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An Efficient , Accurate Numerica l Method for the
So lution of a Poisson Equation on a Sp here

1. INT I IO DICT ION

The need fo r efficient and accurate methods for the solution of Poisson-type
equations in mathematical physics is well established. Important texts in numer-
ical analysis such as Mat rix I te ra t ive Analysis (Var ga 1) are not only eloquent
testimonies to the magnitude of the problem , bu t also vivid evidence of the extent
of the interest. In the case of numerical weather prediction , where solutions to
the Poisson equat ion are requi red in dail y routine operations , it is paramount that
the solution procedure be efficient. In anticipation of the development of global
numerical weather prediction models , we developed ea rlier an efficient shoo t ing
algorithm for the solution of a discrete Poisson equation on the sur fa~ e of a sphe re

(Yee 2 ). This report presents the most recent development in our work along this
line.

We seek a numerical solution to the Poisson equation on the surface of a unit
sphere ,

( Received for publication 28 October 1977)
1. Var ga , R . S. ( 1962) Matr ix  Interat ive Anal ys is, Prentice-Hall , Englewood

Cliffs , N . J .
2. Yee , S. Y. K. ( 1976) An efficient method for a f ini te-difference solution of the

Pois.~~n equation on the 5urface of a sphere , J. Compu t. Phys. 22 :2 15-228. 5



u=f( A ,X) . (1)

Here 0 � 9 ~ ~r is the colatitude and 0 < X~ 27~ is the longitude. Discretization of
this equation using a five-point centered-difference operator for the Laplacian
gives the following I XJ linear algebraic system

a. iT 
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , l~~~i~~~I , (2)

where

u
~, 1 1’

~~ . 15 = 
~~~

~i, J

u. . = u(9. A .)
i ‘ 

~~~~ 9i — 1/ 2

1. = f ( O .  A .) A92 sin 9~1,3  1 3

9~

b. = 

sin 6i + l / 2
A

3 
= j AX ~ A6 2 sin

A9 = 1r/I

c. = 1
~ 

~~
S2 . 2

AX = 2ir/J (A , sin
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Here we have excluded from consideration the coordinate singularities at the poles

by adopting the spherical grid system proposed by Merilees.
3 We have also

gridded the surface of the sphere with I grid points along a meridian and J grid
points along a latitude. Note that a solution for Eq. (2) exists only if its right-
hand side satifies the compatibility condition

I J
sin f . . = 0 . (3)

i= l  j = 1

Even then , since the coefficient matrix of Eq. (2) is singular , wi th its rank one less
than its order (a 1 = b1 = 0) , the solution can be determined only to within an add-
itive constant. This is consistent with the fact that , fo r the lack of lateral bound-
ar ies on a sphere, a solution to Eq. ( 1) can only be de termined to within an additive
constant .

E quation (2) , however , is prone to numerical instability. First , t he coefficient

ma trix of Eq. (2) has a spectral radius that is larger than unity. Furthermore,
because of the convergence of meridians on a sphere, the condi t ion number of t he
sys tem increases rapidl y wi th increasing spa t ial resolut ion of the comput at ion al
grid. These instability properties severely limit the usefulness of the simple
shooting method reported earlier to relatively coarse grid resolutions. For larger
systems resulting from finer resolutions , because of the inherent numerical insta-
bili ty mentioned above , direc t application of this method will give inaccurate re-
sults. It is the purpose of this report to demonstrate that this numerical instabil-
ity problem can be remedied by a two-pronged approach. The instability due to a
spectral radius larger than unity is allevia t ed by the use of a mult iple shoot ing
technique , while that due to a large condition number is overcome by the use of a
flexible grid.

2. SY NOPSIS  OF ~I E T II O I )

To view the shooting method described here from a proper perspective , we

- 
. shall firs t review in this section a classical method for the solution of differential

equations . It will then be easy to see that this method is indeed no mc re than the
implementation , in the discrete domain , of a solution method in differential equa-
tions. The classical approach for the solution of a differential equation separates

3. Merilees , P. E . (1973) Pseudospectral approximation applied to the shallow
water equations , A tmosphere 11:13-20.
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the complete solution into two parts , a particular part and a homogeneous part.
For example (Berg and McGregor4), for the boundary value problem

m R
(4)

• 
u = u * o n B

it is often easy to find a particular solution u~ which satisfies only the differential
equation

V
2 up 0 f

Continuity requirements on the boundary then give us u values of u~ on the bound-
ary. We solve next for u11 in the homogeneous sys tem

V2 UH 0 m R
(5)

* *u~~ = u  - u p o n B

The complete solution for Eq. (4) is then given by

u = u P + u H

Equation (2) is a discrete form of an inhomogeneous two-dimensional linear elliptic
equation applied in a closed region with no external boundary. It may be looked
upon as a discrete boundary value problem in the sense that , although subject to no
explicit external boundary constraints , it must satisfy the global constraint Eq. (3) .
We, therefore, propose to solve Eq. (2) in two steps. First , we construct a par-
t icular solut ion which, except at cert ain preselect ed grid lat itu des sat isfies

Eq. (2) .  One way of constructing such a particular solution for Eq. (2) is to assume
arbitrary values for the components of iTt , at 61. We may then compute by a march-
ing procedure a solution of the equation for the rest of the region. At  81. the forc-
ing function Tj” comput ed from the par t icular solut ion will be diffe rent , in general,
from the given f~. The particular solution, therefore, does not satisfy Eq. (2) at

We next “ correct” these discrepancies by adding to the particular solution the
homogeneous solution to Eq. (2) . Since the homogeneous equation has only J non-
zero components (T1 - T~) in its forcing function, it can be solved with less com-
puting effort than that required for the inhomogeneous equation.

4. Berg, P. W. , and McGrego r, J. L. ( 1966) Elementary Partial Differential
Equations, Holden-Day, San Francisco, CA,

8



• Instead of computing the homogeneous solution for the entire region, the
shooting method computes first the complete l~olution at selected grid latitudes

- I 
( the “ missing initial conditions ”) .  The complete solution for the remainder of the
grid is then obtained by a marching procedure (shooting) . The key idea here is
that , by th e use of shoot ing, we avoid most of the transform operations needed to
compute the homogeneous solution for the entire region.

Although the idea here is to avoid the need of calculating the entire homogen-
eous solut ion , looking at the shooting method as just a way of implementing a
classical method in differential equation is useful becaus e it provides us with the
insight to compute easily the “ missing ini t ial condi t ions” through the judicious
use of Fourier transforms, This is especially desirable in the case of multiple
shoot ing where we have t o seek the “ missing init ial condi t ions” at a number of

grid latitudes. We emphasize here that the cons t ruct ion of a par t icular solut ion
for Eq. (2) is accomplished simply by marching in the two-dimensional physical
domain. Details of computing the “ missing initial conditions ” are described in
Section 3 in connection with the multiple shooting algorithm.

3. THE 1SF OF %II JLTIPLE SIIOO TIN ;

We ment ioned in Sec t ion 1 tha t the shoot ing method is inaccurate for the
numerical solution of Eq. (2) when I and .1 are large. This difficulty can be
alleviated somewhat by the use of a multiple shooting techniqu e, a straightforward
extension of the approach described in Section 2 . With this approach, a sphere is

divided into subregions by pairs of internal computational boundaries. A partic-
ular solution is then constructed for each of the subregions . Again these solutions
satisfy Eq. (2) except at certain prespecified O~. They, therefore, constitut e a
par ticular solution for the sphere as a whole. To this particular solution, we
now add the homogeneous solution of Eq. (2) to form the complete solution. This
time, the forcing function of the homogeneous equation has, however , a number
of pairs of nonzero component vectors due to the arbitrarily picked internal com-
putational boundary conditions.

For pedagogic purposes , we shall detail here a method for obtaining a homo-
geneous solution to Eq. (2) . The method makes use of similarity transforms to
reduce first the block-tridiagonal system Eq. (2) to a system of tridiagonal sys-
tems. The homogeneous solutions to these reduced systems are then computed
by an efficient Gaussian elimination algorithm (Varga~i. The motivation of such
an approach has been discussed earlier (Yee 2 ).

If we perform a discrete Fourier transform on and and let

P ’ 
~~~ 

‘ 
= ~)~ 1 

~i (6) 9
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we may write Eq. (2) in a space-Fourier domain for 1 ~ i ~ I ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , (1)

- 
-
• where

W i 1

= V
~i, i~ 

=

W i K

and D = P~~ RP , K J. Here the diagonal elements of the diagonal matrix D are
the eigenvalues dk k of 11, and P is a J X J ort ho gonal mat r ix whose columns are
the normalized eigenvect ors associat ed w ith dk k’ tha t is ,

dk k = 2(1 - cos A k) , 1 k K

cos j X k , 1 ~ k ~ (K/2 ) - I

~ k = ( 2 )
1l ’2 (cos 3Xk )/2 / 

, k = K/2

~~sin j X~ , ( K / 2 ) + i ~~~k~~~K - 1  , , l~~~j~~~J .

1/2 1/2 
, k = K

(8)

Grouping w
~ k by components and defining

/ w
l k  ~~~~~~~~~~~~~

= w
~, k ‘ 

= 

~i, k ,

~~~~I, k

10
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Eq. (7) becomes , for each 1 ~ k ~

- - Tk~~k =~~ k (9)

where

e l k  
b 1

Tk = ( a
~~~~~~~~~~~~

-

~~~~~ 

a1 elk

- nd

e~ k = - (a~ + b
~ + c~ dk k~

For k < K, Tk is nonsingular , and Eq. (9) can be solved efficiently by Gaussian
elimination. For the case of k = K, since dK, K = 0, the system

TK~~K = I K (10)

is singular and thus has no unique solution.  This merely confirms that the f ini te-
difference system Eq. (2 )  is consistent with the differential  system Eq. ( 1). We

may pick arbi t rari ly a value for one of the components of 
~ K to solve Eq. (10) .

Following the approach outlined in Section 2 , we construct  f irst , by marching,
a solution vector which satisfies

( 11)

Here 
~~~~ 

differs from 
~~ only in as many components as there are internal  compu-

tational boundaries on the sphere. For example, for the case where the surface of
the sphere is divided into two halves at the equator , and where the matching-in-
the-middle  technique has been used to halve the shooting subrange (Fox 5) , we have

5. Fox , L. (1957) The Numer ica l  Solution of Two-Point  Boundary Problems in
Ordi nary Different ia l  Equat ions ,  Oxford Universi ty  Press , Fai r  Lawn , N . J .

11
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ii
/ 0

/~
b1 Aw

~ + l k

a1~~1 Aw~~ k
0

• , 1~~~~~~~~ I/4  . (12)

0

b31 Aw~ j l k
a3~ ÷ 1 Aw~ , k

0

0

Here Awl k is the discrepancy of the k th componen t , at 6~, of the two marching
solutions from opposite boundaries of a subreg ion. Thus if is a solution to the
homogeneous system f o r  Eq. (9) ,

Tk Sk In , ( 13)

then the complete solution to Eq. (9) is

“k ~ 
( 14)

Once wk is available for all k, ~7j may then be computed from the inverse trans-
form to Eq. (6) ,

(15)

At this point , it is appropriate to point out that the derivations detailed here
serve only to demonstrate that in the case of multi ple shooting, the “ missing
initial conditions” can easily be obtained by solving tridiagonal systems such as
Eq. (13) . As mentioned earlier in Section 2 , for reasons of computational

12
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ef ficiency , we use neither Eq. (12) to yield Ag~, nor Eq. (15) to obtain ii. In
pra ct ice, iTi may be computed by the use of a much more efficient shooting algo-
rithm (Yee 2).

Test computations , us ing the multi ple shooting techni que, have been made fo r
system (2) for various n, the number of shooting subregions , and for several
values of I and J. The design of the numerical tests is the same as that reported
in Yee. 2 Na mely, we create a set of true solution v

~ ~ 
for Eq. (2) by computing

f rom

f~~ = a~ v~_ 1,~ - (a 1 + b1 + 2c~) ~~~ + b
~v1+1~~ + c

~
(v t j~~l 

+

Here values for v. - are obtained from a random number generator and have been
subjected to the constraint 2 v1 

~ 
In 0 so that f~ 

~ 
sa tisfies the compatibility con-

dition Eq. (3) . With the forci~ g function f~ 
~ 
computed in this manner, a normal-

ized error norm defined by

11E 112 = J u  — VI I ~ / ~ I VI ~~

may then be considered as a measure of the accuracy of the numerical proced ure.
The number of digits of accuracy in u is then given by

Z = -log10 h Ell 2
Table 1 gives sample results for a 64 )< 64 grid in terms of Z, b ! E h 1 2 and

E( Max ) l ,  the magnitude of the maximum error over the entire computational
region. Here n is the number of subregions into which the surface of the sphere
is divided and m is the number of grid latitudes within each subregion. Thus for
n = 1, m In 32 , for example, the entire surface of the sphere is t”eated as one
region, and shooting is conducted from both poles over a shooting range of 32 grid
latitudes toward the equatc”. Inspection of Table 1 gives us the impression that
for the case of a 64 )< 64 

~~In 
- r’ this method is usefu l only when the sphere is

divided into a relatively lar~e 
- Amber of latitude bands. For example, for the

case of n = 4, we have z = 1. 6, that is, less than two-digit accuracy in our results.
Careful study of the distribution of the error fields suggests , how ever, that due to
the convergence of meridian on a sphere, the largest local errors invariably
occur in the computational subregions containing the polar caps. Furthermore ,
these errors are considerably larger in magnitude than those in other subregions .
This phenomenon is well borne out by Figure 1. which depicts typical error dis-
tributlons as a function of for the cases of n = 4 and n In 8. We see from this
figure that , except for the subregions containing the polar caps , we hav e for the

13
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Table 1. Error Norms in the Computed Solution * as a Function of m
p1

Ii E l i 2 IE (Max ) I

2 16 9. 6 2 . 2  >< l0~~~0 1 . 0 X

— 
4 8 6.4 3.6  X l0~~ 2 .8 )< 10 6

8 4 1.6 2 .3 X l0
_2 

2 .0  X l0~~
16 2 —6 . 2 1. 7 )< 2 .4  )<

32 1 -21.4 2 . 2 X 1 0 21 3 . 4 X l 0 22

Z Number of digits of accuracy in computed solution u.
* For a 64 >( 64 grid with constant AX .

~2
W = 4

-
~ N 8

H
00 3b 6b i~ D i~ o 180

C~ l0 LPT~~T U D E

Figure 1. Effect of Subdivision, Standard Grid

14
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cas e of n = 4 more than two-di gi t accu racy in our results . Comparison of the
error distributions of these two cases also suggests that increasing the number of
sub regions is not an effective way to reduce the deleterious effect due to the con-
vergence of meridians . Other more effective means must be sought if we want to

- ~• use a grid with high resolution.

L TIlE I SF~ OF FLEXIBLE I,liID

It is easy to see that the numerical instabilit y inherent in the solution of
Eq. (2) is due in part to the convergence of meridians on a sphere. From the
definition of c~ in Eq. (2) ,

In 

AX 2 ~~~

we see tha t c~ -i ~ as sin 2 0. -~ 0, Thus if AX is not a function of increased
resolution in AG tends to destabilize the solution through the rapid increase of the
condition number of the coefficient matrix of Eq. (2) . We shall demonstrate in this
section how this difficulty can be circumvented by the use of a flexible finite-
difference scheme.

Consider the following finite-difference approximation to the second term of
Eq. (1) ,

(sin~ 
~ ~~ ~~~2 

~ 
- 2u~~ + u

~~~+~~
) + 

sin~ ei 
O(~~~) (16)

where = AX 1. From the numerical stability point of view , it is desirable to keep
the value of (13k sin 9~) 2 from approaching zero. The simplest way of achieving
th is is of course to set 1/sin 9~. This is, however, impractical because the
point s i, ~~~~ (i, j -i-~ .) in Eq. (16) will not in general coincide ‘vith the regular
grid points. To insure that the points (i , j ±~3~) coincide with the grid ~x~tnts , we

• must have take on only multiple values of AX , that is ,

= h
~ 

AX

where h~ are positive integers. Since considerations of maintaining a uniform
increment in actual distance on a sphere give us

15 
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1
i I sin 9~

we thereforo simply pick as h 1 the integer values which are closest to ht .  Under
these restrictions, we may now write Eq. (16) as

~~~~~ ~ ~ i ~~ ~~~

‘
si

~~~~i 
(n j , j -h~ 

- 2u
~, + u~ ~~ 

o ) ~~~ AX 2 )

( 17)

Table 2 gives the values of h~ 
determined in this manner for the case of a

64 X 64 grid. Thus , for example, for i = 1, we hav e h~ In h 64 
In Ui , indica t ing  that

at the grid latitudes next to the poles, our spatial increments in A are taken over
a dis t ance of 16 AX . In cases where I is very large, precaution should be taken to
insure that  the values of h

~ near the poles are smal l  compared to J.

Table 2 . Spatial Increments in A as Func-
tion of Lati tude for a 34 X 64 Grid

h. h -
1’ 65— i

i (uni t :  AX)

1 16

2 14
3 8

4 6
5 5

6 4
7, 8 3

9 13 2
16 , . . . , 32 1

With the use of this differencing scheme, Eq. (2)  becomes

a~ 
ti . 1  - (a 1 + b. ) + b~ i~

•
~~1 - —~--R 1 ~7 - (18)

16
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where R 1 are band-tridiagonal J ) J matrices with their nonzero off-diagonal ele-
ments separated from their diagonal elements by h1 zeros. The element rt~ 

of

H1 are given by

t r~~3
= 2  , t = j  , 1~~~ j~~~~J ;

In _ i  , ( t I n j _ h j + J  , l~~~~~~j~~~~~~h~

( t = j ± h
i

• t = j + h i
_ J  , ( J - h

1
+ l) ~~~~~ j~~~~~ J

In 0 , otherwise.

Note that when h
~ 

In 1, R 1 become the matrix H in Eq. (2) . Furthermore, just  as
H is ort hogonally sim ilar to a real diagonal mat rix D, R 1 are or thogonally similar
to real diagonal matrices D

~
,

D~~= P ’R~~P .

Here the elements of P are given in Eq. (8) and the diagonal elements of D
~ 

are
the eigenvalues d~ k of R

~, that is , for a given h
~,

d 1 k = 2(1  - cos h. Ak) , 1 k K •

Thus with the exception that H. are now latitude dependent and we must compute
the eigenvalues d

~ k 
for different h1, Eq. (18) may be solved in exactly the same

manner Eq. (2) is solved.

Table 3 tabulates sample results when Eq. (18) instead of Eq. (2) is used as
the finite-difference analog of Eq. (1). Again the results are for a 64 X 64 grid
and the accuracy of the results is measured in terms of error norms. For exam -
pie, for the case of n In 4, we now have Z In 9 . 9, almost 10-digit accuracy in our
numerical results. Comparison of Tables 1 and 3 clearly shows that Eq. (18) is
numerically far more stable than Eq. (2) . Note that for a given grid resolution,
we may choose from tables such as these values of n to suit our needs, depending
on the desired accuracy in our results and the number of digits of accuracy carried
by the computer. (Our CDC 6600 carries roughly 15 digits.)

A typical error distribution as a function of latitudt~ ~or the results of Eq. (18)
is given in FIgure 2 for a case of n = 4 . Also plotted in Figure 2 is the error curve
for the case of n In 4 from Figure 1. Comparison of these two curves clearly
demonstrates that the difficulty we had with the use of Eq. (2) has now disappeared.
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Table 3. Error Norms in the Computed Solution * as a Function of m

m n Z t E l l 2 1 E(Max)i

2 16 11. 0 9 .4  X io 12 1.1 X

4 8 11.0 9.8 X i0 ’2 2 .6  X lO~~~

8 4 9.9 1.3 X 10-10 1.5 X lO~~
16 2 6.5 3. 3 X 5. 0 X io

_ 6

32 1 2 .2  6 . 3 X l0~~ 7.0 x io
_2

_ _ _  _ _ _  _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  I
Z Number of digit s of acc ur acy in computed solution u .
* For a 64 X 64 grid with flexible finite -differencing in A.
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Figure 2. Effect of Flexible Grid
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The following observations are given as concluding remarks for the work
reported he re:

( 1) The flexible finite-difference scheme described in Section 4 is valuable
nut  only as a means of stabilizing the finite-difference shooting solution for a
Poisson equa tion on a sphere , but it is valuable also for the finite-difference for
formulation of ini t ia l  value problems on a sphere , because it enables us to relax the
severe restriction on the t ime increments near the poles in our time integrations.
The savings in computer time resulting from this can be substantial .

(2)  Other than asserting that it is efficient , we have not discussed here the
computational efficiency of this method in relation to other direct methods. That —

this method is more efficient than many other known methods has been demon-
strated in an earlier report (Yee 2).

(3) As a finite-difference analog to Eq. (1), the truncation error term is
larger in Eq. (18) than in Eq. (2) by a factor of 1/sin 2 9~. Equation (18) is thus
less desirable than Eq. (2) from this point of view. This argument in favor of
Eq. (2) is lessened somewhat if we recall that other sources of error in u (obser-
vational, round-off) are all inevitably influenced by the same factor 1/sin 2 0~.

(4) Since the net effect of the flexible grid is to remove the effect of the con-
vergence of meridians on a sphere, the results in Section 4 indirectly indicate that
the multiple shooting technique, without incorporating the flexible grid, is a v iable
tool for solving the Poisson equation in geometries such as rectangles and channels.

(5) Since Fourier transforms are now used only at a few selected grid lati-
tudes , we may, if the situation warrants , elect not to use fast Fourier transform
for increased efficiency. This will remove the severe restriction on J , ~ =

where k is a positive integer.
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