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ABSTRACT

This paper concerns two important issues in the design of optimal languages
for direct execution in an interpretive system: binding the operand identifiers
in an executable instruction unit to the arguments of the routine implementing
the operator defined by that instruction ; and binding operand identifiers to
execution variables. These issues are central to the performance of a system,
both in space and time.

Historically, some form of “machine language” is used as the directly
executable medium for a computing system. These languages traditionally are
constrained to a single “n—address” instruction format ; this leads to an excessive
number of “overhead” instrudtions that do nothing but move values from one storage
resource to another being imbedded in the executable instruction stream. We
propose to reduce this overhead by increasing the number of instruction formats
available at the directly executed language level.

Machine languages are also constricted with respect to the manner in which
operands can be “addressed” within an instruction. Usually, some form of indexed
base—register scheme is available, along with a direct addressing mechanism for

H a few, “special” storage cells (i.e., registers, and perhaps the zeroth page of
main store). We propose a different identification mechanism——based on the Contour
Model of Johnston. Using our scheme, only N bits are needed to encode any
identifier in a scope containing less than 2**N distinct identifiers.

Together, these two results lead to directly executed language designs which
are optimal in the sense that: (1) k executable instructions are required to
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implement a source statement containing k functional operators; (2) the space
required to represent the executable form of a source statement contining k
distinct functional operators and v distinct variables approaches F*k + N*v ——
where there are less than 2**F distinct functional operators in the scope of
definition for the source statement, and less than 2**N distinct variables in
this scope. (3) the time needed to execute the representation of a source
statement containing k functional operators, d distinct variables in its domain,
and r distinct variables in its range approaches d + r + k; where time is
measured in memory references.

The work described herein was supported in part by the Department of Energy
under contract no. EY—76—03—0326—PA 39 and the Army Research Office—Durham
under contract no. DAAG—29—76—G—000l .
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1. INTR ODUCT I€~

This report addresses the problem of representing programs for

direct machine interpretation. The obvious inadequacies of present

machine architectures , in terms of program size and execution time,

are well known
1
. Less obvious secondary effects have led to compli—

cated , even Byzantine system structures and inipleiuentations
2
. We con-

tend that this is due to the fact that traditional systems are based

on the premise that the executable machine architecture must be a

fixed and hence universal language. The central thesis of this

research is that having to represent programs in a language that is

fixed , a priori with respect to system design, forces interpretation

to occur at too low a level, places too great a burden on the transla-

tion , and limits the potential efficiency of a system.

It is assumed that programs are initially expressed in a higher

level source language (HLL), which caters to both the user and the

problems that must be solved; but must ultimately be evaluated by a

much lower level processor —— the system’s host machine. Once the

source language and host machine for a system have been selected , the

issue becomes one of determining the most suitable intermediate

Flynn [61, Green [11], Lawson (19], Lunde (20], Weber (29J, and
Wortman [32].

contemporary compilers, linkage editors, and mechanisms for
• recognizing and exploiting parallelism —— Sethi (25], and Wichman

(30].
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Abstract Algorithm

(User]

Source Program (in ELL )

(Compiler]

Intermediate Surrogate (in DEL)

[Interpreter]

Individual DEL Instruction

(Execution Sem~antics]

Host State Transitions¶1,
Figure 1: Evaluation Process

language (or instruction set) for the system —— which we call its

directly executed language (DEL). It is important that this inter-

mediate language preserve as much information concerning the user

environment and original source program structure as is useful in

realizing concise representation and expeditious interpretation (Fig—
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1.1. A Hierarchial Model

Modelling the evaluation process is complicated by the fact that

a computation is actually a hierarchy of interpretations , each level

of which may be far more complex than first apparent. Consider the

sentence : “An algorithm is defined by a collection of tasks (pro-

grams) composed of higher level language statements that are compiled

into sequences of lower level instructions, which eventually cause the

host machine to undergo a series of state transitions”. This

describes the five level hierarchy illustrated below:

Algorithm —— specifies

Tasks —— composed of

HLL Statements —— expanded into

DEL Instructions —— causing

State Transitions in the Host

Hierarchial Structure of a Problem
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Each level represents the program (algorithm) in a different way;

i.e., defines the same process , even though the coding of individual

commands is different. The problem of representing programs in an

efficient manner begins at the upper most level, and is affected by

each of the processes involved in an evaluation. Unfortunately, it is

difficult (if not impossible) to recover from faulty program represen-

tations at higher levels through sophistocated interpretation tech-

niques at lower levels. This is troublesome , since we would like to

minimize both the space needed to represent a program and the time

needed to interpret it. Hence, while the significance of uniform for-

mal techniques for defining ideal program representation and interpre-

tation should not be underestimated , this report focuses only on the

three lower levels of the hierarchy? it is simply assumed that

algorithms are expressed efficiently at higher levels.

1.2. Programs , Instructions , and Computations

At any level of the hierarchy, a program may be defined as a fin-

ite set of labelled Instructions {I). Each instruction specifies a

pair of rules: an action rule A; and a sequencing rule S. The compu—

tation produced by executing a program is defined in terms of a

p 
sequence of states where each state denotes a specific assignment of

values to program objects. Each action rule defines a function (or

operator) f, which takes some number of arguments (dependent on its

order) and maps them into (usually) a single result —— arguments and
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results are , collectively, called operands.

The number of operands in an instruction 1
k is fixed and deter—

mined by 
~k
’ Action rules are often expressed algebraically —— e.g.:

fk
(x
k,1, X k 2 ~ ~~~~~~~ 

x k f l
)

(where a, called the order of 
~k’ 

is the number of arguments required

by 
~k~

• The number of different functions that can be specified by an

instruction set is Its vocabulary , or operator set. In general pur—

pose computers, the order of these functions rarely exceeds two, with

at most one result being produced.

Each sequencing rule S
k 
defines the successor to the kth Instruc-

tion whenever it is executed . In most familiar computer organiza-

tions, sequencing is a simple operation —— each instruction having

only a single successor. Howpver, specific instructions may require

inspection of several arguments before it can be determined which o~

several possible successors is correct —— e.g., as in the familiar

conditional branch instruction.

1.3. Identifiers and Name Spaces

An additional aspect of computation concerns the means by which

program objects —— the arguments or result of action rules —— are

identified. In general, names are used as surrogates for objects ——
which are associated with specific values by the current state of a
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computation. It is useful to distinguish between the logical name of

an object , and the specific encoding of that name appearing In a given

instruction —— commonly called an identifier.

When an action rule Is applied , the encoded names within its

instruction must be associated , or bound , to the appropriate program

objects. This process is called referencing. The set of names for

all objects referenced during a computation is called the process name

space; the set of all identifiers appearing in a program Is called the

program name sp~ce. It is important to distinguish between these two

concepts: the name space of a process is generally data dependent ,

and dynamic in nature; the name space of a program is defined by its

encoding, and is fully static. Users relate the observable but low

level results of executing a program (i.e., the sequence of host

machine states produced ) to source level semantics through a mental

association established between the source level name space and the

host name space. The complexity —— and accuracy —— of this mapping

-A
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7

determines the ultimate transparency of a system.

2. TOWARDS IDEAL PROGRAM REPRESENTATIONS (8]

By what criteria should program representations be judged?

Clearly, an efficiency measure should lie In some sort of space—time

product involving both the space needed to represent an executable

program and the tIme needed to interpret it; although other factors ——
such as the space and time needed to create executable representa-

tions, or the space needed to hold the interpreter —— may also be
important. This report considers only the space and time needed to

represent and execute a program.

2.1. Canonic Interpretive Forms

Characterizing “ideal” program representations can be either

trivial or extremely complicated , depending on one’s point of view.

Neither extreme offers significant insight into the problems at hand ,

however. It is therefore imperative to develop constructive space—

time measures that can be used to explore practical alternatives.

Although these measures need not be achievable, they should be satis-

fied only by clearly superior representations, easy to define , easy to

use, and in clear agreement with both a programmer’s intuition and

pragmatic observations. We propose the following canonic interpretive

form, or CIF, as a measure of Statement representation in a high level 
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programming language.

I:! Property
Instructions —— one CIF instruction is permitted for each non—
assignment type operation in a ELL statement.

Name Space —— one CIF name is permitted for each unique
3 HLL name in

a HLL statement.

Property

Instructions —— each CIF instruction consists of:

A single operation identifier of size [log (F)]
4
; and o~e or more

operand identifiers , each of which is of she [log 2
(V)]

Referencing Property

Instructions —— each HLL procedural (program control) statement
causes one canonic reference.

Name Space —— one reference is allowed for each unique variable or
constant in the HLL statement.

Space is measured by the number of bits needed to represent the

static definition of a program; time by the number of instructions and

name space references needed to interpret the program. Source pro-

grams to which these measures are applied should themselves he

31.e., distinct name in the HLL statement ; “A A+1” contains two
unique names —— the variable “A” and the constant “1”.

is the number of distinct jILL operators in the scope of definition
for the given HLL statement.

is the number of distinct }ILL program objects —— variables, labels,
constants , etc. —— in the relevant scope of definition

__ _ _
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efficient expressions of an optimal abstrac t algorithm —— so as to

eliminate the possible effects of algorithm optimization during trans—

• lation —— such as changing “X = X/X” to “X — 1.”

Generating canonic program representations should be straight

forward because of the 1:1 property. Traditional three address archi-

tectures
6 
also satisfy the first part of this criteria , but do not

have the unique naming property.

For example, the statement “X = X + X” contains only one unique

variable, and hence can be represented by a single CIF instruction

consisting of only one operation identifier and one operand identif—

ier. The three address representation of this statement also requires

only a single Instruction , but it would consist of four identifiers

• rather than the two required by the CIF.

There may be some confusion as to what is meant by an “opera-

tion”. Functional operators (+, — , *, I, SQRT , etc.) are clear

enough ; however, allowance must also be made for selection operators

that manipulate structured data. For instance, we view the array

specification “A(t,J)” as a source level expression involving one

operator (two dimensional qualification) and at least three operands 

61.e., instruction sets of the form O P X Y Z  —— where OP is an idea—
tifier for a (binary) operation ; X the left argument; Y the right
argument ; and Z the result.
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H (the~~~~~y A, and its subscripts I and J). Therefore, unlike the pre—

vious case, the canonic equivalent of “A(I,J) — A(I ,J) + A(I ,J)”

H requires two instructions —— the first to select the proper array ele—

meat , and the second to compute the sum. Thus:

1 Example 1: X X + X  J +  X 

-

Example 2: A(I,J) = A(I,J) + A(I,J ) @ A I ~ I Afl.]

• 
• • j +  1~ ]

The .operator “@“ computes the address of the doubly indexed element

“A(I,J)”, and dynamically completes the definition of the local idea—

tifier “A1~ ” . This identifier is then used in the same manner as the

identifier “X” is used in the first example.

We count each source level procedural operator , such as IF or DO,

as a single operator. The predicate expression of an IF must , of

course , be evaluated independently if it is not a simple variable

eference. Distinct labels are treated as distinct operands , so

that:

• Example 3: IF (X—Y) 10,20,30 L- x ~

[IF 10 J 20( 30
Two accesses to the process name space (references) are required

to execute the first example: one to fetch the value of X as an argu—
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ment , and one to update its value as a result of executing the state-

ment. In example two, four references are required : one each to

fetch the values of I and J for the subscripting operation ; one to

fetch the value of A1~ as an argument; and one to up
date the value of

this array element after execution. Noee that no references are

required to access the array A, even though it appears as an operand

of the @ function —— in general, no single identifier in a CIF

Instruction can cause more than one reference unless it is bound to

both an argument and a result, and then it will initiate only two

references. No references are needed for either example just to main-

tain the instruction stream, since the order of execution is entirely

linear
7. The 1:1 property measures both space and time, while the

log2 property measures space alone, and the referencing property

ures time alone. These measures may be applied either statically or

dynamically —— although static reference counts are strictly compara-

tive, and hence of limited value.

The 1:1 property defines, in part , a notion of transformational

completeness —— a term which we use to describe any intermediate

language satisfying the first canonic measure. Translation of source

programs into a transformationally complete language should require

neither the Introduction of synthetic variables, nor the insertion of

7The assumption here is that such reference activity can be fully
overlapped since it is so predictable.

L _ _  _ _ 
_ _
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non—functional memory oriented instructions . However, since the

canonic measures described above make no allowance for distinguishing

between different associations of identifiers to arguments and

results, it is unlikely that any practical language will be able to

fully satisfy the CIF space requirements.

2.2. Comparison of CIF to Traditional Machine Architectures

Consider the following three line excerpt from a FORTRAN

subroutine:

1 1 = 1 + 1
2 J = (J_ 1)*I
3 K = (J_ 1) *(K_I )

Assume that I, J, and K are fuliword (32 bit) integers whose initial

values are stored in memory prior to entering the excerpt , and whose

final values must be stored in memory for later use before leaving the

excerpt. The canonic measures for this example are:

to hold the results of intermediate computations, or move data
about within the storage hierarchy merely to make it accessable to
functional operators.
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CANNC)NIC MEASURE OF THE FORTRAN FRAGMENT

Instructions

Statement 1 —— 1 instruction (1 operator)
Statement 2 —— 2 instructions (2 operators)
Statement 3 —— 3 instructions (3 operators)

Total 6 instructions (6 operators)

Instruction Size

Identifier Size

Operation identifier size = ~log2 41 — 2 bits
(operations are : +, —, *, — )

Operand identifier size = flog2 41 — 2 bits
(operands are: 1, I, J, K)

Number of Identifiers

Statement 1 —— 3 identifiers (2 operand , 1 operator)
Statement 2 —— 5 identifiers (3 operand , 2 operator)
Statement 3 —— 7 identifiers (4 operand , 3 operator)

Total 15 identifiers (9 operand , 6 operator)

Program Size

• 6 operator identifiers x 2 bIts = 12 bits
9 operand identifiers x 2 bits = 18 bits

Total 30 bits

References

Instruction Stream —— 1 reference (nominal)
Operand Loads —— 9 references
Operand Stores —— 3 references

Total 13 references

I.
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The following listing was produced on an IBM System 370 using an

9optimizing compiler

1 L 10,112(0,13)
L 11 ,80(0,13)

• LR 3,11
A 3,0(0,10)
ST 3, 0(10)

2 L 7 ,4(0 , 10)
SR 7,11
MR 6 ,3
ST 7 ,4(0 , 10)

3 LR 4,7
SR 4,3
LCR 3,3
A 3,8(0,10)
MR 2 , 4
ST 3,8(0 , 10)

A total of 368 bits are required to contain this program body (we have

excluded some 2000 bits of prologue/epilogue code required by the 370

• Operating System and FORTRAN linkage conventions) —— over 12 times the
space indicated by the canonic measure. Computing reference activity

in the same way as before, we find 48 accesses to the process name

space are required to evaluate the 370 representation of the FORTRAN

excerpt. If allowance is made for the fact that register accesses

consume almost no time in comparison to accesses to the execution

store, this count drops to 20 references —— allowing one access for

9FORTRAN IV level H, OPT — 2 , run in a 500K partition on a Model 168,
June 1977. I 

• • •~ •~~~ ~~~~ • • • •
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each 32 bit word in the instruction stream.

The increase in program size, number of instructions, and number

of memory references is a direct result of the partitioned name space,

indirect operand identification , and restricted instruction formats of

the 370 architecture. In order to facilitate the discussion at this

point , it is useful to define [6] three general classes of instruc—

tlons:

M—instructions, which simply move data items within the storage
hierarchy (e.g., the familiar LOAD and STORE operators);

P—instructions, which modify the default sequencing between instruc-
tions during execution (e.g., JUM P, BRANCH and LINK operators);

• and

F—instructions, which actually perform functional computations by
assigning new values to result operands after transforming the
current values of argument operands (e.g., all arithmetic , logi-
cal, and shifting operators).

Instructions that merely rearrange data accross partitions of a

memory name space , or that alter the normal order of instruction

sequencing, are “overhead” in the sense that they do not directly con-

tribute to a computation. The ratio of these overhead instructions

(i.e., M— and P— type instructions in our terminology) to functional

instructions (F—instructions) is indicative of the use of an architec-

ture. Overhead instructions must be inserted into the desired

sequence of F—instructions to match the computational requirements of

the original program to the capabilities of the machine architecture.

Statically, M—instructions are by far the most common overhead
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instructions —— indeed , they are the most common type of instruction

in almost all existing machines. Dynamically, however, P—instructions

become equally significant.

The table below illustrates the use of ratios for the foregoing

example.

COMPARISON FOR THE EXAMPLE

370 FORTRAN —IV
(level H extended) CIF

optimized non optimized

No. of Instructions 15 19 6

M—type Instructions 9 13 0

F—type Instructions 6 6 6

fl—ratio 1.5 2.7 0

• Program Size 368 bits 604 bits 30 bits

Memory References 20 36 13

L
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3. DEL SThTHESIS

This section addresses the problem of designing high performance

DEL’s. We focus on three particular areas :

Sequencing, which has two aspects ——
a. Sequencing between actions (program control).
b. Sequencing within an action (context).

Action Rules, which also have two aspects ——
a. The format or transformation used by the rule.
b. The operation invoked.

Name Sp~ce, which addresses two issues ——

H a. Name structure —— the syntax and semantics of identifiers.
H - b. Name environment — — referencing of variables and opera-

tors.

Each of these areas will be reviewed following a statement of

term definition and assumptions.

3.1. Terms and Assumptions

In order to synthesize simple “quasi—ideal” DELs, let us make

some obvious assignments and assumptions.

* The DEL program representation lies in the main storage of the
host machine

* The interpreter for the DEL lies in a somewhat faster , smaller
interpretive storage. The interpreter includes the actual inter-
pretive subroutines as well as certain parameters associated with
interpretation.
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* Only a small number of registers exist in the host machine that
can be used to contain local and environmental information associ-
ated with the Interpretation of the current DEL instruction.
Further, it is assumed that communications between interpretive
strorage and this register set can be overlapped (Figure 2(a)).

DEL DEL DEL

INSTRUCTI ON INTERPRETER PROGRAM

EN VIR ON MENT

PROCESS DEL

ENVIRONM EN T VARIABLE
REGISTERS

• SPACE

MICRO STORE
MAIN M~~(ORY

INSTRUCTION FUNCTION & PROGRAM
EN VIRONMENT SCOPE ENVIRONMENT

Figure 2 ( a ) :  DEL/Host Storage Assignment

L .~ _ • 
_ _ _  

_ _ _ _ _ _
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An instruction is a binary string partitioned into identifiers

under action of the interpretive program. An identifier is an element

of the vector bit string specifying one of the following :

i. format and (Implicitly) the number of operands

ii. the operands

iii. operations to be performed (of at most binary order) on the
identified operands

iv. sequencing information, if required.

A format is a rule defining :

i. the instruction partition (i.e. number and meaning of iden-
tifiers).

ii. the order of the operation (i.e., whether the operation is
in nullary, unary or binary).

iii. precedence among operands (i.e., binding of operand identif—
• iers to functional operands).

• In this report , it is assumed that DEL instructions are use

ordered —— i.e., that the internal sequence of identifiers within an

instruction is the same as the sequence in which these identifiers

will be required during interpretation. The 370 architecture is not

use ordered , since the format/operation code appears before operand

identifier information. This forces the interpreter to “save” the

operation code during computation of effective addresses —— wasting ,

at least temporarily, a scarce host register.

The size of an identifier is the width of the field it occupies

within an instruction. It is determined by the number of elements

I
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required in a locality ; the structure of a typical DEL instruction is

illustrated in Figure 2(b).

OPERATION IDENTIFIER

~~~~~~~~~~~~~~~~~~~~~~~~~

OPERAN D IDENTIFIERS

I- INTERFACE IDENTIFIER

Figure 2(b): Layout of a Typical DEL Instruction

3.2. Sequencing Rule

Usually, a program consists of a sequence of action rules. The

sequecing rule provides the ordering relation among the action rules

—— i.e., it defines the sequence of the action. While it is possible

• to conceive of DEL’s with unordered action rules (no sequence rule),

this form is of little value.

3.2.1. Sequencing Between Actions

In practice only a few sequencing rules have been used with any

degree of success. We consider the following three rules:

• ~~~~~~~~~~~~~~~~~~ •~~ • • • • •~~~~~~~ • • .~• • , - ---~~~~~~. . • • -  ~~~~~~
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• Linear: individual instruc tions are stored In a one dimensional array
within the main store. Execution order is the same as the array
ordering unless modified by a branch instruction.

• Binary Tree: instructions are mapped into the nodes of a tree struc-
ture maintained in main store. Leaf nodes normally correspond to
data references; ancestor nodes to semantic functions. A standard
traversal algorithm defines the default order of execution , which
can be modified by visiting a branch node.

Linked List : Instructions are stored at the links in a chain structure
maintained in main store. The default execution order is again
specified by a traversal algorithm , and can be modified by the
semantics associated with the most recently visited link.

These three forms are abstracted from well known programming

s t ructures .  Most t radi t ional  machine language DELs are based on a

linear form. Tree form are widely used as intermediate data struc-

tures by compilers. Linked lists are the fundamental  program and data

s t ructures  for  LISP and PPL (McCarth y [21] ,  and Standish [ 2 6 ]) .  Tree

and list data s t ruc tures  are widely used in the algorithms employed in

a r t i f i c i a l  intelligence and information retrieval app lications. Fig-

ure 3 i l lus t ra tes  program representat ions in the linear , tree , and

list forms.

The particular DEL organization used in these examples is arbi—

trary, for purposes of illustration only, and is not necessarily

optimal. Similarly, neither the operators nor data structures are

completely specified ; they should be assumed to have the same general

interpretation for all three DEL forms. These fragments are con—

structed so that the order of execution will be identical (i.e., the

sequence of functional operations and storage accesses will be the

L_ 
_ _ _ _ _ _ _ _ _ _
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same).

Figure 3: Three Representations of “ I — J * ( K + L 
~

(a) —— Linear push @1
• push J

push K
• push L

+ (add)
* (multiply)
= (assign)

(b) —— Tree { = )
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3.2.1.1. Linear Forms :

• The sequencing rule for a DEL governs the way in which control is

• 
• passed from one instruction to another. If a linear form is used , for

example , the normal sequence of execution is implied by the placement

• of DEL instructions within the main store. A program counter is usu-

ally maintained within the interpreter , as part of the DEL program

• status vector , which points to the word containing the next DEL

instruction to be executed . When the contents of the current instruc-

tion word are interpreted , the word pointed to by the program counter

is fetched , the counter incremented appropriately, and execution con-

tinues. Interpreting a branch instruction causes the DEL program

counter to be loaded with a new address that points to the next

instruction to be executed. The set of branching instructions in a

DEL is not confined to the simple GOTO, but may also include more com-

plex program control operators such as CALL, RETURN , DO, and IF—THEN—

ELSE.

Since the default sequencing rule for a linear DEL is to simply

process the instruction stored “immediately after” the one just exe-

cuted , there is a good match between this form and cyclically address-

able main stores. This can be exploited by carefully packing DEL

instructions so that the essential fetch and sequence steps within the

basic cycle of interpretation can be Implemented efficiently. This

can almost always be achieved with minimal execution time overhead

-I
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using only elementary shift and increment capabilities.

The natural ordering of addressable storage cells can be used to

induce a defaul t order of interpretation , thus eliminating the need

for explicit sequencing of pointers in linear segments of DEL code.

As individual instructions are more highly compressed , fewer main

store accesses are required to maintain a given DEL instruction

stream. For example , suppose that each instruction in a linear DEL

contains the address of its successor as an explicit subfield. An

interpreter would sequence through instructions by fetching the suc-

cessor address from the instruction just executed , and then obtaining

the next instruction to be executed from that address in main store.

No internal program counter need be maintained unless relative branch-

ing is required .

This DEL could be made more efficient by eliminating explicit

successor addresses within instructions that do not cause a branch out

of the normal linear order. An interpreter for this new DEL must

maintain an internal program counter that is updated by the length of

the current instruction during each cycle of interpretation. However ,

program representations will be smaller —— and should be faster ——

than those of the previous DEL , assuming that main store is suff I—

ciently slower than micro store.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..fl. .~~- -• • —- .- - -  - - - ~- • • •----~ -~~ — • - • .~~~~. A
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3.2.1.2. Tree Forms:

Tree structures are used by many compilers as an intermediate

form from which the final, executable code is generated. Intuitively ,

ancestor nodes refer to operators (non—terminals in the source

language syntax), while leaf nodes refer to variables (syntactic ter-

minals). The operation code associated with a node is combined with

two or tree pointers to form a unit of fixed , uniform size. These

units constitute the phywical realization of a tree structure within

the main store of the host machine. The units for a binary tree DEL

need contain only two pointers in a minimal realization: (1) the

address of the unit for the left descendent of a node; and (2) the

address of the unit for its right descendent.

Unit Address — —>
Left Descendent Address > <uni t )

Right Descendent Address > <unit)

DEL Operat ion Code

Figure 4: Typical Binary Tree Unit

The left and right descendents of an ancestor node which is associated

with a binary operator correspond to its left and right operands,

respectively. Usually, the operators in a DEL are binary if a tree

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~. • •~~~~~~~~~~~~~ _~~~~~~~~~~~~~
-
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struèture form is selected —— unary operators are treated as degen-

erate binary operators , with null right descendent pointers. Some

auxiliary pointers (usually to the ancestor of a node) may be included

to facilitate tree traversal, however.

Perhaps the most widely used traversal strategy is “depth first ,

left to right postorder” —— meaning that a node is executed only after

both its left and right descendents have been evaluated . Under this

rule , successive left descendents are visited until a “left value” Is

computed , then the right descendent is visited (Knuth [18]). Only

after both the left and right values of a node are known will the node

itself be visited . Finding the unit for a successor node is a simple

matter , at least when traversing downward . Only a primitive load

operation is required at the micro level to extract the address of the

proper descendent unit , so DELs based on a tree form are easily inter-

preted by a wide range of microprogrammable hosts.

There is a significant problem with the obvious implementation of

this algorithm , however: the interpreter must maintain a stac k of

pointers to nodes that have been visited , but not yet executed.

Entries in this stack are the addresses of units associated with non—

terminal nodes that must be reexamined after computing the values of

lower level nodes. Maintaining this stack enlarges the interpreter

state and complexity. The need for this stack can be eliminated , at

the expense of DEL program space, by including a “back pointer” in
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each unit that is the addres8 of immediate ance8tor.

One potential advantage of tree DELs is that they are easy to

modify incrementally —— i.e., a surrogate can be made to reflect small

changes at the source level without a full recompilation. The new

subtree produced by recompiling only the affected portion of the

source program. This usually requires that program control transfer

points and DEL variables be identified by node rather than address,

and may also necessitate a run time “garbage collector” to reclaim the

holes left by excised DEL code.

Another potential advantage is that the interpretation of a sub—

tree can be bypassed during an execution if either: (1) the value

• computed the last time its root node was visited is retained in the

root’s unit; and (2) none of the values associated with the leaves of

the subtree has been modified since the root was last visited . In

• 
• order to obtain this advantage, though, a complex tagging scheme to

mark the validity of the values stored in ancestor units may be

needed. Unfortunately, the overhead of such a tagging scheme

(incurred each time a node is visited), together with the time

required to store the last computed values, may be greater than the

time saved by escaping the evaluation of some subtrees. It is not

easy to evaluate the tradeoffs involved , though, since adequate

statistics are not easily obtained . This strategy at least offers the

possibility that tree DELs can be developed which are effectively more

IiL ~.~~• •
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compact and more efficient to interpret than linear DELs.

3.2. 1.3. List Forms:

The simplest examples of linked lists look much like unary or

binary trees; in fact , most of the above tree related comments are

equally applicable to linked list DELs. However, the links within a

list (its nodes) may be their own ancestors —— i.e., cycles are
allowed. Again, Instructions are associated with the links in a list

representation. They contain a pointer to a successor link, and

either an atomic value or a pointer to a value link. A unique

pointer , NIL (“0” in Figure 3(c)), is used as the successor pointer in

such terminal links.

This classic definition is easily extended to cover lists in

which links may reference multiple successor or value cells, thus

reducing the number of links needed to represent complicated control

and data structures. Traversal usually proceeds by value first , then

successor —— analogous to depth first , left to right pos~order tree

traversal.

Because of their generality , linked lists are not easily address

encoded. While the relative spatial cost of link pointers depends on

the average size of a DEL instruction ; a linked list DEL almost always

requires more space than an equivalent linear form DEL, barring exten—

sive factoring of common subllsts. However, the marginal cost of

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .•~~~~ - - • • -••
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incorporating additional address references is low for a linked list

DEL representation , and hence it is comparatively easy to J.mplement

complex operators that do not easily fit in the binary operator order.

For example, the target of any branch can be directly encoded as

one of the successor pointers in its link unit , and need not be

treated as an indirect operand . This is not always possible in a tree

DEL, since cycles are not allowed. The flexibility of a linked list

form can also be exploited by linking units in precisely the order Ic

which they should be interpreted during execution. By converting the

linked list in Figure 3(c) into a polish suffix form , for example,

backtracking during interpretation could be eliminated. This reduces

both the internal state size and complexity of the interpreter , but is

not compatible with the factoring technique described above.

In most cases, the pointers required by tree and list structures

makes them less desirable than the linear array as a potential DEL

form: both because of the space these pointers occupy , and because of

the extra main store access needed to determine the location of suc-

cessor instructions. It is usually far faster to increment a DEL pro—

gram counter (normally maintained in a host register) than to fetch an

address from main store. Unless the flexibility of tree and list

forms can be exploited in an innovative manner , the spatial and tem—

poral overhead associated with this single negative aspect may be of

overriding importance in selecting the form for a DEL.
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3.2.2. Sequencing Within an Action : Context

Defining a sequence rule within an action is primarily a problem

of exploiting execution context during an action rule interpretation.

Context information may be used to significantly improve action rule

representation at the expense of some additional complexity in the

interpretation process. We consider five distinct types of context.

3.2.2.1. Mo Dependencies

The simplest program representations involve no dependencies , and

an example of such DELs is “threaded code” —— in which each field

occupies a full word of storage, and is itself a direct pointer to

either a cell in the DEL data store (operand references) or to a

semantic routine In micro store (operator references). This straight

forward encoding may In fact be optimal if the host has little or no

field extraction capability , since each syllable starts on a word

boundary and need not be processed before use during interpretation.

Threaded code programs are similar to highly subroutinized host

• programs in which there is one subroutine for each semantic routine

within the threaded code interpreter. However , CALL and RETURN opera-

tors are omitted in the threaded code , which reduces its program store

requirements; the interpreter performs the function of the deleted

operators. Operands are usually passed as in—line vectors of

addresses , and operations indicated by explicit micro store addresses ,

-J
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though, just as arguments are imbedded in the calling sequences of a

host machine.

The time needed to fetch a threaded code instruction , in main

memory accesses, is k+1; where k is the average number of operands per

instruction. If we let b denote the number of bits per word of

storage, then the space required to represent a threaded code instruc-

tion is b * (k+1).

3.2.2.2. Memory Dependencies

Given a word oriented host, we view instructions as fixed length

“records” containing a fixed number of subfielda at known boundaries.

In this case, use ordering is of minimal importance , since the syll-

able positions are always known. Selecting an optimal instruction lay-

out is basically an alignment problem ; instructions should be stored

on bit addresses that minimize the number of main store accesses

required to extract critical fields. This problem is examined from

the perspective of the computer architect in Flynn and Henderson [7].

Their analysis can be applied directly to the DEL synthesis prob-

lem, although there are fewer free variables in this case since the

host machine is an assumed given. The relevant result is an analytic

expression for the average number of accesses required to retrieve a

group of F characters with character address I into a record of length

L.

_ _ _ _ _
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< —  Record 1 —> ~~~~~~~~~~~~~~~~~~~~~
— Record 2 —>

boundarIes ~ <— F b i t s  — > $  ~cz— F bi ts  —). I
I I I  I 

x I x I

I KEY f ie ld  KEY f i e ld
Starting

Address I 

n b i t s  >

H

Ph ysical Memory Word

Figure 5: Accessing KEY Fields in DEL Ins t ruc t ions

The group of F characters can be thought of either as an entire

DEL instruction —— in which case the notion of a record also

corresponds to an instruction —— or as a critical syllable (e.g., the

KEY code) within an Instruction. In the latter case , the instruction

is Itself the L character record. If each main store access retrieves

n characters of data , the number of accesses needed to fetch the crit— 
•

ical portion of an instruction is

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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r F l  ~~~Accesses — — + — 1
n {L ,n}

n/U, n }

where: f = F Mod a (least positive residue ; i.e., x Mod x — x),t— L Mod n (least positive residue); I — I Mod (1,n}(least resi-
due , including 0), and {e,n}— greatest common divisor of -~~ and n.

Although formidable in appearance , this equation is not difficult

to interpret. Clearly, the number of accesses required to fetch a DEL

instruction of length F from a unit of length L will be either IF/ni

or IF/ni + 1, depending on the number of word boundaries crossed.

This is determined by the starting address of the instruction. The

second term is an analytical representation of the average effect of

this placement, assuming that fields occupy integral multiples of the

basic storage quantum (e.g., eight bit bytes for a 360/370 environ-

ment). While this is a reasonable assumption for a machine designer ,

character size is often a free variable to the DEL designer (Hoevel

and Wallach (13]).

If the host is strongly biased toward a particular character

size, then it is probably best to use this as the basic storage quan—

tum for DEL encodings. If the host is unbiased , however, the size of

a character should be selected to minimize F/n. The Flynn—Henderson

equation shows that it is best to start instructions on character

addresses that are integer multiples of {L,n). In this case, the time

needed to fetch a typical DEL instruction, in main storage accesses,
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is:

f -

Access Time = IF/n i +
n

while the space needed to represent it is:

Program Size = ~ * b/n = w * (k+1) bits

As above, k is the number of syllables that must be fetched and

decoded to execute the entire instruction , and b is the number of bits

per word; w is the average number of bits per syllable.

In most cases F is less than n, and so the average fetch time is

minimal when F is minimized —— i.e., when pointers and/or instructions
occupy as few characters as possible. Decoding algorithms for this

type of DEL are usually straight forward. Since instructions are word

aligned , the exact bit offset of each subfield is known, and decoding

is at worst a simple combination of mask and shift operations.

In some cases, special features of the host can be exploited

such as the transform board capability of the CDC 5600 series, which

allows the contents of a micro register to be “exploded” (i.e., dis-

tributed accross several other micro registers in a single micro

instruction). This board must be physically rewired for each such

explosion desired , however , and cannot be changed dynamically during

an emulation (Control Data Corporation [4]).

L
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3.2.2.3. Inter Instruction Dependencies

Both the sequence in which instructions are encountered and their

placement can affect their interpretation for certain DELs. The pri-

mary reason for selecting a form with inter instruction dependencies

is to minimize the size of a typical DEL program , and thus Indirectly

reduce the average fetch overhead. Since a relatively large space

penalty is usually incurred when a tree or list sequencing rule is

used , these forms are most often applied to linearly sequential DELs.

• To exploit the similarity between integer addressable stores and

• locally sequential program structure , a design permitting multiple DEL

instructions to be placed in a single word of storage must be devised.

Minimizing the size of individual DEL instructions is quite important

here, although if an execution time advantage is to be realized the

encoding must be simple to recognize and decode.

Usually , the DEL program state vector is augmented so that the

interpreter can remember unused , but previously fetched portion of the

DEL instruction stream. Specifically , a residual control cell called

the current instruction word (1W) is needed. This word contains those

bits in the DEL instruction stream that were brought into host storage

registers during the last instruction stream access to main store, but

which have not been decoded .
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This type of dependency is most effective for hosts with wide

storage resources and a large ratio between main and micro store

bandwidths. To a first approximation , if an average of m instructions

can be packed into a single word , the time needed to fetch a given

ins t ruct Ion stream may be reduced by a factor of m compared to a fully

independent technique .

Interpreters for instruction stream dependent DELs must maintain

at least two elements of residual control: a DEL program counter

(PC); and current instruction word (1W). If full prefetch is imple-

mented , and additional resid~~1 control cell is needed —— a successor
instruction word (SW). The interpreter attempts to maintain the next

word of ins t ruct ion stream bits in SW (i.e., keep SW equal to the con—

tents of the successor to the word last loaded into the 1W). When all

of the bits in the 1W have been decoded , its contents are replaced by

the contents of SW, the PC Is updated , and most of the time needed to

transfer instruction words from main store into the internal resources

of the host to be overlapped , but this implies that the PC, 1W , and SW

must be maintained in the fastest storage resowrce (i.e., host regis-

ters). Use ordering of syllables is important in a strongly context

dependent DEL, since such a large fraction of the micro level storage

resources must be dedicated to maintaining the DEL instruction stream.

For example, decoding an operator specification prior to the

specif icat ions of i ts operands (as in the natural  sequence of

• ~~~~- -~~~ -• ~~ •~~ •~~-~- • . 
-
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interpretation for the 360/370 architecture) forces the interpreter to

store the operator code across the operand fetch portion of the

interpretation cycle. This both lengthens execution time and

increases interpreter size. Also, instructions need not be word

aligned. This means that it may be more difficul t to decode the syil—

ables , since it can no longer be assumed that they are aligned on

specific address boundaries.

If the host has a register ~~~~ shift capability , a K bit inter-

nal field extraction may be accomplished by register pair shifting K

bits from the retained instruction stream word into a previously

• cleared index register (IX). If the host has only a single word shift

capability, then both a mask and shift are required . Both of these

techniques are illustrated below.

Double Shift Technique Mask and Shift Technique

Index Word Instruction Word Index Word Instruction Word

100001 a b c d  I o o o o j  
~ 

a b c d l

• • Shift Direction >

L~ o o o 1  I b c d O I  After 
I 

o o o o~ I 0 d c b
~~

Figure 6: Before and After Snapshots of a Syllable Extraction

_______________________ I
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In this diagram , lower case letters denote specific codes for indivi—

dual syllable codes , and the “mask” is zero except at bit positions

occupied by the syllable code being extracted (i.e., “a”). Although

shift direction Is critical in the register pair shift technique , it

is easy to develop a mask and shift strategy for hosts posessing only

a single left circular shift.

3.2.2.4. Memory Mapping and Word Boundary Dependencies

For the moment , assume that a DEL instruction consists of a

• sequence of as yet undifferentiated syllables. These syllables may be

of a single , uniform width (often the case for polish DEL5), any of a

fixed number of different widths , or even of dynamically varying

widths. Consider the following three strategies for coping with these

• possibilities :

i. Dynamically concatenate successive words in the DEL program
store , in effect creating a “bit stream” memory.

ii. Code the fact that the next n syllables lie within the current
instruction word as part of the semantic interpretation of the
first (or last) syllable in the instruction.

iii. Reserve one syllable code (usually all zeroes) to signify “end
• of instruction word” —— i.e., that the current instruction

word is exhausted (i.e., has been interpreted), and a new
instruction word fetch is required.

The first technique is used in the Burroughs S—language implemen—

tation for the B1700, a defined field host capable of accessing arbi—

trary sized fields at bit addresses. By packing DEL instructions at
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the bit level means that “every bit is fully utilized”, and “appears

to account for half of all the program compaction which has been real-

ized on the BI700” (Wilner (31]).

There can be a high interpretation tIme penalty associated with

frequency encodings, however, since several sequential levels of

decoding may be required to correlate a syllable code with the proper

semantics. Wilner outlines an “SDL” encoding that is claimed to

obtain most of the compaction resulting from Huffman’s code [14),

while still permitting reasonable decode times. The resulting polish

form instructions are about thirteen bits in length (averaged over

both operator and data instructions), and require a maximum of three

stages of decode. Wilner estimates that a pure Huffman code would be

fourteen per cent slower to decode , but would only reduce the size of

a typical surrogate by one per cent.

These time estimates may be unique to the B1700 and the specific

interpretation algorithm used to process the S—languages. Although

Wilner claims only a 2.6 per cent slow down from a straight n—way

binary code to a 4—6—10 staged encoding , the manner in which this is

computed is not clear. It may be that little or no retention is used

by S—language interpreters, or that instiuction fetch time is included

in the computation of decode time —— which would certainly tend to

equalize differences between various techniques. Decoding SDL codes

on an ~ IMY (24] based system would require more than double the time

L. • • • • ~~~~.
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needed by a simple n-way binary code. This is equivalent to more than

40 per cent of a typical instruction execution ; if a pure Huffman code

were used , this factor could register pair again. At least some

direct hardware assistance appears to be necessary for this technique

to achieve high performance.

The second strategy is nothing more than the familiar fixed field

organization used by most second and third generation “machine

languages”. Once the first few bits of such a DEL instruction have

been decoded , the exact length and placement of all the subfields

within that instruction can be determined . In this case, the Flynn—

Henderson equation can be used to adjust the overall length of the

various Instruction types so as to minimize the time needed to fetch a

given instruction stream —— i.e., minimize the time needed to access
the critical fields that define the transformations to be performed .

An interesting variation of this scheme is used for CRIL (15], in

which the semantics associated with the operation defined by an

instruction specify whether or not the next instruction to be executed

lies within the same word of storage as the current instruction. In

general, the successors to arithmetic operations lie in the same word,

while successors to conditional branches lie in the storage word at

the next higher address (assuming the branch is not taken —— see ICL

(15]). The 360/370 “fixed format” inner form results in an average

instruction size of about 24 bits; the ICL approach reduces this to

• ~~~~~~~~~~~~~~~~~~~~ _
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about 20 bits , while maintaining the same relative instruction set

capability.

The last technique was developed independently during the syn-

thesis of DELtran (Hoevel (12]). It approximates the bit stream pack-

ing capability of the B1700, but requires only two registers, the

instruction index IX and instruction word 1W , and is easily imple-

mented on hosts with flexible memory arrangements. Each DEL instruc-

tion is treated as a string of syllables that is fetched and decoded

as follows:

• 1. A syllable is extracted from the 1W using either of the two
methods described above.

2. If the IV is now zero, transfer of the next word in the instruc-
tion stream into the IV is initiated.

3. The appropriate routine is invoked, depending on the contents of
the IX , and execution continues wi th step one.

Using this technique, the all zeros code must be reserved to indicate

that the current instruction word has been exhausted , which is not

true for the SDL bit packing. However, the zero code strategy can be

implemented without increasing the size of the interpreter state

(either the 1W or IX registers may be tested for equality with zero

after extracting a syllable), and a minimal number of host instruc-

tions are involved. In constrast, a seperate bit position counter is

required to properly concatenate successive SDL syllables in hosts

like the FI1MY and CDC 5600, and extra host instructions may be needed

L~. •- ~~~~~~~~~~~~~~~
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if the host is not sufficiently parallel.

The generation algorithm for this is to simply place successive

syllable codes into a word until the next code does not fit within

that word. The current word is then filled with zeros, and the pro-

cess is repeated for the next word in the DEL program store.

The following Is a simple technique , hinging on the definition of

“fit”, that can save some execution phase time and space. Suppose

that there are M bits in the next syllable code to be packed into a

word that has only N bits remaining , where M is greater than N. The

first N bits of this syllable can be packed into the current word if

its M-N trailing bits are zero —— they will be supplied automatically

by the algorIthm outlined above. This results in individual syllables

being logically, if not physically, contained within individual pro—

gram store words, but permits entire instructions to cross word boun-

daries.

By assigning these codes such that frequently occuring codes have

a greater number of trailing zeros, the beneficial effects of this

• technique should be significantly improved. The information capacity

of any given syllable is decreased by the mandatory “all zeros” code

only if there are exactly 2~ other alternatives that must be dis—

‘I tinguished by its content , where w is the bit width of the syllable.
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< —  Physical Storage Word —>~

New Instruction
Starting Address

I
previous instruction (s)

If identifier — xxx 0...0

then code xxx in field b.
1<——— C ——— ~~

identifier
Otherwise, code 000 in field b
to indicate a new instruction
fetch is required , and code leading field of
xxx0...0 at the beginning of next instruction
the next physical storage word.

Figure 7: “Fitting” Syllables at the End of a Storage Word

Intuitively , this gains some of the spatial advantage of Huffman

like codes (at word boundaries) for the simple straight binary code,

yet permits rapid decode. In theory, it could also be used in con—

junction with more highly encoded forms (either SDL or pure Huffman):

• the relative time gain ~.rould be smaller since decode overhead would

dominate the Instruction fetch , however; and the space gain wowld be

~ 
I.
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reduced due to the reservation of the all zeros code. Time and space

estimates for this form are:
a

Access Time — (k+1) * (R*w/b + shift(v) + test)

Program Space w * (k+1)

R, k, b , and w are agaIn the same as for the threaded code and record

oriented code cases; “shift(x)” is the number of host instructions

required to extrac t an x bit field; and “test” is the number of host

instructions needed to check for the all zero code (which should be

zero in a well designed DEL host).

3.2.2.5. Field Dependencies

So far , we have discussed only static dependencies. It is also

possible to take advantage of locality by dynamically changing the

interpretation of specific codes. That is, the semantics associated

with special DEL operators may be used to change the tables used by

the decode routine within the interpreter. While this generally

requires rather sophistocated compilation techniques (see Foster and

Gonter (9], and Sweet [28]]), it may be possible to avoid exhorbitant

overhead by applying this stratagem only when DEL control passes from

one module to another.

This is because of the one—to—one correspondence between . DEL

modules and the lexical “scopes” in the source programs from which

they were derived. Fixing the size of an operand reference upon entry
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to a DEL module can result in dramatic compression of program size,

and should be considered when syntheuizing a DEL for any block struc-

tured source language. Applying this technique to operator references

is more difficult , since there Is no direct semantic correlation

between the set of operators applied in a module and the definition

its scope.

Conceivably, escape codes could be used to reduce the number of

bits required to distinguish between Individual DEL operators. As far

as the interpreter is concerned , the only cost of such conditional

operator codes would be the inclusion of distinct operator decode

tables for each escape class. Explicit escape codes may have to be

inserted at every potential target of an unstructured GOTO, however ,

which will increase both the time and space required during execution.

A similar problem is encountered when generating register

oriented DEL surrogates, where the values of individual variables must

be saved before executing an unstructured GOTO, and restored upon

arrival at each potential target of a GOTO. Discussion of the flow

analysis techniques required to improve on this naive strategy is

beyond the scope of this work (see Geshke [10], Elson and Rake [5],

McKeeman [22] and [23]). Our concern is with the underlying structure

and form of a DEL.

• .• •• - • .

~

•-
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3.3. The Action Rule

As mentioned in the first section, the action rule consists of a

function applied over a domain of arguments that produces one result.

Thefe are two considerations in synthesizing an action rule: format

and operation.

The synthesis objectives for both considerations should be clear

from the earlier discussion of cannonic interpretive form:

* Enough formats should be available to provide transformational
completeness;

* Each HLL operation should have a corresponding interpretation
within  the l imits of i n t e rp re te r  size.

3. 3.1. Formats

In order to recognize and interpret DEL instructions, the inter-

preter must be able to determine the size and meaning of at least the

next syllable to be fetched and decoded. The leading syllable in an

instruction usually specifies its layout and interpretation ; i.e.,

defines the format of the instruction.

In order to select an optimal format set in an orderly manner , it

is necessary to first construc t a universe of formats that at least

covers the combinatorial bindings found in traditional zero, one, two,

and three address architectures. For the moment , we need only distin-

guish between two general classes of operand references: explicit
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reference , which appear as distinct syllables within an instruction ;

and implicit references, which are defined by the instruction’s format

code.

We use a three letter mnemonic code to describe associations of

implicit and explicit operands with at most two arguments and one

result (binary order). The first letter identifies the operand to be

bound to the left argument of the operator (if any); the second letter

identifies the operand to be bound to the right argument (if any);

while the third letter identifies the operand to be bound to the

result (if any). Seven letter designations are sufficient to describe

all relevant possibilities:

1. “S”, an implicit specification of the cell just above the top of
the evaluation stack (value denoted by a).

2. “T”, an implicit specification of the cell that was the top of the
evaluation stack (value denoted by t).

3. “U”, an implicit specification of the cell just below the top of
the evaluation stack (value denoted by u).

4. “A” , the first explicit operand specification appearing in an
instruction (value denoted by a).

5. “B” , the second explicit operand specification appearing in an
instruction (value denoted by b).

6. “C”, the third explicit operand specification appearing in an •

instruction (value denoted by c). •

7. “ “ , for  null,  meaning “not applicable” —— probably due to low
functional order. •
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A use ordered analogue to the typical 360/370 instruction “AR R i

R2” (meaning “add registers Ri and R2, leaving the result in Ri”)

would be wr i t ten  “ABA Ri  R2 +“ in this notation. A zero addre8s DEL

expansion for the same operation might appear as: “AS RI : — ;  AS R2 :—;

UTU +; TA Ri :=“ .

This notation also covers various hybrid formats that use both

implicit and explicit references in a single instruction; for example,

the use ordered hybrid instruction “TAB X Y — “ means “subtract the

value of X from the value currently on top of the dynamic evaluation

stack, store the result in Y, and decrement the stack pointer” (top of

stack is always defined with reference to its state before interpret-

ing the formate in question).

It is easy to identify the characteristic formats for traditional

zero (UTU), one (TAT), two (ABA), and three (ABC) address architec-

tures using this system. The restrictive nature of these mono format

DELs is clear in comparison to the 343 potential formats designations

suggested by our three letter mnemonic.

The obvious implementation for all of the formats suggested by

this identification scheme, however , would require 7*7*7 distinct

interface routines and 9 bits per instruction (assuming a straight

forward , n—way binary encoding). Even if the spatial cost were

acceptable in the DEL program space the associated interface routines

would occupy too great a fraction of micro store for most host
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machines. Consider the following rules for eliminating formats that

are redundant with respect to our notion of transformational complete-

ness cited in the canonic interpretive form discussion.

1. Formats violating standard LIFO stack accessing conventions are
not required (this would eliminate such formats as UAB, STU, ABU ,
etc.).

2. Only one ordering of T and II in the first two (argument) positions
is needed—-we use the UT ordering , which is consistent with a left
to right , depth first post order taversal of the macro—tree
representation of a program.

3. Formats that differ only by a permutation of explicit references
are equivalent (e.g., ABC, ACE, BCA, BAC, CBA, and CAB are all
equivalent ; we choose the alphabetized element , ABC in this case).

4. Formats differing only by a permutation of the null designator,
“ “ , in the first two (argument) positions are equivalent—-we use
formats with a leading null.

All of the above elimination rules can be applied without adversely

affecting either the compilation or execution phase. Using these

rules, the 343 element format universe suggested by our combinatoric

identification rule can be reduced to 30 elements. The table below

lists all distinct combinations remaining after these rules have been

applied , grouped in order of increasing functional order.

The branches in a macro definition tree [5] may be thought of

either as explicit references (if connected to a leaf node), or as

implicit references (if connected to an ancestor node). This estab-

lIshes a connection between format structure and the context of opera-

tor nodes in a macro definition tree. By inspection , at least one of

the above formats is directly associated with each possible

configuration of an ancestor node.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  .~~—
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Table of Potential Formats

MNEM (I4IC TEMPLATE SEM~NT1CS STACK

— 
<OP> call  op

S <OP> s := op +1
_A <X > <OP> x : = op

<OP> call 00( t )  —1

• 

• 
_A_ <X> <OP> call op(x)
_TT <OP> t : o p ( t )

AS <X> <OP> s : op(x) +1
_TA <X> <OP> x := o p ( t )  —i

AA <X> <OP> x :? op(x)
• _AB <X> <Y> <IP> y := op(x)

UT_ <OP> call op(u ,t) —2
TT_ <OP> call op( t ,t) —l
AT_ <X> <OP> call op(x ,t) —i
TA_ <X> <OP> call op( t ,x) —1
AA <X> <OP> call op(x ,x)
AB <X> <Y> <OP> call op (x ,y)
UTU <OP> u : op(u ,t) —i
TTT <OP > t := op( t ,t)
UTA <X> <OP> x := op(u ,t) —2
TTA <X> <OP> x := op( t ,t) —i
TAA <X> <OP> x := op(t,x) —i
ATA <X> <0?> x : op(x ,t) —i
TAT <X> <OP> t := op (t ,x)
AAS <X> <OP> s := op(x,x) +1
TAB <X> <Y> <OP> y := op( t,x) —i
ATB <X> <Y> <OP> y := op(x ,t)
AAB <X> <Y> <0?> y := op(x,x)
ABB <X> <Y> <OP> y : op(x,y)
ABS <X> <Y> <OP> s := op(x ,y) +1
ABC <X> <Y> <Z> <0?> z : op(x,y)
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While we have reduced the spatial  requirements of mul t i—forma t

DEL structures to a practical order of magnitude , implementing all 30

formats listed in the table may still be prohibitive for some hosts.

The following theorems identify some interesting subsets of this for-

mat universe.

Theorem 1: The canonic interpretive form requirements can be satis—
fled using only eleven formats, up to the level of diadic opera-
tors, If “reverse” forms for all non—commutative operators are
included in the set of action functions.

Proof: Consider the following DEL restrictions and interpreter coding
conventions.

1. Semantic routines for monadic operators mwst increment the
pointer to the top of the DEL evaluation stack before perform-
ing their normal processing.

2. “Reverse” forms for all non—commutative (diadic) operators
must be included in the repertoire of DEL action functions.

Given these restrictions, we may eliminate all format codes
whose mnemonic contains the “ “  by using the binary format con-
taining a “S” , “T” , or “U” in the same position , but which is oth-
erwise identical (interpreter convention). Formats differing only
by a reversal of the left and right argument binding (e.g., ABA
and ABB) are redundant under the DEL restriction ; only one element
of each such pair is needed. Finally, no format whose code begins
with “Tf” can be generated by a naive compiler , since this would
require recognition of the use of an intermediate value as a
repeated argument.

The set {UTU, UTA, TAT, TAA, TAB, AAS, ABS, AAA , AAB, ABA,
ABC ) satisfies the theorem by inspection.

Theorem 1 demonstrates that the individual advantages of both

stack and register oriented architectures can be merged at a gross

cost of only four bits per instuction , which compares favorably with
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typical polish DELs (in which each instruction contains two form bits

to distinguish between “push” , “pop”, “operate”, and “literal”). For

example, a single TAB format is equivalent to the polish sequence

“push A, operate, pop B”; the first requires one instruction and four

format bits , the second requires three instructions and six format

bits .

Determining the relative advantage of a format rich DEL over a

mono format, register oriented DEL with a variety of addressing modes

is more complicated. Auto increment and decrement capability can be

used to simulate a stack architecture, while indexing and indirecting

can be used to simulate memory to memory oriented architectures.

Addressing mode flexibility does not extend to exploiting multiply

used operands, however, and is manifestly not as compact or efficient

as an implicit stack architecture (it is difficult to perform net

adjustments to the stack pointer , for example). Further , as will be

seen in the next section , there are more direct operand reference

encodings that can be used on most dynamic hosts.

Theorem 2: Only four formats are required if the DEL evaluation stack
is eliminated .

Proof: The set {AAA , AAB, ABA, ABC) is sufficient , by inspection.

Compilation is somewhat more -~ifficult in this case, however ,

since “dummy” variables must be synthesized in order to evaluate corn—

pound exprc~ssions. Although fewer bits would be needed to indicate
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the format code, it is likely that the space and time required during

execution would increase because of these extra explicit operand syll-

ables.

Theorem 3: Only six formats are needed to satisfy all but the “unique
variable” requirement of the canonic interpretive form.

Proof: The set (UTU , UTA, TAT, TAB, ABS, ABC) is sufficient , again by
inspection.

It is difficult to determine whether or not execution phase time

‘I and space would increase or decrease if this reduced format set is

used , however, since the question is sensitive to user behavior. The

smaller format set8 are interesting because of their coding compati— J
• bility with hosts strongly biased toward 8 bit storage quanta. If

only two or three bits are needed to define the format of an instruc-

tion, then it is possible to combine both the format and operator code

in a single byte.

Any of the above format sets would be enhanced by the addition of

special formats to handle reverse forms of non commutative operators

(e.g., ATT, ATA, ATh , and ABE) , or of auxilary formats to simplify

interface processing for unary operators (e.g., TT , TA, AS, AA, and

AS). One or two “escape” formats might also be added to provide a

mechanism for implementing higher order formats (for operators with

greater than binary order), user defined operators, or other DEL

extensions. The critical point is that these format sets are “rich”
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enough to guarantee that no non functional, memory oriented overhead

instructions need be generate or evaluate arithmetic expressions:

i.e., their M—ratio is zero by construction.

3.3.2. Selecting Operators

Suppose that the design of a DEL is complete except for the

selection of its operator set; and further that a finite set F —

of potential operators is “well known” —— in the sense that there a a

micro expansion x~ and a macro expansion X~ for each potential opera-

tor a—i , ..., N
F
). Intuitively, x

1 is the body of a host routine

that implements the semantics of f
1
, while X~ is constructed entirely

from operators in the set {f~}~~~ —— and so could be generated in place

of f
1 
should it not be selected as a DEL operator. The problem is to

find a subset G of F that minimizes the space and time requirements of

the resulting DEL.

Let w
i 
be the number of micro store words required by x

1
, and W

be the total number of words of micro store that can be used to hold

aemantic routines. The difficulty is that wi + w2 ÷ ... + w may be

greater than the number of available words of micro store, so that it

is not possible to simply set C equal to F. Let:

d~ — the dynamic frequency of
— the average time needed to execute x

~
;

T
i 

— the average time needed to execute X
1;

— the static frequency of f4 ;
— the length of the identifter for f~ ;
— the length of X

~
;

--

~

---

~
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and for any subset Z of F, define:

t(Z) — d1*t1 + ... + d * t ;
M T(Z)  — d

1
*T

1 
+ ... + d * T  ;

s(Z) — s
~*1~ + ... + s

S( Z ) — 5 

~~ i 
+ ... + fl~~•

fl

w(Z) — die sum of all ~ such that f is an element of G; and
E(Z) = — ( (A*(t(G) + T(~-G)) + B*(s(I~) + S(G)) ).

The intent is to quantify the notion of efficiency by a linear func-

tion, E —— which implies that the marginal utility of micro store is

constant. This is a reasonable approximation for small changes in the

DEL operator set, since only a small fraction of the total space

available would be affected. The objective is now to find a set C

that maximizes E, subject ~~ the constraint w(G) < V. To this end ,

define the merit of selecting operator f~ (i.e., the incremental

advantage of placing semantic routine xi 
in micro store) to be:

— A*(dj*(Ti
_t
i

))  ÷ B*(s j *(L i
_l j ))

Further , let the merit rn(Z) of any subset Z of F be the sum of the

individual merits mi for all i such that is an element of Z. It

can be assumed without loss of generality that the elements of F are

ordered such that i < j implies either mi/wi 
> m

j
/wy or mi/wi —

and w
1 

< The claim is that this defines a natural lifeboat order—

ing for F; as reflected by:

Theorem 4: If C is the subset U 1, f2, ..., f ) of F such that
w(G) < V < w(G) + w then

W (H) <~~~~ —> E(H) — E(G) < m
for any subset H of F.

Proof: Let H be any subset of F satisfying the hypothesis. If GH
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denotes the intersection of G 10and H, then w(H—
GB) < V — w(G) + v(G-GH) by definition . Now, m 4/w4 < m /w for
all j such that f4 is in H-GB since j must be greai~er~ thaR ~ by . !-~construction ; thi~ means that:

1) m(H-GH) < (m fw )*w(H_GH) < (m /w ) *(W_w(G)#w (G_ GH))

since w > 0 for all j. But (m /w )*v(G_GH ) < m (G-GH), again by
constru~tion; this means

2) m(H-GH) — in(G-GH ) < (m /w )*(W_w (G))

Since in(Z) = E(Z) + A*T(F) + B*S(F) for any subset Z of F,

3) E(H) — E(G ) < (m /w )*(V~w(G)) qed.

The difference in efficiency between an optimal DEL and that

resulting from an application of Theorem 4 must be less than a com-

paratively small factor (m /w ) times the unused micro store (W-w(G)).

The product should be quite small in comparison to the overall eff i—

ciency rating of the DEL —— both because W-w(C) is small in comparison
to w(G), and because m/w may be no greater than mi/wi for all I < n.

The practical simplification is that it is no longer necessary to

formulate and solve a general linear programming problem in order to

select an efficient operator set. The question of how F is deter—

mined, however, remains open. In many cases it is probably sufficient

to set F equal to the set of all functions used in the semantic

specification of the given source language. If the highest perfor—

mance is to be achieved, however; additional operators are likely to

10w (X—XY) — w(X) — w(XY) for any subsets X and Y of F.

J

• - - - ~ - -
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be needed. The following principles may be useful ; let F0 be a prel—

iminary set of operators derived by inspection of the source language

semantics:

1) Set F
0 
equal to the set of primitive functions extracted by

inspection of the semantic specification for the given source
language.

2) Form F , the closure of F
0 
under n—ary composition (n — 1—3 should

be suflicient in light of Knuth’s statistics [173).

3) Form F2 by including natural decompositions for complex functions
(e.g., extracting “normalize” and “unnormalized multiply” opera-
tors from a standard “floating multiply”).

4) Form F
3 
by including special operators for frequent bindings of

operators in F2 
to literal arguments (e.g., adding a unary “INC”

operator to replace “_+l”), and again taking closure.

In general, it is important to exploit implicit specification of

functions or arguments whenever possible —— a typical example being

the automatic invocation of a “standard fix—up” after arithmetic over—

flow or underf low. This is especially true of program control and

data conversion/selection operators. For example, if the source

language is strongly structured”, then it may be possible to keep a

stack of pertinent variables, addresses, etc., within micro store to

speed up the execution of looping constructs and/or recursive pro—

cedure invocation.

~~~~~~ 
all control structures are strictly one—in one—out.

I

I 

~~~~~~~~• _ • _ _~~~~~~~~~~~~~~~~~~~~~~~~ •
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As a case in point, consider a generalized ~4D0 operator that

controls termination of FORTRAN DO—loops. This operator requires four

operands: an iteration count variable (J); an increment value (I); a

maximum count (H); and a ioop transfer label (L). The expansion for a

typical ioop, “DO 10 J41,M,I”, might be:

MOVE ~1> U>

L (body of loop) H
~1DO <J> <I> cM> cL>

In this implementation, the iteration count variable is explicitly

initialized prior to loop entry. The EI4DO operator must bind the

identifiers <.1>, <I>, and <H> to the appropriate values; increment J

by I; and compare the result to H, performing the appropriate data—

dependent branch for each iteration. There is no way to avoid the

initialization data—dependent branch steps, but if there are no expli—

cit transfers in or out of the loop body, special initialization and

termination operators could be used:

INITDO 44> <J> <I> cM>

L (body of loop)

~4DX

In this case, the INITDO operator would temporarily move the values of

J, I, and M into micro store, initializing 3 in the process. The

L~~~~~~~~~~~~~
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loop—back address would also be automatically initialized at this

point. The FI4DX operator need not repeatedly fetch, decode, and bind

the identifiers for J, I, H, and L to their respective values. This

saves four field extractions and four variable accesses per iteration

(the value of J must be both loaded and stored).

3.4. Process Name Space—-General Issues

A name used by a process is a surrogate for a value. The set of

all names that can be accessed by a process is the name space for that

process. Source level names are usually just alphanumeric strings

imbedded within a program text; DEL levei names are operand identif-

iers appearing within executable irstruc .~~s (usually in 1—1

correspondence with source names); and host level names are simply

addresses of accessable elements of the host storage hierarchy.

Values are associated with names via a “contents map”——at any point

during a computation, the contents of a name is its correct value. In

this discussion, we are concerned only with the properties of names

themselves, not with the form of identifiers for these names or the

problem of interpreting identifiers within an executable instruction; 4
the contents mapping is assumed to be established externally——e.g., by

a loader.

Some issues related to the concept of a process name space are:

H

~
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range extension

size of object

reference — formation of the name

xprocessor
X range: number

request X of objects
x

Figure 8: Process Name Space

1. range and resolution of objects,
2. range extension——I/O handling and files,
3. homogeneity of the Bpace,
4. reference coding.

Range and Resolution:

Range and resolution refer to the maximum number of objects that

can be specified in a process space and the minimum size of an object

in that name space respectively. Traditionally , instructions provide

resolution usually no smaller than an 8 bit byte, and frequently a 16

L~. _ _



-_---~~~ -~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - — -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

61

bit or larger word , and range defined as large as one can comfortably

accomodate within the bounds of a reasonable instruction size and

hence program size. Thus , ranges fr om 2 16 for  minicomputers to 2 24

for System 360 include most common arrangements.

Range Extension:

The range of the name space directly accessable to a host is

bounded, so it is essential that an extension mechanism be provided to

allow a process to access large data bases (e.g., I/O and file han-

dling). If the directly accessable range were unlimited , then as soon

as objects were entered anywhere in the system, the place of entry in

the processor name space could be regarded as an element in the pro—

cess name space.

An associated problem is that of attaching records to an esta-

blished process name space. Usually this attachment must be done by a

physical movement of data from its present location to an area within

the bounds of the present process name space before it can be operated

on. The programmer must manage data movement from the I/O space into

the process name space through I/O commands. This binding or attach—

went is the responsibility of the programmer and must be performed at

the correct sequential interval so as to insure the integrity of the

data and yet not exceed the range limitations of the name

space——overflow buffers, for example. Ability to communicate between
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an unbounded I/O media and a bounded processor name space allows the

programmer to simulate an open ended name space.

It is, however, an uncomfortable requirement placed on the pro-

grammer , and frequently results in cumbersome and inefficient opera-

tions. Of course, the larger the range, the more precise and variable

the resolution, the easier it is to manage objects in the process name

space; flexibility in this regard both permits and promotes concise-

ness during pro&ram development.

0BSERVATIc~4: From the above, the desirability of an unbounded name
space with flexible attachment possibilities is clear.

Homogeneity:

While name spaces may be partitioned in many different ways,

homogeneity refers to partitions distinguished by the action rule of a

process. Action rules or instructions generally cannot treat all

objects in the same way. Certain classes of objects are established

such as registers, accumulators, aid memory objects. Action rules are

applied in a non—symetric way: one of the arguments for an action

rule must be a register whereas the other may be a register or a

memory object. The premise of this partitioning is performance, i.e.

— 

- the assumption that access to registers is faster than access to

memory. Thus, many familiar machines have their name space parti—

tioned into a register space and memory space: 360, PDP—l l , etc. As

the partitioning of the name space increases, its homogeneity
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decreases.

Ref erences :

Mapping identifiers into their image in the host name

space——i.e., determining the actual location or address of a named

object——involves a subtle series of design issues. There is a broad

spectrum of potential tradeoffs between interpretation time and pro-

gram representation size. Traditional issues in identifier construc-

tion include: short vs. long addresses, indexing; indirection ;

dynamic tagging; etc.

The reference problem may be broken down into two parts,

referencing operands and referencing operators. Operand referencing

• involves extracting or updating the value of an object, while operator

referencing involves the invocation of an action rule (i.e., process

state transformation).

3.4.1. Name Space Synthesis

Providing a flexible and effective name space structure helps

minimize the space and time requirements of a DEL. Good designs are

characterized by both a simple correspondence between the source name

space and the DEL name space (to simplify compilation and preserve

transparency), and a simple correspondence between the DEL name space

and the host name space (to maintain efficiency during execution).

-

~
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High level language name spaces generally involve effectively

unbounded ranges, one dimensional reference structures (viewing sub—

scripted arrays and other qualified references as “expressions” rather

than primitive symbols), and discrete granularity (i.e., reference

structure does not induce a fixed relation between referands in the

memory space). The identifiers used as references at this level are

syntatically homogeneous, but semantically inhomogeneous——i.e.,

interpretation of the contents map for a referand depends on the con—

text in which its reference appears. In particular the referand asso—

ciated with a particular source name may be different for different

occurrences of that name.

This is because the name space of most source programs is parti— -

Lioned into distinct scopes of definition (or “scope” for short ;

intuitively, a scope is simply a natural grouping of references within

H which the association between references and referands is fixed ,

unless altered explicitly by dynamic allocation or redefinition state—

ments).

On the other hand , most host level name spaces are structurally

inhomogeneous , being partitioned into register sets, storage modules,

etc. References to elements in these partitions are rarely inter—

changeable within a host instruction. The association between refer-

ences and referands is usually fixed at this level, however , even

though it may be parameterized in terms of the current contents map

L. - -
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(e.g., as in indexed or indirect referencing). Such discrepancies

between the source and host name spaces account for much of the diffi—

culty In synthesizing an effective DEL name space.

DEL organizations may be classified according to the placement of

different portions of the information needed to bind a reference to a

referand (Chevance [3]). Data is characterized by three distinct

pieces of information: type , locator , and value. The type of a

referand defines the range of values it may assume; its locator

defines the address to be used when accessing its contents; and its

val ue is the bit pattern assigned by the current contents map, which

must be interpreted according to its data type.

The type and locator may be specified either in the operation

code of an instruction or in operand reference codes, either directly

or indirectly (e.g., through a display vector). Four such combina-

tions are:

1. Type in operation code, locator in one dimensional reference (con—
ventional machine languages).

2. Type and locator concatenated in two dimensional reference (this
form is typical of higher level DELs——e.g., Veber (29], Wilner
[31], and Wortman (32]).

3. Type and locator concatenated in a “descriptor” identified
indirectly through a one dimensional reference (descriptor based
machines).

4. Locator is reference indirected individually through a two dimen-
sional reference (theoretical, no known example).

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -.



The traditional approach is to partition the DEL name apace along the

same lines as the host name space, mapping symbolic names into dis-

tinct indexed ( two or three dimensional) references; i.e., a type 1,

2, or 4 organization. The compiler must insure that the proper base

address is loaded into an appropriate index register when the

translated references are evaluated. This increases the M—ratio of

the resulting dynamic instruction stream by requiring significant

load/store activity to maintain correct base register values. For

example, the statement “I — J — I” might expand to:

L Ri , @1
L R2 , @ J
L R2 , 0(R2)
S R2, 0(R1)
ST R2 , 0(R1)

using a 360/370 machine language DEL. Only the subtract instruction

is functional; the first and second instructions are overhead caused

by the range differential between source and DEL name space, while the

third and fifth instructions are memory oriented overhead caused by a

combination of the inhomogeneity of the DEL name space (storage and

register references no interchangeable) and combinatorial restrictions

of the 360 architecture (it has no ABB format). This approach

emphasizes the importance of register allocation, and leads to ela-

borate multi pass algorithms for minimizing load/store activity (Sethi

(25] and Stockausen [27]).
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Incorporating locator information in the reference itself also

leads to complications in handling the thorny problems associated with

changes in scope (e.g., storage management , passing parameters, and

accessing externally defined referands); none of the above forms

solves this problem by construction. Perhaps the best known model for

describing the effects of scope is the Contour Model developed in

Johnson [16). This model is rich enough to describe the address map

transformations required by the allocation , release, and retention

rules of most sowrce languages, and captures all practical methods of

binding actual arguments to formal parameters as well. Its guarantee

of completeness suggests the Contour Model as a good design base for

DEL name spaces.

A process is defined to be a time invariant algorithm together

with a time varying record of execution. Discrete points in an execu-

tion record are identified by an encoded pair , formal parameters in a —

different manner than local variables , however , either by including

explicit operators in the DEL instuction stream (McClure), or always

testing for indirection (Wilner)——Bashkow avoids the problem by res—

tricting his source language to a subset that does not include

subroutine blocks or arrays.

_ _ _ _ _ _ _ _  - - - - -~-- - -
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3.4.2. EnvIronment and Contours

The notion of environment is fundamental not only to DELs but

also to traditional machine languages as evidenced by widespread adop-

tion of cache and virtua l memory concepts. What is proposed here is

akin in some respects to the cache concept and yet quite distinct from

it. We recognize locality as an important property of a program name

space and handle it explicitly under interpreter control. Thus,

locality is transparent to the DEL name space but recognized and

managed by the interpreter. Properties of the environment are:

1. The DEL name space is homogeneous and uniform with an a priori
unbounded range and variable resolution.

2. Operations, involving for example the composition of addresses
which use registers, should not be present in the DEL code but
should be part of the interpreter code only. Thus, the register
name space and the interpreter name space are largely not part of
the DEL name space and it is the function of the interpreter to
optimize register allocation.

3. The environment locality will be defined by the higher level
language for which this representation is created. In FORTRAN ,
for example, it would correspond to function or subroutine scope.

4. Unique to every environment is a scope which includes:

i. a label contour ,
ii. an operand contour ,
iii. an operation table.

Following the Johnston model, we define a contour to be a vector

(or table) of object descriptors. When an environment is invoked , a

contour of label and variable addresses must be established (if not

already present) in the interpretive storage. For a simple static
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language like FORTRAN this creation can be done at load time. For

languages that allow recursion , etc.,  the creation of the contour

wovld be done before entering a new environment. An entry in the con—

tour consists of the (main memory) address of the variable to be used ;

this is the full and complete DEL name space address. Type informa—

tion and other descriptive details may also be included as part of the

entry.

The environment must provide a pointer into the current contour ,

and must define the width of identifiers for labels and variables.

Typically , the contour pointer and identifier width would be main-

tained in the register of the host machine. We denote identifier

- 
- width by V and the pointer to the base of the current contour by EP;

Figure 9 illustrates the process of referencing a DEL entity using

this terminology. Both labels and variables may be indexed off the

same environmental pointer. Subfields within DEL instructions, then ,

are actually containers for immediate values that define Indices in

the current contour ; contour entries at the indexed location define

the mapped address of the desired variable or label in the host name

space. In other words, the operand identifiers within DEL instructions

are simply contour indices that select a particular description for

the image of a given source level object in the host name space.

The Contour Model differs from other high level DEL architectures

in that the function of references is separated from that of descrip-

tors. References are one dimensional indices into a current

L 
_ _ _ __ _ _ _ _
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Figure 9: Referencing a DEL Variable

declaration array, which we call the current contour. The current

contour is always maintained within the host micro store, and a new

contour is created for each distinct incarnation of a source scope.

This is an extreme case of a type 2 organization, in which only W bits

are used to represent a reference——where W is the smallest integer

such that there are less than distinct referands in the current

access environment.

-d
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Each contour is uniquely identified by an environment pointer

that , at least logically, denotes its zerot~ element. The environment

pointer for the current contour is part of the DEL program state vec-

tor , and must be saved/restored when entering/leaving a scope of

definition. The address map is computed by adding the reference code

to the current environment pointer, and then accessing the appropriate

referand descriptor (Figure 10):

descriptor ( reference N ) — micro store ( ep + N )

value ( reference N ) main store ( descriptor N )

Figure 10: Normal DEL Addressing Structure

This analysis can be extended by noting that the logical type of a

referand (integer, floating point , logical , or character) can be

separated from its physical type (single, double or varying perci—

sion). We refer to the physical type as “shape”. Elements of con—

tours are descriptors, each of which is itself a vector that defines

the shape, type, and locator of a particlar DEL entity——or, more pre—

H cisely, the algorithm used to access that entity. Distinguishing

shape within the descriptor allows us to use semantic routines

designed for the general case, rather than having one per type:shape

combination.
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It is important that descriptor processing be kept as simple as

possible. For most languages, this means that the value of the vari-

able will be located in the main store cell whose address is defined

by the appropriate descriptor——e.g., the value of the n—th DEL vari-

able is located in the memory cell(s), whose initial address is given

by the contents of the n—th word of the contour in micro store. If

this is done , then the effective address of a referand can be calcu-

lated in two basic host cycles using our method (micro store is

ass’~med to have an access time comparable with the time needed to per-

form a primitive arithmetic operation). Essentially, dynamic contours

are a simple mechanism for exploiting the writability of m odern micro

stores; in effect we have created a distinct “base register” for each

distinct DEL entity rather than for contiguous blocks of entities.

If the source language has the property that two distinct source

names can never denote the same referand , then the indirection step

may be avoided by maintaining values of (scalar) DEL variables

directly in the contour. This is not usually the case, however; due

either to “overlay” capability (e.g., the E~ JIVALENCE feature in FOR—

TR AN , or pointer references in PASCAL), or to the possibility of bind-

ing the same actual argument to two distinct formal parameters using

“call by reference” or “call by name”.

Given a fully static source language (like BASIC, FORTRAN , or

PASCAL) a unique contour for each distinct scope of definition may be

-_ -- _ 
_ _-
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preallocated during compilation. In this case , only the descriptors

for formal parameters need be modified during execution. For most

source languages, however, a new contour will have to be created each

time a new scope is entered ; particularly if the source language sup-

ports recursive procedure invocation. In this case, a highly encoded

header could be attached to the algorithmic body of DEL surrogates to

serve as a phantom, or “skeletal” contour. Descriptor components that

can be fixed at compilation would appear as literals in this header;

components that can not be determined until block entry would be

parametrically encoded to simplify run time computation.

Since the header entries need be evaluated only once per contour

creation, they can be relatively complex and difficult to evaluate.

However, this factors out the common calculations needed to compute

effective addresses; there will be a substantial time savings whenever

variables are accessed repeatedly within a contour , and the possibil-

ity of a time loss when variables are not accessed at all. The

penalty can be avoided by marking descriptors in the current contour

as “unbound” until they are actually referenced. Each time a DEL

reference is processed , its descriptor must be checked for validity ;

this usually means that some form of hardware support is required for

this stratagem to work efficiently. Lacking a tagged architecture, it

is likely that the time needed to decide whether a contour element is

a value or a descriptor will swamp the time saved by sometimes avoid-

ing a main store access. The “tag” in this case is not a type field



concatenated with values in main store, but rather a “presence flag”

concatenated with the descriptor/value in micro store. This keeps the

number of tag bits low, and simplifies host implementation. Such an

explicit caching technique should be evaluated carefully in light of

the specific capabilities of the given host.

The contour technique Is easily adapted to most existing parame-

ter passing conventions. Parameters may be passed “by reference” sim-

ply by copying the appropriate descriptors from the caller’s contour

into the callee’s contour. Parameters are passed “by value” by initi—

alizing a variable created either in the caller’s environment (call by

copy value), or in the callee’s environment (call by value copy), with

the value of the argument referand in the caller’s contour. “By name”

parameter passing involves moving an IP:EP pair into the appropriate

descriptor in the callee contour ; the IP:EP, where IP is an instruc—

tion pointer into the time invariant algorithm, and EP is an environ-

ment pointer identifying a particular access environment. No

transformation identified by the IP can depend upon or alter the con—

tents of a memory cell unless that cell is in the address mapping

H image of the current access environment.

Every access environment contains a declaration array that is,

conceptually, a linear vector of address map definitions. Each entry

In the declaration array is uniquely associated with a particular

- 

• source name, and completely specifies all of the information needed to

L J
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access the referand of that name. In practice, the Contour Model is

usually realized in terms of a two dimensional reference structure of

the form level:offse t, where “level” is associated with a lexical

scope of definition and “offset” is associated with the physical loca-

tion of a referand (level codes are also called segment numbers, bloc k

numbers, page numbers, etc.; and offset codes are sometimes referred

to as occurrence numbers or placement indices).

Upon entering a scope, a block of storage is allocated in the

memory space sufficient to contain all of the local variables known to

be referenced within the block. During compilation, various positions

relative to the beginning of this block are preassigned to specific

source referands——thus determining the offset code for their associ-

ated references. Storage is usually managed by partitioning it into

two distinct classes: a LIFO stack that contains all of the local

referands allocated automatically at scope entry; and a heap that con-

tains all referands that exist independently of the normal procedure

ettry/exit mechanism.

The obvious space saving aspect of linear contours is that only V

bits are needed to identify an arbitrary DEL variable. Only three or

four bits are needed to encode V within the DEL program status vector

so that it could easily be updated each time the environment pointer

is changed , allowing the inherent locality of well structured source

programs to be exploited in a direct manner. This method is at least

_ _ _ _
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as fast as the display vector approach——and may well be more efficient

since it does not incurr multiple decode overhead , since it involves

only a one dimensional index.

-
• 3.4.3. Operation Contours

Each verb or operation in the higher level language identifies a

corresponding interpretive operator in the DEL program representation

(control actions may be treated either as an operation or as a format

type). The routines for interpreting all familiar operations are

• expected to lie in interpretive storage. Certain unusual operations,

such as transcendental functions, may not always be contained in the

interpret storage. A pointer to an operator translation table must be

part of the environment; the actual operations used are indicated by a

small index container off this pointer (Figure 11). The table is also

present in the interpretive storage. For simple languages, this

latter step is probably unnecessary since the total number of opera-

tions may be easily contained in, for example, a six bit field and the

saving in DEL program representation may not justify the added inter—

pretive step.

In general, contours could be established for DEL blocks

corresponding to: a single source operator; an individual sour:e

statement ; a linear segment of source statements; a source clause ; a

source procedure; or the entire source program. Further research is

required to determine which level is space—time optimal. It should be I
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Figure 11: Referencing a DEL Operator -

noted, however, that ioop and procedure blocks are reasonable choices

for contour extents: a significant amount of non—trivial sequential

processing must be performed to enter or exit these constructs, which

affords at least the opportunity to overlap contour creation with
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other mandatory computations.

3.4.4. AN EXAMPLE AND SOME RESULTS (8]

Again consider the previous example:

1 1= 1+ 1
2 J — (J—1)*I
3 K — (J—1)*(K—I )

This might be implemented as:

Statement Implementation Semantics

4 2 2 2

1 ABA I 1 + I :— I+1

2 ART J 1 — T : — J— 1

TAB I J * J :~~T*I

3 ART J 1 — T:— J—1

ART K I — T:— K—I

TUA K * K : . T * U

where T and U are the top and next—to—top (under top) stack elements,

respectively. The size, in bits, of each identifier field in the

first instruction appears directly above the corresponding mnemonic.

Note that the stack is “pushed” automatically by the ~~~ instruction

and the ~~~ instruction “pops” the stack for further use.

.iI_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — • ---- - - - - - _ • -  -~~ - - -  ______
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Our CIF rules apply directly to container size——two bits are

allowed to identify the four variables and two bits are used for the

four operations. The canonic number of instructions are achieved, as

are the variable and operation container sizes; however, 4 additional

bits per instruction are needed in this implementation to identify the

correct format (out of the eleven instruction formats discussed in

Theorem 1, plus four additional control operators).

There is a difference between the transformational completeness

required by the canonic rules, ann the achieved transformational com-

pleteness. The two agree only for statements containing at most one

functional operator——so that the implementation contains an additional

J—identifier in instruciton 3 and an additional K—identifier in

instruction 6. These do not , however, necessitate additional memory

references since separate domain and range references are also

required in the CIP if a single variable is used both as a source and

sink within a given statement. The comparison with the CIF measures



-~-~~--- ~~~~_- • •~~~~~~———---~~~~ — _ --~— -~-- _ ---_ .~~~~~~~ _ ——--—--- _~ -_

80

are shown below.

ACHIEVED vs. THEORETICAL EFFICIENCY

Number of Achieved CIF

InstructIons 6 6

Operand Identifiers 11 9

Operator Identifiers 6 6

Memory References 2 (i.u.) 1 (i.u.)
12 (data) 12 (data)

Totals
14 total 13 total

Size of Achieved CIF

Each Identif ier 2 bits 2 bits

Total Program 58 bits 30 bits

We assume that 32 bits are fetched per memory reference during

the instruction fetch portion of the interpretation process. While

the program size has grown with respect to CIF measure, it is still

substantially less than System 370 representation; other measures are

comparable to CIF.

The example discussed in the preceding section may be criticized

as being non—typical in its DEL comparisons :
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• I. The containers are quite small, thus reducing size
size measures for the DEL code.

ii. Program control is not included.

iii. The program reduction In space may come at the
expense of host machine interpretation time.

With respect to the first criticism, note that the size of a pro-

gram representation grows as a log function of the number of variables

and operations used in an environment. If sixteen variables were

used , for example, program size would increase by 50% (to 90 bits).

It is even more Interesting, however, to observe what happens to the

same three statements when they are interspersed in a larger context

with perhaps 16 variables and 20 statements and compiled into System 
• 

-

370 code. The size of the object code produced by the compiler for

either optmized or unoptimized versions increases by almost exactly

the same 50%——primarily because the compiler is unable to optimize

variable and register usage.

The absence of program control also has no significant statisti-

cal affect. A typical FORTRAN DO or IF is compiled into between 3 and

9 System 370 instructions (assuming a simple IF predicate) depending

upon the size of the context in which the statement occurs. Thus, the

inclusion of program control will not significantly alter the Btatis—

tics and may even make the DEL argument more favorable.

I

L
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The third criticism is more difficult to respond to. We submit

that host interpretation time should not be noticeably increased over

a traditional machine Instruction if the same premises are made, since

1. 16 DEL formats must be contrasted against perhaps 6 or 8 Sys-
tem 370 formats (using the same definition of format)——not a
significant implementation difference.

ii. Some features are required by a 370 instruction even if not
required by the instruction——e.g., indexing. Name completion
through base registers is a similar situation since the base
values remain the same over several instructions.

iii. Approximately the same number of state transitions are
required for either a DEL instruction or a traditional machine
instruction if each is referred to its own “well mapped” host
interpreter. In fact , for an unbiased host designed for
interpretation the interpretation time is approximately the
same for either a DEL instruction or a System 370 instruction.

The language DELtran, upon which the aforementioned example was

based , has been developed as a FORTRAN DEL. The performance and vital

statistics of DELtran on the host EMMY [24] is interesting, especially

when compared to the 370 performance on the same system. The table

below is constructed using a version of the well—known Whetstone

benchmark and widely accepted and used for FORTRAN machine evaluation.

The EMIlY host system referred to in the table is a very small

system——the processor consists of one board with 305 circuIt modules

and 4096 32 bit words of interpretive stcrage. It is clear that the

DELtran performance is significantly superior to the 370 in every

measure.

-_ -
~~~~
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* DELtran vs. System 370 Comparison for the Whetstone Benchmark

Whetstone Source —— 80 statements (static)—— 15,233 statements (dynamic)
— —  8,624 bits (excluding comments)

System 370 DELtran ratio
FORTRAN —I V opt 2 370/DELtran

Program Size (static) 12,944 bits 2,428 bits 5.3:1

Instructions Executed 101,016 i.u. 21,843 i.u. 4.6:1

Instructions/Statement 6.6 1.4 4.6:1

Memory References 220,561 ref. 46,939 ref. 4.7:1

EMMY Execution Time 0.70 sec. 0.14 sec. 5:1
• (370 emulation approximates 360 Model 50)

Interpreter Size 2,100 words 800 words 2.6:1
(excludes I/O )

Before concluding, a further comparison is in order , Wither [31]

compares the S—language for FORTRAN on the B—1700 as offering a 2:1

space improvement over System 360 code. The FORTRAN S—language

instruction consists of a 3 or 9 bit OP code container followed by

operand containers of (usually) 24 bits——sp lit as descriptor , segment

and displacement (not unlike our interpretive storage entry). The

format set used in this work is of limited size, and does not possess

transformational completeness. However, even this early effort offers

noticable improvement of static program representation.
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