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p

ABSTRACT
p

This paper investigates the question of how to recon-
cile incoherent probability assessments, i.e., assessments
that are inconsistent with the laws of probability . A

general model for the analysis of probability assessments is
introduced, and two approaches to the reconciliation problem
are developed. In the internal approach, one estimates the
subject’s “true ” probabilities on the basis of his assess-

ments. In the external approach, an external observer up-

dates his own coherent probabilities in the light of the
assessments made by the subject. The two approaches are

illustrated and discussed. Least—squares procedures for

reconciliation are developed within the internal approach.
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ON THE RECONCILIATION OF PROBABILITY ASSESSMENTS

1.0 INTRODUCTION

Decisions of ten depend on the probability of uncertain
events such as the result of an election , the state of the

economy , the outbreak of war , the guilt of a defendant , or
the outcome of a medical operation. Because such events are

essentially unique , the assessment of their probability must
be based on personal judgment. Thus, the human mind is used
as an instrument for the assessmen t of uncertainty, much as
the ruler, the pen balance , and the pendulum are used as
instruments for the measurement of length , weight , and time.
In fact, the axiomatic analysis of subjective probability

(De Finetti, 1937; Ramsey, 1931; Savage, 1954 ) is closely
related to the axiomatic analysis of the measurement of

physical attributes like length , weight, and time.

To illustrate this relation , recall that the analysis
of many physical attributes is based on some set of objects,
ordered with respect to the attribute in question , and a
physical operation of concatenation of objects. In the

measurement of mass, for example, the ordering of objects is
typically established by the use of a pen balance ; and the
concatenation operation is interpreted as the placing of two

objects together in the same pen. The key axiom needed to

establish an essentially unique additive scale of mass is

x > y if f  xoz > yoz

where > denotes the mass ordering and o denotes the con-

catenation of objects (see Krantz, Luce, Suppes & Tversky
1971).

1
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Suppose that our object set consists of events , and
> denotes the relation “more probable than ” between events.

The ordering of the events could be established directly by
asking an individual which of two events he considers more
probable. Alternatively , the ordering could be derived from
preferences between gambles as in the Ramsey—Savage approach.

If we interpret the operation 0 as the union of disjoin t
events, then the above condition becomes one of the critical
axioms needed to ensure the existence of a subjective proba-
bility measure over the appropriate collection of events.

Despite the formal similarity between the processes,

the measurement of subjective probability is considerably
more problematic and less satisfactory than the measurement

of physical attributes such as length or mass and psycho-
logical attributes such as loudness or brightness. Indeed ,

the assessment of subjective probability is beset with

severe problems of both theoretical and practical nature.

First, subjective probability is a measure of degree of
belief , which ref lects one ’s state of information. It is

not only subjective but also variable since it can change
from one situation to another. Second , it is not possible
in general to obtain repeated independent measurements of

subjective probability from the same individual because he

is likely to remember his previous thoughts and responses.
Consequently, there are no procedures for the measurement of
belief that permit the application of the law of large

numbers to reduce measurement errors.

The dif f iculties involved in applying standard measure-
ment criteria of reliability and validity to the measurement

of belief give rise to the questions of how to evaluate and
improve assessments of subjective probability. Three types
of criteria that could be called pragmatic, semantic and

syntactic have been employed . Pragmatic tests refer to
comparisons of assessments with reality , and they are

2 
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applicable whenever the assessed probability of an event

(e.g., a royal f lush in poker , or an accident ~n the highway)
can be meaningfully compared to a value that is computed in
accord with the probability calculus , or estimated from
empirical data. Unfortunately, such tests cannot be applied

in most cases of interest because of the difficulties in-
volved in estimating so-called objective probabilities.

If pragmatic tests are not applicable , however , it is
still possible to evaluate probability assessments in terms

of a semantic criterion that pertains to the meaning of the

probability scale. Clearly , there is no way of validating ,

for example, a meteorologist’s single judgment that the pro-
bability of rain is 2/3. If the meteorologist is using the

scale properly,  however , we would expect that rain would
occur on about 2/ 3 of the days to which he assigns a rain
probability of 2/3. This criterion is called calibration .

Formally , a person is calibrated if the proportion of correct
statements, among those that were assigned the same proba-
bility , matches the stated probability , i.e., if his hit—

rate matches his confidence. If only 1/2 of the days to

which the meteorologist assigned a rain probability of 2/3
were rainy , then he is not calibrated . This does not mean

that his assessments are worthless or non—informative ; it

merely indicates an improper use of the probability scale.

In order to make use of his assessment, it should be remem-
bered that his 2/3 actually means 1/2.

Besides the pragmatic and the semantic criteria , sub-
jective probabilities should also obey syntactic rules ; that
is , the relations between assessments should be governed by
the laws of probability . For example, if A and B are dis-
joint events , then the assessed probability of the event, A
or B, should be equal to the sum of the assessed proba-
bilities for A and for B. A set of probability assessments

is (internally) coherent only if it is compatible with the

t
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probability axioms. Coherence is clearly essential if we

are to treat assessments as probabilities and manipulate
them according to probabilistic laws.

Common observations and experimental studies (see
Slovic , Fischhoff and Lichtenstein, 1977; Tversky and
Kahneman , 1974) show that the pragmatic , semantic and syn-
tactic criteria are not always satisfied. Thus, assessments
of probability , produced by laymen and experts alike, are

of ten inaccurate, uncalibrated and incoherent. But since

subjective judgments constitute the major data base for the

measurement of uncertainty, the question is not whether to
accept subjective judgments at face value or reject them
altogether , but rather how to debias and improve them.
Procedures for the elicitation and debiasing of subjective
probabilities have been discussed by several authors , among
them Kahneman and Tversky (1978); Spetzler and Stael von
Holstein (1975); and Winkler (1969). These procedures were

designed to obtain probability assessments that are more
accurate and better calibrated. The present paper is con-

cerned with the problem of coherence , namely, l~ow to recon-
cile probability assessments that are incoherent or mutually
inconsistent. Before we formalize the problem, it is in-
structive to examine some examples.

Example 1. Consider the possible causes of death.

Suppose H denotes heart failure, C denotes cancer ,
D denotes any other disease, and N denotes all
causes of natural death. Let ~ denote the complement
of N , etc . The following probability assessments,
denoted by q, were actually made by one of the
authors concerning the possible causes of death of
another author :

4 
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q(H) = .33, q(C) = .27, q(D) = .23 q(~ ) = .12.

q(H~N) = .41, q(CIN) .31, q (DIN) = .28

Note that these assessements are incoherent. First ,

q(H)+q(C)+q(D)+q(N) = .95 instead of unity . Such

failures of additivity are quite common when the

number of events exceeds 2 or 3. Second , the

conditional probability ratios do not coincide with

the ratios of the corresponding unconditional pro-

babilities. For example, q(H~N)/q(C~N) = 1.32,

while q(H)/q(C) = 1.22. Clearly , the two ratios

should be equal because both H and C are subsets of

N. The assessor is now faced with the task of

reconciling his assessments so as to achieve coherence.

How should he do it? What additional information ,

if any , is required to reconcile the inconsistent

assessments?

Example 2. Let C denote the occurrence of a major

energy crisis in the United States during the next

decade , and let q1 and q2 be two different assessments
of the probability of C. These values may emerge

from two different ways of thinking about the problem ,

say, one in terms of specific scenar ios that could
lead to an energy crisis , and one in terms of a
particular economic model. Alternatively , q1 and

q2 may represent the judgments of two experts about

the probability of C. In general , of course , q1
and q2 do not coincide. Thus, we have to amalgamate
the two estimates, that is, assess the probability of
C in light of q1 and q2, denoted p(C~q1,q2). Note

that from a purely formal viewpoint, it is - .ninaterial

whether the two estimates were produced by ~ne person

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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using two different methods, or by two different

individuals. In both cases we need to reconcile

the difference and produce a single estimate.

The problem of reconciling inconsistent observations is
not unique to the measurement of belief. For example , a

surveyor who uses a theodolite to measure distance faces a
similar problem. Because of measurement errors, the assess-

ments of angle and distance are generally incompatible with

the laws of plane geometry. Hence, the surveyor must recon-
cile the inconsistent measurements to obtain a coherent set
of estimates. His problem, however , is simpler because he
can readily obtain repeated observations and thereby reduce

errors of measurement. Although it is generally not possible

to obtain independent repeated measurements of subjective

probability , the analogy between the measurement of distance
and the assessment of belief is instructive. In particular ,

it suggests the possibility of exploiting the constraints

imposed by the probability laws to obtain improved estimates
of subjective probability , much as the surveyor exploits the
constraints imposed by plane geometry.

To illustrate this idea, suppose you have to assess , as
in Example 2, the probability of a major energy crisis in

the United States during the next decade , denoted C. There

are several different approaches to the problem. You could
adopt an intuitive, wholistic approach where you contemplate
the energy situation , the United States economy , the inter-
national scene , etc., and make an intuitive estimate on the
basis of these considerations. Alternatively, you might

wish to develop an explicit model for the supply and demand
of energy, in which p(C) can be expressed as a function of
some parameters that either are known, or can be estimated .

A third possibility , which lies somewhere between wholistic

assessmen t and explicit modeling , is to decompose p (C) and
assec~ the components separately. For example , let E denote

6 
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an oil embargo on the United States during the relevant time

period. Following the decomposition approach , you could
assess the probability of an energy crisis given an oil
embargo p (C~ E ) ,  the probability of an energy crisis in the
absence of an oil embargo p (CIE), and the probability of an
oil embargo p(E). The overall probability of an energy

cr isis is given by

p(C) = p(CjE)p (E) + p(CjE)p (~ ), with p(~ ) = l—p(E) .

Thus , the laws of probability allow us to compute p (C) from
p(E) and the conditional probabilities p(C~E) and p (C~~ ),

just as the laws of geometry allow us to compute the dis-
tance between A and B, say , from the distance between A and
X , the distance between B and X , and the angle AXB. Just as

the distance between A and B can be measured using a dif-

ferent auxiliary point from X , the probability of C can be
computed using a different conditioning event from E. Thus,

one may compute p(C) from p(CID), p(C I~~) and p(D), where D
denotes the development of new effective method s for using
solar energy.

The use of different conditioning events such as D and
E to compute p(C) can be viewed as two different ways of

thinking about the target event C. A direct wholistic

assessment of C represents a third way of looking at the

problem. Generally, the different procedures yield different

estimates of p (C) that have to be reconciled . If each of

the estimates, however , conveys some valid information that
is not included in the others, then the precision associated
with the reconciled value will be greater than that of
theseparate estimates , in the same way that the precision in
the location of a point increases by determining several

different (inconsistent) bearings.

7 
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The present paper is concerned with the development of
models for the reconciliation of incoherence (Brown & Lindley ,
1977). We first outline a general framework for the analysis

of probability assessment ; we then investigate how it can be
used to reconcile inconsistent judgments. We develop two

approaches to the reconciliation problem , which we label
internal and external. In the internal approach, the observed
probability assessments are related to some internal coherent
probabilities in a manner analogous to the relation between
the observed score and the true score in test theory . Thus,

it is assumed that the subject has , in some sense , a set of
coherent probabilities that are distorted in the elicitation

process. The internal approach is concerned , then , with the

attempt to estimate the underlying “true ” probabilities

using the observed assessments. This approach also permits

the calculation of the precisions associated with the recon-
ciled values , given the precisions associated with the
observed assessments.

In the external approach , we introduce an external
entity,  the investigator , who assesses his own coherent pro-
babilities on the basis of the judgments produced by the

subject. Here, the investigator plays a role that is similar
to that of a surveyor who uses fa l l ible measurements to
produce a coherent set of distances.

In the next section we develop a general framework for
the analysis of fa l l ible probability assessments, and
introduce the internal and the external approaches to the
reconciliation problem. Section 3 illustrates the applica-

tion of the basic model in two simple special cases. Least-
squares procedures for the internal approach are discussed
and illustrated in Section 4. The philosophical and prac-
tical problems associated with the present development are
discussed in Section 5 , along with directions for future
research.

8
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2.0 THE BASIC MODEL

2.1 Description of the Model

We are concerned with an individual or a subject,

denoted 5, who considers a sequence A = (A
i~~
A2I~~ ••P Am

) of
events about which he is uncertain. For example , consider
a meteorologist contemplating the rain pattern for the next
in days where A~ denotes rain on the i-th day.

We suppose that S wishes to describe his uncertainty
about A through a coherent probability specification for A.

Normative , or coherent, S therefore has a probability dis-
tribution r(A) for A. It is important to notice that ¶

obeys all the rules of the probability calculus. In the

example , the meteorologist would assess the probabilities
of all weather patterns over in days , e.g., rr (A1A2) = ir (A 1

)
ir (A

2 IA 1).

Real S is not necessarily coherent and his assessments
of probabilities do not always obey the rules of the calcu-
lus; even if they do, they may be defective because of S’s
weakness as a probability appraiser. Thus, in the meteoro-
logical situation S may assess the probability of rain on

day 1 as 0.4, on day 2 given that day 1 is wet as 0.8, and

yet say that the probability of rain on both days is 0.2 and

not 0.32 as implied by the above assessments and the demands

of coherence. The assessed values will be described by a

vector q(A).

Our model therefore contains, in addition to S, three
elements: A, rT (A) and q(A). The first describes the world

external to 5, the second describes a coherent S and the
third gives S’s stated view of the world. In terms of the

analogy with the measurement of length, q corresponds to the

9
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observed measurements of distances and angles , and ~ could
be regarded as the true distances between the points.

Like their physical counterparts , q is directly observable
but ¶ is not.

In addition to the subject, S, we consider an investi-
gator, N. Unlike 5, N is coherent and his task is to recon-
cile S’s stated values q and to provide an assessment of i~~.

Alternatively , N could assess his own probabilities for A in
the light of the information q provided by S. N can be

thought of as the surveyor who uses Euclidean geometry to

provide estimates of the true positions except that he uses
the probability calculus instead of geometry. It is possible

to interpret N either as part of S, or as external to S. In

either case , N is a coherent observer of S.

From N’s viewpoint, all the elements of our model , S,
A, ¶ and q are part of the external world about which he is
uncertain and which are described by a probabi lity distri-
bution p(A,ii ,q) of the uncertain quantities. (We prefer
Schlaifer ’s term “uncertain quantity ” to the more usual

“random variable ” because the expressions are fixed and not

variable; but they are unknown and hence uncertain.) The

notation p (s )  will be reserved for N’s probabilities: the
Greek equivalent ir (.) similarly refers to S’s coherent
probabilities ; a dif ferent letter , q, is used for S ’s
assessments which need not be coherent.

The joint distribution may conveniently be described in

three stages. First there is the distribution of A , p(A).

Second there is the conditional distribution of 7T given A ,

p (irjA) ; and third there is the conditional distribution of q

given the other two elements, p(q~ Tr ,A). These three dis-

tributions completely specify the joint distribution of the

uncertain quantities and summarize the situation as far as

N is concerned. Notice that each of the three distributions

10 
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4 1

corresponds to a di f ferent aspect of N ’s contemplation of
the problem. His view of the world external to both N and S
is described by p(A); whereas S’s, when coherent, is ‘TT (A) .

His view of coherent-S as a probability appraiser is included
in p (iT~A). Finally, p(q~ iT ,A) gives N’s opinion of S as a
measuring instrument when he is measuring his uncertainties
about A. In the meteorological example, p(A1) is N ’ s proba-
bility for rain on the first day; p[n (A1) IA 1] is N ’ s proba-
bility that the meteorologist ’s true probability of rain on
the first day is it when it truly will rain then. The final

conditional distribution describes what N thinks the meteor-
ologist will actually state when his true value is
and it will rain.

Since q di f fe rs  only from ri because of S ’ s di f f iculties
in articulating his probabilities and therefore describes S
as a measuring instrument on it , it seems reasonable to suppose
that the conditional distribution of q, given ii , does not
depend on the state of the world external to S described by
A. That is, given ii , q and A are independent, or

(1) p(q~ 7r ,A) = p(q~7r ).

Indeed, the major function of the unobservable “ true ” proba-
bility it is to stand between S and the external world so
that the two are related only through ii . This assumption is
in the spirit of the standard measurement model , where
different measurements of the same quantity are treated as
independent—-given the “true ” m~-asurement of the quantity.

In summary , our model involves

I. p (A): N’s appreciation of the world

II. p (ir IA) : N’s opinion of S as a probability appraiser
III. p (q~it ): N’s opinion of S as a judge of his (S’s)

uncertainty about the world.

11
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These core distributions are N’ s , and all the calcula-
tions with them are performed by N according to the rules of
the probability calculus, that is, coherently. We now de-

scribe two approaches to the reconciliation problem , called
the internal and the external approaches.

In the internal approach , the subject acts as his own
inve stigator and attempts to estima te his “true” coheren t

probabil ities r i .  In the external approach the inves tigator
attempts to revise his own probabilities for A , based on
the assessments made by the subject.

2.2 The Internal Approach

Here N is concerned only with it and q. We have1

(2) p(’n) = Z~p )p(A)

and p(q~ it) directly, providing a complete probabilistic

descrip tion of q and it .

By Bayes ’ Theorem we have

(3) p(it~q) p(qiit )p(it )

as N ’ s appraisal of coherent S after S has reported his
assessments q.

This method can be used when S has made several proba-
bility assessme nts q = ~~~~~~~~~~~~~~~~~~ fin ds them to be
incoherent--as in Example 1 or the meteorological problem

above--and wishes to reconcile them to coherent values. The

1The abbreviated notation EA here refers to a summation over
a partition of the events in A. _Thus if A = (Al ,A2) then
the summation is over A1A2,A1A2,A1A2 and AlA2.
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calculations leading to (3) enable him to do this. Fur-

the rrnore , they provide a way of calculating the precisions

of the reconciled values by means of the variances of p( ’n~~q ) .

Let (rr 1,ri2 ‘TTm) be the true values that correspon d

to ~~~~~~~~~~~~~~~~~ respectively. There will typically be

constraints among the irk ’s corresponding to coherence require-
ments. Thus, in the meteorological problem with q1 = q(A1)

= 0.4, q2 = q(A 2~A1) = 0.8 and q3 = q(A1A2) = 0.2 we will

have 71
3 

= ~~~~~~~~ A possi b le se t of reconcile d values is given
by it = E (1T~~Iq ), the means of the distribution pN~q). In

statistical language the it ’s are estimates of the it ’s. The

precision of the reconcile d value may be descri bed by the
invers e of the variance of it s, given q. Notice that, in
general , the reconciled values will not be independent.

A specia l case arise s when one or more of the even ts
in A are of particular interest——we call them target events

——and the other events are introduced in order to increase

the precisions. It is then only necessary to calcula te the
marginal distribution of those it ’s which refer to the target

events. We call this procedure extension of the conversation

——from the target events to other events. The increase in

precision essentially results from the increased exposure

S has to the constraints of coherence when he contemplates

many events . Example 2 above provides an i l lus t ra t ion of
this procedure. We believe that this method could be of

ccnsiderable value in improving probability assessments.
The calculations are described in detail in Section 4 . 3
below .

13
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2.3  The External Approach

Here N is concerned only with q and A , so that S plays
no role except as the provider of data q for N to update his
probabilities of A. We have 2

(4) p(q~A) =

using the independence condition (1), and p(A) is available

directly providing a complete probabilistic description of q

and A. By Bayes ’ Theorem we have

(5) p(Afq)a p(qjA)p(A)

as N’ s appraisal of the uncertain events after S has reported
his assessments q.

The meteorological situation provides an illustration

in which the meteorologist, S, has announced a proba bility
of rain tomorrow as q = 0.8; what is N’s probability in the
light of this information? In particular , should N use S’s

stated value? The external approach could be useful where

N is a decision maker who requires a probability for A in

order to take action. He may consult an expert, or a group

of exper ts , each of whom reports his probability for A and
the decision maker has to reach an overall judgment (see

Example 2).

2We use E~ to denote a sununation over ii. In application below
it will be an integration over real vector space .

14
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Notice that although both approaches depend on the

common core of distributions I-Ill above, p(A), p (itIA) and

p(qj it ), they can be used without N determining all three.

Thus , in the internal approach , p(it) may be assessed directly,
rather than through (2), when combination with p (q~ ’ri) in

(3) gives the required result. Similarly , in the external

approach , p(q~A) may be assessed directly , ra ther than
through (4), and combined with p(A) in (5) to produce the

result. If these ideas are adopted , the internal approach

is seen to be simpler than the external one because it avoids

the second of the core distributions , p(71IA), or the
derived p(q~A). Both these distributions are relatively

unfamiliar in comparison with I and III, wh ich are respective ly
a “prior” and a likelihood . However , II requires a judgment

by N of what S believes about A (in the case of i t)  or will

say he believes (for q) for each constituent event in A.

In the weather example , N has to consider what the

meteorologist might say about rain tomorrow both on those

occasions when it will rain , and on those when it will not.
Presuma b ly, for a re putabl e wea ther forec aster , the former
will be higher than the latter. The distribution p( ittA) and
p ( T T I A )  are measures of the quality of the expert , S. Note
that p (q~ A) is related to the idea of calibration discussed
earlier.  To see the relation , consider a sequence of
occasions on which S asser ted a va lue q for the proba bility
of an event and let f ( A I q )  denote the relative frequency
with which the events in the sequence occur . Clear ly ,
f(A~q) is closely related to p (Ajq) which , in turn , is
related to p(q~A) by the one—dimensional form of (5) . Recall
that a person is calibrated if f ( A ~q) = q; that is , if a
proportion q of the events to which he has assigned a prob-
ability q actually occur. Indeed , if p(A~q) = q, N will
take S’ s announced value , q, to be his probability for A.

15



There is another relationship between the internal and
the external approaches. Recall that their end-products are
p (rt~q) and p(A~q), respectively. The former provides N’s
judgment about S’s coherent values, and the latter gives N’ s
assessme nt of the external worl d in the light of S ’ s infor-
mation. In the internal approach, we proposed that ~ = E(Tr~q)
might be used as reconciled values for S’ s statements. This
raises the question of whether ~~(A) = p(AIq) , that is,
whether N could use the reconciled values for decision
making. To answer this question note that

(6)  p (A~ q) = Z ’1Tp (A~~’7 T ) p ( ’ T r~~q ) ,

using the independence condition (1). This is (A) if

p(Aj Tr ) = i t .  Hence the reconciled value will agree with N ’ s
probability if N would have been prepared to use S’s co-
herent probability for A had he known it.

We now add a remark abou t the internal approach in its
direct form using p ( i t )  and p(q~ T r ) to obtain p ( i t~ q ) .  In this
form , it plays the role of a set of parame ters , q is da ta ,
and the “prior ” p (n) is updated by the likelihood p (q~ iT ) to
give a posterior p (ir~ q ) .  The use of reconciled values ~ =

E(’Tr~q) with their associated precisions is closely rela ted
to the method of least squares. Suppose the data q1.. ~~~
are , given the it ’s , independent and normally distributed about
the it ’s with constant variance ; suppose further that the

prior for the it ’s is , relative to this likelihood , rather
smooth. It then follows by standard theory that the it ’s
given the q ’s are also normal. The means are the least-
squares estimates obtained by minimizing Z~~(q~ _ Tr ~ ) 2 over the
it ’s , subject to the coherence constraints. (This resu!t
is exact if the constraints are linear and will  be approx—
imate for non—linear constraints.) The matrix of second

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



derivatives of the sum of squares at the minimum when

inverted gives approximate variances and covariances. If

the q’s are not independent but have a general normal

distribution , then a weighted sum of squares and products

replaces the direct sum above. Because the q ’s are

bounded, they cannot be normally distributed so that it may
be preferable to convert them to log-odds , ln[q/(l-q)]. The

whole argument then goes through with log-odds instead of

probabilities , both for the q ’s and the it ’s.

This technique is particularly simple and is the most
usable method we have for reconciliation of probabilities.

It is discussed in some detail in Section 4.0. Notice that

all it requires, in addition to S’s provision of the data ,

q, are their variances and covariances since these completely

describe the normal likelihood , and the prior is assumed to

be “flat. ” In our formulation , the likelihood p (q~ ir) has

been thought of as N’s but S may provide his own second

moments. If these are used directly by N , our argument is

unaffected .

17
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3.0 TECHNICAL DEVELOPMENTS

In this section , we take the general model of the

previous section , insert specific forms for the core distri-

butions and calculate other distributions of interest. To

avoid excessive technicalities , we confine ourselves to the

very simplest cases and only aim to demonstrate the feasi-

bility of the model. In Section 4.0, by specializing and

using least-squares ideas , we come near er to re sul ts of
practical use. This section deals with two special cases in

which all the calculations involved in the model can be

displayed explicitly .

In the first case, there is a single event, A , for which

S has true probability it (A), or simply it , an d for wh ich he
reports the single value q (A) , or q. Hence all quantities

are one dimensional. With one value reported , there is no
opportunity to use coherence; nevertheless , reconciliation ,
in the sense of calculating ~~, might be appropriate depending

on N’s judgment about S expressed through the core distri-

butions I-Ill. In any case, N may need to calculate his

probability of A in the light of S’s reported value q, as is
the case when the weather forecaster reports the probat’~lity

of rain tomorrow to be q. Another example arises in medical

diagnosis: a physician , 5, reports the probability q that

N has appendicitis. What is N’s probability for appendicitis?

To specify the model completely , we need to describe
p(A), p (71IA), p( itlA) and p(q~’rt). It is convenient and

sensible to work with log-odds , (see above) rather than with

probabilities. To economize on notation , we use q and it

to denote log-odds rather than probabilities. The log—odds

for A is written lo(A). Clearly , the general theory so

18
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far discussed is unaffected by this change.

There are two reasons for changing to log-odds. First,

it is necessary to handle bivariate distributions, and the
norma l is computationall y the most attrac tive ; 30 varia bles,
like log-odds, with infinite ranges are to be preferred.
Second , it is more reasonable to suppose that the measure-

ment error has constant variance when expressed in log-odds
rather than in probabilities , sinc e value s of the latter
are , in absolute terms , more precisely assessed when near 0
or 1 than when around 1/2 .

We therefore suppose that the last of our core distri-
butions p (q~ rr) is, in log-odds, normal with mean it and

constant variance, ~
2 abbreviated to N(ir ,a2). That is, N

views S ’s measurement of log—odds as unbiased with constant
variance. With p(A) = c~, say, we have only to specify p( itIA)
and p(’n~A). Suppose the former is N(~ 1,T

2). That is, if

it really is going to rain tomorrow , then N expects S to
have log-odds p~~, with standard deviation ‘r. Similarly ,
suppose the latter (applying to the case of no rain) is

Presum ably, for a good forecaster , p2 < ° <

(Log-odds of zero correspond to a probability of 1/2.)

A special case arises when S is thought to be just as

good when A is true as when it is false: then =

for when A is true , his probability for A would then be
expected to be the same as tha t for R when A is true , but
p(A ) = l-p (A) and hence 10(A) = -lo (A). This may be appro-

priate in the meteorological case but not in the appendicitis

example , where it is easier to diagnose a real case of
appendicitis than it is other source s of abdominal pain , so
tha t perha ps I~2 I<~1. The variance has been supposed the
same for A an d for A: it wou ld be possible to han dle the
more general case , but the al gebra is un tidy an d little
extra insight is gained. Notice how p(71IA) and p ( I 1 I A )

19
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together describe N’ s opinion of S as a probability ap-
praiser. The values are related to the errors of the two

kinds studied in statistics , or to the false positives and
false negatives considered in medicine.

Notice that ~
2 and it2 describe two quite different

aspects of variability in the situation. The former gives

N’ s view of how far S’s stated value q will differ from ‘it ,

his coheren t value , and corresponds to a measurement error.

On the other han d, ~2 describes N’ s view of S as a prob-
ability appraiser , specifying the vari abili ty in S ’ s co-
herent value when A is true (or false).

In summary , the model is as follows :

I, p(A) =

II , p(iT~A) •“ N(~i , it
2

)

p(’TTIA) “ N(p , T )

III, p(q lit ) ~~N(it,a
2
).

Consider f i r s t  the internal approach . We have , equation (2),

p(it) = p(it~A)p(A) + p(it~A)p(A)

(6) = ~N (p , it
2
) + (l—a)N(p ,

a weighted average of two normals. For sufficiently small

values of ~ 2 (if ~ = ½ , = — p ,  the condition is ~~
2

<~~ 
2~

the distribution is bimodal. Thus , good meteorologists
(with small standard deviations) typically quote probabilities
for rain tomorrow which are either high (when it is going

20 
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to rain) or low (when not), and only rarely are they so un-

decided as to give values around 1/2, log-odds of zero .

It is convenient to write p(nIA ) = p1N) and p(TTIA) 
=

p2(it). Then , by Bayes Theorem ,

p(it~ q) = p(qIit)p (it)/Z~ p(qjit)p (’n)

p (q~1t){ctp (iT ) + (l—cz)p (it) }

ap (q) + (l—cx)p (q)

= p (‘n~ q)ct’ + p
2
(~~~~ (1—a ’)

where p~ (q) = Z71p (qIit)p~~ (1T ) , p~ (it~q) = p(qIiT)p~~(’1T)/p~~(q)

and a ’ = ap (q)/~~ap (q) + (l—a)p (q)}.

From standard normal theory , p. (itfg) is normal with mean
2 2 2 2 2

wq + (l—w)p
~~
, w = it / ( a  +t )and p~ (q) ~ N (u~~a +t ) ,  so that

p(it~q) is also a mixture of normals. The mean is

(8) ~ = E(it~g) = a’(wq + (1—w)p ] + (l—cx ’) [wq + (l—w)p ]

= wg + (1—w) (cz ’p + (l—cz ’)p ].

This is the reconciled value of it on the basis of the stated

value q. It is near q if w is near one, that is, if ~~2 is
much greater than a 2

. A large value of it means that p(’n)

(equation (6)] has large spread and that the likelihood
p(q~ ir) with smaller spread a is dominant. This is the
situation discussed in connection with least-squares methods

in Section 2 .3 .  Consequently , if S has small measurement
error compared with appraisal error , the reconciled va lue
will be essentially the stated value , and no change will
occur. The variance, and hence the precision, of the recon-
ciled value, var (ir~q) can be found. It is an untidy

21 
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expression; but in the case where ~2 is much larger than
~2 , it is approximately equal to a2.

A numerical example when ~2 is of the same order as
so that reconciliation away from q may take place , is

instructive. Suppose a = 1/2, p1 = -p 2 = 1.0 (so that S is

equally competent whether A is true or false), it = 1.0 and

a = 0.5. At two standard deviations, when A is true , S
is anticipated to have true log-odds between -1.0 and 3.0

(probabilities between .27 and .95)  and when false between
-3.0 and 1.0 ( .05  and .73 for probabilities). But the

reported odds can d i f fe r  by as much as l.0(=2c) from the
true values. (A probability of 0.5 can be reported anywhere
in the range .27 to .73). Then w = 0.8 so that in ~,
equation (8), 80 % of the weight goes on q and 20% depends
on the anticipated performance of S. If q = 0.7 (stated

probability of 0.67), the weight a’ = 0.75 and ~ is 0.66

(a reconciled probability of 0.66). If q = 1.5 (proba-

bility 0.82), the weight a ’ = 0.92 and ~ is 1.37 (proba-

bility 0.80). Both probabilities are lowered slightly, the

mean of the prior distribution of it being zero . But the
changes are small , and even here , where it is only twice a ,
the approximation that assumes it is large is not unreasonable .
In this case , reconciliation is merely allowing for the
effect of measurement error.

As an intermediary between the internal and external
approaches , we can consider p (AIit). We saw just after
equation (6 ) that N could use the reconciled value ~ as his
probability for A if p(A~ Tr ) = (1 + e

1t
)~~~~, remembering that

it is now a log-odds . We have

p (AIit) = p (~~IA ) p (A ) /pN)

ctp C,)

csp
1

( Tr )  + (1—~ )p (’it)

22
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from (6). Simple algebra shows the log-odds to be

2 2 2 2
( 9) l o ( A l T r ) = 10(A) — — p )./2it + (p —p )it/t

For this to be it , two conditions must be fulfilled , name ly
(p — p )/t

2 
= 1 and ln1

a 
= (p

2
~ p 2

)/ 2it 2 . These
are equivalently

(10) 
~~1

—p 2) tt2 
= 1 and l/2(p1+p 2) = ln

3 The second condition says that the prior log-odds have to
equal the average performance. This is satisfied in the
special case p = -p when a = ½. The first condition says

that the difference between the expected performances under

the two conditions , A and A , must equal the appraisal variance
1

2
. Thus , a complete matchin g of N and coherent-S when

considering A depends on a rather complex combination of
prior views by N and S’ s appraisals . A change in the
former would affect this agreement. If N judges A to be as

likely as not, a = ½ , the conditions for agreement are that
p = -p ,  so that S performs equally well under A as A , and
2p /it 2 = A , say is one . No simple interpretation of this
final requirement is known to us.

Consider next the external approach. It is immediate
from the core distributions II and III that

(11) p(qIA) ‘
~~ N (p , a

2
+1

2
) and p(qIA) ~ N ( p ,o

2 +i
2 ) ,

go that the rep1acem~.nt of it (in 11) by q here merely
replaces t 2 by 0 2 +12 . Consequently , p (A~q) is given by
the same result as (9) but with t~ everywhere replaced by

a 2 +it 2 . The “ least—squares ” case where ¶ 2 is large corn-

pared with 0 2 makes the two quantities p (At Ir ) and p(A Iq)
nearly equal .
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In the numerical illustration with a = 1/2, p = p

= 1.0, it = 1.0 and a = 0.5, so that A = 2, the log-odds
given q are , from (9) with 02+12 replacing it 2 and q for
‘it , equal to (p —p )q/(a2+t 2), or 1.6 times q. Hence q of

0.7 (probability 0.67) is raised to q of 1.12 (probability

0.75) and a q of 1.5 (probability 0.82) to one of 2.4

(probability 0.92). These changes are much larger than

those caused by reconciliation . The intuitive explanation

for this is most easily seen by considering the higher value

of q, 1.5. Such a value is much more likely to have arisen

from the distribution when A is true, p (q) ~ N(l,l.25)

rather than from the distribution when A is false , p (q) ~
N (-1 , 1.25). This is described by a’ which is here 0.92, so
that there is a 92% chance that q came from A. Consequently ,

N can substantially increase S ’s stated value. Notice how

this change depends heav ily on S as a probability appraiser
whereas reconciliation does not, p(’TTIA) and p( it IA ) enter

only through p(it). If it increases , the effect on N will
become less. In an extreme case where it and a tend to zero,

N will  shif t S ’s stated value to either 1 or 0. A meter-

ologist who always says 0.6 chance of rain on rainy days

and 0.4 when it is to be dry entitles N to be sure of rain

when 0.6 is announced .

The second example differs from the first only in

that S assesses both the probability of A and of A , supplying
q(A) and q(A). These we denote by q and q respectively.
There is now a possiblity for incoherence since they may
not add to 1. With rather general normal distributions , the
algebra becomes complicated; but it is possible to demon-

strate the main points if we specialize somewhat. Specifi-
cally, we suppose (the arguments still being log—odds)
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I: p(A) = ½ ,

2
II: p(’it~ A) ‘

~~ N (p, ’t )

p(itIA ) “~

(these are as before with a = ½ and p = - p ) .

For the last stage , we need to describe the joint  distribution
of q and q .  This we suppose:

III: p(q~~ it) ~ N (it ,c~) and

p(q ~~~~it) ‘
~~ N(— rt ,a2),

these being independent, given it.

The last condition says that both q and q =  q(A)

are unbiased , of equal precision and are uncorrelated .
This imples that, for all it , E(q +q it) = 0, so that N

expects S to be coherent. A generalization would allow for

bias. Another generalization would permit q and q to be

correlated. For example, S may always have q+q = 0, in

which case they are perfectly negative ly correlated and we
are back to the f i r s t  example.

In the internal  approach , the calculation of p (i i ) is as
before , equation (6), with its possible bimodal form . The
revised value of this distribution p(it~q , q )  is of the

same character as before , equation (7); a mixture of two

normal distributions separately derived from p (it) ~ p(it IA)
and p (ir ) = p(’rt~A). Standard normal theory calculations
show that p (‘n~ q ,q ) has mean

..
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(q —q ) p / 2 1
1 2 + 
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_ _

2 2 I 2 2a I / a it

with variance {27a
2 

+ 1 / i t ] :  and that p (itjq ,q ) is of

the same form with —p for p .  The weights are

w ’ = p 1 (q1 ,q2
)/{p

1
(q

1
,q

2
) + p(q ,q)} and l-w’. Thus the

reconciled value is

(12) ‘ii = E(it~q,q ) = (q— q )./a
2 
p (2w ’ _l)/T

:

2/a + 1/it 2/a + 1/it

For the case where ~ 2 is large compared with 02
, this is

about ½ (q
1 — q ). This simple form is interesting : it is

½{q + (—g)}, the average of q and (—q ) which are effectively

two statements made by S about A , arid not one about A and

one about A. The first is direct; the second was originally

q
2 
for A , so —q for A if coherent.

A numerical example may prove illuminating. Suppose S

gave probabilities of 0.6 for A and 0.3 for A. The correspond-
ing log-odds are q = 0.41 and q = -0.85. Then 1/2 (q -q )
= 0.63, giving a reconciled value for S’s coherent probability
for A of 0 .65 , and of course 0.35 for A.

The variance of the reconciled value of the log-odds
is ½a

2 , for large i t ;  one half the variance , twice the
precision , of the separate assessments. Suppose , in
illustration, a = 0.2 , so that at two standard deviations
the log-odds for A could lie in the range 0.41 + 0.4 , or
in probability terms (0.50,0.69). Similarly , the range of
probabilities for ~ is (0.22, 0.39). The consequent range

2€
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for the reconciled probability of A , is (0.59, 0.71).

The calculation of p(AIr) is as before with no
2

alteration, and (9) simplifies to give lo(A~ it) = 2p’tt/it

= Xii in the earlier notation.

For the external approach , we have first to combine
II and III to obtain p(q ,q~~A) and p(q ,q~~A). The former

is clearly a bivariate normal distribution with means
2 2 2

(p, -p) ,  v a r i a n c e s  a + it and covariance -it . Conditional

on A , the distribution is the same with -p for p. Direct

calculation using Bayes Theorem shows that

( 13) lo (A~q , q ) = 2p (q -q )/(a
2
+2it )

2 2 2If r is large in comparison with a , this is about 2p’rr / it
If it = 1.0 (taken as large in comparison with a = 0.2) and
p = 1.0, our numerical illustration gives a value for the

log-odds of 1.20, corresponding to a probability of 0.77.

This is a substantial increase from a stated probability of

0.F , reconciled to 0.65 to allow for incoherence. The

reason is, as in the first example , that N judges that the
stated values , 0.6 and 0.3, have more likely arisen froiit

A , than A , so that he increases the value for p(AIq ,q).

These two examples demonstrate how the ideas work out

in simple cases and show that the internal approach is
simpler than the external one , particularly when least—squares
procedures are used. The difficulty with the external

approach lies in the use of the measures of S ’s ability as
a probabili ty appraiser , p(ii~ A), which do not enter into
the other apparoach. Nevertheless, there are problems where
the external approach is essential, as when N has separate

27 
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opinions from several experts and needs to use them to
assess his own probability for A. We pass in the next

section to a consideration of the internal approach using
least squares.

28
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4.0 LEAST-SQUARES PROCEDURES

WITH THE INTERNAL APPROACH

We begin with a general description of the procedure.

We are concerned only with q and it , S’s stated and coherent
values for some events. N’s opinion about ii is diffuse so
that p(it) is approximately constant. In the simpler situa-

tions , each element of q is approximately normally dis-

tributed about the corresponding element of ‘it , with
constant variance a 2 say, these being independent. Under

these circumstances , the reconciled values = E(7r~ Iq)
are given approximately by the values of the it ’s that minimize

subject to any constraints on the it ’s that coherence imposes.

In other situations, the q ’s will be correlated and have
different variances , when a quadratic form

Zw~~ (q~~~it~~) (q~~— it~~)

will be minimized subject to the constraints, the w’s being

weights, the elements in the inverse of the dispersion matrix
of the q ’s. Minimization is performed by equating the first

derivatives to zero. The matrix of second derivatives at
the minimum, when inverted, provides the approximate vari-
ances, var(it~ Iq), and covariances of the reconciled values.
Throughout this argument, the it’s and q’s may be proba-
bilities or some suitable transform of them, such as log-
odds .

The whole procedure is straightforward except for one
difficulty: the constraints imposed by coherence are
typically non-linear, and the resulting equations are there-
fore non-linear. There is no simple resolution of this

29



P. 
~~
— .

~~~~~~~~~~~~~~

-----, - - - -

diff icul ty. The power of the probability calculus lies in
the ability of probabilities to combine both additively and
multiplicatively. If linearity of the latter is imposed by
taking logarithms, the linearity of the former is destroyed .
It is , therefore, a fundamental d i f f icul ty  but one that can
sometimes be alleviated by suitable approximations.

The coherent probabilities ‘n0(1~i~n) will themselves be

functions of k<n probabilities that can each coherently

receive any value in the unit interval irrespective of the
other. For example , with two events , A1, A2, where S has
provided q1 = q(A1), q2 = q(A 2~ A1) and q3 = q (A 1A2 ) ,  then if
81 = ‘n (A1) and 0 2 = ,T (A2~ A1) ,  we have it

1 
= 

~l’ 
11
2 = 8 2 and

it
3 
= 0~ 0~ where 0 < Oi, 82

<l
~ 
k = 2 , n = 3. If k <ii , then

coherence imposes constraints on the it ’s. Denote, as in the
example, these basic probabilities by 8l~ 

02~~ ••8k~ 
Then

confining attention to the uncorrelated, equal weights case
(generalizations being clear), the expression to be minimized

with respect to the 8’ s is

( 14) E [q ~ — it j (8 1, 82 , . . . O k ) ) 2 .

Differentiation with respect to 8~ gives

(15) — it~~(~~) ]  
~it~/a~ = a

The usual way to solve these equations in the non-linear
case is to suppose we have some first guess 00 at i--for
example, the values suggested by 

~~~~~~~~~~~~~~~ expand
in a Taylor series about 0~ retaining only the first

term. The resulting equations are linear in the discrepancy
and may therefore be solved.

Numerically these procedures may be iterated to obtain
improved solutions. In what follows, we shall concentrate
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on analytical solutions , either exact or approximate, which
help us to understand the methods , recognizing that for
practical implementation in complex situations , computer
software will have to be provided. This provision should

not be difficult since many minimization procedures for non-
linear functions are available.

We now pass to the consideration of several special
cases. In any application of the least-squares ideas, we
have to specify whether the calculation is in terms of

probabilities directly, or in some function thereof , such as
log—odds. We refer to this as the choice of metric : proba-

bility metric , log—odds metric , etc. The reason for pre-

ferring one metric to another is, as before , that the variance
of the q’s may be judged to be more reasonably constant in
one metric than in another.

4.1 Partition: General Metric

Here (A1,A2,...A~) is a partition, and S provides
probabilities 

~~ 
= q(A~ ), l<i~n for it~ = ii (A~) with the

single1 coherence constraint ~ it
1 

i. For a general metric

F(.) -- for log—odds, F(t) = ln [t/(l-t)] — the expression to
be minimized is ~[F(q~) — F(7T

~~
) ] 2 subject to the constraint

~~~~ = 1. The constraint can either be incorporated as

above , with O~ = it~~ for i<n and it~ = 1 - ~~~~~~~ or by using
a Lagrangian. For the probability metric , the equations
are linear and have the exact solution

(16) 
~~~~~~~~~~~~~~ 

= n

with

(17) var(ff~) = (1—n ~~ )a
2,

11t is assumed throughout that S always gives values for the
q’s that lie in the unit interval.
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02 being the variance of each value stated by S. The improve-

ment in precision due to coherence is only appreciable when

n is small; for n = 2 it doubles, as we saw in the previous
section. The form of (16) is worth a comment since it

generalizes. The adjustment, 
~~~~~ 

of the stated value to
a reconciled value is a multiple, here n 1, of the degree of
incoherence, that is , how far Iq~ d i f fers  from its coherent
value, 1. Here each q

~ is altered by the same amount.

A subject was asked to assess the probabilities that
his ultimate death would fall under one of the five cate-

gories: cancer, heart disease , stroke , other natural,
unnatural (accident , suicide, e tc .) .  He gave the values
given in the second column of Table i.2 The total is 0.83,

exhibiting a fair degree of incoherence perhaps caused by
the unpleasant nature of the events. The reconciled values

are each increased by 0.17/5 = 0.034 and are given in
column six.

In other metrics the minimization equations

= A

in Lagrange form are non-linear. Using the device suggested
above, a first guess for ‘irk might be with the result that

(18) = q~ — A/ F ’ (
~~

) 2 .

2The last column gives the frequencies (unknown to S) for
U.S.  residents. These values are not to be interpreted as
the correct probabilities. For example, a person with a
known history of heart trouble would have a higher proba-
bility than the frequency value-—a point we return to later.
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With the log—odds metric F’ (x) = x~~~(l—x)
1 so that

(19) 

~, 
= q~, 

— A q~
2(l~q~ )

2

providing a larger correction when q
~ 

is near 1/2 than else-
where. In the medical example, the changes upwards are
0.06, 0.04, 0.01, 0.04 and 0.01, instead of a constant 0.034

in the probability metric. The reconciled values are given

in the penultimate column of Table 4-1.

The reason for using other than the probability metric

is the fact that not all stated probabilities may have the

same errors associated with them. An alternative to changing

the metric is for either S or N to provide the precision
associated with each value. The precision of an assessment

is closely related to its stability , i.e., the degree to

which it varies upon further reflection. The assessment of

the probability that a coin will come up heads, for example ,

is very precise: it is not likely to depart from 0.5. The

assessment of the probability that a thumb—tack will fall on

its head , however , is much less precise. Different ways of

thinking about the problem could yield widely dif ferent
assessments.

To elicit the precision associated with each of the
q ’s, we asked the subject to quote a range of values for
each assessed probability (see column 3 of Table 4-1). The

quoted ranges were interpreted as multiples of standard

deviations and weights used inversely proportional to the
variances (column 4). We now have to minimize
with the result that

(20) 
~~~~~~~~~~~~~ 

= (1 — ~~~~~~~~~~~~~

The results for the medical example are given in the fifth

column of Table 4-1.
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4.2 Sub-partition: Probability Metric

A problem closely related to that described in the pre-
vious subsection arises where S assesses the probabilities
for a number of exclusive, but not exhaustive, events A1, A2 ,

~~~~~ giving values q1,q2,...q , and also assesses the
probability of their union, citing q’. Incoherence arises

1.~ q ’ 
~ 

An example arises in the same medical context

where S gave values for four natural causes of death (cancer,

heart disease, stroke and other) and also for the proba-
bility of his dying a natural death. With its, = ‘n (A~) and
weights ~~~ the problem is to minimize,

(21) Zw~~(q~~ ’it~ )
2 
+ w(q ’— Zir~ )

2

The resulting equations are linear with solutions

(22) it~ — q1 = (q’—Eq~ )/w~ { Ew~~~ + w~~}

Notice again the occurrence of the measure of incoherence

q’-Lq)
. If, in the medical example , the four probabilities

for the types of natural death had been as before , and S
had quoted 0.92 as the probability for natural death (so

that he was coherent with his original 0.08 for unnatural

death), then the revision is exactly as before . An alterna-

tive way of dealing with sub-partitions using conditional
probabilities is described below. H

Notice that in both these subsections it has been assumed
that the correlations between S’s different values are all
zero. The most likely form of correlation is negative,
the subject raising one probability and consequently lowering
another. Indeed, a coherent S will have correlation
giving q’ Eq~.
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4.3 External Conditioning: Probability Metric

In Section 2.2 we mentioned the possibility of having

some target events whose probabili ties are required and that
in order to assess these values, the conversation is ex-
tended to other events. Here we consider the simplest case

of a single target event A and the extension to another

event, denoted X to distinguish it clearly from a target
event. Suppose S is sufficiently conscious of coherence so

that his assessments for any pair of complementary events
add to unity. Suppose further that S assesses it (A), ¶ (AIX) ,

it (AI~~), and ‘rt (X). Here, the opportunity for incoherence
arises since it (A) = it (AIX)Tt (X) + ‘it (A I~~)it (~ ) may not hold
for the corresponding q ’s. Our hope is that the reconciled

value (A) will be an improvement over the raw assessment

q(A), and we therefore wish to evaluate the precision of the
reconciled value. The coherence constraint above is non-

linear; to avoid this let us suppose ‘ir (X) is known3 so that
q(X) = it (X). We later generalize to the case where this is

also in error. The process will be called external con-

ditioning, since the probabili ty of the target event is
considered conditional on some external event, X.

Since no new difficulties arise by generalizing, we
consider a partition into X1,X2,...X and not just X and X,

n = 2. Write q (AtS~ ) = q~~, q (A) = q ’, the it ’s analogously
and q(X~) = = it (X~)~ with = 1. The coherence con-

straint is that it (A) = 
~
it (AfXj)it(X~

) or it ’ = 
~

it
jKi, and we

have to minimize

3An example is where X is the event that a team wins the
toss at the beginning of a contest. It would then generally
be agreed that q(X) = it(X) p(X) = 1/2. The event A
could then be that the team wins the contest.
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2 2(23) E(q~~ it~ ) + (q’—E’rr~ K~ )

on assuming equal weights and zero correlations for the q ’s.

The result, for the target event A , is that

(24) ~~
‘ — q ’ =

l + Z K .21

In words , the correction to q ’ for incoherence is the de-
parture from coherence , ~q~K~ —q ’, divided by (l+EK~

2).

This divisor is the variance of the departure , assuming
all q ’s have unit variance. The precision of the reconciled

value is therefore easily found to be

(25) 1 + (~~K .
2
)~~~

times the precision of each stated value.

There is another simple way of looking at ~ that gener-
alizes. In effect, S has provided two values for it (A); q’

directly and Eq~ K~ indirectly. These have variances ~
2 and

where ~2 is the variance of each statement by S.
Taking a weighted average of these two values with weights

inversely proportional to the variances, we obtain ~ as
given by (24).

Returning to a single event X, the case n = 2, the
precision of ~~~~~~~~~~~~~~~~~~~~~~ is 1 + [ir (X)2 +

it(~~)
2] 1 relative to that for q(A). The improvement is

remarkable. If niX) = 1/2, as in the example of a toss,
the reconciled value has three times the precision of the

original value. The extension of the conversation to

include X has tripled the precision, and it would appear
that the extension is important in assess probabilities.

As we shall see below, the increase in precision is
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considerably smaller when the assessments are positively
correlated, as is likely to be the case in most applications.

It is easy to see in the general case that the pre-
cision (25) is maximized when all the K ’S are equal, that
is, K

i 
= n~~ : it is best to choose a partition in which

the constituent events are all equally likely. The pre-

cision for the reconciled value is then (n+l) times the
precision for the original value. (This was the case with
the example of winning the toss.) Expressed differently,
the increase in precision due to refining a partition from
n to (n+l) elements is equivalent to that that could be had
from an independent assessment for the probability of the
target event. Since such independence judgments are not
available in practice , the principle of extension of the

conversation can be used to play a similar role.

The result that among partitions of size n the pre-
cision is maximized when all probabilities in the partition
are equal is a very special solution to what we call the
design problem, that is, the problem of designing questions
to be answered probabilistically by S in such a way that the
expected precision of the reconciled value for the target
event is maximized. It is analogous to the design problem
in weighing objects, where the purpose is to choose the
weighings in such a way as to maximize the precision of the
final determination of weight. We do not discusB this
problem in the present paper except, as here, when solutions
arise as a by-product of our investigation of the principle
of reconciliation. One cannot choose the best design until
the reconciliation problem for that design has been solved.
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4.4 External Conditioning: Log-Odds Metric

With this metric the constraint imposed by coherence is
non-linear and resort has to be made to devices exemplified

by (15). The use of the log—odds metric is equivalent to

saying that the variance of each q is proportional to
it2 (1-it)2, or q2(1-q)2 approximately. We may therefore

replace (23) by the weighted sum

(26) Ew~ (q~—1T~ )
2 

+ w(q ’~~Z’1T~ K~~)
2
,

in generalization of (21), with w
~ 

[q~ (l-q~)]
2 and

w~x [q
t (l_q~ )]

2. The result of the minimization is that

(27) ~~
‘ - q ’ j Eq~K~-q ’\ i

(i+
<i
2

,
,
)w

w

And the variance is proportional to

(28) 1 K. 2 /1

~Z~t ( +
~~~~w w

~ ~ w w
~

To illus trate the reconciliation procedure for external
conditioning, consider the assessment of the probability of
an energy crisis in the United States during the next decade,
denoted A. Let X denote the development of new, effective
methods for the use of solar energy during the next decade.
Suppose q ’=q (A) = 0.7, q1=q (A~X) 0.5, qfq (AI~~) = 0.8, and
K = q(X) = it (X) = 0.5. With the probability metric , the
reconciled value is 0.67 with precision three times that of
each of the q’s, as we saw in Section 4.3. With the log—
odds metric, the weights are proportional to w1 .0625,

= .0256, and w = .0441. The reconciled value is still
0.67, and the precision is slightly more than three times 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -—--- ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ —.-.~~~~-- -



that of the original value, 0.7. This suggests that the
procedure is fairly robust to changes in the metric .

4.5 External Conditioning: Correlations

When S provides q (A) and q(A~X), he will often find
himself considering the same factors in both assessments.

Consequently , it may be reasonable to think that the errors

he makes in these two assessments are correlated. We in-
vestigate the effect of this on external conditioning in the
special case of a partition into X and 5~, where q(A~X) and
q(A~X) are equally correlated with q(A). The weights
attached to the two conditional assessments are also sup-
posed equal. In other words, the situation is symmetric in
X and ~~. Only the probability metric is considered .

The notation for the variances and covariances involved

is defined by giving the dispersion matrix of the assessed

quantities , other than it (X) = K which we are still assuming

has no error. This is

q ’ = q(A) 
/ 

~
2 POT POT

= q(A~X) I poOr 12 612

q2 = q(A~~) pci 612

with inverse

f 
t~~(l~ 6~~) -pat (l-6) -pc t( l -6)

f —pct ( l—6 )  a 2 (1—p 2 ) 0 2 (p 2 — i$ )

— pci (1—6) a2 (p2— 6) o2 (l—p 2 )

divided by 02 12 (1-6) (l+iS-2p 2). It is this matrix that pro-

vides the weights to be used in the quadratic form that has
to be minimized. Thus it contains a term

40
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-pct (l-6) (q ’-it ’)(q1-11)/0
212 (l-6)(1+6-2p 2)

corresponding to the element in the first row and second

column of the matrix. Here it = + (l—K)iT 2 by coherence.

Tedious calculation shows that

(Kq 1 + (l—K)q
2 — 

q ’]a(c—pt)
(29) ii — q ’ = 2 2 2KT (1—6) + 6t + a —2p aT

where K = K 2 + (1-K) 2 . With correlations p and 6 equal to

zero, this reduces to (27) with n = 2, w1 = w2 = ~
-2 and

w = ~
.2
. It may also be obtained by taking a weighted

average of ~q1 + (l-K)q
2 

and q’ with weights that depend

on the variances and correlations. The variance of the

reconciled value is given by

var (’ni= CT(K(1 ’6 ) + (6—p 2
)3

Kt 2 (l—6) + 61 2 + 02— 2p01

Let us return to the example of the energy crisis where

q ’ = 0.7, q = 0.5, and q = 0.8, with K = 0.5, and ~
2 
=

I = 1. If p = 6 = 0.5, the reconciled value is 0.67 exactly
as before , but the variance is decreased from 1.0, say, to
0.67; that is, the precision is only increased by 50%
rather than tripled as before. This result reflects a

general tendency for correlations to have li ttle effec t
on the probabilities but a substantial effect on the pre-

cisions.

A comment on the assessment of correlations is in
order. Recall that in order to elicit variances, we asked
the subject to set upper and lower limits for each of his
q’s, and treated the width of these intervals as propor-
tional to the respective standard deviations. A similar
procedure can perhaps be used to elicit the correlation
between, say, q1 and q2: the subject can be asked to set
limits for q1--assuming q2 is fixed. The ratio of the width

‘.4].
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of the interval for q1 when q2 is fixed to the width of the
same interval when q2 is allowed to vary , is a simple trans-
form of the correlation coefficient. However, this task
may be too demanding, and it appears difficult, although
not impossible , to elicit from subjects neaningful judgments
of correlations between assessments. Fortunately, the

reconciled probabilities are f airly insensitive to the
correlations , which affect primarily the precisions. Thus,

instead of asking the subject to assess the correlations

between his judgments, we could ask him only for upper and
lower limits for these correlations. These values could

then be used to obtain upper and lower bounds for the pre-
cisions of the reconciled probabilities.

4.6 External Conditioning: it (X) Assessed

To help in our understanding of the situation , external
conditioning has been considered only when the probability
of the conditioning event is known, since this makes the
analysis linear. We now pass to the general case supposing

that all four probabili ties are assesse d with the same
errors and with no correlations. As before, we write q(A) =
q’. q(A~X) = q1, q(A~~) = q2 and introduce q(X) = q3.
The it ’s correspond and the coherence constraint is that
i t =  + ir2 (l-n 3). The function to be minimized is

(30) (q1—it1)
2 

+ (q2—ir 2)
2 + (q

3
— ’n

3
)
2 + (q ’— it ’) 2

.

It is possible to proceed using Taylor series expan-
sion, but in this case a simpler approximation is available

using the alternative way of interpreting ‘ in (24) as a

weighted average. Here the two values for it (A) cited by

S are q’ directly and q1q3 + q
2
(l—q

3
) indirectly . The

variance of the former is ~
2, say. The latter is non-linear ,

but its differential is q36q1 + ( l—q 3) 6q 2 + (q
1
—q

2
) 6 q

3 
so

42
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that its variance is approximately q~ + (l—q 3)
2 
+ (q1-q2)

2,

times ~2. The evaluations are independent. Taking the

weighted average and rearranging to obtain the same form as
before, we have

q1q3 + q2(l-q 3)-cj’(31) 
_ _ _ _ _ _ _ _ _ _ _ _

1 + q~ + (l—q3)
2 
+

The precision is

(32) 1 + [q~ + (l—q 3)
2 + (q

1
—q

2
)
2
)~~~

Both these results are approximate but probably adequate
for most applications. The result for the precision is

especially interesting since it shows , in comparison with
the result for known it (X), the reduction in precision due
to uncertainty about it (X). A straight use of the precision

result for known ii (X) , equation (25), would give , in the
present notation 1 + {q~ + (l—q 3)

2Y’
~
’, differing from (32)

in not having the term (q1-q2)
2 in brackets. It is this

term that produces reduction in precision. Hence, lack of
knowledge of i t ( X )  is most critical when q1 ~ q2 ; that is ,
q(Ajx) ~‘ q(A~X). If q1 = g2 then it does not matter.

This is intuitively sensible.

In the energy problem, we have as before: q’ = 0.7,

= 0.5, q2 = 0.8, and q3 = 0.5, except that q3 is now
uncertain. The reconciled value of it is 0.67 as before ,

illustrating the robustness of the reconciliation pro-

cedure. The precision is increased by the external con-

ditioning from 1 to 2.70, instead of 3.0 as before. By

using the full equations (30), it is possible to calculate
the other reconciled values, which are 

~l 
= 0.52, 1t2 =

0.82 and = 0.49.

The extension to a general partition is straightforward.
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4.7 External Conditioning: Causation

A special case of external conditioning arises when
the conditioning event is a necessary antecedant to the
target event. For example, let A be the event that S will
die from cancer , and let X be the event that S will develop
cancer at some time during his life. A formal way of

express ing the special feature of this situation is to say
iT (A(~~) = q(A~~) = 0. S will then provide q ’ = q(A), q1 =

q(A~X) and q3 = q(X), and coherence imposes tr ie constraint
ir (A) = it (AIX)n (X ), or it ’ = 711713 which is non—linear. As

before , we can think of S as providing two estimates of

it ’: q ’ directly, and q1q3 indirectly. If the former has

variance ~2, the latter, assuming all values stated by S
are equally precise and uncorrelated , has approximate
variance (q~ + q~ )a

2. Hence, weighting inversely propor-
tional to the variance , we have for a reconciled value ,

~~
‘, the result

q1q3 q
(33) — q ’ =

l + q ~~+ q ~

wi~~’ precision 1 + (q~ + q~Y~
’ times the original precision.

Suppose S assesses the probability of his death from
cancer as q (A) = 0.35, the probabili ty of his acquiring
a cancer as q(X) = 0.40, and finally the probability of

dying from an acquired cancer as q(A~X) = 0.70. With q ’ =

0.35, q1 = 0.70 and q3 = 0.40, the reconciled value is 0.31;
and the precision is increased 2.54 times its original value.

Notice that this metnod is especially valuable when
q1 and q3, and hence q ’~ are small, since then the increase
in precision will be greatest. However, the probability
metric may not be too appropriate for small probabilities
and a log—odds metric preferred.
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4.8 Internal Conditioning

External conditioning deals with the case where one
extends the conversation to events not of immediate interest.
If there is more than one target event, then conditioning
may be used without bringing in additional events. For

example, with two target events A and B, S may provide
probabili ties for all events in the induced partition, AB ,
AB, AB and ~~~~~~~. Alternatively S may consider A , B condi-
tional on A, and finally B conditional on A. Of course the

roles of A and B may be reversed. This structure is called

internal conditioning since the conditioning events are
among the target events. Another example arises with a

partition A1,A2,...A of the type considered in Section 4.1.

The probabilities q(A~) may be assessed directly, but another
possibili ty is to consider the values exemplified by q(A1IA 1uA 2).

The medical example (Table 4-1) is a case in point where S

might consider the probability of dying from cancer con-
ditional on his dying a natural death. There are numerous

possibilities but we only explore in detail the above four-
fold partition.

Suppose S is coherent in that his stated probabilities
for a partition do add up to one, but they may exhibit more
subtle types of incoherence. He can then assess the situa-

tion for two events A and ~ by first giving q (AB) , q (ATh
and q (AB) --when q(~i) will be one minus the sum of these.

He can then look at the situation conditionally using q (A),
q(BIA) and q(B~A). These two triples provide alternative
complete specifications for S’s opinions about the two
events. The coherence constraints such as it (AB) = it (A)it (BIA )
—-there are three of them--are non-linear, and a complete
treatment must depend on numerical procedures: but an
approximate argument is available. This utilizes the exter-
nal conditioning argument of Section 4.7, treating any
member of the partition, AB say, as having a necessary
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antecedant , in this case A. Hence, the three assessments
q (AB), q (A), and q(B~A) can be taken together and recon-
ciled to give, equation (33),

(34) ~i (AB) - q (AB) = 
q~~ )q(B~M - q (AB)

1. + q (A)2 + q ( B ~~A) 2

This can be used to provide reconciled values for all ele-

ments of the partition. Since they are weighted averages of

values that do add to one (by assumption), they themselves
will also add to one. A reconciled value ci (A) may be

obtained as ~ (AB) +

If S also conditions on B and provides q(B), q(AjB) and

q(A~~ ), then we may argue as follows : S has provided three
assessments q (AB ) directly , q(A )q(AIB) and q(B)q(A~B) in-
directly. These have variances ~

2, [q(A)2 + q(B~A)
2)c 2 and

[q(B)2 + q(B~A)
2]a2 respectively , the last two being approximate .

They may be combined (Section 4.7) as a weighted average

with weights inversely proportional to the variances, to

give
q (A)q(BIA) q(B)q(A~~B)

2 2 2 2- q(A) +q(B~A) + q ( B )  +q (A~~B)
(35) ir (AB) =

1+  [q (A ) 2+q (B~ A) 2]~~~’ + ( q ( B ) 2+q (A~~B) 2]~~~’

with precision given by the denominator times ~~
2.

To illus trate , consider the results of a forthcoming
election in a particular district in the United States.
Suppose there are two canditlates (a Republican and a Demo-
crat) for the Senate, and two candidates (a Republican and
a Democrat) for the House. Let A and B, respectively, denote
a democratic victory in the election for the Senate and the
House. Suppose further that some political observer pro-
vided the assessments displayed in the upper part of Table
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4—2. Thus q (AB) = 0.1, q(B) = 0.4, q(A~B) = 0.6, etc. .~s
might be expected , the assessments are inconsistent. The

reconciled values , computed according to equation (34),

using either A or B as the conditioning event, are displayed
in the middle part of the table. The lower part of Table

4-2 presents the complete reconciliation based on all the

available information using equation (35); it also presents

the precisions of the reconciled values expressed as mul-

tiples of the precisions of t’~e stated values. Thus, ~ (AE ) =

0.129 with a precision 7.9 times that of the original value

0.1. The reconciled value for it (A) will be 0.129 + 0.340

0.469. It is not possible to cite the precision of this

value since the two values that have been combined are not
independent; the sum 7.9 + 3.7 = 11.8 is probably not too

far wide of the mark.

‘
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5.0 DISCUSSION

In his treatise on the foundations of statistics , Savage

writes:

“According to the personalistic view , the role
of the mathematical theory of probability is to enable

the person using it to detect inconsistencies in his
own real or envisaged behavior. It is also understood

that, having detected an inconsistency , he will re-
move it. An inconsistency is typically removable in
many dif ferent ways , among which the theory gives no
guidance for choosing. Silence on this point does

not seem altogether appropriate , so there may be room
to improve the theory here...”

“To approach the matter in a somewhat different
way , there seem to be some probability relations about
which we feel relatively “sure ” as compared with
others. When our opinions, as reflected in real or
envisaged action, are inconsistent, we sacrifice the
unsure opinion to the sure ones. The notion of “sure ”

and “unsure ” introduced here is vague, and my complaint
is precisely that neither the theory of personal
probability , as it is developed in this book , nor
any other device known to me renders The notion less

vague.” Savage (1954, pp. 57—58)

The present paper represents an attempt to deal with

the issues raised by Savage, namely , the resolution of in-
consistencies and the weighting of opinions. Our approach

is based on a division of labor between a fallible subject S
and a coherent investigator N who uses S’s assessments to
estimate S’s “true” probabilities in the internal method ,
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or to update his own beliefs about the world in the external

method. Naturally, such an approach encounters both philo-
sophical and practical difficulties.

Perhaps the most obvious philosophical objection per-
tains to the coherence of N. Why permit first-order inco-
herence of q but exclude second—order incoherence of p? If

people are inevitably fallible , it is reasonable to postu-
late a coherent N? Alternatively , one could argue , if S has
an access to a coherent N , why permit inconsistency in the
first place?

The coherence of N is needed to ensure the coherence of
the reconciled values. If the core distributions, for
example, are also allowed to be incoherent, they must be
reconciled before they can be used to reconcile the basic
assessments. This leads to an infinite regress that can be

avoided only by assuming coherence somewhere in the process.

Indeed, it does not appear unreasonable to assume a fallible
assessor who is capable—-in a more reflective mood and per-

haps with the help of paper and pencil--of detecting and

reconciling his own inconsL encies.

Notice that once N’ s coherent assessments, the core
distributions, are determined , they are available for the
resolution of any problem posed by S. In other words, the

role of N is to link together the possible situations that S
might face. This is in the true spirit of coherence in

which a problem is not considered in isolation but viewed in

conjunction with other problems, both real and conjectural.
If the reader considers a simple example, he can easily
conclude that our methods are unnecessarily involved--
easier , he might say to do a naive reconciliation rather
than determine the core distributions and then use these to
effect the reconciliation. It is only when a set of examples
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is considered that the power of the methods is revealed , for
then , a simple determination of core elements serves for the
whole set.

The present approach can be viewed as a compromise be-
tween two extreme positions on the nature of probability

assessments: the rationalistic position that assumes co-

herence , and the empiricistic position that denies it.

Neither position deals with the reconciliation problem; the

former effec tively ignores the issue, while the latter can-
not solve it. By modeling a person as composed of a fallible

S and a coherent N, we attempt to provide a more realistic
idealization which could, nevertheless , be used to achieve
rational reconciliation .

A central feature of the approach developed in this
paper is the reliance on the core distributions and Bayes ’

rule to reconcile incoherence. Alternatively, one could
start by considering the set of all reconciled values and
then introduce criteria or axioms that restrict the choice
of an admissible reconciliation . For example, if q (A) =

.62 and q (A) = .34, one may wish to restrict it so that .62

~ it (A) ~ 1— .34. Additional constraints could further

restrict the set of admissible values. This approach

represents a viable alternative to the present procedure.
It remains to be seen, however , whether one could develop
a compelling set of criteria for reconciliation that would
lead to a unique, or at least a highly constrained , solution.

From a practical standpoint, the major obstacle to the

application of the proposed procedure is the difficulty in
assessing the core distributions. All three distributions
are readily interpretable: p(A) is N’s prior, p(it~A)
describes the relation between S’s true beliefs and the
external world, and p(q~7T) describes the relation between
S’s assessments and his true beliefs. Although these
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expressions are psychologically meaningful, their assessment
may prove very difficult in many cases. We are keenly
aware of this problem, and much of the specific assumptions
discussed in Sections 3.0 and 4.0 were introduced to simplify
the assessmenL of the core distributions. It remains to be

demonstrated that this information can be elicited from
laymen and/or experts for non-trivial problems.

Reflection suggests to us that the introduction of
these core distributions , and, in particular , the occurrence
of precisions and correlations, is a reasonable, and perhaps
necessary , requirement in the real-world situation before
reconciliation is possible.

In the light of these difficulties , it could be argued

that instead of applying the formal procedures developed in
this paper, we could simply instruct the subject to resolve
his own inconsistencies in the way that he finds most appro-

priate. Although this approach could often be employed , we
believe that an explicit model provides a useful tool for
the analysis of coherence. It focuses attention on the data
needed to resolve incoherence, and it provides a rational
procedure for reconciliation.

Of the three elements in the core distributions , p(A) and

p (qlit ) are of familiar types, but the third, p (rrJA) is rather

novel. It provides, together with p(it~~), an expression of
S’ s ability as a probability assessor; and, in particular, a
statement of S’s variability. In effect, it looks at S as
a diagnostic instrument: in medical terms , if the patient
has appendicitis, A, what probability is the doctor, S,

going to assign to A; and similarly for a patient with
abdominal pain not originating from a ruptured appendix. We
have seen that it is related to the calibration concept,
f(~Alir ). It leads, for example in equation (9), to unexpected
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adaptations from it (or q) to revised probabilities for A ,

p(A Iit ) or p (A~q), which cannot always be it or q.

Simon French (1977) has suggested to us that p(it IA)

might depend on p(A). In words, N’ s assessment of S might
depend on his own views about A , the event under discussion .

He cites the example where past experience has shown that in
similar situations, N and S have tended to agree: then

p (it~A) might peak around it = p(A). If this is admitted , we
are lead to a curious probability , p (-rr~A ,p(A)) and an unex-

pected form of Bayes Theorem that French has considered,
namely

p ( A t -7r ,p) ~ p(’n’~~A ,p ) p ( A )

where p = p(A). This is an interesting idea that introduces

a reasonable correlation between N and S, but it should be
noted that our model partly allows for such correlation. We

suppose it is unaffected by p, given A and given A , but this
will not imply that ii is unconditionally free of p; indeed,

quite the contrary if S is a good appraiser.

There are at least two ways in which the model can be

generalized . First, the world external to both N and S can

contain uncertain quantities and not just uncertain events.

This has been discussed by Morris (1~ 74, 1977). An example

might be the case where the meteorologist is forecasting the
amount of rain tomorrow rather than whether or not it will

rain.

A second generalization is to the case where the data-
base for S changes. In our discussion it has been supposed
fixed. An example arises when the meteorologist, forecasting
the weather on day 2 learns about what the weather has been
on day 1. The role of the data-base certainly needs more
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examination: it might resolve the dilemma proposed by French ,
in that the data common to N and S might explain the possible
correlation suggested by him.
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