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SUMMARY

Galerkin and least-squares finite element formulations in
terms of the primitive variables have been applied to the .
equations governing compressible, inviscid flow. A novel 1
finite element representation for the groups of variables, '
rather than the single variables;, occurring ‘linearly in the
conservation form of the governing equations has led to a
relatively sparse stiffness matrix. The Galerkin formulation
was used in conjunction with Newton's method but solutions
for the flow about circular cylinders could only be obtained
with freestream Mach numbers less than 0.32. The least-
squares formulation was applied in conjunction with an
iterative scheme of the successive over-relaxation type.
Solutions have been obtained for the flow about circular and
elliptic cylinders, a 6% circular-arc aerofoil and a NACA-0012
o aerofoil at zero angle of attack, with the free-stream Mach
number sufficiently large that locally sonic conditions have |
occurred. The solutions are in good agreement with both
experimental results and other computational solutions.
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1. TINTRODUCTION

The purpose of this report is to examine a number of different finite element
formulations suitable for external, inviscid, subcritical flow. As such it is
a stepping-stone towards the treatment of transonic, external, inviscid flow.
Most previous finite element applications to subcritical flow e.g.(ref.1,2,3)
have been based on either a velocity potential or stream function formulation.
However no formulation based on the full equations of motion has been successful
in obtaining solutions that contained significant regions of embedded supersonic
flow. For this and other reasons set out in Section 2, the present formulation
makes direct use of the primitive variables, i.e. velocity, density and
pressure. It is believed that this is the first time a primitive variable
finite element formulation has been applied to the full equations of motion
governing compressible, inviscid flow.

In order to ensure an efficient finite element algorithm it is important to
establish consistent analytic representations for each of the dependent variables;
this problem is considered in Section 2. For problems that do not possess a
variational formulation the two most effective finite element methods are based
on the Galerkin and least-squares formulations. Both these formulations have
been applied to the current problem and reduction of the governing partial
differential equations to algebraic equations is described in Section 2.

The governing equations, in both the differential and algebraic form, are
highly nonlinear and require iterative solution techniques; these are described
in Section 3. A modified Newton's method has been used in conjunction with the
Galerkin formulation. Because Newton's method will only converge for a starting
solution relatively close to the final solution it has been necessary to use an
ancilliary technique to get close to the final solution. This has been achieved
by utilising the unsteady version of the governing equations. After application
of the finite element formulation, these equations have been treated as ordinary
differential equations in time and have been integrated until the converged
solution is approached. Because the least-squares formulation leads to a
positive-definite stiffnessmatrix it has been possible to apply a successive
over-relaxation (SOR) method of solution after locally linearising the algebraic
equations.

Solutions for the flow about circular and elliptic cylinders using both the
Galerkin and least-squares formulations are given in Section 4. Solutions for
the flow about two representative aerofoils at various free-stream Mach numbers
are presented in Section 5. Comparisons are made with experimental results and
with other computational results. A comparison of the Galerkin and least-squares
formulations as applied to the current problem is made in Section 6.

2. FORMULATION OF THE PROBLEM

In Section 2.1 the relative merits of the velocity potential and primitive
variable formulations applied to subcritical, inviscid flow are presented.
The equations of motion appropriate to both steady and unsteady flow and the
corresponding boundary conditions are indicated in Section 2.2. Different orders
of analytic representation for different variables are possible and these are
discussed. Both the Galerkin and least-squares finite element formulations have
been used to reduce the governing partial differential equations to algebraic
equations; these are described in Sections 2.3 and 2.4 respectively.

2.1 Velocity potential vs. primitive variables

A velocity potential formulation of subcritical, inviscid flow might
express the governing equations in terms of the velocity potential, ¢ and the
local sound speed, a. In two dimensions the governing equations are
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and

2 2 = 2
; o adgs . W r ) = a2, (2)

In equations (1) and (2) 7y is the specific heat ratio and a, is the stagnation

value of the sound speed. The use of equations (1) and (2) is attractive
because only one unknown, ¢, is required at each node. Equation (2) is
treated as a local algebraic relationship which adjusts the value of ‘'a' at
each step of the iteration.

Equation (1) can be written as a Poisson-like equation

¢XX + ‘py), = f) (3)

in which f incorporates all the terms associated with the compressible nature
| of the flow. Application of a variational finite element formulation of
| equation (3) permits an iterative solution in which f is recalculated after
each solution for ¢. The iterative procedure fails at a local Mach number b |
of unity(ref.2,3). This is probably due to the use of equation (2) to
adjust the value of 'a'. It is interesting that a linearisation of
equation (1) that leads to the transonic small perturbation equation and
avoids the use of equation (2) can be iterated to locally supersonic Mach
numbers (ref.4).

Another disadvantage of the use of equations (1) and (2) is that the
converged solution, ¢ must be differentiated numerically before a useful
quantity, the pressure at the body surface, can be obtained. Also since

equation (1) is highly nonlinear, application of a finite element formulation |
results in a large number of cross-terms that must be manipulated at each
step of the iterative process. This results in a considerable increase in |

computation time.

To avoid some of the disadvantages noted above the present formulation
makes use of the primitive variables and expresses the governing equations
in conservation form:

(eu), + V), = 0, (4)
(e +p), + (Puv), = O, (5)
(puv) + (pv* + Py, = O, (6)
p = k.p". (7

Equations (4) to (6) all have the same structure and are linear in the
groups of variables. In the present formulation advantage is taken of these
features to reduce substantially the number of cross-terms that appear.
Equations (4) to (6) and the energy equation,

P

’rp + 4 = _1_. _cn.
FoDe t '+ V) = sy (8)
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have been found to be suitable for solving flow problems at low to inter-
mediate free-stream Mach numbers. The primitive variable formulation gives
the required final solution, the pressure on the body, directly. A dis-
advantage of the primitive variable formulation is that three unknowns per
node are required.

Equations of motion and finite element representation

Because of the technique used to provide starting data for the Galerkin
formulation (Section 3.3) the unsteady, ccmpressible, inviscid equations will
be presented. Following Peyret and Viviand(ref.5) the conservation form of
the governing equations is

aG
*3 29 (9)

q1a>
=

+
w,m
b 9 |

where W, F and G are three component vectors

fu pu® +p puv
=|pv |, F = puv (10)
P
Equations (4) to (6) are equivalent to

(11)

w'cu

5 Im
+

=Y

Al (3]
1
o

To stabilise the integration of the unsteady equations (Section 3.3) the
following related equations will also be considered,

oW, 0F 3G _ foy oy 5
aaay—a_f*'a—;!'. (12)

The coefficients 2, in equation (12), are chosen to be as small as possible
consistent with the convergence of the integration of the unsteady equations.
Equations (4) to (12) are non-dimensionalised by defining

Uy T WlUg vy = VU By = PP and Py = (P - Pood/Poo Ul (13)

The resultant form of equations (12) remains unaltered if a new t and a are
defined. From now on the subscript nd will be dropped. Equation (7)
becomes

1+ .8, .p = o' (14)
and equation (8), with some rearrangement, becomes
1+7.M:°.p=9{1+17_—1.5ﬁ0. 1-(u2+v2)]}. (15)

In this report either equation (14) or (15) has been used to link p to the
other variables.
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The far-field boundary conditions are applied at a finite distance from
the body in the form

B u
N (16)
B Py

Two choices for the far-field boundary conditions have been considered.
Firstly Ug, = 1.0, Ve, = 0, Peg = 1:0% Secondly a Prandtl-Glauert

transformation has been applied and the distorted body shape has been used.
For the flow about circular cylinders and ellipses the far-field velocity
components have been calculated from a complex variable solution of the
distorted body. For the flow about aerofoils, thin-aerofoil theory has been
applied to the distorted body (see Appendix I). Once the velocity components
are available equations (14) and(15) have been used to give the density.
Complex variable theory and thin aerofoil theory have also been used to give
starting data throughout the flow-field.

The boundary condition at the body has required that the flow is locally
tangential to the body surface. This has given a relationship between
ES and Vs and Qﬁﬁ)j and (5V)j at the nodes on the body.

As the first step of the finite element formulation analytic representations
for the dependent variables are introduced. In the present report these are
introduced for the groups of variables W, F and G in equation (10). E.g.

pu = Z Nj(x,y) . (p’tf)j, (17)
j
where Nj is the shape function appropriate to the jth node and ~ indicates

the nodal value of the different variables. It is believed that this is
the first finite element formulation in which groups of variables, rather than
single variables, have been given an analytic representation. This technique
has been used Previously(ref.6,7) in the application of an Orthonormal Method
of Integral Relations to supersonic boundary-layer flow. An immediate
advantage of finite element representations like equation (17) is that, since
the governing equations are linear in the groups of variables, only single
summations occur after application of the finite element method. Thus the
computation of the equation residuals can be accomplished more efficiently.

One difficulty associated with the finite element method applied to a
system of equations, like (11) and (12), is to ensure that the orders of the
shape functions that appear in the analytic representations like equation (17)
are chosen consistently. If the Galerkin formulation is used then the
corresponding choice of the order of the weight functions presents similar
difficulties. Failure to choose the orders of the shape functions
consistently produces a less efficient solution i.e. more nodal unknowns and
a more refined grid will be required to achieve comparable accuracy.

Taylor and Hood(ref.8), after applying a Galerkin finite element
formulation to slow viscous flow, concluded that for consistency:

(i) the maximum order of error associated with the residual of each
variable must be equal

(ii) The residuals arising from each equation must be weighted according
to the maximum error occurring in each equation.
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It is well-known that for slow viscous flow the momentum equations are
dominated by the pressure gradient and viscous dissipation terms whereas the

convective or inertia terms are of smaller magnitude. However for high speed

flows the momentum equations are dominated by the balance between the inertia
terms and the pressure gradient terms; the viscous terms only become
significant where a large velocity gradient occurs e.g. adjacent to a surface.
Thus it would seem desirable to replace (i) with the condition that

(iii) the order of the representation of the flow variables should
produce errors consistent with the physical processes being modelled.

For the case of slow viscous flow condition (iii) leads to a first order
representation for p and a second order representation for u, v.

Equations (4) to (6) could be applied to incompressible, inviscid flow.
In this case p is constant. On physical grounds it would be expected that
all groups of variables in each equation would be of the same order of
magnitude. Since only first derivatives appear each group of variables in
each equation will require the same order of representation to satisfy
condition (iii).

Thus
X = L, (x.¥) . X. 18
z J(X)') j '18)
j
where
X = (pu, pv)
and
Y = M. (x,y) . Y., 19
Z J(x)') 3 (19)
j
where Y = (pu?, puv, pv?, P). Lj and Mj are shape functions of, as yet,
undetermined orders. Suppose u, v are represented by nth order shape
functions i.e.
i N
L Il -
then
pu ~ x"
and
2n

P ~hopu T x .

Thus the lowest consistent representation would be for L to be first order
and M to be second order, i.e.
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J =
Ty 2. (20)

In contrast to slow viscous flow, inviscid incompressible flow requires a
first order representation for u and v and a second order representation for

P.
If equations (4) to (6) are applied to compressible, inviscid flow
representations (18) and (19) are also applicable. In this case
p o~ g
therefore
p7-1 g2
and if
i T
u "~ x
2n
p~x' 1
+ 1
G=pn
Pu =~ X
and
2
(7?1)n
ppe ~x
and
oM.)
I T (21)
O(Lj) vy + 1

Since only integral order representations are possible the lowest, consistent
representation, with ¥ = 1.4, would have L, as a sixth order shape function

and Mj as a seventh order shape function. If a Galerkin formulation were

employed seventh and sixth order shape functions weighting the continuity
and momentum equations respectively would also be required. Clearly such a
high-order representation would be unwieldy and possibly, because of the
relatively dense stiffness matrix, be inefficient.

If compressible, inviscid flow is to be represented by a moderately low
order system, equation (21) suggests that Lj and M. should be of the same

order. Consequently, based on the results of reference 9 all groups of
variables have been represented by quadratic shape functions of the Serendipity
family in rectangular isoparametric elements.
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2.3 The Galerkin finite element formulation

The Galerkin method may be written as

//Ni.R(k).dxdy Bk w1, 5 =, (22)
. . i ~th (k) .
where Ni is the shape function appropriate to the i~ node and R is the
equation residual after substitution of analytic representations like
equation (17). For the present problem the Galerkin formulation fcllows
reference 10. After application of the Galerkin formulation equation (11)
becomes
IR IRANY TR
S5 -b—tl»« TR by G =@ ¢y + Wy i=1,m
j j j j
(23)
where
S
sij = /] Ni s Nj dx dy,
oN
aij = [/ Ni « B " dx dy,
oN.
= //Ni.-a;l.dxdy, [ (24)
and
ON. ON
cij = /.{Nl > 5§; . dy - 5;1 df}
oN ON. ON au}
5 — il g )
/[}\ax S R T e it
W5 etc. are the values of W etc., given by equation (12), at the jth node.

The coefficients Sij’ b.. and cij are evaluated for each ith node after

[
117 1)

introducing an isoparametric formulation(ref.9). sij’ aij ij
obtained from intermediate coefficients that are evaluated, once and for
all, on a dummy element(ref.9). aij and bij are the same expressions as

arise in the treatment of inviscid, incompressible flow(ref.9).
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2.4 Least-squares finite element formulation

The least-squares formulation presented here follows that of Zienkiewicz,
Owen and Lee(ref.11). Substitution of the analytic representation,
equation (17), into the governing equations (4) to (6), produces residuals
of the following form in each element:

QO

) y N. b ON. L,
R - ) - GO Z gyi G (25)

j j

2 ;
j

(26)

Q|

x| =2
0 s, )
h <)
c
~
+
o
p—

L

+

‘_‘.L\/J

Q

<| =
°
[ =
<
p—

3) AN, AN, 2
R =Za—xl-(ﬁﬁ)j+ ;,r;l.cﬁ’»fp)j. (27)

j j

The least-squares formulation requires that
/f(a. RMW2Z L e, R L6, RP?) 4x dy = minimum, (28)

where a;, a; and a; are scalars that may be used to adjust the weight of the
various equations. Differentiating equation (28) with respect to each of the
unknown nodal values in turn produces the following result:-

q, aq.

i i

(1) (2) (3)
[/{al -g—R- . R(l) +a; . 'a= - R(Z) + a3z . SR . R(s)} dx.dy =0, i = 1,n

(29)
where q“i 2 {(ﬁﬁ)i, V) Ei}. Substitution of equations (25) to (27) into

equations (29) and evaluation of the integrals, produces the following
algebraic equations:

(m _ L m 5 m o2y M)
Si 2 j{J {rij : (Pu)j + Sij . (Pv)j + tij : (Puz)j X5 - (puv)j
j

(m) ==2 ) =i . 5 ok i
yij . (pv )j + zij s pj} 0O, m by S5 1 i,n. (30)
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In equation (30) m = 1 corresponds to E; = (pu); in equation (29). Thus
three equations are formed at each node if there are three unknown nodal
values. In equation (30) rg?) etc. are algebraic functions of aij’ bij’
cij' dij’ pui, pvi and pi where
aNi ON.
aij = [/5)(- = dx dy,
bij = /fW'.ay . dx dy,
§ (31)
aNi ON.
cij = ffgx—.a;l.dxdy,
BNi ON.
4 = [ a—y—.;;(l.dxdy. |

Equations (31) may be compared with equations (24) which arise through
application of the Galerkin formulation. Once isoparametric elements are
introduced(ref.9), equations (31) are considerably more complicated and
time-consuming to evaluate than equations (24). The algebraic expressions
(m)
j

for o etc. depend on whether equation (14) or (15) is used to obtain

p as a function of the other variables. The detailed expressions are given
in Appendix II.

3. ITERATIVE SOLUTION TECHNIQUES

The main difficulty, associated with solving either equations (23) that arise
from the Galerkin formulation or equations (30) that arise from the least-squares
formulation, is that the nodal unknowns ﬁﬁj, ﬁVj and pj occur nonlinearly.

Groups of terms, like ﬁﬁvj, are interpreted as (ﬁﬁj . 575)/55.

Newton's method (Section 3.1) was used initially to solve the steady version
of equations (23) in the form

1,n. (32)

[
L1
|
e
+
o
[
.
n
S
=
"

However this produced a singular Jacobian. This problem was overcome by
differentiating the energy equation (15) with respect to x and y and using these
equations instead of the x-momentum equation on the y-axis of symmetry and
instead of both momentum equations at the body surface.

In practice it was found that the inversion of the Jacobian required large
amounts of main storage and large execution time even after introduction of the
sparse matrix techniques described in reference 9. In order to make Newton's
method more efficient various modifications were made and these are described
in Section 3.2. As the number of nodal unknowns in the flow field was increased
difficulty occurred in obtaining starting solutions that were sufficiently close :
to the converged solution to permit convergence of Newton's method. This result i
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is consistent with the findings of reference 12.

To alleviate the situation the governing equations in unsteady form (23) were
integrated as though they were simultaneous ordinary differential equations in
time. This was a fairly slow process and was terminated as soon as the iterative
solution was close enough to the final solution to permit Newton's method to
converge. A description is given in Section 3.3. Because the least-squares
formulation leads to a positive-definite stiffness matrix it is possible to use
an SOR-type iterative scheme to solve equations (30). This is described in
Section 3.4.

3.1 Newton's method

This will be described in relation to the solution of equation (32) which
can be written as

R,@ = 0,i = 1,n, (33)

where q is a vector of all the nodal unknowns W}, equation (10), and R
represents_the residual of the ith equation. If an arbitrary starting
solution, Q, is substituted into equation (32) non-zero equation residuals
result. In the neighbourhood of H; the solution can be obtained by

application of a Taylor series expansion.

R|=E+
o

oo
2||=|

@) - @-4q) ... (34)

If the Taylor series is truncated as shown and if it is assumed that q; is
the exact solution then R, = 0 and

@ = q,-J"'@) . R, (35)

where J is the Jacobian, dR/dq. If equation (35) is interpreted as one step
of an iteration Newton's method is obtained:

Bay = G = B R (36)

The effectiveness of Newton's method depends on the accuracy of the
assumptions underlying equations (34) and (35). Clearly if the starting
solution is close to the converged solution the assumptions are reasonable
and Newton's method is convergent; close to the converged solution the
method has the property of quadratic convergence(ref.13). A discussion of
Newton's method and some iterative techniques based on Newton's method are
given in reference 14.

3.2 Modified Newton's method

In practical applications most of the execution time is spent factoring
J, to form JV' even if sparse matrix techniques and the storage of J,' in

factored form are used. Typically, in early applications of the Galerkin
i formulation to the present problem, the factorisation of the Jacobian
accounted for 80 to 90% of the execution time. Any modification that
permits more utilisation of each evaluation of J;' is clearly desirable.

An obvious modification is to compute p steps with the same Jo i.e.
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Beci 9 -J'.R o0o<v<p-1. (37)

Another improvement can be obtained if J;' R, is treated as a vector §,

which is small compared with ﬁ;. Then 3; may be interpreted as a search
direction. A series of residuals ﬁt are evaluated for various Xk correspond-

ing to §t+1 given by

—k » — —
By ° B - kk : 8v' (38)

Xk is a scalar and typically takes values between 0 and 2. If ﬁ:

corresponds to the solution a; i.e. Ao = 0, then two additional solutions,

ﬁ; and ﬁ; are obtained corresponding to Ay, A, . For each solution the

global sum of all the residuals, FE, is computed from

- Z [RE,12 (39)
i

A quadratic dependence of FE on Kk is extracted and the value kmin’ which
v+1°
a particular search direction has been used previously for minimising a sum
of squares(ref.15).
Another modification to equation (36) is possible by attempting to
approximate J,'.  Assuming that J, is close to Jg» let

minimises F, is used to obtain The technique of finding a minimum in

J o= J_ +7. (40)

5;* & J;l v’ (41)
then a better approximation is
R (a2
where J;; is an approximation to J;'. From equation (40)
J, = I X+3}"
and
i (43)




WRE-TR-1858(W) w 3& = l

Equation (43) can be approximated by

s | — =3 =
L= L0ty .20,

Substitution into equation (42) gives

5, (I - J;' g RO 5 R,

or

6!1

(I - J;‘ .Yy . 8k,

i i

Substitution for Y and simplification gives

< ~1
i | 5V av* = Jo G, - Jo) . 0 *

Br-at .3, 8w (44)

The modified Newton's method used in the present study has consisted of the
following steps: 3

(i) compute J_ and J;' ¥
(ii) use equation (42) to compute 50
(1ii) find a minimum Fo in the 80 direction
(iv) compute q,» Jv
(v) use equation (41) to compute SV*
(vi) use equation (44) to compute SV
(vii) compute a minimum F, in the 5; direction

(viii) if Fv not sufficiently small go to step (iv).

3.3 Starting data for Newton's method

Equation (23) can be rewritten as

. oW,
ZEJ sij - 521 = -R,i = Ln (45)

] j

where

(46)




The coefficients of the matrices S only depend on the shape functions and
consequently can be inverted once and for all. To avoid excessive fill-in
and to speed up the matrix multiplications on the right hand side of equation
(46), matrices like S™' are stored in sparse factored form.

If equations (46) are integrated for large time, the residuals Ri approach

.

zero and consequently the time derivatives wi also approach zero. The

e
-

different Ri approach zero at significantly different rates and this causes

difficulties for the efficient use of the integration routine. Gear(ref.16)
has produced a predictor/corrector algorithm to suit this situation. In
addition Gear's algorithm automatically adjusts the step-size and the order
of the predictor/corrector formula to minimise the integration error.

The term on the right hand side of equation (23) has been introduced to

stabilise the numerical integration of equations (46). Although the
additional terms have some physical basis(ref.5) for the momentum equations
there is no such basis for the continuity equations. Therefore it is

desirable that a should be as small as possible consistent with convergence.
_ By expanding equation (46) as a Taylor series about a starting solution
qo it is possible to carry out an eigenvalue analysis to determine the

critical value of a, below which the integration of equation (46) is unstable.
The critical value was found to be approximately @ = 0.1, and this was
confirmed in actual computations.

3.4 One step SOR-Newton's method

| Application of the least-squares finite element formulation (Section 2.4)
| produces a positive definite stiffness matrix. Consequently an SOR-type
solution technique is possible. This may be obtained by considering a small
change i S(m)
| ge in S/

ﬁfi, Pv;, P

(equation (30)) due to a small change in q; where Q is either

as (™
(m) = (m) — i =
S;77 (@, +8q;) = S (q) + 3q, (@) . &; = 0, (47)
or in a more general form
asM @@y
v+l v i o (m) —
Q; 0 = q; - A [}—55;——— -85 (@). (48)

Examination of equation (30) and Appendix II indicates that both terms like
(pu’)j and Vij etc. are functions of q; thus asgm)/aqi is algebraicly
complicated. In contrast to the full Newton's method 3Si/8qi is a scalar

and trivial to invert, thus no excessive demand is made on main storage or
computation time. However the rate of convergence is slower than Newton's
method. A scalar, A\, has been used to increase the rate of convergence.
If A was greater than 1.7 the iterative process diverged.

4. FLOW ABOUT CIRCULAR AND ELLIPTIC CYLINDERS

Numerical solutions of the flow-field about circular cylinders have been
obtained using a Galerkin finite element formulation and a least-squares finite

element formulation. A schematic representation of the grid used to obtain
solutions about both circular and elliptic cylinders is shown in figure 1. The
grid system is essentially polar. An isoparametric formulation(ref.9) has been

used to relate this to a cartesian coordinate system.

D — ———
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Two stagnation points exist for the flow about bluff bodies. At the stag-
nation points the velocity components, u v are zero. In the present formulation
the pressure and density at the stagnation points have been considered part of
the boundary conditions by assuming a streamline attaches both stagnation points
to the freestreanm. Consequently equations (14) and (15) can be used to give
the following stagnation point values for p and p,

( ) /o - 1)
b, * {1 +<7 : 1> pﬁoj (49)

and

Y
p (o sp

"

P, - 1) /7. M. (50)

The far-field boundary conditions are obtained by scaling the x-coordinate by
the Prandtl-Glauert factor and then computing the far-field velocity components
using complex variable theory (Appendix I).

4.1 Circular cylinder

Results are presented in figure 2 for the variation of the surface Mach
number with angular location. Results for free-stream Mach numbers 0.1 to
0.3 have been obtained using the Galerkin finite element formulation. These
results have been obtained with 91 elements and 465 nodal unknowns spanning
the flow-field. It was found that for free-stream Mach numbers greater than
0.32 Newton's method would not converge even when starting from a converged
solution at a free-stream Mach number only marginally smaller. The reason
for this is not known.

Solutions obtained using the least-squares formulation at freestream
Mach numbers of 0.2 and 0.3 are also shown in figure 2. These results were
obtained with 91 elements and 829 nodal unknowns spanning the flow-field.

It is apparent that, as the free-stream Mach number is increased, the
solutions obtained with the Galerkin formulation indicate a significantly
greater acceleration of the flow than those obtained with the least-squares
formulation.

Results for the flow about a circular cylinder at a free-stream Mach
number of 0.4 are presented in figure 3. The finite element solution has
been obtained with a least-squares formulation. The results presented for
the surface Mach number have been obtained with 91 elements and 829 nodal
unknowns spanning the flow-field.

The finite element solution is compared with solutions obtained by the
Method of Lines(ref.17) and series solutions presented by Greenspan and
Jain(ref.18); the series solutions are due to Imai(ref.19) and Lush and
Cherry(ref.20). The solution by the Method of Lines agrees closely with
those of references 19 and 20 and, consequently, has not been plotted.

The finite element solution is in reasonable agreement with the other
solutions although it underpredicts the other solutions close to the cylinder
shoulder point. Since the solutions given by references 19 and 20 have been
obtained by a truncated series representation the difference between those
solutions and the finite element solution is not considered significant.

4.2 Elliptic cylinder

A least-squares finite element solution for the flow about a 2:1 elliptic

cylinder at a free-stream Mach number of 0.5 is shown in figure 4. These
results were obtained with 91 elements and 829 nodal unknowns spanning the
flow-field. Solutions were also obtained using the Galerkin formulation at

free-stream Mach numbers up to 0.3 but convergence did not occur for major
axis/minor axis ratios greater than 1.8.
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Numerical calculations using the Method of Integral Relations(ref.21)
indicate that the flow is just supersonic at the shoulder of the elliptic
cylinder for a free-stream Mach number of 0.5. In contrast the present
solutions indicate that the flow is everywhere subcritical. The present
results are compared with solutions obtained by the Method of Lines(ref.17)

3 which are shown in figure 4. Agreement is quite good although, as with the
] results in figure 3, the finite element solution slightly underpredicts the
| surface velocity on the 'plateau'.

5. FLOW ABOUT AEROFOILS

Solutions for the flow-field about two representative aerofoils have been
obtained using the least-squares formulation. The nature of the grids used has
been dictated partially by the shape of the aerofoil in question. A schematic of
the grid used for the circular-arc aerofoil is shown in figure 5. A deliberate
attempt has been made to keep elements far removed from the body surface
rectangular; all elements outside the region ABCD are rectangular. This reduces
the number of cross-terms and hence the computation time required to manipulate
those terms.

The NACA-0012 aerofoil has a forward stagnation point and if the type of grid
shown in figure 5 were used gross distortion of the elements adjacent to the
forward stagnation point would occur. Although the isoparametric formulation is
successful in mapping rectangular elements onto a non-rectangular region, the
quality of the solution obtained is degraded if the elements become distorted.

A schematic of the grid used to obtain flow-field solutions about the NACA-0012
aerofoil is shown in figure 6. All elements inside the area ABCDEF are
rectangular.

A comparison of the grids shown in figures 1, 5 and 6 indicates that basically
two types of grid have been used depending on the local body geometry. Where
the body shape can be locally approximated by the arc of a circle a polar grid has
been used. Where the body shape can be locally approximated by a straight line
a cartesian grid has been used.

The local values p and p at the forward stagnation point of the NACA-0012
aerofoil are given by equations (49) and (50). The far-field boundary conditions
for both aerofoils have been obtained by applying a Prandtl-Glauert transformation
to the x-coordinate and applying thin-aerofoil theory to the distorted body.

This is described in Appendix I.

5.1 6% circular-arc aerofoil

Solutions to the flow about a 6% circular-arc aerofoil have been obtained
for various free-stream Mach numbers. All the results presented in figures 7
to 10 have been obtained with 102 elements and 868 nodal unknowns spanning
the flow-field.

The surface pressure distribution for a free-stream Mach number of 0.71 is
shown in figure 7. Also shown in figure 7 are experimental results due to
Knechtel (ref.22). Knechtel obtained pressure distributions for a completely
smooth aerofoil for which the boundary layer would have been laminar at
least to the 50% chord point. By introducing roughness just aft of the
leading edge Knechtel also obtained results for which the boundary layer was
turbulent throughout. An examination of figure 7 indicates that the finite
element solution is in good agreement with the experimental solution obtained
with a smooth aerofoil. The shape of the pressure distribution is slightly
different particularly close to the leading and trailing edges. This may be
due to the courseness of the grid at the body surface used to obtain the
computational solution. A consideration of the experimental accuracy
suggests that in an area of rapidly changing pressure such differences
indicated may not be significant.

The surface pressure distribution for a free-stream Mach number of 0.82 is
shown in figure 8. Also included in figure 8 are experimental results due to
Knechtel (ref.22). The experimental results were obtained with a smooth
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aerofoil. As in figure 7 the agreement shown in figure 8 is good. For the
results shown in figures 7 and 8 the flow-field is everywhere subsonic.

The results shown in figures 9 and 10 have been obtained at a free-stream
Mach number of 0.88 for which the surface flow is just sonic at the thickest
part of the aerofoil. The pressure distribution for this case is shown in
figure 9. Experimental results at M_ = 0.88 were not obtained by Knechtel

(ref.22), although an interpolation of the results that are available
suggests that the negative pressure coefficient at the 50% chord point is
larger for the experimental results than it is for the computational results
shown in figure 9. It is likely that the displacement thickness effect has
caused some supersonic flow and this has increased the suction peak. The
corresponding surface Mach number distribution is shown in figure 10 and the
local Mach number at the 50% chord point can be seen to be sonic.

5.2 NACA-0012 aerofoil

Computational solutions have been obtained for the flow about a NACA-0012
aerofoil at free-stream Mach numbers of 0.4 and 0.72. The finite element
solution for the free-stream Mach number of 0.4 has been obtained with a least-
squares formulation and 88 elements and 767 nodal unknowns spanning the flow-
field. This solution is shown in figure 11. Also shown in figure 11 are
experimental results due to Amick(ref.23) and some computational results,
using a finite difference method, due to Emmons (ref.24).

The finite element solutions have simulated an aerofoil in an unconstrained
free-stream. In contrast the experimental results of Amick have not been
corrected for the influence of the wind-tunnel walls and the computational 1
results of Emmons have deliberately allowed for the presence of the wind-
tunnel walls. The discussion in reference 24 suggests the experimental
results of Amick would produce a maximum negative pressure coefficient
approximately 4 to 5% less if the aerofoil were in an unconstrained free-stream.

It is apparent that the occurrence of the stagnation point in the flow-
field and the consequent acceleration of the flow past the nose of the aero-
foil causes a very rapid change in the values of the dependent variables in
the nose region. To obtain accurate solutions this situation requires small
elements in that region and, if the computation time is to be kept within
reasonable bounds requires large elements elsewhere(figure 6). The automatic
mesh generation scheme is the same as that used and described in reference 9
and the above requirements have only been partially achieved. Nevertheless
the agreement with the experimental results shown in figure 11 is good
particularly away from the nose region.

A solution obtained for the flow about a NACA-0012 aerofoil at a free-
stream Mach number of 0.72 is presented in figure 12. These results were
obtained with the least-squares formulation and 96 elements and 837 nodal
unknowns spanning the flow-field. Computational result; for this problem
have been obtained by Lock(ref.25) using the method of Sells(ref.26). Lock
considers that Sells' method is capable of giving results that are accurate
to 1% of the maximum perturbation velocity. A feature of Sells' method is
the mapping of the flow-field onto the interior of a unit circle. This
avoids the problem of applying the far-field boundary condition at a finite
distance from the body. The solution obtained by Sells' method is shown
in figure 12. An examination of figure 12 indicates that the finite element
solution for the pressure coefficient underpredicts Sells' solution
particularly in the nose region. This may be due to not applying the far-
field boundary conditions sufficiently far from the body. A more likely
cause is the courseness of the grid in a region where large gradients are
occurring.




6. COMPARISON OF THE GALERKIN AND LEAST-SQUARES FORMULATIONS

The Galerkin finite element formulation has been used frequently tc find the
numerical solution to flow problems. However, most previous applications of the
Galerkin formulation have been to the full Navier-Stokes equations in incompress -
ible form. In such a situation the viscous terms in the governing equations
play a stabilising role in both the physical and numerical sense. Viscosity
plays no role in the present problem unless artificially introduced (Section 3.3).
Most previous finite element solutions of the present problem have been based on
a variational formulation which leads to a stiffness matrix that is positive
definite.

The application of a Galerkin finite element formulation to the present problem
has led to algebraic governing equations that are algebraicly simple, economical
to create and relatively sparse. In fact the derivation of the coefficients
aij’ bij’ equation (24), in the algebraic equations is precisely the same as that
for the application of the Galerkin formulation to incompressible, inviscid flow
(ref.9).

A problem with the Galerkin formulation arises in relation to finding a
suitable iterative scheme for solving the nonlinear algebraic governing equations.
In the application of the Galerkin finite element method to slow viscous flow
Newton's method has been used with considerable success. Since Newton's method
is completely general it should be effective in the present situation. The first
difficulty that occurred in implementing Newton's method was that the Jacobian
was singular due to the symmetry about the y-axis. To overcome this problem it
was necessary to introduce special equations on the y-axis and on the body. A
second difficulty with Newton's method, and it may be related to the first
difficulty, was that it failed to converge for large numbers of nodal unknowns
even when starting from a solution close to a previously converged solution.

In contrast the least-squares finite element formulation produced algebraic
equations that were more complex, required more computation time to form and were
less sparse than those produced by the Galerkin formulation. However, because
of the positive definite nature of the stiffness matrix the iterative technique
for solving the algebraic governing equations produced no convergence problems.

At intermediate stages of the iterative process the solution was quite smooth
which was in marked contrast to that produced by the Galerkin formulation at
intermediate stages.

It seems reasonable to conclude that since the current problem is dominated by
the non-linear convective terms the choice of the iterative scheme for solving
the non-linear algebraic governing equations becomes crucial. Thus any finite
element formulation that leads to a positive definite stiffness matrix is likely
to have a considerable advantage over any formulation that does not.

7. CONCLUSIONS

The main conclusion of this report is that the least-squares finite element
formulation has been very effective in obtaining solutions to compressible,
inviscid flow and the Galerkin formulation has not. Additional conclusions are
that the use of a primitive variable formulation results in very accurate
solutions and that the combination of using the conservation form of the governing
equations and representing groups of variables rather than single variables leads
to a sparser stiffness matrix and hence a more economical solution. In contrast
to the treatment of slow, viscous flow, the most efficient finite element
solution of the present problem is obtained if each group of variables in the
governing equations is represented by shape functions of the same order.
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NOTATION

F, G vectors of groups of terms appearing in the
equations of motion

; 1 unit matrix
:5 J Jacobian
; L shape function
M Mach number, shape function
MT Mach number at body surface i
N shape function
| R equation residual
| U, free-stream velocity
W vector of nodal unknowns
X vector of groups of terms appearing in the

continuity equation

Y vector of groups of terms appearing in the
momentum equations

a sound speed

@5l B, e Sit s algebraic coefficients in the governing
equations (Galerkin formulation) 3

N order of shape function, number of nodes
P pressure ;
a} vector of nodal unknowns E
r tangential velocity at body surface
| St Rl Ryt SRR D, MR i eming sowlon
S coordinate along the body surface
t time
u velocity component in the x direction
v veloecity component in the y direction ]
X,y cartesian coordinates
a parameter controlling stabilising terms in the

equations of motion; parameter controlling
relative influence of the residuals




S

p

v
Subscripts
fs

nd

Sp

g

WRE-TR- 1858 (W)

specific heat ratio; correction to the

Jacobian

correction vector

scalar in Newton's method
density

velocity potential

free-stream

nondimensional

stagnation point

iteration step

conditionsin the free-stream

nodal value

differentiation with respect to time
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APPENDIX I
FAR-FIELD BOUNDARY CONDITIONS
For most of the results presented in this report the far-field boundary
conditions have been determined by assuming that the body introduces a disturbance
into the flow. Since the disturbance in the far-field is small it is appropriate

to introduce a disturbance potential, ¢ which perturbs a uniform free-stream,
i.e.,

d = U . x +9. (1.1)

For subcritical flow ¢ is governed by

2 2
(T—}T@.g—x?+%;§l= 0. (1.2}

= L
A new coordinate x = (1 - M\)? . x is introduced and the governing equation (I.2)

reduces to Laplace's equation

2
-‘g%e+g—2¥ =S5 3 (I1.3)

For the flow about circular and elliptic cylinders complex variable solutions
(which satisfy equation (I.3)) are introduced and the far-field velocity compo-
nents calculated.

For the flow about acrofoils a continuous source distribution is introduced
along the chord line of the aerofoil. The source strength is proportional to
the local distorted body slope, dy/dx. The source distribution satisfies
equation (I.3). The velocities induced by the source distribution are

1 =
; 2 dy/dx(s)
- 44 = & ’ - : l 1.4
i e ™ f() (xf.s. +i.yg) - s ds. (1.4)

s is the non-dimensional distance along the aerofoil chord. The integration in
equation (I.4) has been performed numerically by dividing up the aerofoil chord
into the same finite elements as are used in the body of the report, and summing
the contributions from each element. Gauss quadrature and an isoparametric
formulation are utilised to perform the integration over each element.

Once the far-field velocity components have been obtained the corresponding
density and pressure are given by

1
pfs = i_l + Li_l_M:o " [1 - (u2fs + vzfs):]} =l (I.5)

and

Pos = B3 = DY e (1.6)

The above linearised solutions have also been used to provide starting data
throughout the domain.
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APPENDIX II

DERTIVATION OF THE ALGEBRAIC EQUATIONS OBTAINED
FROM THE LEAST-SQUARES FORMULATION

After application of the least-squares finite element formulation to
equations (4) to (6) the following algebraic equations are obtained:

@, N l® e | m W e g (m)
Si = Eijirj - (pu)j Sij - GEV)j tij - (pui)j xij : (puv)j + yij
J
—2 . (m) =
(ov )j 255 J} 0
m = 1,3; i = 1,n. (I1.1)

In equations (II.1) the actual expressions for rij etc. depend on which relation-

ship is used to link p to the other variables. If p is related to the density
by the isentropic equation

1+7.Mp = p' (I11.2)

then the following expressions are obtained

(1 _ =
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