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SECT ION 1

PROGRAM DESIGN LANGUAGES

INTRODUCTION

This paper is intended to be a general introduction to program
design languages (PDL’s). The need for program design languages and
their functions will be discussed first. A brief literature survey
has been performed and a set of characteristics of PDL’s has been
defined (see Section II). Individual PDL’s are examined within the
framework of these characteristics. No actual application of these
PDL’s was performed for  the purpose of this task , although some
prior experience, direc tly or indirec tly ,  has contributed to the
results presented in Section III. It is hoped that the reader will
obtain a general idea of the purposes of PDL’s, some important
aspec ts of their proper ties , and the types of PDL’s curren tly
available. The set of characteristics set forth when expanded ,
cur tailed , or amended according to special needs , can evolve in to
the requirements for a PDL desirable for a particular situation.

Techniques and Notations

Concomitant with the advent of recent software engineering
techn iques is the emergence of many proposed or imp lemented
languages to facilitate the app lication of these techn iques. Recent
sof tware engineering techniques are methods and procedures all aimed
at improving the software development process and its final produc t,
whe ther it be to achieve higher reliability, to provide a sounder
basis for testing and verification , to ensure tha t comp uter program s
are more comprehensible for maintenance purposes , to prov ide be tter
communication among the development team, or to enable more
intelligent management control of resources. It would be belaboring
the point to restress the merits or the importance of these goals.
Suff ice  it to say that awareness of the need for  a be tter sof tware
engineer ing discipline permea tes the research , educa tional ,
governmental and commercial sectors of the computer field.

Some of the new techniques embody new concepts or new
approaches to various stages of software development. Through their
application it is discovered that the old notations no longer
suffice and new notations are required to reflect the new concepts
involved . In the requirements area , the real iza t ion tha t
inconsistencies in requirements can be sieved out early to reduce
the number of errors  made la ter in the design and cod ing stages has

7
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led to pr oposed req ui reme n ts languages as a more rigorous means of
specif ying user requirements [Teic74]. Another example lies in the
effects of structured programming. Existing programming languages
have been found to be ~~adequate in support of structuredprogramming pr inc iples. Numerous preprocessors were therefore
written to extend existing languages , to restrict the use of
unwa nted cons truc ts, and to enforce certain rules. For FORTRAN
alone, one survey shows the existence of 56 preprocessors [Reif7S] ;
ano ther covers 20 preprocessors (Rorol5) , some of which duplicate
the first survey. Structured programming principles have affected
the design of languages such as BLISS and PASCAL. As a side effect
of struc tured programming , a new language CLU [Lisk74J has been
pr oposed to handle the abs trac tion of da ta , a capab ility not
normally found within the confines of conventional programming
languages.

Design

Of the areas addressed by recent software engineering
techniques , the requiremen ts and design areas have been receiving
increasing attention. This is a result of the continuing emphasis
on elimina ting errors as early as possible in the sof tware
development process. Work in the requirements area is relatively
new and fewer in number , bu t much has been said abou t design in the
last few years. Many design methods , sometimes mistakenly called
methodologies (a collection of methods with rules for applying
them) , have been proposed to apply new concepts and consequently
brought about new languages or other types of notations to
supplement the design activity . These languages are labeled by many

• different names, such as program design language, sof tware
specif ication language , high level programming language , and
sof tware  design language. This paper is concerned with those
languages that can be used to aid software design and has taken a
ra ther broad view of the term ‘program design languages.’

Definition of a Program Design Language

Within the context of this paper , a Program Design Language
(PDL) refers to any notation , whether a textual language or a visual
char t, that serves as:

1. A form of representation necessary to capture the design of
a software system as it evolves so that the current status
of the design is reflected in tangible form (requisite);
and

~ 
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2. A documentation aid to record other ar-pects of software

design including verification , performance, trade—of fs
between alternatives , and ra tionale of decisions
(optional).

P. Freeman views the design activity as one of “fitting form to
func tion ,” and distinguishes between representation and
documentation: “A design is a representation of an object;
documentation describes some aspects of an object.” [Free76J

PURPOSE OF PROGRAM DESIGN LANGUAGES

Bas ic Fun ctions

To Represent Design

The primary purpose of a program design language is to
represent the design of a software system at various stages of
development. Considerations should include global issues such as
overall structure and module interdependency as well as local issuas
such as control flow within a module and internal data. Not all
this information is available at once. As the design evolves, more
details are known to better depict what the ultimate system is like.
For a PDL to be useful throughout the design stage, its scope must
encompass the abstract as well as the concrete , and representation
of a system should progress from general global concepts through
va rying levels of abstraction all the way to detailed specification
of each module and data structure until the whole system is well
defined for coding in a programming language.

To Record Design Decisions

Another purpose of PDL’s is to record design decisions made.
Too often design decisions made are Implicitly embedded in the code.
A PDL wil l hopeful ly r eco rd some design decisions more explicitly ,
especially when it is used conscientiously at various stages
throughout the gradual evolvement of a design.

To Enforce Built—in Rules

The relation between design techniques and program design
languages has already been discussed. There is usually an
underlying philosophy In the design of any language. The set of
constructs available in a language is significant both in the
capabilities provided and in the capabilities not provided. Program

9 - 
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design languages can be used to: (1) promote certain concepts in
• software design, such as viewing a system in varying levels of

abstraction ; (2) enforce certain approaches such as constructing
software in a top—down hierarchical manner; and (3) ensure that the
ultimate design obeys certain rules that , for  example, apply to the
con trol of modules over one another and the scope of da ta
structures. The purpose of such enforcement is usually to allow for
be tter management of the comp lex ity of a system and to promo te
correctness in the design.

To Communica te

Progra m design languages can serve as an impor tan t
communication tool. In the case where design of a system is
undertaken by iiiore than one person, PDL’s act as a communication
tool among the designers by representing the current design in
tang ible form.

The design , as represented by a PDL , serves as a means of
communication between requirement definers and designers in the
ver if ication of design against requirements. Requirement definers
can be an acquiring agency or a user of the target system, or both.

On the other side of the spec t rum , PDL’s serve as a means of
communication between designers and coder s, the ultimate form of the
design being the specifications for coding .

PDL’s facilitate the generation of test plans by communicating
the design from designers to people responsible for testing the
ultimate system. PDL’s also communica te the design to main tenance
personnel.

Auxiliary Functions

The author considers the above functions to be primary
functions that a PDL must fulfill. Other uses have been suggested
for PDL’s, namel y:  (1) to fac ili ta te the predic tion of system
performance [Grah73J , and (2) to incl ude test plans and procedures
in design specifications (Reif 761. Though wor thwhile goals , they
are not primary functions of a PDL, especially whe n the feas ibility
of incorpora ting such f unc tions e f fec tively in to a PDL has not yet
been proven.

10
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DES I GN VERSUS REQUIREMENTS

— To understand in greater detail the functions of program design
languages , the design activity has to be considered in proper
perspective in the software life cycle so that it can be contrasted
wi th requirements definition on the one hand and coding on the
other. Characteristics of PDL’s can then be distinguished from
those of requirement languages and programmir~g languages.

Theoretically , requirements should specif” needs of the user
ir.depe~ fent1y of implementation methods . For instance , -lata in the
requirements stage are generally deal t with only in terms of the
information transferred . In some stage of design , the format of the
data and the intern -u representation of the data in the computer
become of interest. In communication applications , requirements may
spec if y that incoming messages be accepted and routed to the correct
destination according to information contained in a header within
the message. A certain level of per forma nce may be req ui red , but
the rou ting algorithm is not specified . Design will then specify
wh ich part of the message (e.g., bits 1 to 10) will contain the
header and how the rou t ing is accomp lished. In general ,
requirements are concerned wi th what is to be done and acceptable
performance levels; design is concerned with how things are done.

In pract ical situations , howev er , there are times when some
design will be specified as a r1~quirement , although this should
alway s be done consciously and with good reason . In cases where the
software to be specified is planned to augment an existinr~ sys tem ,
the requirements may be especially stringent to ensure correct
interface. For some reason , the algorithm may have to be specified.
Practices within the military and industry have borne out the fact
that these deviations do exist. As a result , it is difficult to
draw a sharp line between requirements and design. Rather , each
successive description of the system can be viewed as a
specif ication for the next lower level and a design for the previous
level , progressing from an abstract represcntdtion to a concrete set
of code in a programming language executable on a computer.

DESIGN VERSUS CODING

On the other end of the spectrum , the role of PDL’s is ma tched
against that of high level program ming languages. Translating user
requirements into an overall design of the system is called global
design. At this stage , most system functions and data remain in
abstract form. As each successive step refines the descrip tion of

11
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the sys tem, more details are specified and design activities close
to the coding stage are referred to as detailed design. Design is
said to be complete when the system can be coded from it. Again , it
is not always easy to draw the line between detailed design and
coding. When pseudo—code is used to represent design , par tial
coding has already taken place.

Jud ging from the relations among requirements , design and
coding , global design is very different from detailed design.
Program design languages have to accommodate a wide spectrum of
levels of system description. The scope of the survey of existing
PDL’s (Section III of this paper) has been extended to include some
req uiremen ts languages for  the prec ise reason tha t their
capabilities seem applicable to global design as well. Other PDL’s
surveyed are ac tually ex tensions of high level progra mming languages
and naturally address issues closer to detailed design.

12
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SECTION II

• CHARACTERiS TICS OF PROGRAH DESIGN LANGUAGES

In this section , some character is t ics  of program design
languages will be discussed. This set of charac ter i s t ics  is limited
by the e f f o r t  expended f o r  the task in the sense tha t  it may not be
complete and that some characteristics could be delved into more

• thoroughly. Table £ contains a list of the characteristics that
will be discussed. Each characteristic will be defined in the text
of this section , and its related issues will be addressed. Spec if ic
properties of individual PDL’s will be given in Sec tion III wi thin
the framework of the characteristics discussed here.

The characteristics have been constructed and pr esented here
with four purposes in mind :

1. To point out some directly observable properties of PDL’s.
Ref err ing to Table I , characteristics such as Basic
Content , Cons train ts, Forma t , and Au toma tic Tool Suppor t
are typically observable characteristics.

2. To suggest a few more commonly agreed upon elements to be
included in a PDL , if possible. These are reflected by the
Basic and Auxiliary Contents.

• 3. To raise some issues that have to be considered in
selecting a PDL for use — Application Considerations. The
size of the language, the syn tax , and the similarity a PDL
bears towa rds famil iar languages all a f f ec t the amount of
learning required of a designer with a particular
background for application of a PDL. These characteristics
are necessarily less objective than the directly observable
characteristics.

4. To provide a framework for comparing various PDL’s.
Properties of the PDL’s surveyed will be highligh ted wi thin
the framework of these characteristics.

tn charac ter izing the attributes of a PDL , care should be taken
to discriminate between features of the language and features of
automatic tools that support it. Automatic tools are usually
developed to process the language and produce some analysis of the
information represented by the language. It does not mean, however,

13 
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Table I

Set of Characteristics of Program Design Languages

BASIC CONTENT
External Interfaces
Static St ructure

Composition and Organization
• Cal ling Dependencies and Sequence

Da ta Dependencies
Ownership of Resour ces

Dynami c St ructur e
Da ta

Organization or Structure
Scope or Access

• • Operations
Size
Flow
Derivation

Control Flow
Levels of Abs trac tion

AUXILIARY CONTENT
Decision Details

Algorithms
Solution
Trade—off between Alternatives
Rationale for Decisions

Error Handling
Performance Estimates
Verification Information

CONSTRA INTS
Hierarchy
Construction Rules

FORMAT
Input Format
Internal Format
Output Format

14
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Table I (Concluded)

APPLICATION CONSIDERATIONS
Size of the Language

• Syntax
Similarity to Familiar Languages

• - Orientation toward Implemantation Languages
Ease of Transformation into Code

- Types of Applications Suitable
- Status

• AUTOMATIC TOOL SUPPORT 
•

15
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that the PDL’s currently not supported by automated analysis are not
amenable to such support in the future.

In characterizing the information representable in a PDL
(con tent ) in this report , a PDL is considered independently of

• support tools as far as possible. In general, support tools provide
analysis of information already in the PDL; rarely do they generate
new information for which no basis is provided in the PDL, al though
they may make such information more apparent. A type of information
is included in the content of a PDL if that information is
representable in the PDL, regardless of how obscure it may be.
Information is excluded from the content if the PDL is incapable of
expressing such information. An attempt will also be made to
indicate information obtainable from automatic tools to portray a
PDL more comple tely.

Some PDL’s have been developed in conjunction with a design
method to support a particular design technique or at least with
some underlying philosophy . Such techniques will be frequently
referred to in the discussion of PDL characteristics , especially
implicit and explicit construction rules. Though it is beyond the
scope of this paper to define all these techniques, a list of design
techniques , some more commonly known than others, is presented here
together with associated references for readers who wish to pursue
these concepts further.

• Levels of abstraction (Dijk68l
• Top—down design (Mi11711
• Structured programming [McCr73 , McGo75]
• Parnas black—box approach and module specification

[Parn72a , Parnl2b]
• Stepwise refinement [Wirtll]
• Structured design (Stevl4l
• Higher Order Software (HOS) (Hami76]
• Data abstraction [Lisk74J
• WELLM ADE methodology [Boyd76]
• Information Automat [Wils 75]
• Structured Analysis Design Technique [Softl6J
• Programming—in—the—large [DeRe 76)
• Process design methodology [GauPl6J

BASIC CONTENT

Foremost in the characteristics of any language is its ability
to handle information . The content of a PDL refers to the

16
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information representable in that PDL. In this paper , external
interfaces , static and dynamic structure , da ta , logic or con trol
flow , and levels of abstraction are considered basic elements of
design to be represented in a PDL. Other information , such as error
handling, performance estimates, and ver if ica tion informa tion , is
discussed separately under Auxiliary Content.

A PDL is said to possess a certain item in its information
con ten t if the item is par t of the reper toire of tha t PDL in any
form. In other words, substance is judged independently of format ,
and the same information content representable in two PDL’s may be
very apparent in one and very obscure in the other.

External In terfaces

External interfaces define the external boundaries of the
sys tem being designed (the target system). A system can be viewed
as an entity performing a certain function ; it accepts certain
inputs and transforms them into a set of outputs. From the point of
view of the ultimate user of the system under development, this
characteristic is most important. Without the definition of
ex ternal interfaces , it is not known what information is required
for  the system to fun ction and wha t informa tion the system can
generate. It can perhaps be argued that the distinction of what
relates the system to the external environment is more crucial to
requirements specification than design representation. External
interfaces are indeed part of the requirements of the system , in
that they represent the goals which the design should fulfill. If
such interfaces are made more apparent it ~i the design represen tation ,
they will not only delineate the external boundaries of the system
bu t also make it easier to ensure that the design satisfies the
requirements . If design is viewed as a more specif ic description of
a system than requirements , it sometimes helps to clarify wha t the
requirements are.

Some examples of information contained in external interfaces
are identification of people or organizations who will use the
target system, input provided by users , and reports generated by the
system.

Static Structure

The static structure describes the composition of a system in
terms of its constituent parts and how they relate to one another.

17



Composit ion and Organization

A PDL should be able to describe the static structure at
various levels from a general overview to the smallest unit.
Composi tion of a targe t system may be defined in terms of many
units: a subsystem , which is a logical collection of related
modules ; a module, which we define as a conceptual unit performing a
f unc tion tha t may eventually be implemen ted as one or more
procedures or as a part of a procedure; or a procedure as understood
in a programming language. This is related to the concept of levels
of abstraction which will be discussed separately. A correspondence
may also be established between a unit in the composition and that
part of the requirements it satisfies.

Each cons tituent par t may be successivel y decomposed into its
own constituents until a desired level of refinement is achieved ,
showing how each part fits into the whole structure of the system.
This constitutes organization information.

Call ing De pendencies and Sequence

Besides the organ iza tion of func t ional uni ts of a system , there
also exist relationships among these units. One important
rela tionsh ip is the dependency of invocation — wh ich o ther nod ules
does a mod ule call on to perfor m its f unc tion and the order of such
invocation. This characteristic is only concerned with the static
aspect of the calling relationship — what modulec a module may
req uire to hel p it do its job. In real execution , not all these
modules may be actually invoked , depend ing on wh ich pa ths of the
control logic are executed .

Da ta Dependencies

Another important relationship is that of data dependencies
among the modules , i.e., the information passed from module to
module or shared among modules. This is an important aspect of the
structure of a system because it represents the interfaces among the
various parts of the system. The data that are shared may
eventually be implemented in the coded program as global variables,
as parameters passed from module to module , or by whatever mechanism
the selec ted program ming language has to offer. If a PDL is to be
useful  at h igher levels of design , it must be able to represent data
dependenc ies me rely as information shared by modules independently 

•

of the actual implementation mechanism.
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- ‘ Sometimes this characteristic is only partially f ulf illed in
that the complete data connections among modules are not described.
Rather, each module is trea ted in isolation , naming the information
it requires (input) and the information it provides (output),
wi thou t iden tif ying the origin of inputs or the destination of
outputs. Thus, only the data requirement of each individual module
is described but not the data relationship among modules.

Ownership of Resources

In contrast to data that are shared , there are da ta tha t need
to be solely owned by one module. The idea is that information is
hidden from other modules that have no need to know and therefore
have no need to access a particular data item. Interfaces between
modules exist only when explicitly stated as data dependencies. The
idea of informa tion hiding is embodied in Par nas’ ‘black—box’
modularity concept [Parn72aJ , Dijks tra’s level of abstraction
[Dijk681 , the strength of modules in Structured Design [Stev74], and
other design approaches. Privately owned resources are commonly
manifested as internal variables.

Dynamic Struc ture

The dynamic structure of a system models the behavior of a
system as it executes in a real environment. It deals with the
conditions under which modules are activated , the even ts tha t lead
to such activation , the order in which even ts occur , and how these
events are related to the data passing through the system. The
design of real—time systems exert a greater demand on PDL’s in this
respect than business information systems because the order and
timing of events are critical in real—time systems. There may be a
need to indicate that certain activities take place concurrently.
Or , a task in the target system may have to be interrup ted by tasks
of higher priority. -

I-lost currently available PDL’s are deficien t on this point.
Most of them do not model the dynamic behavior of a system at all,
and those that do , do so partially. One PDL, for  ins tance, has the
concepts of ‘Even ts’, ‘Processes’ and a relation between them,
namely , ‘Triggers’. ‘Processes’ are also related to the data
passing through them. An ‘Event’ can ‘Trigger’ a ‘Proc ess’, but
there is no way to link this to the data involved in the happening
of an ‘Event’. Data, therefore , are related only to the static
picture, not to the dynamic aspects of a system. Another PDL has
the ability to specify that a series of events can take p lace in
random order , and it is being extended to admi t expression of



concurrent processes. Yet another PDL describes real—time
• activities in terms of the reception and transmittal of messages.

Each of these three PDL’s prov ides par tial mea ns of descr ibing
the dynamic behavior of r. system , and approaches it in a d i f f e r en t
way . The fact that no PDL provides a satisfactory representation of
dynamic structure (though its importance is not disputed ) probably
indicates that no one yet knows what constitutes a good descript ion
of dynamic behavior. It would be interesting to monitor future work
in this area to see if significant improvements are made.

Da ta

Data constitute the information passing through the system .
As in the representation of the composition of static structure , the
representation of data should be capable of reflecting different
levels of de tail , if recent design techn iques such as levels of
abstraction are to be app lied. A data item is represented at early
levels of design as abstract information so that decisions of actual
means of implementation can be deferred till later stages of design
when a more intelligent choice can perhaps be made to accommodate
the comb ined needs of the higher levels. In other words , da ta can
be represen ted in both abstract and concrete form. Abstract data
r epresen ta tion has emerged as quite a prominent issue since the
advent of structured programming.

Abs tract representation of data is generally accomplished in
one of three ways. The first is by allowing the incomplete
definition of a data item at higher levels, with the details to be
filled in later. Typically the logical structure of a data item is
def ined first and the physical representation of the data in the
computer is specif ied la ter as the design decisions concern ing it
are made. The second way is by incorporating abstract concepts such
as classes and sets into the language itself. The third way is by
allowing user—defined data structures. A par ticular applica tion can
conceivably call for concepts of information not readily
representable by a fixed set of data types afforded by a PDL. A
commonly used examp le of such a da ta concep t not represen table by
data types usually fo und in progra mming languages is ha t of a
‘stack’ — a sequence of elemen ts tha t can be added to in one
direction and deleted from in the other direction. By permitting
users of a PDL to define their own data structures , the opera t ions
allowed on them , and accessibility rights by modules , a PDL in
essence gives a user the freedom of abstracting informa tion in a
form natural to it. This differentiation between user—defined data
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and a f ixed set of pre—defined data applies to the aspects of
struc tures , scope or access, and operations discussed below.

Organization or Structure

This refers to the composition of data and how the constituent
parts relate to form the whole. Structure is divided into logical
or p hysical structure. PDL’s capable of log ical represen tation are

• more advanced in the abstraction of data than those that are
incapable. The logical structure of a data item is its conceptual
organization. A typical example is that of a set of related
information. Physical structure is the ac tual physical form in
which a data item is recorded. The set cited above can be a file
consisting of similar records , or a da ta structure as in COBOL and
PL/I , or an array (or any other data type in a programming language)
that usually implies a fixed means of implementation by the
compiler.

A PDL may allow a user the f lex ib ili ty of defining his own data
type , as was discussed above under Data.

Scope or Access

In accordance with the ownership of resources as discussed
above under static structure , the im itation of accessibility of
da ta by modules restricts the interface among modules. The rigl4of
access is sometimes impl ied in the scope of modules tha t contain
them as in the block structure of PL/I. It can also be expli4it ,
which is preferable in design as it renders interfaces among modules
more conspicuous.

Operations

‘Operations’ refers to manipulations that can be performed on
da ta items such as addi tion , subtrac tion , multiplication , division
performed on integers and real numbers. ‘Read’ is an opera tion
defined for records and files. An example of a user lefined
operation performable on a ‘stack’ as introduced above is that of
‘push’ which adds an element to the top of the stack and deletes the
element at the bottom.

• Size

Size refers to the cardinality of the data.
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Flow

Da ta f low dep icts the sequence in wh ich data pass through the
modules. Note that data flow also indirectly shows the data
dependencies among modules. The difference is that data dependency
of modules is from the module point of view and does not depict the
sequence, whereas data flow is from the data point of view.

Derivation

This refers to the algorithm by which data is derived , or to a
lesser degree of detail , the da ta items on wh ich the value of a
particular data Item depends.

Control Flow -

Control flow , sometimes known as logic , of a module specifies
the transfers of control within the module. In cases where a
selection of different actions is involved , con trol f low may also
specif y the state of variables that dictate the choice of a
pa~ icular action.

Control flow may be represented at various levels of system
desi gn. The flow within a higher level mod ule in overall design
illustrates the sequence in which lower level modules are executed .
Modern sof tware engineer ing tech niques call for  the use of only
several control flow constructs — that of sequence, al terna tion or
selection , and iteration.

Levels of Abstraction

The idea of viewing a system in varying levels of detail in the
design process is well accepted as a good means of controlling the
complexity of a system. Parts of a system are first considered as
abstract entities ; decisions on details are postponed until they
become necessary. As decisions are made , the system descri ption is
refined further and further until all important implementation
issues are decided and coding can take place. Most of the modern
software engineering techniq ues listed at the beg~. :ining of this
section have adop ted this type of concept. For a PDL to support any
of these software engineering techniques , it must be able to
represen t a software system description at different levels of
abstraction.

Abs traction in this case applies to both functional modules and
data items. Part of the abstraction issue has already been
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discussed separately under static structure and data. This
characteristic is not independent of some of the others because the
ability of a PDL to represent abstraction is partially reflec ted in
the way it represents functional modules and data items. Modularity
in the Parnas sense, the ‘black—box ’ approach , is a means of
abstraction where the mechanism internal to the module is not made

• known to the rest of the system. Another mechanism of abstraction
is that of user—defined data types and their corresponding
operations. Though dependent on other characteristics , this issue
of abstraction is listed separately so that all information on
abstraction capabilities can be gathered in one place.

It has also been said that representation of r lesign affects
thinking (Free76]. The more naturally a PDL can d ress concep ts
per taining to a system, the more effective that PDL is, especially
in its abstraction capabilities. A concept that is bent and twisted
to fit artificially into a language ultimately finds expression in
an unnatural representation and might affect adversely subsequent
design decisions.

AUXILIARY CONTENT

Decision Details

Design is a process whereby decisions are made to gradually
refine a system description from requirements toward coded programs.
There are aspects of these decisions that are of interest to someone
inspecting a design representation.

• Algorithms — How the processing is done ; e.g.,
smoothing algori thms for  tracking
functions. Algorithms are some—
times represen ted by der iva tion
dependencies , but for those that
involve many variables , the general
algor ithm can be stated in a clearer
and more obvious fashion.

• Solution — As in decision tables. This
represents the designer’s
solu tion to problems posed
by requirements.

23 
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• T r a d i— o f f  between
a l t e rna t ives  — If fo r some reason a dec ision

made has to be discarded , it
would be help f ul to know wha t
alternatives exist and their pros
and cons without retracing all
the reasoning in arriving at them.

• Rationale for decisions — Why a decision is made. This
states explicitly the goals of
the presen t design and will be

• useful in further trade—off decisions.

Of the four types of information listed above, the first two
ciay actually ex ist as par t of requiremen ts or design , although
theore tically a statemen t of requ iremen ts should avo id spec ify ing
more details than necessary. Furthermore , note that the first two
arc representation issues, whereas the last two are documen ta tion
issues in that they descr ibe th ings about a system, not what is in
them.

Most of the PDL ’s surveyed relegate this func t ion  to
supplementary f ree—form documenta t ion .

Error Handling

One aspec t of systems design is how the system will behave in
case of any form of malfunction. Malfunction causes error
cond itions and may take p lace in the environmen t, opera ting system ,
hardwa re compon ents, input data or software component parts. The
design of a system is not comple te until it has specif ied wha t error
cond itions it has taken in to accoun t and wha t actions the system
will take at the occurrence of such conditions. Sometimes error
handling is specified as part of the requirements.

Performance Es timates

This is information concerning the resource usage, execution
time, response time, etc., of the system being developed . Current
PDL’s are not too sophisticated in this capability. Many do not
address this issue at all. The few that do , do so b y onl y allowing
estimates of the designer to be entered into the language represen-
tation so that they can be processed by an automated tool. Thus, the
estimates are no better than subjective conjectures by the designer
and the suppor ting tool performs only a bookkeeping func tion.
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• Ve r i f i c a t i o n  Informa t ion

Verification information is any information that helps to
verify the internal correctness of a program or to verify that the
design satisfies the requirements. Current PDL’s are no t too
sophisticated in this area, although awareness of the importance of
verification is rising. Verification information usually takes the

• form of assertion statements placed at strategic places to ensure
• certain conditions exist at those points. There may be, however ,

much that is built into a PDL or a design technique that indirectly
helps verification. Making interfaces among modules explicit , for
instance, facilitates the verification process. Restriction of
control flow to a few basic structures with no uncontrolled
transfers also prepares the foundations for eventual verification.

• The very nature of a PDL in formalizing design representation
renders verif ication against requirements possible in the presence
of a formal requirements language.

Verification information may also include information useful
for the generation of test plans such as the ord er of imp lemen tation
of modules , modules critical to testing , and the need for driver
modules not part of the system but requi red for testing .

CONSTRAINTS

A PDL , because of its underlying philosophy ,  imposes certain
constrain ts on the design of software. The set of keywords of a PDL
is a form of constraint in that it represents the objects and
concep ts allowable in the descr iption of a system. The format, too,
may pose a res tric tion , e.g., by forcing the modules of a system to
be organized as a tree—structure. The structure of the language may
imply the au toma tic application of certain design rules. In
addi tion , explici t rules may be stipula ted for  use with the
language.

Hierarchy

Some PDL’s require that the design of a system be described in
hierarchical levels. Others further demand that the resulting
structure of the system be expressed as a tree structure. Usage of
such PDL’s wil l  na tural l y influence the designer to proceed In a
particular fashion and his perspective of the system will also be
affected as he complies with the philosophy of the PDL to stay
within its bounds.
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As one speaks of the hierarchical  na ture  of certain PDL’ s ,
• extreme care should be taken to isolate to what the restraint is

applied. The hierarchical restriction may apply to data or the
dynamic sequence of execution of modules. It is insufficient merely
to say that a PDL imposes a hierarchical constraint on the design.

Construction Rules

Construction rules relate a PDL to Its accompanying
methodology , if any. Those PDL’s that have been developed as part

• of a methodology are expected to be used with construction rules
tha t reflec t the philosophy of the methodology. Not only does the
set of constructs available in a PDL represent the capabilities
prov ided , bu-t the purposeful omission of some constructs probably
indicates objection to those capabilities.

Construct ion rules can he either implicit — embedded in the
available cons tructs or the format — or exp licit — stated in the form
of rules or axious.

FORMAT

The format of a PDL can be textual or graphical. Some PDL’s
are suppor ted by au tomatic tools tha t are capable of pars ing design

• representations in those languages , maybe even store the information
in a da ta base , manipula te the informa tion , and reproduce the des ign
and its related information in formats more eloquent than the format

• of the or iginal. A pr ime example is when a designer expresses a
• design in a textual language , bu t can avail himself of repor ts in

pictorial as well as textual form.

For this reason , format should be differentiated into input
fo rma t as prov ided by the designer , in ternal forma t if stored in a

• da ta base , and output forma t as made available to the designer. In
many cases , the internal, format does not exist and the input format
is the same as the output format. Note that this characteristic is
discussed in conjunction with characteristics of the support tool.

APPLICAT ION CONSIDERAT IONS

An intuitive feeling of the learning required to apply a PDL
and how app licable it is to the situation on hand may be misleading
for it is composed of several factors that have to be considered
together.
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Size of the Lat i~uage

The size of current PDL’s ranges from only several constructs
to over two hundred keywords.

Syn tax

The more complex the syntax of a PDL the more difficult it is
to learn. However, if the syntax is well defined , once learned it
will be easy to apply. This factor has to be considered in parallel
with the size of the language because a PDL can have a complex
syntax and yet contain very few constructs. The difficulty of

• learning the syntax is then offset by the small size.

Similarity to Familiar Languages

Similar ity to Eng lish is obviously an advantage to English—
speaking software designers as far as learning is concerned. So is
similarity to familiar programming languages such as COBOL , PL/ I ,
and PASCAL . Of course , how much an advan tage such similar ities are
varies with the background of the designer and other par ties using
the PDL. Similarity to PASCAL is obviously not much use to a
designer not familiar with PASCAL.

Orientat ion toward Implementation Language

A few PDL’s are designed for eventua l implementation in a
particular programming language. In such cases, the PDL usually
bears a similar ity to the programming language of cho ice so tha t a
design can be smoothly transformed into code without any major
effort.

Ease of Transformation into Code

PDL’s no t designed for implementation in specific programming
languages may also be easily transformed into code. This
characteristic may help to determ ine whether a PDL is suitable for
use in global design or detailed design.

Types of Applications Suitable

Some PDL’s are specially designed for use in a particular type
of applica tion , such as real—time systems. A real—time system has
the following attributes : (1) requires the ability to handle
In terrup ts , (2) interfaces with non—standard equipme n t such as
sen ,ors , (3) the sequence of events is critical , and (4)  has more
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stringent performance requirements. Another example is that of
systems with concurrent processes. A PDL will be suitable for such
applica t ions only if it can express naturally and efficiently the
concep ts pertaining to these applications.

Status

The status of a PDL indicates how ready it is for use — whether
it is well defined or only proposed; if there is adequate
documentation ; if support tools have been implemented ; if there has
been any experience in its application; if it is in a stable state

• or is still being revised.

AUTO IIATIC TOOL SUPPORT

PDL’ s suppo rted b y auto mated tools such as parsers and
analyzers will be pointed out .  The types of analysis will be
highlighted .
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SECTION III

SURVEY OF PROGRAM DESIGN LANGUAGES

A brief survey of program design languages was undertaken , and
the results are presented in this section within the framework of
the characteristics defined in the previous section. The PDL’s
surveyed fall within a rather wide scope in that some of them may
not have been originally intended to be a PUL but have enough of the
characteristics of a PUL to be useful as one. The PDL’s surveyed
also span a wide spectrum of functions: some address global design
issues and others address detailed design considera tions in
preparation for coding. They also range from PDL’s with a very
strict syntax and semantics to those that resemble free—form
English.

No actual application of these PDL’s has been performed for the
purposes of this survey. The information reported here is based
mainly on the literature , personal prior experience of the author,
contact with the developers of the PDL, and the indirect experience
of other people who have used the PDL’s. In certain cases,
knowledge is limited by the documentation available.

As the survey was first conducted , the points of interest were
• special terminology , typical properties, design activities
• addressed , in fo rmat ion  conveyed , applicable problems and

environment. Much of this information has since been distilled and
incorporated into the set of PDL characteristics in Section II. For
each PDL su rveyed , a shor t account of its ba ckgr ound wil l be given
f i r s t , and where in f ormation is available , a table of it s
characteristics will be provided. Characteristics that cannot be

• determined at this point for lack of information or documentation
are left blank.
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CAINE , FAhBER & GORDON PDL (CFG PDL)

The CFG PDL was developed by Caine , Farber & Gordon , Inc., and
has been in extensive use there since 1973 [Cain7SJ. It is designed
fo r  use with struc tured programming and top—down design methods.

It is referred to as a form of “structured English” since it
uses the vocabulary of English and a syntax similar to that of a
programming language. Free—form English statemen ts are also
allowed .

The main design bod y consists of “segmen ts”, some of which are
congregated to form “groups ”. There are Text Segments , Flow
Segme nts, and Data Segments. A Flow Segment expresses the logic of
a design and consists of a parameter list , labels , comments, free—
form sta temen ts, and spec ial statemen ts ( IF , ELSE IF , ELSE , ENDIF ,
DO , UNDO , CYCLE , ENDDO , and RETURN). The CFG PDL also allows
references to External Segments , i.e., segments tha t  are not par t  of
the system be ing designed , such as operating system services or
utilities.

A processor has been built to support the CFG PDL by reading in
des ign segmen ts and producing a working design document consisting
of a table of con ten ts, a formatted listing of segments , and a
cross—reference of procedure calls. The processor is available on
several comp uters bu t ava ilable documen ta tion does no t spec if y which
computers . Further information can be found in the reference guide
(PDL75].
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• Table II

Characteristics of CFG PDL

1. BASIC CONTENT

a. External Interfaces

Not explicitly specified.

b. Static Structure

(1) Composition and Organization

Text Segments, Flow Segments (like procedures), Data
Segments. A Group contains a number of Flow Segments,
but a segment cannot contain another segment. The
organization is therefore limited to two levels —

Groups and Segments .

(2)  Calling Dependencies and Sequence

Implicit in free—form statements that reference other
segments. Referencing dependencies are listed in a
report from the processor.

(3) Data Dependencies

Parameter list of Flow Segments.

(4) Ownership of Resources

Internal variables can be implicitly defined anywhere
within a Flow Segment by preceding the data name with
a special character.

c. Dynamic Structure

Not expressed.
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Table II (Continued )

d. Data

(I) Organization or Structure

Only the name of a data item is defined. No
information on the type of data is specified. Each
item is a simple item , not a structure consisting of
constituent parts. Data therefore cannot be
represented in different levels of abstraction.

(2 )  Scope or Access

Data items defined implicitly in a Flow Segment by
flagging with a data character are internal variables
known only within the scope of the Flow Segment. Data
items defined in Da ta Segmen ts are all global and can
be accessed by any Flow Segment.

(3) Opera tions

Not defined except in English commentary.

(4 )  Size

Not defined except in commentary.

(5) Flow

Not represented .

( 6 )  Der iva tion

Not represented .

e. Control Flow

Specif ied by Flow Segments with the constructs of IF,
ELSE IF , ELSE , END IF , DO, UNDO , CYCLE , ENDDO , and RETURN.
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Table II (Continued)

f. Levels of Abstraction

Abstraction of modules is limited to two levels: Groups
and Segments. Data canno t be refined into constituent
parts except in commentaries rendering data abstraction
capabilities almost non—existent.

2. AUXILIARY CONTENT

a. Decision Details

( 1) Algorithms

Only in commentary.

(2 ) Solution

Only in commentary .

(3) Trade—of fs between Alternatives

No provision .

(4) Rationale of Decisions

No provision .

b. Error Handling

None.

c.  Performance Estimates

None.

d. Verification Information

None .
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Table II (Continued )

3. CONSTRAINTS

a. Hierarchy

Two levels of hierarchy of modules, and none for data.

b. Construction Rules

Structured programming control structures, and top—down
design are meant to be applied.

4. FORMAT

a. Input Format

Textual.
Combination of (1) statements with defined syntax and
(2) free—form English statements and commentary.

b. Internal Format

Information not available from documentation.

c. Output Format

Textual .
Same as input format as well as additional listings
produced by reports (see Automatic Tool Support).

5. APPLICATION CONSIDERATIONS

a. Size of the Language

Small. Several types of segments. About 10 constructs ,
and one data definit ion statement .

b. Syntax

Well defined but single syntax for segments and statements
within them. Free—form comments.
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Table II (Concluded)

c. Similarity to Familiar Languages

• Flow Segments are similar to procedures in programming
languages . Though the keywords are somewhat different , the

* constructs in Flow Segments are basically familiar
structured programming construct~s.

d. Eventual Implementation Language

None.

e. Transformation into Code

Seems easy. Recursive references may require special
attention if implementation language does not permit the
use of recursive calls.

f. Type of Applications Suitable

Lack of dynamic behavior representation makes it less
suitable for real—time systems.

g. Status

A language reference manual exists and the PDL has been
applied by Caine, Farber & Gordon , Inc.

6. AUTOMATIC TOOL SUPPORT

The CFG PDL is supported by a processor available on several
computers. Processor output includes: (1) messages on
erroneous input statements; (2) a tree structure showing
nestIng of design segment references (recursive references are
denoted once but not traced further); (3) segment index listing
all Flow Segments and External items showing the locations of
their definitions and the references to them; and (4) index of
data items — where defined and where referenced.
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FLOWCHARTS

Flowcharts are included here because of their long history of
being the most widely used form of design representation. Though
their merits have been severely questioned since the emergence of
structured programming , and though some practitioners in the field

• have not been as enthralled with them in the first place, one has to
admit that they have satisfied an important need for a long time.
By discussing their characteristics here, a comparison can be drawn
between them and newer PDL’s. It is assumed that high—level

• flowcharts are used to show overall program structure and detailed
flowcharts to show control flow within a module.
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Table III

Characteristics of Flowcharts

1. BASIC CONTENT

a. Ext ernal Interfaces

- • Shown .n high—level flowcharts. There are different
symbols for different physical forms of input and output
media, e.g., punched cards , tapes, printed reports, etc.

b. Static Structure

(1) Composition and Organization

High—level flowcharts show modules (denoted by
rectangular boxes) but not necessarily how they are
organized to form the whole system.

(2) Calling Dependencies and Sequence

High—level flowcharts show calling dependencies and
• sequences .

(3) Data Dependencies

F 
Not directly represented .

(4) Ownership of Resources

No.

c. Dynamic Structure

No.

d. Data

(I) Organizat ion or S t ruc tu r e

Flowcharts are not designed to represent data. Data
are referred to by name in the control flow; they are
not declared ahead of time .
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Table III (Continued )

(2) Scope or Access

No.

(3) OperatIons

No.

(4 )~~~~~~

No.

(5)  Fl ow

No.

(6) Derivation

Buried in the detailed logic.

e. Control Flow

By means of arrows , diamond—shaped boxes indicate a
decision (choice), etc.- No restrictions on allowable
connections.

f. Levels of Abstraction

Data abstraction is non—existent. For modules, it may be
possible in high level flowcharts.

2. AUXILIARY CONTENT

a. Decision Details

(I) Algorithms

No.

( 2 )  Solu t ion

No.
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Table III (Continued )
t

(3) Trade—of fs between Alternatives

No.

(4) Rationale of Decisions

No.

b. Error Handling

No.

c. Performance Es t imates

No.

d. Verification Information

No.

3. CONSTRAINTS

a. Hierarchy

None.

b. Construction Rules

None.

4. FORMAT

a. Input Format

Graphical.

b. Internal Forma t

c. Output Format

Graphical.
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Table Ill (Concluded)

5. APPLICATION CONSIDERATIONS

a. Size of the LanRuag~

A small number of symbols.

b. Syntax

The symbols are meant to indicate definite things.
Exp lanation wi thin boxes , diamonds , etc., is free—form.

c. Similarity to Familiar Languages

d. Orientation towa rd Implementation Languages

None .

e. Ease of Transformation into Code

The flow is easily transformed in to code if the programming
language allows uncontrolled branches (GOTO’s). Data
def initions have to be worked out.

f. Type of Applications Suitable

Not for real—time systems.

g. Status

Almo st exclusively used as des ign or doc umen ta tion aid
until recently.

6. AUTOMATIC TOOL SUPPORT

Automa tic aids have been bu il t to transform code into
flowcharts. No analysis of design is provided.
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t HIERARCHY PLUS l:~Pu r—PRocEss—oUrPuT (dIPO )

HIPO was developed originall y by IBM as a documen tation aid ,
though since then it has also been used as a representation of
system design during development. The two basic components are
[Kral75 , Sta y lb ] :

(1) A hierarch y chart or visual table of contents which shows
how each module is furt~~ r d iv ided in to mod ules , the order
in which they are first called , and wh ether the call is
conditional. The modules are also numbered according to
the level and their position among modules on the same
level.

(2) Input—process—output (IPO) charts , which further define
each module in the hierarchy in terms of its inpu ts and
outputs , the processing steps needed to perform the
funct ion of the module , and some of the con trol seq uence
governing the steps. Each of these charts is numbered
according to the corresponding module in the hierarchy
chart whose expansion it represents. In the lower right
corner of each chart there is usually an extended
descr iption where additional free—form notes can be placed
on any aspec t of the design.

The main difference between HIPO diagrams and flowcharts is
that the input—output data requirements for each module are much
more apparent in HIPO diagrams. However , control flow is documented
in a more—or—less free—form manner and usually not as completely as
in a flowchart. For instance , in the h ierarch y chart , submodules
are shown in order  of execu t ion  f r o m  l e f t  to right , and a diamond—
shaped box denotes that the execution of t h a t  submodule is
conditional. However , if iteration of any of t.~ese submod ules takes
place , it is not clear from H1PO charts alone which steps are
iterated . The more detailed input—process—output charts may not
necessarily show the complete control flow either. For instance, a
HIPO chart may not show if a module recycles. Processing steps are
represented by English words and the criteria for the breakdown are
left entirely up to the discretion of the designer.

The hierarchy chart imposes a tree—structure on the
organization of its modules. Service modules that perform a common
utility function for more than one module on the tree are not easily
identified and to identify the commonality of the function the
designer has to bend the rules of numbering of the modules to index
the more detailed Ilk) charts.
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Table IV

Charac te r i s t i cs  of HIPO

1. BASIC CONTENT

a. External Interfaces

Explicitly found in IPO chart of the top level module of a
system.

- 

• 
b. Static Structure

Usually exp licit for high levels only.

( 1) Composition ~nd Organization

Modules are denoted by rectangular boxes in the
hierarchy chart. The modules form a tree structure.
Functions performed by modules are stated in a few
words.

(2)  Call ing De pend encies and Sequence

For higher level modules defined in the hierarchy
• chart, calling dependency is represented by arrows ;

call ing sequence is imp lied f rom lef t to r igh t and a
conditional call is denoted by a diamond—shaped box.

(3) Data Dependencies

Partially represented in the inputs and outputs of a
module as shown in the IPO charts. However, ne ither
the origin of the input nor the destination of the
output is shown so that each module is not related to
another module via shared data.

(4) Ownership of Resources

No internal data is represented.

c. I~ynamic Structure

No.
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Table IV (Continued)

d. Data

(1) Organization or Structure

Only data used as input and output to a module is
specified . Definition is by name only.

(2 )  Scqpe or Access

Access r ight  is implied when used as input .  No scope
- - applies.

(3) Qp~ rations

None.

(4)  Size

None .

(5) Flow

The flow of data can be traced through inpu t /ou tpu t
arrows and the calling sequence , but this can be
tedious and involves many pages of charts. Also, as
said bef ore , the char ts do no t show where the inputs
caine from. To trace the flow one has to identify the
data by name.

(6)  Deriva tion

Partially represented by arrows in IPO charts
connecting the inputs and outputs to the processing
steps. For instance , an outpu t may be genera ted from
some input and is used by a subsequent pr ocessing step

F to help generate another output.

e. Control Flow

At hig her levels (in hierarchy chart), conditional calls
are denoted and sequence is implied from left to right, but
complete control flow is not represented . At the more
detailed level of IPO charts , control flow is represented

I
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Table IV (Continued)

in free—form Eng lish statements that usually resemble
programming code. However , comple teness of the con trol
flow representation is not guaranteed .

f. Levels of Abstraction

Fun ctional abs trac tion is repre~~ nted by hier arch ical
levels of modules. There is no data abstraction
capability.

2. AUXILIARY CONTENT

a. Decision Details

(1) Algorithms

In free—form processing steps.

(2)  Solu tion

Same as above.

(3) Trade—offs between Alternatives

In extended description.

(4)  Ra t ionale of Dec isions

Same as above.

b. Error Handling

l~o. 
-

c. Performance Estimates

None.

d. Verif ication Information

None.
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Table IV (Co n t inued)

3. CONSTRAINTS

a. Hierarchy

Modules are req uired to be organized in a tree—structure.
The hierarchy chart cannot be drawn as a network. Common
routines from different branches of the tree have to be
.~~,eated and may be denoted to be the same in the extended
descr iption in a corner of the chart.

4. FO RMAT

a. Input Forma t

Graphical format with free—form statements in detailed
charts.

b. Internal Format

Does not apply.

c. Output Format

Same as input format.

5. APPLICATION CONS IDERATIONS

a. Size of the Language

A few conven tions and grap hical symbols.

b. Syntax

Syn tax defined for  modules , cond itional calls , and
input/output.

c. Similarity to Familiar Languages

Free—form statements can be in English or pseudo—code.

d. Orientation toward Implementation Language

None implied .

- 
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Table IV (Concluded)

e. Ease of Transformation into Code

Seems fa i r ly easy to transform into code, except control

• flow is not complete.

• f. Type of Application Suitable

Not for  real—time systems.

g. Status

Documentation available and has been used.

6. AUTOMATIC TOOL SUPPORT

None.
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HIGHER ORDER SOFTWARE SPECIFICATION LANGUAGE AXES

Higher Orde r Software (HOS) is a design methodology proposed by
Hamilton and Zeldin that includes its own notation for defining
software [Hami76] . Proponents of HOS claim that it can be used to

• define software at the requirement , specif ication , and design
levels.

1105 to da te cons ists of a formal set of ax ioms and laws to
govern the definition of software. “Entities” considered and their
relations are listed below:

1. An input set of Elements;

2. An output set of Elements ;

3. Functions that are mappings from an input set to an output
set; they are organized in a tree—structure;

4. A function is sometimes referred to as a module when it
con trols a set of f unctions at a lowe r level on the tree
structure.

A set of six “axioms ” and the theorems der ivable from it
constitute the formal laws governing the definition of software in
HOS. The axioms address the issues of control of modules over: (1)
functions on its immediate lower level; (2) the ordering of the tree
structure at its immediate lower level ; and (3) access rights to
input and output sets of variables.

The AXES specification language is the language proposed to
support HOS. It consists of graphical ‘con trol maps’ and an
‘invocat ion tree’, as well as textual statements. For systems
described in AXES, objects represented are variables, values,
func tions , and trees ; the relationship described is control.
“Abstract control structures” can be used to def ine opera tions ,
func tions , and struc tures , all of which contain statements.
Struc tures  can be used to define relations such as partitioning of
data (set p a r t i t i o n  and class partition). Statements in AXES are
s ta tements  of fac t , not commands to be performed . For instance , in
a programming language , “z x + y” means to add the values of x and
y and store the result in z. In AXES, x , y ,  and z are variables,
each of which represents one of a possible range of values; “ — “

means identical as in mathematics. “z — x + y” in AXES therefore
means z always represents the same value as “x + y”.

47
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A design analyzer and a structuring executive analyzer to
- perform automatic analysis of design interf aces are also proposed

but have not been implemented to date.
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Table V

Charac teristics of HOS AXES

1. BASIC CONTENT

a. External Interfaces

Shown at the top level on the control map of the system , in
very simple form. If A is the system , y the outpu t of A,
and x the input of A , y = A(x) appears at the top of the
con trol map of A.

b. Static St ruc ture

(I) Composition and Organization

Functions or modules which con trol func tions benea th
It. Organization is in the form of a tree—structure
(a control map).

(2)  Calling Dependencies and Sequence

The invocation tree indicates calling dependencies but
not the sequence.

(3) Data Dependencies

Shown on the control map, but always in the form of
y A(x).

(4) Ownership of Resources

c. Dynamic Structure

• No.

• 

- 
d. Da t a

In AXES , a variable represents one among a possible set of
values , and this value remains the same because AXES
statemen ts are not commands tha t can cause the values of
variables to change.
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Table V (Continued)

( 1) Organization or S t ruc ture

Fixed types of data (called intrinsic types) as well
as user—defined abstract  data types expressed in terms
of ex is t ing  or previously defined types.

(2) Scope or Access

The normal scope of a variable is within the structure
in wh ich It is declared . Its access rights are
governed by the position of the module on the tree and
selec ted rights granted it by its parent.

(3) Operations

Can ~e defined in terms of pr imitive or already
defined ope rations .

(4)’ Size

(5) Flow

From the control ~~p.

(6)  Der iva tion

e. Control Flow

No.

f. Levels of Abstraction

For both data and modules.

2. AUXILIARY CONTENT

a. Decision Details

(1) Algorithms

To decompose functions into further functions, the
inpu t da ta is decomposed by primitive composition , set
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Table V (Continued)

part ition , and class partition. Thus the algorithm is
partially indicated.

(2)  Solu tion

No.

(3) Trade—o ffs  between Alternatives

• No.

(4) Rationale of Decisions

No.

b. Error Handling

A FAIL structure can be defined to specify output values
— 

and actions taken in case of the failure of a function.

c. Performance Estimates

No.

d. Verification Information

Assertions can be made abou t a da ta type , but its meaning
is not clear from the documentation of the AXES language
(Hami76J .

3. CONSTRAINTS

• a. Hierarchy

Botri module invocation and decomposition into functions are
restrained to a tree s t ruc ture .

b. Construction Rules

6 HOS axioms governing invocation of modules , access
rights , etc.
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Table V (Concluded)

4. FORMAT

a. Input Fo rma t

Graphical and textual.

b. Internal Format

• Not known at this point.

c. Output Format

Graphical and textual.

5. APPLICATION CONSIDERATIONS

a. Size of the Language

Large. Difficult to learn from present documentation.

b. Syntax

The syntax of AXES is not trivial.

c. Similarity to Familiar Languages

• d. Orientation toward Implementation Languages

None specified .

e. Ease of Transformation into Code

f. Type of Applications Suitable

Not for real—time systems.

g. Status

AXES has only recently been defined.

6. AUTOMATIC TOOL SUPPORT

Proposed but not implemented.
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IBM PDL

The IBM PDL is documented in (VanL76) ; a sligh tly d i f fe ren t
version of it is also given as an example of a PDL called Pid gin in
Volume VIII of th.~ RADC Structured Programming Series [Kral7S] . The

• primary purpose of this PDL is “to facilitate the translation of
• functional specifications into computer instructions using top—down

structured programming” [Kra175]. In other words , it is designed
I for use in detailed design.

The language is an Eng l ish—like representat ion of program logic
utilizing structured programming control structures and indentation
to show nested scopes of logic, in this PDL, statements are written

- similarly to those of programming languages such as PL/I. Control
• constructs allowed by the language are IF THEN ELSE, DO WHILE , DO
• UNTIL , CASE , and EXIT. Free—form English statements or textual

descrI ptions are also permitted in addition to the basic constructs.
Segmentation is accomplished b y INCLUDE and CALL statements and the
use of paragraph names.

The IBM PDL is intended to be used in the design of programs
tha t are to be implemented in PL/ I to wh ich it bears much
similarity. It is in fact a non—compilable dialect of PL/I.

t
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Table VI

Characteristics of IBM PDL

1. BASIC CONTENT

a. External Interfaces

Not explicitly specified.

b. Static Structure

(1) Composition and Organization

Modules, identified by paragraph names, are nested to
any number of levels. The INCLUDE statement, similar
to that in a PL/I preprocessor , iden tifies a module
that is eventually to be expanded as in—line code.

(2) Calling Dependencies and Sequence

Calling dependencies are implicit in free—form call
statements and calling sequence is implicit in the
order of appearance of such call statements in the PDL
description of a system.

(3) Da ta Dependencies

Shown in the form of parameters between the calling
and called modules in call statements.

(4) Ownership of Resources

Files and data can be defined by free—form statements
• but it is unclear if data so defined are global or

internal .

c. Dynamic Structure

• Not represented.
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Table VI (Continued)

• d. Data

(1) Organization or Structure

The emphasis of the IBM PDL is on control flow, so
much so tha t  data is sore ly  neg lected . It is not
clear if the rules of PL/ I  ~ri data declaration apply
or if data is to be declared in f r e e — f o r m  English.  In
the former  case , organiza t ion  of data is l imi ted by
what  is available in PL/ I  and the scope of da ta is
governed by what PL/I implies. In the latter case,
any data can be def ined representing different iev~ ls
of abst ract ion , although access rights  will not be
enforced. Conceivab ly ,  the PDL can be used with
ei ther  approach — it is just not specified .

(2) Scope or Access
See (I) above.

(3) Opera tions

Can conceivab ly be defined by free—form English but
the language has no special provisions fo r  enforcing
only the legal operations .

(4 )  Size

Free—form.

(5)  Fl ow

Not represented except for parameters passed among
modules.

(6)  Der iva tion

No provision for  th i s .  Maybe in free—form statements.

e. Control Flow

Sequencing, IF THEN ELSE , DO WHILE , DO UNTIL , CASE , and
EXIT.
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Table VI (Continued)

f .  Levels of Abst rac t ion

Abs traction as applied to modules can be represented in
varying degrees of detail. This PDL has no facility for
handling data abstraction or the ownership of resources.

4. AUXILIARY CONTENT

a. Decision Details

• ( 1)  Algorithms

No provision except in note form.

(2)  Solu tion

(3) Trade—of fs between Alternatives

(4) Rationale of Decisions

b. Error Handling

No.

c. Performance Estimates

None.

d. Verification Information

None .

3. CONSTRAINTS

a. Hierarch y

b. Construction Rules

Control flow is restricted to IF THEN ELSE, DO WHILE , DO
UNTIL , and CASE. Meant to be used with top—down structured

• programming methods.
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Table Vt (Continued)

4. FORMAT

(a) Input format

Text and PL/ l—lik e statements.

(b) Internal Format

-
- 

• Does not apply.

(c)  Ou tput Forma t

Same as input format .

5. APPLICAT ION CONSIDERATION S

a. Size of the Lagg~~~~

Small. 5 keywords.

b. Syntax

Rules of syntax are simple and apply only to the 5
constructs. Other statements are free—form.

c. Similarity to Familiar Languages

Similar to English and PL/I.

d. Orientat ion toward Implementation Language

• 
PL/I and COBOL.

e. Ease of Transformation into Code

Easily transformable into code by hand .

H f. Type of Applications Suitable

Seems unsuitable for real—time problems because of lack of
dynami c description.

1
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Tab le VI (Concluded)

g. Status

Usable immediately, although documentations do not give
instructions as to how to handle data. The two versions
also seem to differ slightly.

6. AUTOMATIC TOOL SUPPORT

None.

58



1.
MODULE INTERCONNECTION LANGUAGE (M1L75)

A class of languages called Module Interconnection Languages
(MIL’s) was proposed by DeReme r and Kr on (DeRe 76 ) for use in the

• global design of large systems to address issues of overall program
s t ruc ture.  They advocate that information concerning the overall
design usually buried within the modules , linkage ins truc tions , and
informal documen ta tion be bro ught to light in a more concise,
prec ise , and checkable form by means of expression in a MIL. They
also advocate that a different language be used in detailed design

• languages for programming— in—the—small. MIL75 is their specific
proposal of a NIL to satisfy these objectives. As of the writing of
their paper , MIL75 existed only in concep t and had received li tt le
use. Its design was also expected to change. Knowledge of M1L75 in
this paper reflects only what is documented in (DeRe7b] .

MIL75 describes , by design , only the static interconnections of
modules , not the dynamic relations exhibited during execution. It
allows the description o f :

1. System hierarchy — in terms of sys tems , subsystems, and
funct ions  organized as a t r e e — s t r u c t u r e .

2. Provided and derived resources — each func t ion  specifies
the r esources provided by it , and the resources It demands
f rom i ts children (derived resources).

3. Accessibility — links are drawn among siblings on the
system tree; these links can form any directed graph. The
links specify all the other functions to which each
function has access. “A has access to B” means A can
access all the resources provided by B. “Inherited access”
refers to access righ ts of a f unc tion tha t are inherited
from its parent on the tree. By defaul t, a child inheri ts
all access rights of its parent , unless a paren t “wills” a
child a specified subset or nothing. A parent has access
to the “derived resources” it demands from any of its
children. However , all descendents of its children are
invisible to the paren t , making it possible to build layers
of vi r tual  machines.

4. Module Placement — the concept of ‘modules’ here is similar
to that of procedures in a programming language and is
somewhat different from the way it has been used throughout
this paper . Modules are to be programmed using
programming—in— the—small techniques (detailed design);
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thei r size is determined by intellectual manageability- and
readiness for detailed design. On each leaf on the system
tree one or more modules must be attached. A non—leaf node
may or may not have a module. There are rules governing
the definition of resources in a module. At the least ,
each medule must state all resources defined in it and all
resources used by but not defined within it.
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Table VII

Charac teristics of M 1L75

1. BASIC CONTENT

a. External Interfaces

4 None.

b. Static Structure

( 1) Composition and Organization

Has the concept of systems , subsystems, functions
organized in a tree structure. One or more modules
can be attached to each node of the tree.

(2)  Calling Dependenc ies and Sequence

Calling dependency, but not sequence, is represented
by the system hierarchy tree.

(3) Data Dependencies

The resources provided by a f unction are exp licitly
stated b y the re la t ionship “provides” . Which other
func t ions  can access these resources are indica ted
separately by the accessibility relation. Parents can
use “der ived” resources from children nodes on the
tree. Data dependencies then are shown as a
combination of “provides ” , “derives” , and “accesses”
relations. There is no provision for  global
variables.

(4) Ownership of Resources

“Prov ides” is a mechanism to insure ownership of
resources. Internal variables can be defined.

C. Dynamic Structure

MIL7S has been designed to express only the static
structure of a system , not the dynamic structure. 

•
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Table VII (Continued)

d. Data

(1) Organization or Structure

Data can be defined by name only. They can also be
forme d into “groups ” to i den t i fy  common data
accessible by certain functions.

(2) Scope or Access

The “access” relationship explicitly allows one
sibling on the system tree to access resources
provided by another sibling (at the same level). A
parent may demand “derived” resources from its
children but not subsequent descendents. A child by
default inherits the access rights of its parent
unless they are explicitly limited by the parent, in
which case only the specified subset is inherited . No
resource is automatically global — accessed by all.

(3)  Opera tions

Not def ined.

(4) Size

Not defined.

(5)  Flow

By means of usage links (the “uses” relation) all
functions that have access to a data item can be
identif ied , but not the sequence in wh ich the data
item is processed by the functions.

( 6)  Derivation

No.

e. Control Flow

No.
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- - Table VII (Continued)

f. Levels of Abstraction

Abstraction of functions is achieved by subsystems and the
hid ing of resources with limited accessibility rights.
Data abstractions, however , are not provided for .

2. AUXILIARY CONTENT

- - a. Decision Details

• (1) Algorithms
• 1 .

No.

( 2) Solution

No.

(3) Trade—of fs between Alternatives

No.

(4) Rationale of Decisions

No.

b. Error Handling

No.

c. Performance Estimates

No.

d. Verification Information

No.
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• Table VII ( Continued)

3. CONSTRAINTS

a. Hierarchy

Functional decomposition of a system is limited to a tree
s t ructure .  The ul t imate modules of the system, therefore ,
also form a tree structure.

b. Construction Rules

Rules governing access to resources.

4. FORMAT

a. Input Format

Textual .

b. Internal Forma t

Unkn own .

c. Output Format

Textual and graphical.

5. APPLICATION CONSIDERATIONS

a. Size of the Language

Not clear at this point. Only a sample is given in the
• documentation. Judging from the fact that only a few

relations are ci ted , the size of the language should not be
too large.

b . Syntax

A r igid syntax is defined for  the graphical representation
as well as textual statements.

c. Similarity to Familiar Languages

64
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Table VII (Concluded)

I -

d. Orientation toward Implementation Language

• No specific implementation language implied .

e. Ease of Transformation into Code

f. Type of 4pplications Suitable

Lack of dynamic description , hence not suitable for real-
time systems.

g. Status

Not defined enough for use in the wri ting of the definItive
paper.

6. AUTOMATIC TOOL SUPPORT

A compiler has been su-gested to support M1L75 by providing
cross—references and graphs of system structure, accessibilit~-links, and usage links. It can also check for consistency and
support modification of system structure. No known detail
specification or implementation of the compiler exists.
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P—NOTATION AND V—NOTATION

The Hon eywell WELLMADE des ign methodology [Boyd76] has adopted
wi th slight  modif icat ion two existing no ta tions for  use as the means
of design representation in WELLMADE. The P—notation , proposed by
Dijks t r a  [Di jklS , Dijk76 J  as the guarded command set, represen ts
program s t r u c t u r e ;  the V—nota t ion , based on Hoare ’s work [Hoar72J,
represents the data.

The P—nota t ion  has seven program cons t ruc t s :  concatenation ,
selection ( I f ) ,  i t e ra t ion  ( D o ) ,  assignment , null ( s k i p ) ,  abort , and
func t ions  (procedures ) .  No order of exec ution is implied in the
actions listed in If ’s and Do’s — if the Boolean expression is true ,

• all actions listed in connection w i t h  it are execu ted , but in an
a r b i t r a r y  order . This mechanism is usefu l  in representing wha t
Dijks t ra  termed ‘no n—dete rminacy ’. One good example of where this
can be useful is in the representation of design for a transaction
processor raceiving commands f rom a user at a terminal who may
specif y a number of commands , but in any order. Developers of the
WELLMADE methodology are considering the addition of the CLASS
concept as in SIMULA and a similar concept called MONITOR to
manipulate  concurrent  processes.

The WELLMADE me thod of design is a constructive approach. An
input set of state variables  and an output set of state variables
are first constructed for the top—level function , and then the
output  s t a t e  is used to sugges t the ‘program’ b y an informal method .
The ‘program ’ is the series of steps to achieve the funct ion .  The
same s t r a t egy  is app lied to any lower level functions that may
appear in the ‘program’. This informal approach is recommended for
informal use and is a s impl i f ica t ion of the more formal method
proposed b y D i jks t r a  in (Dijk75] and [Dijk76]. Dijkstra uses the
notat ion wp(S ,R ) ,  where S denotes a statement list and R some
condition on the s t a te  of the system , to denote “ the weakest
precond ition for the initial state of the system such that
act ivat ion of S is guaranteed to lead to a proper ly termina ting
ac t iv i ty  leaving the system in a final state satisfying the post—
condit ion R. ” He shows how the weakest precondition can be derived
and the program cons tructed . If the input s t a te  can be proved to be
a subset of the weakes t precondition , then the program constructed
will te rmina te  and accomplish the r e su l t s  represented by the post—
condit ion R. This formal  approach , needless to say, can be long and
ted ious , but does provide a proof of correctness at the sane time
the program is constructed .
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Table VIII

Characteristics of P—NOTATION and V—NOTATION

I. 
- . 

BASIC CONTENT

a. External Interfaces

Not apparent. The sets of input and output state variables
specify conditions that must be true on entry to and exit
from the system.

b. Static Structure

(1) Composition and Or ganiza tion

Functions that transform a set of specified input
state variables in to a set of specified ou tput
variables.

(2) Calling Dependencies and Sequence

From function call constructs.

(3) Da ta Dependencies

Only input and output states of each function.

(4 )  Ownership of Resources

Internal variables.

c. Dynamic Structure

Can specify a set of actions whose order is not specified ,
i.e., they can happen in random order. Considerations are
taken to include concept of concurrent processes.

d. Data

(1) Organization or Structure

Several fixed types. The Array type (suggested by
Dijkstra) acts as a structure.
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Table V I I I  (Cont inued )

( 2 )  Scipe or Access

Scope allows the specification of access rights to
var iab les  by spec ify ing  whe ther they are:

1. (;lobal — inher i t ed  f r o m  ancestor , must not be initial—
ized.

2. Latent — inherited from ancestor , must be initialized.
3. Private — introduced and must be initialized .
4. Cons tan t  — value must not change.
5. Var iable — value may be modified .

(3 )  Opera t ions

Fixed set of opera t ions .

( 4) Size

( 5 )  Flow

Not apparen t .

(6 )  Derivation

May be par t ia l ly contained in the ‘program’.

e. Control Flow

With the constructs of the P—notation. However, since no
order is implied in the I f ’ s and Do’s, one has to construct
the Boolean expression In a special way, or nest the If’s
and Do’s, to force an order if so desired .

f .  Levels of Abstraction

The breaking down of functions in to  lowe r level functions
as a resul t  of the cons truction of the ‘program’. For
data , the use of Ar ray ,  which is a s t ruc ture  that can

• define collections of more primitive types of data. Or , in
free—form descriptions in definitions of data at higher
levels.
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I.

Table VIII  (Continued)

2. AUXILIARY CONTENT

a. Decision Details

(1) Algorithms

4 May appear as a result in ‘program’.

(2) Solu tion

No.

( 3) Trade—of fs between Alternatives1! No.

(4)  Rationale of Decisions

No.

b. Error Handling

Hidden in If’ s and Do’s.

c. Performance Estimates

No.

d. Verif icat ion Information

The constructive approach of the methodology as explained
• briefly in the text allows the verification of programs.

3. CONSTRAINTS

a. Hierarchy

With the given constructs in P—notation , the resulting
• ‘program’ is bound to obey structured programming rules of

construction and f i t  into a hierarchy s tructure.
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Table VIII  (Continued )

b. Construction Rules

The philosophy of WELLMADE naturally applies. However, the

• P—notation or V—notation can be used separately and
independently as Dijkstra and Hoare first envisioned them.

4. FORMAT -

a. Input  Forma t

Textual.

b. Internal Format

c. Output Format

Textual .

5. APPLICATION CONSIDERATIONS

a. Size of the Language

6—7 program cons t ruc ts  and about 6 data constructs.

b. Syntax

Well defined but also admits free—form expressions.

c. Similarity to Familiar Languages

d. Orientation toward Implementation Languages

None .

e. Ease of Transforma tion into Code

Seems easy as long as the data types offered by V—notation
are easily implementable in the programming language of
choice.
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Table VIII (Concluded)

f .  Type of Applications Suitable

Admits specification of random events for partial real—time
specification.

g. Status

Documentation still not complete on the methodclogy.

6. AUTOMATIC TOOL SUPPORT

DOCA — to display documentation.

P—notate — on—line tool to format P—notation , assign
statement numbers , and retrieve a portion of
program structure for display.

V—notate — on—line tool for formatting V—notation, retrieving
associated documentation , and producing cross—
references of the data.
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PROBLEM SfATEt-IENT LANGUAGE (PSL)

Problem Statement  Language (PSL) was developed b y the ISDOS
(Inf orma tion Sys tems Des ign and Op timiza tion System) project at the
Univers i ty  of Michigan (T e i c 7 4 J .  The Air Force has acquired a

• special version of PSL/PSA with some added capabilities. This
ve rsion is kn own a~ URL /URA (User Requirements  Language and
Analyzer).

PSL was originally designed to formalize the requ iremen ts for  a
large computer—based information system , but its capabilities make
it  u se fu l  in high—level design as well. It has the ability to
describe the static s t ructure  of a target system in terms of objects
within the system , the rela tionships among them , including da ta
connections. For example, PSL delineates the boundaries of the
system by ident i f ying physical units of data or information external
to the proposed system , such as documen ts used as input to or
reports generated by the system — these are called Inputs and
Outputs. It also identifies the people, departments , etc., who
produce these Inputs and use the Outputs — they are called Real
World Entities. Next , the units of data are identified , called Sets
of Ent i t ies  or Groups of Elements. They , together with Inputs and
Ou tpu ts, represent the information flow through the system.
Finally , there are Processes and their cons tituen t processes which
operate on the data.

The objects listed above are tied together by relationships
such as Subpar t  Of , Contained In , Uses , Der ives , and Updates.

The abili ty to represent the dynamic behavior of a system is
limited to describing Events that Trigger certain Processes. In
add it ion , sizing information , some projec t management informa tion ,
and narrative descriptions can be expressed .

Concomitan t with the development of PSL was the development of
a software package PSA (Problem Statement Analyzer) that builds a
data base from a set of PSL statements , checks it for consistency
and comple teness, and retrieves as well as manipulates selected
information from the data base, generating reports to the user for
anal ysis [Berg74J. Reports generated include varied representations
of the i n f o r m a t i o n  in the da ta base such as selec ted list ings ,
retrieval by keyword , ma trices , and flow diagrams.
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-~~~~ Table iX

Character is t ics  of PSL

- 
• 

1. BASIC CONTENT

a. External In terfaces

PSL emphasizes this area . Real World Entities in PSL refer
to the people , depa rtments , organization , etc., using the
target system. Inputs and Outputs represent data external
to the system as distinct from internal variables.

b. Static Structure

(1) Composition and Organization

Processes form the basic units. Each Process can be
decomposed into Subparts that  are also Processes.

(2) Calling Dependencies and Sequence

Calling dependencies are embedded in the Subpart of
relationship for it is assumed that a Process will
call on its constituent parts to perform its function.
The calling sequence is not indicated .

(3) Data Dependencies

PSL has no parameter—passing capability. The data
dependencies among Processes are hidden in the Uses,
Derives, and Updates relationships. A Process
specifies the data items it uses and modifies, but

• where the data come from or go to are not specified.
One report in PSA tabulates these relations in matrix
form.

(4) Ownership of Resources

All data are global; no internal data are allowed.

c. Dynamic Struc ture

Events Trigger Processes. Conditions can also be specified.
But none of the dynamic activities are related to the data.
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Table IX (Continued)

d. Data

(1) Organization or Structure

• Units of data are Sets of Entities (e.g., files of
records) or Groups of Elements (structure of primitive
data types). Entities can consist of Groups. Data is
declared by name , and type is specified by ATTRIBUTE.
Sets, Entities, and Groups are meant to denote logical

• collections of data; each can be further decomposed
• into constituent parts.

(2) Scope or Access

All global, accessible by all.

(3) Operations

Not defined except in f ree—form description , or
contrived by using the ATTRIBUTE keyword.

(4) Size

Cardinality can be specified.

(5) Flow

The processes that interact with the data are
indicated by the Uses, Updates and Modifies relations.
However , the order in which the data flow through the
Processes is not known, i.e., a thread cannot be
t raced.

(6) Derivation

Partially from the Derives, Uses or Using relations.
A Pr ocess can Derive a va r iable using other var iables,
but the full algorithm is not specified.

e. Control Flow

None.

•
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Table IX (Continued)

f .  Levels of Abstraction

Modules are abst racted by spe cif ying Processes In a top—• down manner from abstract to concrete. Data abstraction is
accomplished by using the four levels of Sets , Entities,
Groups and Elements.

2. AUXILIARY CONTENT

a. Decision Details

( 1) Algorithms

Only in textual description .

(2) Solution

Only in textual description.

(3) Trade—of fs between Alternatives

Only in textual description.

(4) Rationale of Decisions

Only in textua l descri ption.

b. Error Handling

No.

c.  Performan ce Estimates

Via ATTRIBUT E and textual descri ptions.

d. Verification Information

None.
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Tab le IX (Continued )

3. CONSTRAINTS

a. Hierarchy

The SUBPART OF relation governing both the Processes and
data is in the form of a tree structure. The CONSISTS OF
relation forces a hierarchical structure.

b. Construction Rules

4. FORMAT

a. Input Format

Textual.

b. Internal Format

CODASYL data base.

C. Output Format

Textua l , graphical and matrices.

5. APPLICAT ION CONSIDERATIONS

a. Size of the Language

Over 200 keywords.

b. ~yntax

Defined for Sections and Statements.

c. Similarity to Familiar Languages

d. Ease of Transformation into Code

Since control flow is missing, it is not suitable for use
Ira detai led design.
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Table IX (Concluded)

e. Type of Applications Suitable

• PSL admi ts partial description of dynamic behavior for

• 
real—time systems.

• f .  St atus

The support tool PSA has been installed at various places,
on various computers. Documentation for some versions is
available.

6. AUTOUATIC TOOL SUPPORT

The Analyzer PSA parses PSL statements and performs checks on
the consistent use of names, the completeness of definition of
data items ; produces various listings ; and tabulates relations
between Processes and data items. It also produces pictorial
output for certain items.
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PROCESS DESIGN LANGUAG E (PDL 2 )

• The Process Desi gn Language is a part of the Process Design
t1ethodology developed at Texas instruments Inc., Alabama , in support
of the Ballistic Missile Defense Advanced Technology Center. The
primary goal of Tl—PDL is to provide a means of defining and
manipulating large real—tine processes where timing and order of
events are critical. Koppang published a paper [Kopp76J in which
Process Design Language is discussed. In his presentation of the
paper at the 2nd Irternational Conference of Software Engineering ,
Koppang stated the following as requirements for the language:

o Extensive error detection capability,
o Supports structured programming,
o Well—def ined scope rules ,
o Advanced data structures ,
o Based on an established programm ing language ,
o Allows efficient code generation (because of real—time

appl icati o n ) ,
o Supports synchronization of concurrent processes, and
o Access to bare hardware.

PASCAL, deemed most suitable , was chosen to be extended to mee t
the above req uirements. The current version of the language is
called PDL2. The extensions to PASCAL incorporated the following
capabi l i t ies :

o Absolute memory accessing (user r e s t r i c t ed ),
o ?femory boundary  al ignment  f o r  execution time e f f i c i e n c y ,
o Double precision arithmetic ,
o Commun ication with FORTRAN ,
o Tasking and synchronization ,
o Variab le length arrays ,
o Vector opera tions ,
o Assertion statements providing run—time verification ,
o Data collection statements for performance data ,
o Parame terized string substitutions (MACROS), and
o An Escape statement.

An integrated set of tools, called Process Design Sys tem
(PDS2), is being developed to support PDL2 and contains a compiler
for PDL2. PDS2 is scheduled for completion in 1977. Plans have
been made for its use within Texas Instruments.
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Table X

Characteristics of PDL2

1. BASIC CONTENT

a. External Interfaces

b. Static Structure

(1) Composition and Organization

Procedures form a tree structure. Macros permit the
• definition of in—line procedures.

(2) Calling Dependencies and Sequence

In procedure call statements.

(3) Data Dependencies

Explicitly by parameter list , and implicitly by the
fact that a procedure has knowledge of all definitions
and variables declared in the higher level modules in
which it is nested..

(4) Ownership of Resources

Internal variables.

C. Dynamic Structure

Processes may be Interrupted by higher priority tasks.
Tasking and synchronization of concurrent processes.

d. Data

(1) Organization or Structure

PASCAL has good data structuring capabilities
including 8ets of data whose members are denumerable.
Variable length arrays and vector operations are
added . Data type defines the set of values that may
be assumed by that variabl~ . More detailed
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Table X (Continued)

Information on PASCAL data definition can be found in
(Wi r t 7 l ) .

(2) Scope or Access

A data item declared in one procedure can be used by
all other procedures defined within that procedure.

(3) Operations

Fixed set of operations.

(4) Size

As In PASCAL.

(5) !~2~

Only in parameter lists.

(6) Derivation

No.

e. Control Flow

IF , CASE , REPEAT , WHILE , FOR, GOTO, and ESCAPE statements.

f. Levels of Abstraction

Funct ional abstraction is achieved by the use of nested
procedures. Limited data abstraction is achieved by the
use of the set and class structures of data.

2. AUXILIARY CONTENT

a. Decision Details

(1) Algori thms

No.
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Table X (Continued)

(2) Solution

No.

• 
•~ 

(3) Trade—offs  between Alternatives

No.

(4) RatIonale of Decisions

No.

b. Error Handling

No.

c. Performance Estimates

• Data collection statements collect program performance data
in a standardized , compiler verified format to promote the
implementation of general purpose design analysis aids.

d. Verif icat ion Information

Assertion statements are verified at run time.

3. CONSTRAINTS

a. Hierarchy

Static system structure must be a tree structure.

b. Construction Rules

Structured programming rules apply.

4. FORMAT

a. Input Format

• Textual.
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Table X (Continued)

b. Internal Format

c. Output Format

.~ ~
. Textual.

5. APPLICATION CONSIDERATIONS

a. Size of the Language

PASCAL + extensions.

b. Syntax -

PASCAL syntax.

c. SimilarIty to Familiar Languages

PASCAL.

d. Orientation toward liqplementation Langua~~

Although it has not been stated that eventual
Implementation Is limited to PASCAL, presumably it would be
easier to implement the design ultimately in PASCAL.

e. Ease of Transformation into Code

Easy to transform PDL2 into PASCAL code.

f. Type of Applications Suitable

• Designed to handle real—time processes.

g. Status

• Language reference material has not been received or
reviewed for this task.
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Table X (Concluded)

6. AUTOMATIC TOOL SUPPORT

An extensive set of tools called Process Design System (PDS2)
was planned and scheduled for  completion in 1977. Components
of the tools include the PDL2 Compiler , Object Module
Processor, Process Constructor, Simulation Experiment and

• Process Design Analysis System. Capabilities include the
maintenance of each module as a separate entity, the
maint enance of system conf igur ation , cont rol of access to
modules , automatic look—up of data available to a module from
high—level modules, detection of interface errors, and the
simulation of processes to app r oximate their behav io r in a
multi—tasking environment. 

• 
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PROG RAM DESIGN AND DOCUMENTATION LANGUAGE (PDDL)

PDDL is a product of Jet Propulsion Laboratory, California
(Re im 77 1 , consisting of a set of notational conventions for• recording the design of a system, and a computer program written in
SIMSCRIPT to maintain the system design and generate reports. Three
publications are planned : a user’s guide , program documentation , and
the engineering methodology — though none is available at this
point .

Modules are represented as procedures . Each procedure is
separate and lists at the beginning variables it receives (GIVEN),
uses (USING),  and returns (YIELD). Statements within procedures

• include fi le manipulation statements , procedure call statements , and
typical cont rol st ructures such as DO, SELECT, IF, ELSE, and ENDIF.
Files and data structures are also defined separately from
procedures and from one another. Each ‘program data—structure’
defines a data st ructure associated with a name and type. Its
contents are listed by name and type within it. Data can be
entities, data st ructur es or substruct ur es , defin itions of which ar e
not clear from available documentation at this point. The support
tool generates module reference trees and data cross—references.
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Table XI

Characteristics of PDDL

1. BASIC CONTENT

a. External Interfaces

Po r tions of input pr ovided by the user may be found in file
definitions , but othe r than that , external Interfaces are
not represented.

b. Static St ructure

( 1) Composition and Organization

Procedures, each of which is separate.

(2) Calling Dependencies and Sequence

• In procedure call statements. The support tool,
however , generates a module reference tree as well as
a procedure cross—reference showing where the code of
each function resides and where it is referenced.

(3) Data Dependencies

Stated explicitly at the beginning of each procedure
under GIVEN, US ING , and YIELD. However, it is no t
known where these variables come from. Only in
conjunction with calling dependencies will data
dependency among modules be complete.

(4 ) Ownership of Resources

No internal variables.

C. Dynamic Structure

No.
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Table XI (Continued)

d. Data

( I) Organization or Structure

Data can be a structure, entity ~r substructure. Each
can be defined in terms of the others.

( 2) Scope or Access

All data are defined separately in a ‘program data—
st ructure’ or ‘pr ogram’ and are global. Variables
used as parameters concern only the modules involved.

(3) Opera tions

Not defined.

(~) ~~~
By the structure or listing of component parts.

• 
(5) Flow

No. The automatic tool does provide a report showing
places of reference of each data item in terms of the

• procedure that performs the reference, and the page
and line of the referencing statements. It does not
specify the order of the references.

(6) De rivation

• No , except in f r e e — f o r m  text .

e. Control Flow

In procedures . DO , SELECT , IF , ELSE , and ENDIF statements.

f .  Levels of Abstraction

None for modules. Data can be organized into structures
but existing documentation does not specify if they can
first be declared by name only and have the details filled
in af terwards.
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• Table XI (Continued )

2. AUXI LIARY CONTENT

a. Decision Details

(1) Aigorithms

No.

(2) Solution

No.

( 3) Trade—of fs Between Alternatives

No.

(4) Rationale of Decisions

No.

b. Error Handling

No.

c. Perfo rmance Estimates

No.

d. Verif ication Information

No.

3. CONSTRAINTS

a. Hierarchy

Each module and data definition is separate.

b. Construction Rules

(1) Explicit Rules

(2) Implicit Rules
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Table XI (Continued)

4. FORMAT

a. Input Fo rmat

Textual.

b. Internal Format

• 
Unknown.

c. Output Format

Textual. Lists and cross—reference tables.

5. APPLICAT ION CONSIDERAT IONS

a. Size of the Language

Medium.

b. Syntax

Many notational conventions that  have to be learned .

c. Similarity to Familiar Languages

d. Orientation toward Implementation Languages

None specified.

e. Ease of Transformation into Code

Since PDDL representations are divided Into procedures and
data definitions, transformation into code should not be
difficult.

f. Type of Applications Suitable

g. Status
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Table XI (Concluded)

6. AUTOMATIC TOOL SUPPORT

The support tool generates several reports:

1. module- reference tree;

2. data versus places (procedure, page, and line) of reference;

3. procedure cross—references in alphabetical order showing ,
for each procedure, all references to it and the location

r j of its text; and

4. miscellaneous listings showing cross—references of files
and changes from the previous version.

89



—

SOFTWARE DESIGN LANGUAGE (SDL—1)

A family of software design languages has been suggested and
its first member SDL—1 introduced by Chu [Chu76]. Chu sees a SDL
mainly as a design aid to describe the design of software for
communication and documentation. Should a simulator become
available, the design can be checked out. He also thinks that there
is a me thodology implied in a software design language.

SDL—1 represents design In several parts. The first three
paragraphs in the DESIGN SPECIFICATION (I. e., the PROCEDURES , DATA ,
and SWITCHES paragraphs) deal with overall design. The PROCEDURES
paragraph consists of two parts , one called PROCEDURE DECLARATION
where all procedures are declared in nested levels by name and
func tion , and the other called PROCEDURE STRUCTURE where all
procedures called by each pr ocedure are listed. Likewise, the DATA
paragraph consists of DATA DECLARATION and REFERENCE STRUCTURE.
Similar dichotic schemes also exist for SWITCHES, which are similar
to status variables. All data and switches declared at this level
are global.

The last paragraph of design in SDL—l , the DEFINITIONS
paragraph , consists of procedure definitions. Each proced ure
defined under PROCEDURES is further expanded into detailed
statements with appropriate control structures.
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Table XII

Ch aracteristics of SDL— 1

1. BASIC CONTENT

• a. External Interfaces

Not explicitly defined .

b. Static Structure

(1) Composition and Organization

Declaration of sIngle—In—single—out ( i.e. ,  one—e ntry—
one—exit) procedures within the PROCEDURES paragraph
in nested levels. Procedures can also be impl~,cItly
declared in the PROCEDURE STRUCTURE as part of a “call
list”.

(2) Calling Dependencies and Sequence

Another part of the PROCEDURES paragraph is the
PROCEDURE STRUCTURE where each procedure declared
lists the procedures it in turn calls, in a “call
list”. No sequence is implied . Sequence has to be
deduced from the detailed procedure definition showing
control flow and call statements. Procedures in the
“call list” may be already declared , or implicitly
defined by their occurrences in the ~J.ist.

(3) Data Dependencies

Shown in the REFERENCE STRUCTURE under DATA, sorted by
data name. The inverse relationship (the data items
that a particular procedure references) has to be deduced.

(4) Ownership of Resources

Internal variables can be def ined wi thin a procedur e
definition.

c. Dynamic St ructure

No.
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Table XII  (Cont inued)

• d. Data

( 1) Organization or S t ruc ture

Data items are defined b y name , type , and descript ive
explanation. Each item may contain several further
levels of data items in a tree—structure. SWITCHES
act as s ta tus  variables.

(2 )  Scope or Access

All data declared in the DESIGN SPECIFICATION are
• global. All data declared in a PROCEDURE DEFINITION

belong internally to that procedure.

(3) Opera tions

Fixed se t , not user—defined .

(4) Size

No.

(5) Flow

The list of modules that reference a data item is
given , but the order in which referencing takes place
is unknown.

(6) iieriva tion

No.

e. Control Flow

In PROCEDURE DEFINITION of each procedure. Statements
allowed are BLOCK , SET , IF , CASE , LOOP , EXIT , CALL , RETURN ,
and UNWIND.

f. Levels of Abstraction

As represen ted in the various levels of procedures and in
data structures.
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• Table XII  (Continued )

2. AUXILIARY CONTENT

a. Decision Details

(1) Algorithms

No.

• (2) Solution

No.

( 3 )  Trade—offs between Alternatives

No.

(4) Rationale of Decisions

No.

b. Error Handling

Error exits are handled by UNWIND , bu t the condi tions
handled are buried in the PROCEDURE DEFINITIONS.

c. Performance Estimates

d. Verification Information

SWITCHES can be used to represent conditions to be tested
later in the design.

3. CONSTRAINTS

a. Hierarchy

Procedures are declared in a hierarchy,  but the calling
relationship is not limited — a procedure can call
procedures above and below it except the main procedure.
Data is restricted to a tree—structure.

b. Construction Rules
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Table XII (Continued)

4. FORMAT

a. Input Format

• Textual.

b. Internal Format

Not applicable.

C. Output Format

Textual.

5. APPLICATION CONSIDERATIONS

a. Size of the Language

3 levels of description , each level containing 2 or 3
blocks of information.

b. Syntax

Fixed syntax except in comment.

c. Similarity to Familiar Languages

d. Orientation toward Implementation Langua~ç~

e. Ease of Transformation into Code

Seems easy except for SWITCHES.

f. Type of Applications Suitable

Not for real—time applications because of the lack of
dynamic representation.

g. Status

Language is well defined , awaits experiences in application
to study its sufficiency.
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Table XII (Concluded)

- 6. AUTOMATIC TOOL SUPPORT

Suggested but neither defined nor implemented.



SOFTWARE SPECIFICATION LANGUAGE (SSL)

SSL , a product of Science Applications Inc., is a formalism for
the definition of software specifications. It is designed to
emphasize module interconnections , flexible data abstractions, and
global data flow; it is not designed to depict the control flow
within modules. The formal grammar of SSL is documented in Backus—

• Naur—Form (BNF) in [Aust 76], and historically its design has been
• influenced- by MIL, levels of abstrac tion , structured charts , PASCAL ,

ALGOL 60 and NEUCLEUS.

A subsystem in SSL consists of a collection of nodules. SSL
statements are used to convey addi tional information about each
module. The Assumes statement specifies conditions that must be
true upon entry to the module. The Satisfies statement states data
conditions that must be true upon module exit. The Fulfills
statement specifies the requirements accomplished by the module.
The Accesses statement indicates which environmental objects such as
peripheral equipment are utilized by the module. The Receives and
Transmits statements indicate real—time data activity . The Creates,
Modifies, and Uses statements dis tinguish between input and output
data variables.

Besides a basic set of data types , SSL allows add itional user—
defined data types. Each data declaration is related to the
requirements. Conditions that must be true for the creation of a
data item can also be specified.

SSL is the only PDL among the ones surveyed to relate design to
requirements.

_ _ _  
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Table XIII

Characteristics of SSL

1. BASIC CONTENT

a. External Interfaces

Requirement declaration is used to identify the data flow
between the software and its external environment. System
level input (stimulus) received by a software package from

• an external source and system level output (response) are
represented as Input and Output parts. The Accesses
statement also indicates which environmental objects are
utilized by a module.

b. Static Structure

(1) Composition and Organization

Modules are the basic system objects in SSL. A
subsystem is a group of modules. The requirement
satisfied by each module is stated in the Fulfills
statement.

(2) Calling Dependencies and Sequence

Only in Execute statement which is the equivalent of
what is generally known as a Call statement.

(3) Data Dependencies

The Creates and Modifies statements within a module
show the input and output variables of a module but
not where they came from or are going to.

(4) Ownership of Resources

• Internal variables can be defined within a module.

c. Dynamic Structure

Receives and transmits statements represent real—time
activity.
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Table XIII (Continued)

d. Data

(1) Organization or Structure

SSL offers a fixed set of data types and also the
capability for user—defined data types. Data is also
related to requirements attributes.

(2) Scope or Access

The normal scope of all data items is the subsystem in
which it is declared. Global variables can be
declared only in the main subsystem.

(3) Operations

Fixed set , not user—defined .

(4) Size

(5) Flow

Can be traced from the Creates, Uses, and Modifies
statements.

(6) Derivation

Not the algorithm , but the variables used in the
derivation of a variable can be obtained from the Uses
and Using statements.

e. Control Flow

Not designed for this.

f. Levels of Abstraction

Concept of a system, subsystems and modules; also data
abstraction by means of user—defined variable types.
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Table XIII (Continued)

2. AUXILIARY CONTENT

a. Decision Details

(1) Algorithms

No.

4 (2) Solution

No.

(3) Trade—of fs between Alternatives

No.

(4) Rationale of Decisions

The projection of specialized forms of requirements
onto the data and module definitions establishes the 

• -rationale for the creation of such.

b. Error Handling

No.

c. Performance Estimates

No.

d. Verification Information

Conditions necessary for the execution of a module and its
return , and conditions necessary for the creation of a
variable are stated so that they can be tested . Assertions
represent conditions attached to the creation of variables
and entry and exit of modules.

3. CONSTRAINTS

a. Hierarchy

Subsystems are separate from each other but contain
modules. No module is contained within another module.
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Table XIII (Continued)

b. Construction Rules

Levels of abstraction are meant to be applied. SSL also
encourages a designer to relate design to requirements.

4. FORMAT

a. Input Format

Textual.

b. Internal Format

Unknown.

c. Output Format

Textual. No more information at this point on detailed
capabilities of support tools planned.

5. APPLICATION CONSIDERATIONS

a. Size of the Language

70 reserved words.

b. Syntax

Formal grammar.

c. Similarity to Familiar Languages

d. Orientation toward Implementation Languages

None.

e. Ease of Transformation into Code

No control flow specified . Detailed design necessary
before transformation into code.
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Table XIII (Concluded)

f. Type of Applications Suitable

At tempts to handle real—time applications .

g. Status

Language is well defined , but not the tools.

6. AUTOMATIC TOOL SUPPORT

Several tools, collectively known as Software Specification and
Evaluation System (SSES), are planned , including a static code
analyzer, a dynamic code analyzer, and a test case analyzer.
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STRUCTURED CHARTS

• Structured charts are graphical notations used to support a
design technique called structured design. The underlying
consideration of Constantine’s structured design technique [Stev74J
is to isolate more simple independent modules with minimal
connections among them. The result is that modules so defined are
easier to comprehend , easier to implement , less error—prone , and
also less repetitive because they are more likely to be reusable
without recoding , thus avoiding duplicate code.

Design takes place at three hierarchical levels: system ,
program , and module. In tStev74l the authors discuss coupling — the

• strength of the association among modules; cohesiveness; and
binding. They also describe a charting method to record the
decisions made , the modules identified , and their connections .

This structured design technique also places much emphasis on
identif ying abstractions of external conceptual streams of data and
the transformations necessary to change them into the output stream .
“External” data lies outside the system ; a “conceptual” stream of
data is a stream of related data that is independent of any physical
input—output device.

Structured charts consist of a system structure tree with
rectangular boxes denoting modules and lines connecting them
denoting invocation (or calling relationship). All calling
relationships are further defined by specifying the input variables
(variables passed to the called module) and output variables
(variables returned). Both modules and variables are identified by
name or a short phrase of description such as “a list of unsafe
factors and names”.
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Table XIV

Characteristics of Structured Charts

1. BASIC CONTENT

a. External Interfaces

Although external data are emphasized in the structured
design technique, they are not represented in the charts.
Structured charts show data connections between modules,
but not between the whole system and the outside world.

b. Static Structure

(1) Composition and Organization

Modules, as denoted by rectangular boxes and a free—
form description, form a tree—structure.

(2) Calling Dependencies and Sequence

Calling dependencies are apparent in the system tree.
The actual sequence is not depicted although it is
roughly from top to bottom.

(3) Data Dependencies

Shown for every called module. The name or a short
description of data passed from the calling module to
the called module and vice versa is recorded.

(4) Ownership of Resources

No internal resources are depicted.

c. Dynamic Structure

No.

d. Data

(1) Organization or Structure

Free—form description of data type or structure or
enumeration of values.
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Table XIV (Continued)

(2) Scope or Access

Only data passed among modules are specified . All
data named concern only the calling and called
modules.

• (3) Operations

None , except maybe in free—form description.

(4) Size

Only in description , or implied by enumeration.

(5) Flow

Can be traced indirectly from system tree, but the
tree itself is based on hierarchical levels of
modules , not on following one thread of data.

(6) Derivation

No.

e. Control Flow

No. Only calling relationship.

f. Levels of Abstraction

Hierarchical levels of modules. For data, abstraction can
be represented only in free—form description. It is
interesting to note that although abstraction issues are
emphasized in the design method , the charts are kept simple
enough so that no special provisions are made to represent
them in the notation.

2. AUXILIARY CONTENT

a. Decision Details

(1) Algorithms

No.
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Table XIV (Continued)

L (2) Solution

No.

(3) Trade—of fs between Alternatives

No.

(4) Rationale of Decisions

No.

b. Error Handling

No.

c. Performance Estimates

No.

d. Verification Information

No.

3. CONSTRAINTS

a. Hie rarchy

Calling structure of module is in the form of a tree.

b. Construction Rules

The philosophy of the structured design method is implied .
In constructing the modules , the rules of coupling ,
cohesiveness and binding apply. In constructing data , it
is assumed that the design will start from a concep tual
stream of data and proceed toward actual physical
representation in the machine.
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Table XIV (Continued)

4. FO RMAT

a. Input Format

Graphical.

b. Internal Format

Not applicable.

• c. Output Format

Graphical.

5. APPLICATION CONSIDERATIONS

a. Size of the Language

Small. Boxes , li nes , input and output variables.

b. Syn t ax

Th ere is a defini te  syntax.

c. Similari ty to Familiar Languages

Simple charts.

d. Orientation toward Implementation Languages

None in particular.

e. Ease of Transformation into Code

Since no control flow is specified , much design needs to be
• done in transforming structured charts to code.

f. Type of Applications Suitable

g. Status

Do cumented and has been applied .
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• Table XIV (Concluded )

6. AUTOMATIC TOOL SUPPORT

None. 4

I
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UMTA SPECIFICATION LANGUAGE (USL)
t

USL was developed by the Urban Mass Transportation
Administration for the detailed technical specification of computer
programs. It is intended to replace flowcharts and most of the
prose documentation of program design.

Hodules are specif ied in USL as procedures. Lower level
modules can first be identified by name and expanded later. The
logic within procedures is limited to IF THEN , IF THEN ELSE , WHILE,
and FOR EACH statement. Indentation is used to denote the scope of
a clause.

Data are declared as RESOURCES and are considered to be sets.
Primitive data types are considered a set with one member.
Attributes of resources can be used to define the maximum number of
members , methods of access, scope of the definition , and members.

USL is similar to ALGOL, but can be translated into code in any
algorithmic language. One support tool automatically translates a
design written in USL into FORTRAN [Zieg73]. It is claimed that

• “the technical specifications written in USL can also provide the
design for a simulator of the system to be developed.” [Zieg74J

For a language designed to specify detailed technical
informa tion of design, USL , though inadequate in specifying inter—
module connections , is surprisingly capable of managing
abstractions.

108 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- y__-_~-_ - - • ~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~

• Table XV

Cha racteristics of USL

1. BASIC CONTENT

a. External in te r faces

- 
- 

No.

b. Static St ructure

( I) Composition and Organization

Basic units are Procedures.

( 2) Calling Dependencies and Sequence

Embedded in procedure call statements.

( 3) Data Dependenc ies

Only in parameter list.

( 4) Ownership of Resources

Inte rnal resources can be defined by defining them
LOCAL. For recursive procedures these local variables
can be stacked .

c. Dynamic Struc ture

No.

d. Data

( 1) Organiza tion or Structure

All data are considered sets of objects , primitive
data types being sets with one member. Data are
declared by name as RESOURCES .
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Table XV (Continued)

( 2)  Scope or Access

Scope or access is defined in 3 ways: by declaring
resource LOCAL ; by explicitly listing all procedures
that can reference the resource; in the absence of a
specified scope, a resource is assumed global — any
procedure can reference it.

• ( 3) Opera tions

4 Random and consecutive methods of access are provided .
Access methods are specified in a general way so that
the intent of the access method is specified , no t one
way of impleme nting it.

(4 )  
~~~
By maximum number of members.

(5) Flow

Hidden in statements in procedures.

(6) Derivation

No.

e. Control Flow

By IF THEN , IF THEN ELSE , WHILE , and FOR EACH statements.

f .  Levels of Abstraction

Procedures are defined in the abstract and expanded
af te rward . Data are considered sets and can also be
conceived of in the abstract with details filled in
a f t e rward.
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Table XV (Continued)

2. AUXILIARY CONTENT

a. Decision Details

(1) Algorithms

• No.

(2) Solu tion

No.

(3) Trade—of fs between Alternatives

(4) Rationale of Decisions

Detailed design decisions can be recorded and the
intent stated in prose under DICTIONARY.

b. Error Handling

No.

c. Performance Estimates

No.

d. Ve r if icat ion Informat ion

No.

- 
• 3. CONSTRAINTS

a. Hierarchy

Because of control constructs availab le , resulting
structure of modules form a hierarchy.
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Table XV (Continued )

b. Construction Rules

Indentation is to be used to denote the scope of a clause
in statements within procedures. Control flow is
restricted to structured programming constructs.

4. FORMAT

a. Input Format

Textual.

b. Internal Format

Not applicable.

c. Output Format

Textual.

5. APPLICATION CONS IDERATIONS

a. Size of the Language

Fair.

b. Syntax

Combination of f ree—form statements and well defined
statements.

c. Similarity to Familiar Languages

Similar to ALGOL.

d. Orientation toward Implementation Languages

Not limited to any particular one.
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Table XV (Concluded)

e. Ease of Transformation into Code

Has been automatically translated into FORTRAN. Ziegler
• claims USL is readily translated into FORTRAN, PL/I , COBOL,

JOVIAL or ALGOL.

• f .  Type of Applications Suitable

g. Status

• Well defined .

6. AUTOMATIC TOOL SUPPORT

USL has been translated into FO RTRAN via an automatic tool .
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SECTION IV

CONCLUSIONS

Up to this point, the back ground , purpose, and a def inition of
PDL’s have been discussed; characteristics of PDL’s in general have
been defined; and specific properties of 14 PDL’s have been
examined. It is appropriate to see if the totality of this
information offers any indications toward trends in the development
and criteria in the selection of PDL’s.

Related work that might warrant investigation are Earley’s work
on high level languages [Earl?4), Schwartz’ set—theoretic language
SETL [Schw74] , Pa rnas’ specification language [Parn72bJ , Aiphard
programs [Wulf76], the Semantic Description Language for the
Informa tion Automat [Wi1s77] , and System Analysis Design Techni que
(SADT) [Soft76]. These works have not been included in this survey
because of the lack of timely documen tation , the proprietary nature
of the work , or time constraints.

SELECTION

Some of the more directly observab le characteristics of the
PDL’s surveyed are summarized in Table XVI. This tabulation of
survey results is intended only to give a quick comparison of the
PDL’s reviewed . The information is very cryptically coded and
nuances of the language may be lost in the transcription. Judgment
of the applicability of a PDL should not be solely based on
informa tion conveyed by such a tabulation , al though it may point out
a few more promising candidates. A PDL is a communication tool and
no th ing can supp lant first—hand knowledge obtained by learning from
the original documentation and trial use.

In selecting a PDL for use, all of its characteristics have to
be considered . Domination of one particular aspect with no regard
fo r  others may be deceptive. A poor format, or ineffective
represen ta tion , for instance, will detract from the merits of a PDL
despite its adequacy in information content. Some characteristics
will be more pertinent for certain applications and should be given
mo re weight than others in the selection process. This brings up
the question of ‘desirability ’ of the characteristics. Some
characteristics merely offer a choice of options such as textual
forma t or graphical format, and ‘desirability’ does not apply. For
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Table XV I

Summary of Some Characteristics of PD L’s
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others , except perhaps basic content , desirability varies according
• to the job they are intended to do.

OBSERVATIONS

Jud ging from the frequency of occurrence in the PDL’s surveyed ,
some form of graphical representation seems popular for the high
level description of a system. If this is not available in the
language itself , it can be part of the output of an automatic
suppor t tool , although the design of good graphical ou tput is by no
means easy. The only form of graphical representation for low level
design of logic within a module is the much—used but perhaps out-
dated flowchart. It is not unreasonable to conjecture that the
success of structured programming and the consequent familiarity
with basic structured programming constructs have rendered textual
representation of control flow adequate.

In the realm of information content, i.e., information
representable in a PDL, one thing is apparent: no one PDL satisfies
all the characteristics set forth. Some emphasize abstractions and
interconnections among modules and therefore seem particularly more
suitable for global design: MIL75, PSL , HOS , SSL , and structured
charts. Others emphasize control flow and are typically more suited
to detailed design: IBM PDL, CFG PDL , PDL2 , PDDL , and of course,
flowcharts. HIPO diagrams, SDL—1, and USL seem applicable to both
global and detailed design , but are less satisfactory in the
handling of data. Areas not well covered by current PDL’s seem to
be dynamic structure; data flow and data derivation ; abstract data
representation ; and all auxiliary content, namely ,  decision details,
error handling , performance estimates , and verification information.

Another interesting observation is the number of disparate
approaches taken in the development of design languages. On the one
hand , there are approaches that start from statement of
requirements. Proponents of HOS claim that it can be used to

• represent requirements , specification, and design of software. PSL,
originally designed for problem statement of business information
systems, was also meant for logical systems design. Both stop short
of detailed design. On the other hand , programming languages are
being extended to form design languages: PDL2 is extended from
PASCAL; IBM PDL and CFG PDL are both pseudo—code similar to PL/1.
Then there is MIL75, whose proponents advocate the use of a language
for detailed design (languages for programming—in—the—small)
entirely different from languages for global design (module
interconnection languages). Much overlap seems to take place among
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the areas of requireme n ts, des ign , cod ing, and documen tation ,
• although there seems to be some indication that global and detailed

design issues be considered separately . Peters and Tripp, in their
• report on graphical and non—real—time design representations

(Pe te76], actually deal t with the two groups separately .

• Pract itioners spoke of ‘req uiremen ts languages’, ‘specification
languages’, and ‘design languages’ as d istingu ished f r om programm ing
languages, and yet their work resulted in products that do not
distinctly separate the associated activities. One basic question
is lef t unanswered : should dif f eren t languages be used for
requirements, design , and coding , or will one language ultimately
suffice? If one language suffices , no one has ye t come up with such
an all encompassing language. if different languages are required
because of unresolvable dif ferences in the various functions , then
the questions of smooth transition from one stage to the other and
verification issues have to be addressed.

Meanwh ile , the study of PDL characteristics attests to the fact
that most PDL’s, with all their imperfections , are defin ite
improvements over flowcharts. They may slowly but surely help point
the way toward building better software.
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