, but it is valuable also for the finite-difference for
formulation of initial value problems on a sphere, because it enables us to relax the
severe restriction on the time increments near the poles in our time integrations,
The savings in computer time resulting from this can be substantial.
{ (2) Other than asserting that it is efficient, we have not discussed here the
computational efficiency of this method in relation to other direct methods. That
this method is more efficient than many other known methods has been demon-
strated in an earlier report (Yee®“).

PLaRS Y

|

f (3) As a finite-difference analog to Eq. (1), the truncation error term is

[ : larger in Eq. (18) than in Eq. (2) by a factor of 1/sin2 6,. Equation (18) is thus

| less desirable than Eq. (2) from this point of view. This argument in favor of

| Eq. (2) is lessened somewhat if we recall that other sources of error in u (obser-

i vational, round-off) are all inevitably influenced by the same factor 1 /sin2 0,

E (4) Since the net effect of the flexible grid is to remove the effect of the con-

| vergence of meridians on a sphere, the results in Section 4 indirectly indicate that

[ the multiple shooting technique, without incorporating the flexible grid, is a viable

i tool for solving the Poisson equation in geometries such as rectangles and channels.

k (5) Since Fourier transforms are now used only at a few selected grid lati-
tudes, we may, if the situation warrants, elect not to use fast Fourier transform

% for increased efficiency. This will remove the severe restriction on J, J = 2k

where k is a positive integer,

’

e

19




References

1. Varga, R.S. (1962) Matrix Interative Analysis, Prentice-Hall, Englewood
Cliffs, N.J.

2. Yee, S.Y.K. (1976) An efficient method for a finite-difference solution of the
Poisson equation on the surface of a sphere, J. Comput. Phys. _2__%:215-228.

3. Merilees, P.E. (1973) Pseudospectral approximation applied to the shallow
water equations, A;t_mo_sp{lff }”}A:IS-ZO.

4, Berg, P.W., and McGregor, J.L. (1966) Elementary Partial Differential
Equations, Holden-Day, San Francisco, CA.

5. Fox, L. (1957) The Numerical Solution of Two-Point Boundary Problems in
Ordinary Differential Equations, Oxford University Press, Fair Lawn, N.J.

20







