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conservation form of the governing equations has led to a
relatively sparse stiffness matrix. The Galerkin formulation
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occurred. The solutions are in good agreement with both
experimental results and other computational solutions.

D D C
~~~~i p ~ i~Approved for Public Release 

ft

~~~M~P 2 4  ~978~~~; !

POSTAL ADDRESS: The DireL or, Weapons Researc h C~tablishment ,
Box 2151, G.P.O. , Adela ide , South Aus tralia , 5001.

UN CLASS I FlED
? /..L 7(r j r i-



DOCUMENT CONTROL DAT A SHEET

Security classification of this page UNCLASSIFIED 1
I DOCU MENT NU MBERS 2 [ SECURITY CLASSIF ICATION

AR a. Complete
Number: AR-000-933 Document: Unclassified

Report b. Title in
Number : WRE-TR- 1858(W) Isolation : Unclassified

Other c. Summary in
Numbers: Isolation: Unclassified

TITLE
SUBSONIC , INV I SCID FLOW BY THE FINITE ELEMENT METhOD

PERSONAL A UTHOR(S): 5 J DOCUMENT DATE:

C.A.J .  Fletcher r Augus t 1977

6.1 TOTAL NUMBER
OF PAGES 43

6.2 NUMBEROF
REFERENCES: 26

7 7.1 CORPORATE AUTHOR(S): 8 J REFERENCE NUMBERS

Weapons Research Establishment a. Task: DST 76/009

b. Sponsoring
________________________________________________ Agcncy:

7. 2 DO(’UMENT (WING) SERIES _______________________________________
AN D NUMBER COST CODE:

Veapons Research and Development Wing
IR- 1858 331202 343

10 1 IM PR INT( Publishing establishment): I I  COMPUTER PROGRAM(S)
[~

—

~ 
(Title(s) and language(s))

Weapons Research Establ ishmen t

12 RELEASE UMITATIONS (of the document):

Approved for Pub lic Release

1 2.0 OVERSEAS 1 [NO I I fP .R.j 1 A ( B I i i  C I  D E

Security classi fication of this page: UN CLASSIFIED 1

IlL



Security classiticat ion of t~,,s page: UN CLASSIFIED

i3_J~~~~NOUNUt~MFNT_lIMITATIONS (of the informati on on these p~gcs):

No l imi ta t ion

14j  DESCRIPTORS: I i s i  COSATI CODES

a. EiCThesaurus Subsoni c flow Cylindrical bodies 2004
Terms Least-squares method Airfoi ls  1201

Inviscid flow Equations of motion
Compressible flow

b. Non-Thesaurus Fini te element method
Terms Galerkin

Newton ’ s method
NACA-0012 airfoil

l~ LIBRA RY LOCATION CODES (for librar ics listed in t h e  distribut ion):

[ SW SR SD AACA NL

~~fSUM MARY OR ABSTRACT :
(if this is security cla ssified , the announcement of this report wil l be similarly classified)

Galerkin and least-squares finite element formulations in terms of the
primitive variables have been applied to the equations governing
compressible , inviscid flow. A novel finite element representation for
the groups of variables, rather than the single variables , occurring
linearly in the conservation form of the governing equations has led to a
relatively sparse stiffness matrix. The Galerkin formulation was used in
conjunct ion wi th New ton ’s method but solu tions for the flow about circular
cylinders could only be ob tained wi th frees tream Mach numbers less than
0.32. The least-squares formulation was applied in conjunction with an
iterative scheme of the successive over-relaxation type. Solutions have
been obtained for the flow abou t circular ande ll iptic cylinders , a 6%
circular-arc aerofoil and a NACA-0012 aerofoil at zero angle o attack ,
with the free-stream Mach number sufficiently large that locally sonic
conditions have occurred. The solutions are in good agreement with both
experimental results and other computational solutions .

Security classification of this page: UNCLA SSIFIED I



WRE-TR- 1858(W)

TABLE OF CONTENTS

Page No.

1 . INTRODUCTION 1

2. FORMULATION OF THE PROBLEM 1 - 9
2.1 Velocity potential vs. primitive variables 1 - 3

2.2 Equations of motion and finite element representation 3 - 6
2.3 The Galerkin finite element formulation 7
2.4 Least-squares finite element formulation 8 - 9

3. ITERATIVE SOLUT ION TECHNIQUE S 9 - 13
3.1 Newton ’s method 10
3. 2 Modi f ied New ton ’s method 10 - 12
3.3 Starting data for Newton ’s method 12 - 13
3.4 One step SOR-Newton ’s method 13

4. F LOW ABOUT CIRCULAR AND ELLIPTIC CYLINDERS 13 - 15

4. 1 Circular cylinder 14
4 . 2  E l l ip t i c  cylinder 14 - 15

5. FLOW ABOUT AE ROFOILS 15 - 16
5.1 6% circular-arc aerofoil 15 - 16

5.2 NACA-00l2 aerofoil 16

6. COMPARISON OF THE GALERKIN AND LEAST-SQUARES FORMU LATIONS 17

7. CONCLUSION S 17

NOTATI ON 18 - 19

REFERENCES 20 - 22

LIST OF APPENDICES

I FAR-FIELD BOUNDARY CONDITIONS 23

r i DERIVATION OF THE ALGEBRAIC EQUATIONS OBTAINED FROM ThE 24 - 27
LEAST-SQUARES FORMULATION

LIST OF FIGURE S

1. Flow-field geome try and schema tic of gr id for the circular cylinder

2. Surface Mach number variation for flow about a circular cylinder

3. Surface velocity variation for the flow about a circular cylinder
at M.,,~ = 0.40

4. Surface velocity variation for the flow about a 2:1 elliptic cylinder
at = 0.50



WRE-TR-1858(W)

5. Schematic of the finite element grid used for the circular-arc aerofoil

6. Schematic of the finite element grid used for the NACA-0012 aerofoil

7. Pressure distribution on a 6% circular-arc aerofoi l at M, = 0.71

8. Pressure distribution on a 6% circular-arc aerofoil at M~ = 0.82

9. Pressure distribution on a 6% circular-arc aerofoil at M~ = 0.88

10. Surface Mach number variation on a 6% circular-arc aerofoil at Me,,, = 0.88

11. Pressure distribution on a NACA-00l2 aerofoil at M~, = 0.40

12. Pressure distribution on a NACA-0012 aerofoil at ft~ = 0.72



- I - WRE-TR-18S8(W)

1. INTRODUCTION

The purpose of this repo rt i s to examine a number of d i f f e rent f in i te  element
formulations suitable for external , inviscid , subcritical flow . As such i t  is
a stepping-stone towards the treatment of transonic , ex ternal , inviscid flow.
Most previous f i n i t e  el emen t appl ications to subcr iti cal flow e .g . ( ref . 1,2,3)
have been based on ei ther a velocity potential  or stream function formulation .
However no formulation based on the full  equations of motion has been successful
in obtaining solutions that contained signifi cant regions of embedded supersonic
flow . For this  and other reasons set out in Section 2 , the present formulation
makes direct use of the primitive variables , i .e .  velocity , density and
pressure . It is believed that this is the first  time a primit ive variable
f inite elemen t fo rmula tion has been appli ed to the full equa tions of motion
governing compressible, inviscid flow .

In order to ensure an eff ic ient  f ini te  element algorithm it is important to
establish consistent analytic representations for each of the dependent variables ;
this problem is considered in Section 2. For problems that do not possess a
variational formulation the two most effective f in i te  element methods are based
on the Galerkin and least-squares formulations . Both these formulations have
been applied to the current problem and reduction of the governing partial
di fferential equations to algebraic equations is described in Section 2.

The governing equations, in both the differen tial and algebraic form , are
highly nonlinear and require iterative solution techniques ; these are described
in Section 3. A modi fied Newton ’s method has been used in conjunction with the
Galerkin formulation . Because New ton ’s method wi ll only converge for a starting
solution relatively close to the final solution it has been necessary to use an
anci l l iary  technique to get close to the final solution . This has been achieved
by u t il i s ing  the unsteady version of the governing equations. After application
of the f inite element formulation , these equations have been treated as ordin ary
differential equations in time and have been integrated until  the converged
solution is approached. Because the least-squares formulation leads to a
positive-definite stiffness matrix it has been possible to apply a successive
over-relaxation (SOR) method of solution after locally linearising the algebraic
equations.

Solu tions for the flow about circular and ell iptic cyl inders us ing bo th the
Galerkin and least-squares formulations are given in Sec tion 4. Solu tions for
the flow about two representative aerofoils at various free-stream Mach numbers
are presented in Section 5. Comparisons are made with experimental results and
with other computational results. A comparison of the Galerkin and least-squares
formula tions as app lied to the curren t problem is made in Section 6.

2. FORMULATION OF ThE PROBLEM

In Section 2.1 the relative merits of the velocity potential and primitive
variable formulations applied to subcritical , inviscid flow are presented.
The equations of motion appropriate to both steady and uns teady flow and the
corresponding boundary conditions are indicated in Section 2.2. Different orders
of analytic represe ntation for di ffe rent var iables are poss ible and these are
discussed. Both the Galerkin and least-squares finite element formulations have
been used to reduce the governing partial differential equations to algebraic
equations; these are described in Sections 2.3 and 2.4 respectively.

2.1 Velocity potential vs. primitive variables

A velocity potential formulation of subcritical , inv isc id flow might
express the gove rning equations in terms of the veloc ity po tential , .p and the
local sound speed , a. In two dimens ions the govern ing equa tions are

- ~~~~ 
__s_ ._~__. 

~~~~~~~~~~~~~~~~~~~~~~~ 
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a2 + 
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(~p
2 

+ ~~~~ = a2 . (2)2 x y o

In equations (1) and (2) 7 is the specific heat ratio and a
0 

is the stagnation

value of the sound speed. 
— 
The use of equations (1) and (2) is attractive

because only one unknown , ~P , is requi red at each node . Equation (2) is
treated as a local algebraic relationship which adjusts the value of ‘a’ at

F each step of the iteration .
Equation (1) can be written as a Poisson-like equation

+ tP yy  = f~ (3)

in which £ incorporates all the terms associated with the compressible nature
of the flow. Application of a variational finite element formulation of
equation (3) permits an iterative solution in which f is recalcula ted af ter
each solution for p. The iterative procedure fai ls  at a local Mach number
of unity ( ref .2 ,3) . This is probably due to the use of equation (2) to
adjust the value of ‘a’. it is interesting that a linearisation of
equation ( 1) that leads to the transonic small perturbation equation and
avoids the use of equation (2) can be iterated to locally supersonic Mach
numbers(ref.4).

Another disadvan tage of the use of equations ( 1) and (2) is that the
converged solution, ~ must be differentiated numerically before a useful
quantity , the pressure at the body surface , can be obtained. Also since
equation (1) is highly nonlinear , application of a f inite element formulation
results in a large number of cross-terms that must be manipulated at each
step of the iterative process. This results in a considerable increase in
computation time.

To avoid some of the disadvantages noted above the present formulation
makes use of the primitive variables and expresses the governing equations
in conservation form :

(Pu)
~ 

+ (PV)
y 

= 0 , (4)

(P u 2 + p) + (P UV ) y = 0, (5)

(PUV)
x 

+ (pv 2 
+ p)

~ 
= 0, (6)

p = k . p7 . (7)

Equations (4) to (6) all have the same structure and are linear in the
groups of variables . In the present formulation advantage is taken of these
features to reduce substantially the number of cross-terms that appear.
Equations (4) to (6) and the energy equation,

(~y -  l)P 
+ ½(u2 + v2) = 

~ 1)~~~~ ’ 
(8)



-

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--

~~~~~~

----

- 3 - WRE-TR-1858(W)

have been found to be suitable for solving flow problems at low to inter-
mediate free-stream Mach numbers. The primitive variable formulation gives
the required final solution, the pressure on the body, directly . A dis-
advantage of the primitive variable formulation is that three unknowns per
node are required.

2.2 Equations of motion and finite element representation

Because of the technique used to provide starting data for the Galerkin
fo rmulation (Section 3.3) the unsteady , compressible, inviscid equations will
be presented. Following Peyret and Viviand(ref.5) the conservation form of
the governing equations is

= 0, (9)

where W, F and G are three component vectors

r~
2 + r puv 1

W =~~~p v (, F I Puv ~, G =j Pv2 + p ~~. (10)
L PJ  Lpu J L P v  J

Equations (4) to (6) are equivalent to

aF ÔG
= 0. (11)

To stabilise the integration of the unsteady equations (Section 3.3) the
following related equations will also be considered,

aw aF aG Ia2 w a2 w~= 
~~~~~~~~~~~~ 

(12)

The coefficients a, in equation (12), are chosen to be as small as possible
consistent with the convergence of the integration of the unsteady equations.
Equations (4) to (12) are non-dimensionalised by defining

Und = u/U~, Vfld = v/U~, ~
‘nd = p/p00 and 12nd = (p - p~,)/p 00 U~~. (13)

The resultant form of equations (12) remains unaltered if a new t and a are
defined. From now on the subscript nd will be dropped. Equation (7)
becomes

1 + 7 . M~,,. p  = p7 (14)

and equation (8), with some rearrangement, becomes

1 + 7 .  ~~. p = pLi + 7 ; 1 ~~~~~ (u2 + V 2
)] ]. (15)

in this report either equation (14) or (15) has been used to link p to the
other variables. 
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The far-f ie ld  boundary conditions are applied at a f inite distance from
the body in the form

= U f5

v = V fs (16)

P = Pf5~

Two choices for the far-field boundary conditions have been considered.
First ly U f = 1.0 , V fs = ~~ ‘ 

~ fs = 1.0. Secondly a Prandtl-Glauert

transformation has been applied and the distorted body shape has been used.
For the flow about circular cylinders and elLpses the far-field velocity
components have been calculated from a complex variable solution of the
distorted body . For the flow about aerofoils, thin-aerofoil theory has been
applied to the distorted body (see Appendix I). Once the velocity components
are available equations (14) and(l5) have been used to give the density .
Complex variable theory and thin aerofoil theory have also been used to give
starting data throughout the flow-field.

The boundary condition at the body has required that the flow is locally
tangential to the body surface. This has given a relationship between
u. and 

~~~~

. and (~ii). and (~V). at the nodes on the body .

As the first step of the finite element formulation analytic representations
for the dependent variables are introduced . In the present report these are
introduced for the groups of variables W, F and G in equa tion (10) .  E .g.

pu = N..(x ,Y) . (p ii) . ,  (17)

where N
) 

is the shape function appropriate to the ~th node and - 

indicates
the nodal value of the different variables . It is believed that this is
the first finite element formulation in which groups of variables , rather than
single variables , have been given an analytic representation. This technique
has been used Previously(ref.6,7) in the application of an Orthonorinal Method
of Integral Relations to supersonic boundary-layer flow . An immediate
advan tage of fini te element represen tations like equation (17) is that, since
the governing equations are linear in the groups of variables, only single
summations occur after application of the finite element method . Thus the
computation of the equation residuals can be accomplished more efficiently .

One diff icul ty associa ted wi th the f inite element method app lied to a
sy stem of equations , like (11) and (12) , is to ensure that the orde rs of the
shape functions that appear in the analy tic represen tations like equation (17)
are chosen consis tently. If the Galerk in formula tion is used then the
corresponding choice of the order of the weight functions presents similar
difficulties. Fai lure to choose the orders of the shape functions
consistently produces a less efficient solution i.e. more nodal unknowns and
a more refined grid will be required to achieve comparable accuracy.

Taylor and Hood(ref.8), after applying a Galerkin finite element
formulation to slow viscous flow , concluded that for consistency:

(i) the max imum order of error assoc iated w ith the residual of each
var iable mus t be equa l

(ii) The residuals arising from each equation must be weighted according
to the maximum error occurring in each equation .

=. - . -

~

-

~

‘-

~

-

~ 
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It is well-known that for slow viscous flow the momentum equations are
dominated by the pressure gradient and viscous dissipation terms whereas the
convective or inertia terms are of smaller magnitude . However for high speed
flows the momentum equations are dominated by the balance between the inertia
terms and the pressure gradient terms ; the viscous terms only become
signi ficant where a large velocity gradient occurs e.g. adjacent to a surface.
Thus it would seem desirable to replace (i) with the condition that

(iii) the order of the representation of the flow variables should
produce errors consistent with the physical processes being modelled.

For the case of slow viscous flow condition (iii) leads to a first order
representation for p and a second order representation for u, v.

Equations (4) to (6) could be applied to incompressible, inviscid flow.
In this case p is constant . On physical grounds it would be expected that
all groups of variables in each equation would be of the same order of
magnitude. Since only first derivatives appear each group of variables in
each equation will requi re the same orde r of represen tation to sa tisfy
condition (iii).

Thus

X = L
3

(x ,y) . 18)

where

X = (pu , p v)

and

Y = M~ (x ,y) . Y~ , (19)

j

where Y = (Pu2 , puv, p v2 , p). L~ and M
3 

are shape functions of , as yet,
undetermined orders. Suppose u, v are represented by n order shape

• functions i.e.

nu x

then

npu x

and

2 2n
p~~-pu ~~x

Thus the lowest consistent representation would be for L to be first order
and M to be second order, i.e.
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O(M .)
O(L . ) = 2. (20)

In contrast to slow viscous flow , inviscid incompress ible flow requires a
first  order representation for u and v and a second order represen tation for
p.

If equations (4) to (6) are appl ied to compress ible , inviscid flow
represen tations (18) and (19) are also appl icable. In this case

p — p
,y

therefore

p7 1 .. u2

and if

nU ..- x

2n

P x7 
-

+ 1
- 1Pu x

and

27

p -
~ p~

2 -
~~ 

-

and

O(M .)
_____ = 

27 (21)O(L~ ) 7 + l

Since only integral order representations are possible the lowest, consistent
represen tation , with 7 = 1.4, would have L. as a sixth order shape function

ard M
) 
as a seventh order shape function. If a Galerkin formulation were

employed seventh and sixth order shape functions weighting the continuity
and momentum equations respectively would also be required. Clearly such a
high-order representation would be unwieldy and possibly, because of the
relatively dense stiffness matrix , be inefficient.

If compressible , inviscid flow is to be represented by a moderately low
order system , equation (21) suggests that L~ and M

) 
should be of the sane

order. Consequently, based on the results of reference 9 all  groups of
variables have been represented by quadratic shape functions of the Serendipity
family in rectangular isoparametric elements.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ———---—— -~--~~
- •-~~~~ 
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2.3 The Galerkin finite element formulation

The Galerkin method may be written as

ffN 1 . R~~ . dx dy = 0, k = 1, 3; i = 1, n (22)

.th (k) .where N
1 is the shape function appropriate to the i. node and R is the

equation residual after substitution of analyt ic  representations like
equation (17). For the present problem the Galerkin formulation follows
reference 10. After application of the Galerkin formulation equation (11)
becomes

5 j~ ~~~~~~~~~~~~~~~ 
a~~ . ~ + ~~ . = ci~Ii c.. - i = 1. n

(23)

where

= fJ N~ . N~ dx dy,

~~ 
= ff N~ . . dx dy ,

= ff N1 . -r~ 
. dx dy , 

- 
(24)

and

-
. ~~ 

=
f[N~~

. 1 .dy _
~~/ .dx]

~f f L~i .~ -a +~~ .~~~1)dx dy .

W . etc. are the values of W etc., given by equation (12), at the ~th node.

The coeff icients s.., a. ., b . . and c. . are evaluated for each ~th node af ter
i) ii i)

introducing an isoparametric forinulation(ref.9). s~~, a13 
and b

13 
can be

obtained from intermediate coefficients that are evaluated, once and for
all , on a dummy element(ref.9). a

13 
and b

1~ are the same expressions as

arise in the treatment of inviscid , incompressible flow(ref.9) .



r — --—~~~~ -~-

2.4 Least-squares finite element formulation

The least-squares formulation presented here follows that of Zienkiewicz,
Owen and Lee(ref.11). Substitution of the analytic representation ,
equation (17) , in to the governing equa tions (4) to (6) , produces residuals
of the following form in each element:

aN.  aN.
= 

~~~~~~

‘ 

.,~-J. . (~ii) . +

~~~~~~ 

•~j~.J - (j5~ ) . ,  (25)

R~
2
~ = ~~ ~~~ + + -5:~ . (i5~i~r) y (26)

j j

~~ aN. ~
:— a~~.

R~
3
~ = L . (~iiV) . + - (~~2 + i) .. (27)

j

The least-squares formulation requires that

ff
(ai ~~~~ + a2 . R~

2
~
2 

+ a3 . R~
3
~

2) dx dy = mini mum, (28)

where a 4 , a2 and a3 are scalars that may be used to adjust the weight of the
various equations . Di f ferent ia t ing equation (28) with respect to each of the
unknown nodal values in turn produces the following result:-

ff[
ai . ~~~~~~ . ~~~ + a2 

~~~ 2) 
. R~

2
~ + a3 . ~~~~ . Ru)] dx.dy = 0, i = l,n

(29)

where 
~~~

. = 
~~~~~~ (~~~‘~~i. ’ ~) 

Substitution of equations (25) to (27) into

equations (29) and evaluation of the integrals , produces the follow ing
algebraic equations:

~~
m) 

= ~~~~[rj9~ . (~i~)~ +~ 9i) . (~~)~ + t ~9~ (~ii~)~ ~~
x
~r 

. (~i~ ) 3 
+

(~~~
2 )~~~+ z ~~~ 

~~j] 
= 0, m = 1, 3; i = l,n. (30)



In equation (30) m = 1 corresponds to = (j5ti ) 1 in equation (29). Thus

three equations are formed at each node if there are three unknown nodal
values . In equation (30) ~~~ etc. are algebraic functions of a., b ,

d.., ~ii. , ~V1 
and where

a.. = 
f f1

. 1 dx dY~

b.. = f f .~
. - 

~~~;

1- - dx dy,

(31)

c.. = ff ~ . T~y~
1 . dx dy,

d.. = ff~~~I .~~..i dx dy .

Equa tions (31) may be compared wi th equations (24) which arise through
application of the Galerk in formula tion. Once isoparametric elemen ts are
introduced(ref.9), equations (31) are considerably more complicated and
time-consuming to evaluate than equations (24). The algebraic expressions

for r~~ etc. depend on whether equation (14) or (15) is used to obtain

p as a function of the other variables . The detailed expressions are given
in Appendix ii.

3. ITER ATIVE SOLUTION TECHNIQUES

The main difficulty , associated with solving either equations (23) that arise
from the Galerkin formulation or equations (30) that arise from the least-squares
formula tion , is that the nodal unknowns PÜJ. PV3 

and P
3 

occur nonlinearly.
Groups of terms , like ~11V., are in terpreted as (~ii~ .

Newton ’s method (Section 3.1) was used initially to solve the steady version
of equations (2 3) in the form

~~~a. .  . + ~~~~~ . = 0, 1 = 1,n. (32)

However this produced a singular Jacobian. This problem was overcome by
differentiating the energy equation (15) with respect to x and y and using these
equations instead of the x-momentuxn equation on the y-axis of symmetry and
instead of both momentum equations at the body surface.

In practice it was found that the inversion of the Jacobian required large
amounts of main storage and large execution time even after introduction of the
sparse matrix techniques described in reference 9. In order to make Newton’s
method more efficient various modifications were made and these are described
in Section 3.2. As the number of nodal unknowns in the flow field was increased
difficulty occurred in obtaining starting solutions that were sufficiently close
to the converged solution to permit convergence of Newton’s method. This result
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is consistent with the findings of reference 12.
To alleviate the situation the governing equations in uns teady form (2 3) were

integrated as though they were simultaneous ordinary differential equations in
time . This was a fairly slow process and was terminated as soon as the iterative
solution was close enough to the final solution to permit Newton’s method to
converge . A description is given in Section 3.3. Because the least-squares

• formulation leads to a positive-definite stiffness matrix it is possible to use
• an SOR-type iterative scheme to solve equations (30). This is described in

Section 3.4.

3.1 Newton’s method
This will be described in relation to the solution of equation (32) which

can be written as

R
~
(
~
) = 0, i = 1,n, (33)

where ~ is a vector of all the nodal unknowns 
~~~~~~

, equation (10), and R
1

represents_the residual of the ~th equation. If an arbitrary starting
solution , q

0, 
is substituted into equation (32) non-zero equation residuals

result.  In the neighbourhood of the solution can be obtained by
application of a Taylor series expansion .

+ •
~* ~~~ - (~~i 

- 

~~
) . - . (34)

If the Taylor series is truncated as shown and if it is assumed that ~ , is
the exact solution then R1 = 0 and

= - ‘-‘~~ (~O) ~~~~~~
‘ 

(35)

where J is the Jacobian , ai~ia~ . If equation (35) is interpreted as one step
of an iteration Newton’s method is obtained:

= - ..ç~ . rç. (36)

The effectiveness of Newton ’s method depends on the accuracy of the
assumptions underlying equations (34) and (35). Clearly if the starting
solution is close to the converged solution the assumptions are reasonable
and Newton ’s method is convergent; close to the converged solution the
method has the property of quadratic convergence(ref.13). A discussion of
Newton ’s method and some iterative techniques based on Newton’s method are
given in reference 14.

3.2 Modi fied Newton ’s method
In practical applications most of the execution time is spent factoring
to form J~’ even if sparse matrix techniques and the storage of Jr,’ ~~

fac tored form are used. Typically , in early applicat ions of the Galerkin
formulation to the present problem, the factorisation of the Jacobian
accounted for 80 to 90% of the execution time . Any modification that
permits more utilisation of each eval uation of J ’ is clearly desirable.

An obvious modi fication is to compute p steps with the same J0 i.e.
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= ci,, - J~’ . R~, 0 ~~ ~ 
p - 1. (37)

Another improvement can be obtained if J~’ k,, is treated as a vector
which is small compared with ~~ ,,. Then 6,, may be interpreted as a search

direction . A series of residuals are evaluated for various Xk correspond-

ing to given by

= - . 6,,. (38)

is a scal ar and typically takes values between 0 and 2. If
corresponds to the solution 

~~~
, i.e. X = 0, then two additional solutions,

and T~, are obtained corresponding to X,, X2 . For each solution the

global sum of all  the res iduals , F~ , is computed from

= ~~~~ (39)

A quadratic dependence of Fk on X is extracted and the value X . , wh ichP k nan
minimises F,, is used to obtain 

~~~ 
The technique of finding a minimum in

a particular search direction has been used previously for minimising a sum
of squares(ref.15) .

Mother modification to equation (36) is possible by attempting to
approximate J,,1 . Assuming that J,, is close to J

0, 
let

J = J +7. (40)

If a first approximation to 8,, is computed as

5 *  = J~ R,, , (4 1)

then a better approximation is

= J;~ ~~~~~~, (42)

where is an approximation to J;’ From equation (40)

J,, = J0
(I + J

0
’ 7)

and

= (I + J ’ . 7)~~ . J~~ . (~3)
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Equation (43) can be approximated by

= (I - J~ ’ 7) . J ’

Substitution into equation (42) gives

6,, = (I - J ’ . 7) . J~’ .

• or

= (I - J
0
’ - 7) .

Substitution for 7 and simplification gives

• 
8 = & *  - J ’ (Jr, - J0) .

= 26,,* - J~
’ . J,, . ~

-

v
* . (44)

The modified Newton ’s method used in the present study has consisted of the
following steps :

(i) compute J0 and J ’ 
—

(ii) use equation (42) to compute 8

(iii) find a minimum F in the S direction
— 

0 0
(iv) compute q

~
, J

~
(v) use equation (41) to compute 6,,*
(vi) use equation (44) to compute 6,,
(vii) compute a minimum F~ in the ~~

, direction

(v ii i )  if F,, not sufficiently small go to step (iv).
3.3 Starting data for Newton’s method

Equation (23) can be rewritten as

= - R., i = 1,n (45)

where

R~ = a~~ . i ~ +~~~~~~ b~~ .~5 
-a~~~~ ~~ . W ~.

j  3 j

In matrix form equation (45) can be inverted to give

w = - S ’ . R. (46)
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The coefficients of the matrices S only depend on the shape functions and
consequently can be inverted once and for all. To avoid excessive fill-in

• and to speed up the matrix multiplications on the right hand side of equation
(46) ,  matrices like S ’ are stored in sparse factored fo rm .

• If equations (46) are integrated for large time, the residuals R. approach

zero and consequently the time derivatives W~ also approach zero. The

differen t R1 approach zero at significantly different rates and this causes

F 
difficulties for the efficient use of the integration routine. Gear(ref.16)
has produced a predic tor/corrector algor i thm to suit this situati on. In
addi tion Gear ’s algorithm automatically adjusts the step-size and the order
of the predictor/corrector formula to minimise the integration error.

The term on the right hand side of equation (23) has been introduced to
stabilise the numerical integration of equations (46). Although the
addi tional terms have some physical basis(ref.5) for the momentum equations
there is no such basis for the continuity equations. Therefore it is
desirable that a should be as sm all as possible consistent with convergence .

— 
By expanding equation (46) as a Taylor series about a starting solution

q it is possible to carry out an eigenvalue analysis to determine the

cri tical value of a , below which the integration of equation (46) is unstable.
The critical value was found to be approximately a = 0.1, and this was
confirmed in actual computations .

3.4 One step SOR-Newton ’s method

Application of the least-squares finite element formulation (Section 2.4)
produces a positive definite stiffness matrix. Consequently an SOR-type
solution technique is possible. This may be obtained by considering a small

change in S~m) (equation (30)) due to a small change in q
1, where q. is either

t’ç~ PVj , 
~~

as~m)

5(m) 
+ = ~ (m) (~~) + 

~~ 
. = 0, (47)

or in a more genera l form

q~~
1 

= - 
~~[os~

rn) (
~ O)j 

-‘ 

s~~
) 

~~~~ 
(48)

Examination of equation (30) and Appendix II indicates that both terms like

(Pu2)~ and etc. are functions of ci1 
thus as~m) ,aq~ is algebraicly

complicated. In contrast to the full Newton’s method as./aq. is a scalar

and trivial to invert, thus no excessive demand is made on main storage or
computation time . However the rate of convergence is slower than Newton ’s
method. A scalar, it , has been used to increase the rate of convergence .
If it was greater than 1.7 the iterative process diverged.

4. FLOW ABOUT CIRCULAR AND ELLIPTIC CYLINDERS

Numerical solutions of the flow-field about circular cylinders have been
obtained using a Galerkin finite element formulation and a least-squares finite
element formulation. A schematic representation of the grid used to obtain
solutions about both circular and elliptic cylinders is shown in figure 1. The
grid system is essentially polar . An isoparametric formulation(ref.9) has been
used to relate this to a cartesian coordinate system .



WRE-TR- 1858(W) - 14 -

Two stagnation points exist for the flow about bluff bodies. At the stag-
nation points the velocity components , u v are zero. In the present formulation
the pressure and density at the stagnation points have been considered part of
the boundary condi tions by assuming a stream li ne attaches both stagna tion poin ts
to the freestream. Consequently equations (14) and (15) can be used to give
the following stagnation point values for p and p,

7 1~ 
111(7 - 1)

= + 
~ 
) M~~J (49)

and

= (P~~ - 1)/7.M~ . (50)

The far-field boundary conditions are obtained by scaling the x-coordinate by
the Prandtl-Glauert  factor and then computing the far-field velocity components
using complex variable theory (Appendix I).

4.1 Circular cylinder

Results are presen ted in figure 2 for the var iation of the surface Mach
number with angular location . Results for free-stream Mach numbers 0.1 to
0.3 have been obtained using the Gale rkin fini te e lement fo rmulation . These
results have been obtained with 91 elements and 465 nodal unknowns spanning
the flow-field. It was found that for free-stream Mach numbers greater than
0.32 Newton ’s method would not converge even when starting from a converged
solution at a free-stream Mach number only marginally smaller. The reason
for this is not know n .

Solutions obtained using the least-squares formulation at freestreain
Mach numbers of 0.2 and 0.3 are also shown in figure 2. These results were
obtained with 91 elements and 829 nodal unknowns spanning the flow-field.
It is apparent that, as the free-stream Mach number is increased, the
solutions obtained with the Galerkin formulation indicate a signi fi cantly
greater acceleration of the flow than those obtained with the least-squares
formulation.

Results for the flow about a circular cylinder at a free-stream Mach
number of 0.4 are presented in figure 3. The finite element solution has
been obtained with a least-squares formulation . The results presented for
the surface Mach number have been obtained with 91 elements and 829 noda l
unknowns spanning the flow-field.

The finite elemen t solution is compared with sol utions obtained by the
• Method of Lines(ref.l7) and series solutions presented by Greenspan and

Jain(ref . 18) ;  the series solutions are due to Imai (ref. 19) and Lush and
Cherry(ref.20). The solution by the Method of Lines agrees closely with
those of references 19 and 20 and , consequently, has not been plotted .

The finite element solution is in reasonable agreement with the other
solutions although it underpred icts the other solutions close to the cyl inder
shoulder point. Since the solutions given by references 19 and 20 have been
obtained by a truncated series represen tation the di fference between those
solutions and the finite element solution is not considered significant.

4 .2  E l l iptic cyl inder
A least-squares finite element solution for the flow about a 2:1 elliptic

cylinder at a free-stream Mach number of 0.5 is shown in figure 4. These
results were obtained with 91 elements and 829 nodal unknowns spanning the
flow-field. Solutions were also obtained using the Galerkin formulation at
free-stream Mach numbers up to 0.3 but convergence did not occur for majo~
axis/minor axis ratios greater than 1.8.
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Numerical calculations using the Method of Integral Relations(ref.21)
ind i cate that the flow is just supersonic at the shoulder of the elliptic
cylinder for a free-stream Mach number of 0.5. In contrast the present
solutions indicate that the flow is everywhere subcri t ical .  The present
results are compared with solutions obtained by the Method of Lines(ref.17)

• wh ich are shown in figure 4. Agreement is quite good although , as wi th the
results in figure 3, the finite element solution slightly underpredicts the
surface velocity on the ‘pla teau’.

5. FLOW ABOUT AEROFOILS

Solutions for the flow-field about two representative aerofoils have been
obtained using the least-squares formulation . The nature of the grids used has
been dictated partially by the shape of the aerofoil in question. A schematic of
the grid used for the circular-arc aerofoi l is shown in figure 5. A deliberate
attempt has been made to keep elements far removed from the body surface
rectangular ; a l l  elements outside the region ABCD are rectangular . This reduces
the number of cross-terms and hence the computation time required to manipulate
those terms.

The NACA-00l2 aerofoil has a forward stagnation point and if the type of gr id
shown in figure 5 were used gross distortion of the elements adjacent to the
forward stagnation point would occur . Although the isoparametric formulation is
successful in mapping rectangular elements onto a non-rectangular region, the
quality of the solution obtained is degraded if the elements become distorted.
A schematic of the grid used to obtain flow-field solutions about the NACA-0012
aerofoil is shown in figure 6. All elements inside the area ABCDEF are
rectangular.

A comparison of the grids shown in figures 1, 5 and 6 indicates that basically
two types of grid have been used depending on the local body geometry . Where
the body shape can be locally approximated by the arc of a circle a polar grid has
been used. Where the body shape can be locally approximated by a straight line
a Cartesian grid has been used.

The local values p and p at the forward stagnation point of the NACA-0012
aerofoi l are given by equations (49) and (SO). The far-field boundary conditions
for both aerofoils have been obtained by applying a Prandtl-Glauert transformation
to the x-coordinate and applying thin-aerofoil theory to the distorted body .
This is described in Appendix I.

5.1 6% circular-arc aerofoil

Solutions to the flow about a 6% circular-arc aerofoil have been obtained
for various free-stream Mach numbers. All the results presented in figures 7

• to 10 have been obtained with 102 elements and 868 nodal unknowns spanning
the flow-field.

The surface pressure distribution for a free-stream Mach number of 0.71 is
shown in figure 7. Also shown in figure 7 are experimental results due to
Knechtel(ref.22). Knechtel obtained pressure distributions for a completely
smooth aerofoil for which the boundary layer would have been laminar at
least to the 50% chord point. By introducing roughness just aft of the
leading edge Knech tel also obtained resul ts for wh ich the boundary l ayer was
turbulent throughout. An examination of figure 7 indicates that the finite
element solution is in good agreement with the experimental solution obtained
with a smooth aerofoil. The shape of the pressure distribution is slight ly
different particularly close to the leading and trailing edges . This may be
due to the courseness of the gr id at the body surface used to obtain the
computational solution . A consideration of the experimental accuracy
sugges ts tha t in an area of rap idly chang ing pressure such di fferences
indicated may not be signi ficant.

The surface pressure distribution for a free-stream Mach number of 0.82 is
shown in figure 8. Also included in figure 8 are experimental results due to
Knechtel(ref.22). The experimental results were obtained with a smooth
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aerofoil. As in figure 7 the agreement shown in figure 8 is good. For the
results shown in figures 7 and 8 the flow-field is everywhere subsonic.

The results shown in figures 9 and 10 have been obtained at a free-stream
Mach number of 0.88 for which the surface flow is just son ic at the th ickes t
part of the aerofoil. The pressure distribution for this case is shown in
figure 9. Experimental results at Mt,,, = 0.88 were not obtained by Knechtel

(ref.22), al though an interpolation of the results that are avai lable
• suggests that the negative pressure coefficient at the 50% chord point is

• larger for the experimental results than it is for the computational results
shown in figure 9. It is likely that the displacement thickness effect has
caused some supersonic flow and this has increased the suction peak . The
corresponding surface Mach number distribution is shown in figure 10 and the
local Mach number at the 50% chord point can be seen to be sonic.

5.2 NACA-0012 aerofoil

Computational solutions have been obtained for the flow about a NACA-00l2
aerofoil at free-stream Mach numbers of 0.4 and 0.72. The finite element
solution for the free-stream Mach number of 0.4 has been obtained with a least-
squares formulation and 88 elements and 767 nodal unknowns spanning the f low-
f ie ld .  This solution is shown in figure 11. Also shown in figure 11 are
experimental results due to Amick(ref.23) and some computational results ,
using a fini te difference method , due to Emmons(ref.24) .

The finite element solutions have simulated an aerofoil in an unconstrained
free-stream . In contrast the experimental results of Ainick have not been
corrected for the influence of the wind-tunnel walls and the computational
results of Eminons have deliberately allowed for the presence of the wind-
tunnel walls. The discussion in reference 24 suggests the experimental
results of Amick would produce a maximum negative pressure coeff icient
approximately 4 to 5% less if the aerofoil were in an unconstrained free-stream.

It is apparent that the occurrence of the stagnation point in the flow-
f ield and the consequent acceleration of the flow past the nose of the aero-
foi l causes a very rapid change in the values of the dependent variables in
the nose region . To obtain accurate solutions this situation requires small
elements in that region and , if the computation tinu’ is to be kept within
reasonable bounds requires large elements elsewhere(figure 6). The automatic
mesh generation scheme is the same as that used and described in reference 9
and the above requirements have only been partially achieved . Nevertheless
the agreement with the experimental results shown in figure 11 is good
particularly away from the nose region .

A solution obtained for the flow about a NACA-00l2 aerofoil at a free-
stream Mach number of 0.72 is presented in figure 12. These results were
obtained with the least-squares formulation and 96 elements and 837 nodal
unknowns spanning the f iow-f i eld .  Computational result for this problem

• have been obtained by Loek(ref.25) using the method of Sells(ref.26). Lock
considers that Sells ’ method is capable of g iving results that are accurate
to 1% of the maximum perturbation velocity. A feature of Sells ’ method is
the mapping of the flow-field onto the interior of a unit circle. This
avoids the problem of applying the far-field bount~ary condition at a finitedistance from the body . The solution obtained by Sells ’ method is shown
in fi gure 12. An examination of f igure  12 indicates that the f in i te  element
solution for the pressure coefficient underpredi cts Sells ’ so lution
p a r t i c u l a r l y  in the nose region . This may be due to not applying the far-
f ie ld  boundary conditions su f f ic ien t ly  far from tl~e body . A more l ikely
cause i s the courseness of the grid in a region where large gradien ts are
occurring .

Larrrnz7 ~r~ -- -
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6. COMPARISON OF THE GALERKIN AND LEAST-SQUARES FORMULATIONS

The Galerkin finite element formulation has been used frequently to find the
numerical solution to flow prob l ems . However , most previous appl ica t ions  of the
Galerkin formulation have been to the ful l Navier -Stokes equations in incompress--
ib le  form . In such a situation the viscous terms in the governing equations
play a s tabi l i s ing role in both the physical and numerical sense. Viscosity

• plays no role in the present problem unless ar t i f i c i a l l y  introduced (Section 3 . 3 ) .
• Most previous f in ite  element solutions of the present problem have been based on

a variational formulation which leads to a stiffness matri x that is positive
definite .

The application of a Galerkin f i n i te  element formulat ion to the present problem
has led to algebraic governing equations that are algebraicly simple , economica]
to create and relatively sparse . In fact the derivation of the coefficients
a.., b .., equa tion (24) , in the algebrai c equations is precisely the same as that
for the app lication of the Galerkin formulation to incompressible , inviscid flow
(ref.9) .

A problem with the Galerkin formulation arises in relation to finding a
suitable iterative scheme for solving the nonlinear algebraic governing equations .
In the applica tion of the Galerk in fini te elemen t method to slow viscous flow
Newton ’s method has been used with considerable success. Since Newton’s method
is completely general it should be effective in the present situation. The first
diff iculty that occurred in implementing Newton ’s method was that the Jacobian
was singular due to the symmetry about the y-axis. To overcome this problem it
was necessary to introduce special equations on the y-axis and on the body . A
second diff icul ty with Newton ’s method , and it may be related to the first
difficul ty , was that it failed to converge for large numbers of nodal unknowns
even when starting from a solution close to a previously converged solution .

In contrast the least-squares finite element formulation produced algebraic
equations tha t were more complex , required more computation time to form and were
less sparse than those produced by the Galerkin formulation . However, because
of the positive definite nature of the stiffness matrix the iterative technique
for solving the algebraic governing equations produced no convergence problems .
At intermediate stages of the iterative process the solution was quite smooth
which was in marked contrast to that produced by the Galerkin formulation at
intermediate stages.

It seems reasonable to conclude that since the current problem is dominated by
the non-linear convective terms the choice of the iterative scheme for solving
the non-linear algebraic governing equations becomes crucial . Thus any finite
element formulation that leads to a pos itive def inite sti ffness matrix is likely
to have a considerable advantage over any formulation that does not.

7. CONCLUSIONS

The main conclusion of this report is that the least-squares finite element
formulation has been very effective in obtaining solutions to compressible ,
inviscid flow and the Galerkin formulation has not . Additional conclusions are
that the use of a primitive variable formulation results in very accurate
solutions and that the combination of using the conservation form of the governing
equations and representing groups of variables rather than single variables leads
to a sparser stiffness matrix and hence a more economical solution . In contrast
to the treatment of slow , viscous flow, the mos t eff icient fin ite element
solution of the present problem is obtained if each group of variables in the
governing equations is represented by shape functions of the same order. 

~~~~~~~ • ,; aLS. ..k .~~ ~.,, ________
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NOTAT ION

F , C vectors of groups of terms appearing in the
equations of motion

I unit matrix

J Jacobian

L shape function

M Mach number , shape function

• f~t1. Mach number at body surface

N shape function

R equation residual

• U,~, free-stream velocity

W vector of noda l unknowns

X vector of groups of terms appearing in the
continuity equation

Y vector of groups of terms appearing in the
momentum equations

a sound speed

a.., b .., c.., s. . algeb raic coefficients in the governing
3 3 .11 13 equations (Galerkin formulation)

N orde r of shape f unction , number of nodes

p pressure

vector of nodal unknowns

tangential velocity at body surface

r. ., s~~•, t . . , x . . ,  y. ., z. • al gebraic groups in t.c governing equations
3 3 3 3 13 ~ (least-squares formulation)

s coordinate along the body surface

t time

u veloci ty component in the x direction

v velocity component in the y direction

x ,y cartesian coordi nates

a parameter controlling stabilising terms in the
equations of motion ; parameter controlling

• relative influence of the residuals

~~~Iiiiiri -~ —-~~-~~ —~~ ..— .•— •~~~~• • . ~~~~~ ~~~• ~~~~~~~ ~~~~~~~~~ — —  ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~•,~.-•— • • •  —
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7 specific heat ratio; correction to the
Jacobian

correction vector
- •  

it scalar in Newton ’s method

p density

p velocity potential

Subscripts

fs free-stream

nd nondimensional

sp stagnation point

v iteration Step

00 conditions in the free-stream

- noda l value

o di fferentiation with respect to time

~~~~~~~~~~~~~~~•~~~~~•-
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APPENDIX I

FAR-FIELD BOUN DARY CONDITION S

For most of the results presented in this report the far-field boundary
conditions have been determined by assuming that the body introduces a disturbance
into the flow . Since the disturbance in the far-field is small it is appropriate
to introduce a di sturbanc e po tential , ~ whi ch perturbs a uniform free-stream ,
i.e.,

= U00 
x + 

~
p. (1.1)

For subcritical flow ~ is gove rned by

1 a2 ~(1 - 
+ ~—4- = 0. (I . 2)

H —

A new coordinate x = (1 - M~~
2 . x is introduced and the governing equation (1.2)

• reduces to Laplace’s equation

= 0. (1.3)

For the flow about circular and elliptic cylinders complex variable solutions
(which satisfy equation (1.3)) are introduced and the far-field velocity compo-
nents calculated.

For the flow about aerofoils a continuous source distribution is introduced
along the chord line of the aerofoil. The source strength is proportional to
the local dis torted body slope , dy/dy. The source distribution satisfies
equation (1.3). The velocities induced by the source distribution are

- 
2 r 1 r dy/d~ (s) 1uf5 

- 1. V
f5  

— 

~J 0L~f.s. + i.yf5) 
- sJ ds. 

(1.4)

s is the non-dimensional distance along the aerofoil chord . The integration in
equation (1 .4) has been performe d numer ically by d ividing up the aerofoil chord
into the same finite elements as are used in the body of the report, and summ ing
the contributions from each element. Gauss quadrature and an isopa rametric
formulation are utilised to perform the integration over each element.

Once the far-field velocity components have been obtained the corresponding
densi ty and press ure are given by

~ fs = + 
7 - 1 M~ . [1 - + v

~s)1]~~~ 
(1.5)

and

~fs = (p~~ 
- 1) 17 M~ . (1.6)

The above linearised solutions have also been used to provide starting data
throughout the domain.

—4



APPENDIX LI

DERIVAT I ON OF THE ALGEBRAIC EQUATIONS OBTAINED

FROM TUE LEAST-SQUARES FORMU LATION

After application of the least-squares finite element formulation to
equations (4) to (6) the fol lowing algebraic equations are obtained:

~~m) 
~~~~~rcm) . (~~)~ + s~~~ . 

~~~~~~~~~~ 
+ t~~~~~~~ . (

~~~~~ 2 ) + . +

(p2 ) + . = 0

m = 1,3; i = 1,n. (11.1)

In equations (11.1) the actual expressions for r.~ etc. depend on which relation-

shi p is used to link p to the other variables . If p is related to the density
by the isentropic equation

1 + 7 . M~~p = p7 (11.2)

then the following expressions are obtained

r. . = a . a. . . P.
C 13 1

s. . = a . c. . . p.
13 C 13 1

t~P = a . ~2 . a.. . + d.. . (~v)j (11.3)

= a
y 

. ~~ .

= a
~~

2 . . (~ii) 1 + ~~ . (
~~)~~ 

+ a>, . ~~ . ~~~~

= a~~2 . a . .  . (~ii). + d.. . (~V).~ + a . c. . . (fl..
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r~~ = a .d.. .~~ .
13 C 13 1

= a .b.. .~~~~~~ .
13 C 13 1

= a . d. . . (~ii).13 x ij 1

(11.4)

= a
>, 

. ic. . . + 2 . b m .  .

= a~ . b~~ . (~ü)1 
+ a>, . ~~~ . (~ii)1 2 . d

~3 
. (~V)~~

= a~ . ~~ . (I5ii)
~ 

+ a
>, . ~C j j  . (~ii)1 + 2 . ~~~ .

= 013

~(3) = 0
13

—7+1

~~~ = a ~~~~~ 
~~~ 

- 
(~ti)1j _ 

~~ 
. (~i~). .

•-4y+ 1

x~” = a
>, .[b1~ .[

~~
,, - (~i){] - c

13 
. (

~
ti)m . (~v)1] 

(11.5)

= a . [c . . .[ ~~ 
- (Pii )

2J 
- b . .  . (Pu) 1 . (P~).]

-~y+1

• a [d. . L 
~~~ 

- (/~V)~j 
- 

~~ 
. (Pu)1 . (Pv)1]

_4y+ I

= a
~ [a~j .[

~~~
_ - - d

~, 
. . ~~~~v

j ]

+ a [b. [
~~V+ l 

- (PV)~j - c
ii 

. (Pu). . (PV).]
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If p is related to the other variables through the energy equation

I + 7 . M~Ø 
. P = p . ~1 • 

7 
2 

1 
- (u2 + v2 )I~ . (11.6)

the following expressions for r~~
1) etc. are obtained

r. . = a . a. . . p .
13 C 13 1

s. . = a . c. . . p.
1) C 13 1

= a . ~(7 
; )

~~~~ 
. a.. . (Pu) . + d m .  . (pv)j

= a . ~~~ (~V). — (~Y_ —
1-) . b~~ . (Pii)

~~ 
(11 .7)

y~~) = a
~ 

. ~(7~;J) . . 
~~~~~~~~~

. + b.~ . (P~
)j

+ a
y ~~~~~~~~ 

- 

~~
—
~

-—)
~~ 

. .

= a 
~~~~~ 

1
) a.. . (~ü). + d.. . (PV)

+ a
>, ~ C

j j  * (~ ‘~i 
— (~~~

—
~~~

—-)
~~~~ 

. b~~ . (Pü)~~

= a .d. ..~~ .
13 C ij 1

= a
13 C 1) 1

= a . ~~~ . (P11). - 
~~~~ 

~~ 

1) 
a.~ . (P~~~

).
~~

= a
>, 

. ~~~ . (Pü)~ + (7; 
1) 

b
13 

. (PV)~~ (11.8)

= a . 1b .~ . (Pu) . - (~~~~~~~ 

1) 
(PV)~~

÷ a
>, 

Ia
11 

. (P1i)~ + (7 ; )
~ 

. d
1~ 

.
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+ a
>, 

. + 
~~~~~~ 

l
) . b1~ .

pi

~~~ = 0
13

Sf ~~
) 

= 0

t~~~ = a . [a. . ~~~~ (~~)~j- d . .  . (n). .

x~~~ = a
y . ~~~ L~ 
;~ - (Pv)~

j 

- c~~ . (P~~~~~~~~

] 

(11.9)

= a . [cjj •L~ ~~~~~~ ~iu?J - ~~ 
. .

+ a
>, 

. Ld~ L~~~
- (
~

)
~J - ~~~ 

. (
~~

)
~ .

= a . La. . .[f
~ 
~~1~ _ (

~ J - . (p.u
~ . .

+ a . Lb.. 
{~~~~~~~~

-

~~~~~~~

_ _ (~~)~j 
- c~ . . ~~~~~~~~~~ . (PVL

]

where

= 
7 

1 -~~ + 
~~~ 

1) (1 + • ~~~ j .  (11.10)
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Figures 1~~~2
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Figure 1. Flow-field geometry and schematic of grid for the
circular cyl inder
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Figure 2. Surface Mach number variation for flow about a
circular cyl inder
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Figures 3 ~ 4
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Figure  3. Surface velocity variation for the flow about a circular
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Figure 4. Surface velocity variation for the flow about a 2:1
elliptic cylinder at M.,~, = 0.50
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Fi gure 7. Pressure distribution on a 6% circular-arc aerofoil
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