AD=A0S1 672 MITRE CORP BEDFORD MASS F/¢ 9/2
PROGRAM DESIGN LANGUAGES~AN INTRODUCTION.(U)
JAN 78 L L CHENG nnzo-'rr-c-oou
UNCLASSIFIED MTR=3446 ESD=TR=77=324

"m 10 0 e

a2
= ||z

i it
— e

22 Tt e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREA i STANDARDS-1963-2

ESD-TR-77-324 L ‘ / MTR-3446

PROGRAM DESIGN LANGUAGES
AN INTRODUCTION

BY LORNA L. CHENG

ADA051672

. JANUARY 1978

ki n i s s b it .

Prepared for

¥,

ELECTRONIC SYSTEMS DIVISION |
AIR FORCE SYSTEMS COMMAND |

UNITED STATES AIR FORCE

=3
B0 FILE COPY:

— Hanscom Air Force Base, Massachusetts '
.r‘..',,‘;-
3
i
Project No. 522M
Prepared by
THE MITRE CORPORATION
Approved for public releass;

Bedford, Massachusetts
Contract No. F19628-77-C=0001

distribution unlimited.

S LERE T

When U S. Government drawings, specifications,
or other data are used for any purpose other
than a definitely related government procurement
operation, the government thereby incurs no
responsibility nor any obligation whatsoever; and
the fact that the government may have formu-
lated, furnished, or in any way supplied the said
drawings, specifications, or other data is not to be
regarded by implication or othe-wise, as in any
manner licensing the holder or any other person
or corporation, or conveying any rights or per-
mission to manufacture, use, or sell any patented
invention that may n any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

{JR&&AL. {k%;?a

WILLIAM E. RZEPKA
Project Engineer

FOR THE COMMANDER

" - 5]
/(‘(— “~ ! ~j 23 LA

ALAN R, BARNUM
Asst Chief, Info Sciences Division

' e

HN L. MCNAMARA
, Info Mgt Sciences Section
fo Processing Branch

A A e Ay S P e A AU 52 1

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

(L REPORT DOCUMENTATION PAGE

’ ““\ . REP6 NUMBER 2. GOVT ACCESSION NO.
\/ > {-1ESDy R-77-324 . .

E . R Y 'n'n.z(..dsubum)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYRE-QE.REPORT & PERIOD.COVERED

' \| | ErOGRAM DESIGN LANGUAGES — AN } O WRACAVTFEP i
R | 2 ' INTRODUCTION, . J g 6 PERFORMING ORG. REFORT NUMBER
_: '/ }. MTR-3446 |
7. AUTHOR(a) =7 | 8 CONTRACT OR GRANT NUMBER(S)
!‘\ i] R —— oy
L.L. Cheng ([Up} [cemp | (f-F19628-77- c-dmu

b e o { - _— s

10. PROGRAME MENT, ROJECT TASK
A & WOR K UNIT NUMBE

9. PERFORMING ORGANIZATION NAME AND ADDRESS

The MITRE Corporation
Box 208

Bedford, MA 01730

11. CONTROLLING OFFICE NAME AND ADDRESS

v

Project No. 522M

12. REPORT DATE

Electronic Systems Division (AFSC) Pt ,.zg
Hanscom Air Force Base, MA 01731 123 ([}
. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) | 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
15a. oecusaFncnuou/oowncmomc
SCHEDU

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
COMPUTER PROGRAMS
HIGH LEVEL PROGRAMMING LANGUAGES
PREPROCESSORS

\ PROGRAM DESIGN LANGUAGES (PDLs)

+
20. YBSTRACT (Continue on reverae side If necessary and identify by block number)

(over)

This report is an introduction to program design languages (PDLs). A definition
is given, and general functions of PDLs are discussed. A set of characteristics

is defined to (1) indicate types of design information representable in PDLs and
(2) to provide a framework for comparing various PDLs. Each PDL reviewed in

a brief survey is discussed within the framework of these characteristics. The set —Ja.c.

(over)

DD 535" 1473

EDITION OF | NOV 65 IS OBSOLETE

AL s

I

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSLFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

19. Key Words (Continued)

REQUIREMENTS LANGUAGES
SOFTWARE DESIGN LANGUAGE
SOFTWARE SPECIFICATION LANGUAGE
STRUCTURED PROGRAMMING

=z

RSt _JRA T VSt

20. Abstract (Continued)
% ;

B ~f of characteristics set forth when expanded, curtailed, or amended according to special

E needs may constitute the specification for a PDL desirable for a particular class

o of application.

i N

13

i
3
UNCLASSIFIED
LECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
-

ACKNOWLEDGMENTS

This report has been prepared by The MITRE Corporation under
Project No. 522M. The contract is sponsored by the Electronic Systems
Division, Air Force Systems Command, Hanscom Air Force Base,

Massachusetts.

The author wishes to thank three people who have reviewed drafts
of this paper and gave helpful, constructive comments: Marlene Hazle,
Dave James, and William Rzepka of RADC, project officer of this project.
Special thanks are due to Marlene Hazle for our many discussions that
helped shape the ideas presented in this report. Thanks are also due to
Jane McCarthy for maintaining drafts of this report on ATMS and for her

help in some editorial changes.

_ACCESSION for
KTIs White Sectlos /
[{u Butt Sectios
UNARMOONCED
JUSTIFICATION oo

I A S
GISTRIZUTION “Av 112

i

/j(J

Fecedns Rge L - 1L

T g o e R e L — L1 :

TABLE OF CONTENTS

Page
SECTION I PROGRAM DESIGN LANGUAGES 7
INTRODUCTION 7
Techniques and Notations 7
Design ; 8
Definition of a Program Design Language 8
PURPOSE OF PROGRAM DESIGN LANGUAGES 9
Basic Functions 9
To Represent Design 9
To Record Design Decisions 9
To Enforce Built-in Rules 9
To Communicate 10
Auxiliary Functions 10
DESIGN VERSUS REQUIREMENTS 11
DESIGH VERSUS CODING 11
3
; SECTION II CHARACTERISTICS OF PROGRAM DESIGN LANGUAGES 13
f BASIC CONTENT 16
1 External Interfaces 17
é Static Structure 17
Composition and Organization 18
4 Calling Dependencies and Sequence 18
Data Dependencies 18
3 Ownership of Resources 19
] Dynamic Structure 19
Data 20
Organization or Structure 21
Scope or Access 21
Operations 21
Size 21
l Flow 22
Derivation 22
Control Flow 22
Levels of Abstraction 22

T

oo

>

SECTION III

TABLE OF CONTENTS (Continued)

AUXILIARY CONTENT

Decision Details

Error Handling
Performance Estimates
Verification Information

CONSTRAINTS

Hierarchy
Construction Rules

FORMAT

APPLICATION CONSIDERATIONS
Size of the Language
Syntax
Similarity to Familiar Languages
Orientation toward Implementation Languages
Ease of Transformation into Code
Types of Applications Suitable
Status
AUTOMATIC TOOL SUPPORT
SURVEY OF PROGRAM DESIGN LANGUAGES
CAINE, FARBER & GORDON (CFG PDL)
FLOWCHARTS
HIERARCHY PLUS INPUT-PROCESS-OUTPUT (HIPO)

HIGHER ORDER SOFTWARE SPECIFICATION
LANGUAGE AXES

IBM PDL
MODULE INTERCONNECTION LANGUAGE (MIL75)

P-NOTATION AND V-NOTATION

25

25
26

26
26
27
27
27
27
27
27
28
28
29
30
36
41

47

53
59

66

TABLE OF CONTENTS (Concluded)

PROBLEM STATEMENT LANGUAGE (PSL)
PROCESS DESIGN LANGUAGE (PDL2)

PROGRAM DESIGN AND DOCUMENTATION LANGUAGE
(PDDL)

SOFTWARE DESIGN LANGUAGE (SDL-1)

SOFTWARE FPECIFICATION LANGUAGE (SSL)

STRUCTURED CHARTS

UMTA SPECIFICATION LANGUAGE (USL)
SECTION IV CONCLUSIONS

SELECTION

OBSERVATIONS

REFERENCES

Page

72
78

84

90

96
102
108
114
114
117

119

E]

Table No.

I
II

III

v
\
VI

VIiI
VIII

IX

XI

XII
XIII
X1V

XV

XVI

LIST OF TABLES

Set of Characteristics of Program Design Languages

Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Characteristics
Summary of Some

of
of
of
of
of
of
of
of
of
of
of
of
of
of

CFG PDL
Flowcharts

HIPO

HOS AXES

IBM PDL

MIL7S

P-NOTATION and V-NOTATION
PSL

PDL2

PDDL

SDL-1

SSL

Structured Charts
USL

Characteristics of PDL’s

14
31
37
42
49
54
61
67
73
79
85
91

103
109
115

SECTION I

PROGRAM DESIGN LANGUAGES

INTRODUCTION

This paper is intended to be a general introduction to program
design languages (PDL’s). The need for program design languages and
their functions will be discussed first. A brief literature survey
has been performed and a set of characteristics of PDL’s has been
defined (see Section II). Individual PDL’s are examined within the
framework of these characteristics. No actual application of these
PDL’s was performed for the purpose of this task, although some
prior experience, directly or indirectly, has contributed to the
results presented in Section III. It is hoped that the reader will
obtain a general idea of the purposes of PDL’s, some important
aspects of their properties, and the types of PDL’s currently
available. The set of characteristics set forth when expanded,
curtailed, or amended according to special needs, can evolve into
the requirements for a PDL desirable for a particular situation.

Techniques and Notations

Concomitant with the advent of recent software engineering
techniques is the emergence of many proposed or implemented
languages to facilitate the application of these techniques. Recent
software engineering techniques are methods and procedures all aimed
at improving the software development process and its final product,
whether it be to achieve higher reliability, to provide a sounder
basis for testing and verification, to ensure that computer programs
are more comprehensible for maintenance purposes, to provide better
communication among the development team, or to enable more
intelligent management control of resources. It would be belaboring
the point to restress the merits or the importance of these goals.
Suffice it to say that awareness of the need for a better software
engineering discipline permeates the research, educational,
governmental and commercial sectors of the computer field.

Some of the new techniques embody new concepts or new
approaches to various stages of software development. Through their
application it is discovered that the old notations no longer
suffice and new notations are required to reflect the new concepts
involved. 1In the requirements area, the realization that
inconsistencies in requirements can be sieved out early to reduce
the number of errors made later in the design and coding stages has

B led to proposed requirements languages as a more rigorous means of

3 specifying user requirements [Teic74]. Another example lies in the

- effects of structured programming. Existing programming languages

! have been found to be iuadequate in support of structured
progranming principles. Numerous preprocessors were therefore
written to extend existing languages, to restrict the use of
unwanted constructs, and to enforce certain rules. For FORTRAN
alone, one survey shows the existence of 56 preprocessors [Reif75];
another covers 20 preprocessors [Horo75], some of which duplicate
the first survey. Structured programming principles have affected
the design of languages such as BLISS and PASCAL. As a side effect
of structured programming, a new language CLU [Lisk74] has been
proposed to handle the abstraction of data, a capability not

\ normally found within the confines of conventional programming
languages.

Design

Of the areas addressed by recent software engineering
techniques, the requirements and design areas have been receiving
increasing attention. This is a result of the continuing emphasis
on eliminating errors as early as possible in the software
development process. Work in the requirements area is relatively
new and fewer in number, but much has been said about design in the
last few years. Many design methods, sometimes mistakenly called
j methodologies (a collection of methods with rules for applying
: them), have been proposed to apply new concepts and consequently
r brought about new languages or other types of notations to
supplement the design activity. These languages are labeled by many
(different names, such as program design language, software

specification language, high level programming language, and
software design language. This paper is concerned with those
languages that can be used to aid software design and has taken a 3
rather broad view of the term ‘“program design languages.’

Definition of a Program Design Language

Within the context of this paper, a Program Design Language
(PDL) refers to any notation, whether a textual language or a visual
chart, that serves as: .

1. A form of representation necessary to capture the design of
a software system as it evolves so that the current status
of the design is reflected in tangible form (requisite);
and

E——

—

2. A documentation aid to record other acpects of software
design including verification, performance, trade-offs
between alternatives, and rationale of decisions
(optional).

P. Freeman views the design activity as one of "fitting form to
function," and distinguishes between representation and
documentation: "A design is a representation of an object;
documentation describes some aspects of an object.'" [Free76]

PURPOSE OF PROGRAM DESIGN LANGUAGES

Basic Functions

To Represent Design

The primary purpose of a program design language is to
represent the design of a software system at various stages of
development. Considerations should include global issues such as
overall structure and module interdependency as well as local issues
such as control flow within a module and internal data. Not all
this information is available at once. As the design evolves, more
details are known to better depict what the ultimate system is like.
For a PDL to be useful throughout the design stage, its scope must
encompass the abstract as well as the concrete, and representation
of a system should progress from general global concepts through
varying levels of abstraction all the way to detailed specification
of each module and data structure until the whole system is well
defined for coding in a programming language.

To Record Design Decisions

Another purpose of PDL’s is to record design decisions made.
Too often design decisions made are implicitly embedded in the code.
A PDL will hopefully record some design decisions more explicitly,
especially when it is used conscientiously at various stages
throughout the gradual evolvement of a design.

To Enforce Built-in Rules

The relation between design techniques and program design
languages has already been discussed. There is usually an
underlying philosophy in the design of any language. The set of
constructs available in a language is significant both in the
capabilities provided and in the capabilities not provided. Program

e T . ieioid kit ol R0 ol i P N S A
- e e damiiis RARINES SR S e e

design languages can be used to: (1) promote certain concepts in
software design, such as viewing a system in varying levels of
abstraction; (2) enforce certain approaches such as constructing
software in a top-down hierarchical manner; and (3) ensure that the
ultimate design obeys certain rules that, for example, apply to the
control of modules over one another and the scope of data
structures. The purpose of such enforcement is usually to allow for
better management of the complexity of a system and to promote
correctness in the design.

To Communicate

Program design languages can serve as an important
communication tool. In the case where design of a system is
undertaken by more than one person, PDL°s act as a communication
tool among the designers by representing the current design in
tangible form.]

The design, as represented by a PDL, serves as a means of
communication between requirement definers and designers in the
verification of design against requirements. Requirement definers
can be an acquiring agency or a user of the target system, or both.

On the other side of the spectrum, PDL’s serve as a means of
communication between designers and coders, the ultimate form of the
design being the specifications for coding.

PDL’s facilitate the generation of test plans by communicating
the design from designers to people responsible for testing the
ultimate system. PDL’s also communicate the design to maintenance
personnel.

Auxiliary Functions

The author considers the above functions to be primary
functions that a PDL must fulfill. Other uses have been suggested
for PDL’s, namely: (l) to facilitate the prediction of system
performance [Grah73], and (2) to include test plans and procedures
in design specifications [Reif76]. Though worthwhile goals, they
are not primary functions of a PDL, especially when the feasibility
of incorporating such functions effectively into a PDL has not yet
been proven. ¥

10

- —

DESIGN VERSUS REQUIREMENTS

To understand in greater detail the functions of program design
languages, the design activity has to be considered in proper
perspective in the software life cycle so that it can be contrasted
with requirements definition on the one hand and coding on the
other. Characteristics of PDL’s can then be distinguished from
those of requirement languages and programming languages.

Theoretically, requirements should specify needs of the user
independently of implementation methods. For instance, data in the
requirements stage are generally dealt with only in terms of the
information transferred. In some stage of design, the format of the
data and the internal representation of the data in the computer
become of interest. In communication applications, requirements may
specify that incoming messages be accepted and routed to the correct
destination’ according to information contained in a header within
the message. A certain level of performance may be required, but
the routing algorithm is not specified. Design will then specify
which part of the message (e.g., bits 1 to 10) will contain the
header and how the routing is accomplished. In general,
requirements are concerned with what is to be done and acceptable
perfornance levels; design is concerned with how things are done.

In practical situations, however, there are times when some
design will be specified as a requirement, although this should
always be done consciously and with good reason. In cases where the
sof tware to be specified is planned to augment an existing system,
the requirements may be especially stringent to ensure correct
interface. For some reason, the algorithm may have to be specified.
Practices within the military and industry have borne out the fact
that tnese deviations do exist. As a result, it is difficult to
draw a sharp line between requirements and design. Rather, each
successive description of the system can be viewed as a
specification for the next lower level and a design for the previous
level, progressing from an abstract representation to a concrete set
of code in a programming language executable on a computer.

DESIGN VERSUS CODING

On the other end of the spectrum, the role of PDL’s is matched
against that of high level programming languages. Translating user
requirements into an overall design of the system is called global
design. At this stage, most system functions and data remain in
abstract form. As each successive step refines the description of

11

the system, more details are specified and design activities close
to the coding stage are referred to as detailed design. Design is
said to be complete when the system can be coded from it. Again, it
is not always easy to draw the line between detailed design and
coding. When pseudo-code is used to represent design, partial
coding has already taken place.

Judging from the relations among requirements, design and
coding, global design is very different from detailed design.
Program design languages have to accommodate a wide spectrum of
levels of system description. The scope of the survey of existing
PDL’s (Section III of this paper) has been extended to include some
requirements languages for the precise reason that their
capabilities seem applicable to global design as well. Other PDL’s
surveyed are actually extensions of high level programming languages
and naturally address issues closer to detailed design.

SECTION II

CHARACTERISTICS OF PROGRAM DESIGN LANGUAGES

In this section, some characteristics of program design
languages will be discussed. This set of characteristics is limited
by the effort expended for the task in the sense that it may not be
complete and that some characteristics could be delved into more
thoroughly. Table I contains a list of the characteristics that
will be discussed. Each characteristic will be defined in the text
of this section, and its related issues will be addressed. Specific
properties of individual PDL’s will be given in Section III within
the framework of the characteristics discussed here.

The characteristics have been constructed and presented here
with four purposes in mind:

l. To point out some directly observable properties of PDL’s.
Referring to Table I, characteristics such as Basic
Content, Constraints, Format, and Automatic Tool Support
are typically observable characteristics.

2. To suggest a few more commonly agreed upon elements to be
included in a PDL, if possible. These are reflected by the
Basic and Auxiliary Contents.

3. To raise some issues that have to be considered in
selecting a PDL for use - Application Considerations. The
size of the language, the syntax, and the similarity a PDL
bears towards familiar languages all affect the amount of
learning required of a designer with a particular
background for application of a PDL. These characteristics
are necessarily less objective than the directly observable
characteristics.

4. To provide a framework for comparing various PDL’s.
Properties of the PDL’s surveyed will be highlighted within
the framework of these characteristics.

In characterizing the attributes of a PDL, care should be taken
to discriminate between features of the language and features of
automatic tools that support it. Automatic tools are usually
developed to process the language and produce some analysis of the
information represented by the language. It does not mean, however,

b . Table I

Set of Characteristics of Program Design Languages

BASIC CONTENT

External Interfaces

Static Structure
Composition and Organization
Calling Dependencies and Sequence
Data Dependencies
Ownership of Resources

Dynamic Structure

Data
Organization or Structure
Scope or Access

E Operations
Size
Flow
; Derivation
i Control Flow

Levels of Abstraction

AUXILIARY CONTENT

Decision Details
Algorithms
Soluticn
Trade-off between Alternatives
Rationale for Decisions

Error Handling

Performance Estimates

Verification Information

CONSTRAINTS

Hierarchy
Construction Rules

FORMAT

Input Format
Internal Format
Output Format

iSO Tl 4 i LA o A Sl S sl 3 A ki . o 5 i e o< Al

[
1
& Table I (Concluded) |
E 4 . APPLICATION CONSIDERATIONS
E Size of the Language
| . Syntax i
- Similarity to Familiar ranguages '
Orientatjon toward Implementation Languages ¢
i Ease of Transformation into Code /
& Types of Applications Suitable ;
' Status i
AUTOMATIC TOOL SUPPORT
i
1
I ¥
2

15

that the PDL’s currently not supported by automated analysis are not
amenable to such support in the future.

In characterizing the information representable in a PDL
(content) in this report, a PDL is considered independently of
support tools as far as possible. In general, support tools provide
analysis of information already in the PDL; rarely do they generate
new information for which no basis is provided in the PDL, although
they may make such informatiom more apparent. A type of information
is included in the content of a PDL if that information is
representable in the PDL, regardless of how obscure it may be.
Information is excluded from the content if the PDL is incapable of
expressing such information. An attempt will also be made to
indicate information obtainable from automatic tools to portray a
PDL more completely.

Some PDL°s have been developed in conjunction with a design
method to support a particular design technique or at least with
some underlying philosophy. Such techniques will be frequently
referred to in the discussion of PDL characteristics, especially
implicit and explicit construction rules. Though it is beyond the
scope of this paper to define all these techniques, a list of design
techniques, some more commonly known than others, is presented here
together with associated references for readers who wish to pursue
these concepts further.

Levels of abstraction ([Dijk68]

Top-down design [Mill71]

Structured programming ([McCr73, McGo75]
Parnas black~box approach and module specification
[Parn72a, Parn72b]

Stepwise refinement ([Wirt71)

Structured design [Stev74]

Higher Order Software (HOS) ([Hami76]

Data abstraction [Lisk74]

WELLMADE methodology [Boyd76]

Information Automat [Wils75]

Structured Analysis Design Technique [Soft76]
Programming-in-the-large [DeRe76]

Process design methodology [GaulV6]

BASIC CONTENT

Foremost in the characteristics of any language is its ability
to handle information. The content of a PDL refers to the

16

PR ——

information representable in that PDL. In this paper, external

B+ interfaces, static and dynamic structure, data, logic or control

E s flow, and levels of abstraction are considered basic elements of

design to be represented in a PDL. Other information, such as error

handling, performance estimates, and verification information, is E
discussed separately under Auxiliary Content.

A PDL is said to possess a certain item in its information
content if the item 1is part of the repertoire of that PDL in any
form. In other words, substance is judged independently of format,
and the same information content representable in two PDL’s may be
very apparent in one and very obscure in the other.

External Interfaces

External interfaces define the external boundaries of the
system being designed (the target system). A system can be viewed
as an entity performing a certain function; it accepts certain
inputs and transforms them into a set of outputs. From the point of
view of the ultimate user of the system under development, this
characteristic is most important. Without the definition of
external interfaces, it is not known what information is required
for the system to function and what information the system can
generate. It can perhaps be argued that the distinction of what
relates the system to the external environment is more crucial to
requirements specification than design representation. External
interfaces are indeed part of the requirements of the system, in
that they represent the goals which the design should fulfill. If
such interfaces are made more apparent in the design representation,
they will not only delineate the external boundaries of the system
but also make it easier to ensure that the design satisfies the
requirements. If design is viewed as a more specific description of
a system than requirements, it sometimes helps to clarify what the
requirements are.

Some examples of information contained in external interfaces
are identification of people or organizations who will use the
target system, input provided by users, and reports generated by the
systemn.

Static Structure

The static structure describes the composition of a system in
terms of its constituent parts and how they relate to one another.

17

S

N Composition and Organization

A PDL should be able to describe the static structure at
various levels from a general overview to the smallest unit.
‘ Composition of a target system may be defined in terms of many
f units: a subsystem, which is a logical collection of related
modules; a module, which we define as a conceptual unit performing a
function that may eventually be implemented as one or more
procedures or as a part of a procedure; or a procedure as understood
‘ in a programming language. This is related to the concept of levels
| of abstraction which will be discussed separately. A correspondence
‘ may also be established between a unit in the composition and that
part of the requirements it satisfies.

Each constituent part may be successively decomposed into its
own constituents until a desired level of refinement is achieved,
showing how each part fits into the whole structure of the system.
This constitutes organization information.

Calling Dependencies and Sequence

Besides the organization of functional units of a system, there
also exist relationships among these units. One important
relationship is the dependency of invocation - which other modules
does a module call on to perform its function and the order of such
invocation. This characteristic is only concerned with the static
aspect of the calling relationship - what modulec a module may
require to help it do its job. In real execution, not all these
modules may be actually invoked, depending on which paths of the
control logic are executed.

Data Dependencies

Another important relationship is that of data dependencies
among the modules, i.e., the information passed from module to
module or shared among modules. This is an important aspect of the
structure of a system because it represents the interfaces among the
various parts of the system. The data that are shared may
eventually be implemented in the coded program as global variables,
as parameters passed from module to module, or by whatever mechanism
the selected programming language has to offer. If a PDL is to be
useful at higher levels of design, it must be able to represent data
dependencies merely as information shared by modules independently
of the actual implementation mechanism.

18

Sometimes this characteristic is only partially fulfilled in
that the complete data connections among modules are not described.
Rather, each module is treated in isolation, naming the information
it requires (input) and the information it provides (output),
without identifying the origin of inputs or the destination of
outputs. Thus, only the data requirement of each individual module
is described but not the data relationship among modules.

Ownership of Resources

In contrast to data that are shared, there are data that need
to be solely owned by one module. The idea is that information is
hidden from other modules that have no need to know and therefore
have no need to access a particular data item. Interfaces between
modules exist only when explicitly stated as data dependencies. The
idea of information hiding is embodied in Parnas’ ‘black-box’
modularity concept [Parn72a], Dijkstra’s level of abstraction
[Dijk68], the strength of modules in Structured Design [Stev74], and
other design approaches. Privately owned resources are commonly
manifested as internal variables.

Dynamic Structure

The dynamic structure of a system models the behavior of a
system as it executes in a real environment. It deals with the
conditions under which modules are activated, the events that lead
to such activation, the order in which events occur, and how these
events are related to the data passing through the system. The
design of real-time systems exert a greater demand on PDL’s in this
respect than business information systems because the order and
timing of events are critical in real-time systems. There may be a
need to indicate that certain activities take place concurrently.
Or, a task in the target system may have to be interrupted by tasks
of higher priority. i

Most currently available PDL’s are deficient on this point.
Mcst of them do not model the dynamic behavior of a system at all,
and those that do, do so partially. One PDL, for instance, has the
concepts of ‘“Events’, “Processes’ and a relation between them,
namely, ‘Triggers’. ‘Processes’ are also related to the data
passing through them. An ‘Event’ can ‘Trigger’ a ‘Process’, but
there is no way to link this to the data involved in the happening
of an ‘Event’. Data, therefore, are related only to the static
picture, not to the dynamic aspects of a system. Another PDL has
the ability to specify that a series of events can take place in
random order, and it is being extended to admit expression of

19

‘.IllllIllIIllIlIIlllIlIIllllIllllllllllllllll-....-.-.-.--...--.-.-....

concurrent processes. Yet another PDL describes real-time
activities in terms of the reception and transmittal of messages.

Each of these three PDL’s provides partial means of describing
the dynamic behavior of & system, and approaches it in a different
way. The fact that no PDL provides a satisfactory representation of
dynamic structure (though its importance is not disputed) probably
indicates that no one yet knows what constitutes a good description
of dynamic behavior. It would be interesting to monitor future work
in this area to see if significant improvements are made.

Data

Data constitute the information passing through the system.
As in the representation of the composition of static structure, the
representation of data should be capable of reflecting different
levels of detail, if recent design techniques such as levels of
abstraction are to be applied. A data item is represented at early
levels of design as abstract information so that decisions of actual
means of implementation can be deferred till later stages of design
when a more intelligent choice can perhaps be made to accommodate
the combined needs of the higher levels. In other words, data can
be represented in both abstract and concrete form. Abstract data
representation has emerged as quite a prominent issue since the
advent of structured programming.

Abstract representation of data is generally accomplished in
one of three ways. The first is by allowing the incomplete
definition of a data item at higher levels, with the details to be
filled in later. Typically the logical structure of a data item is
defined first and the physical representation of the data in the
computer is specified later as the design decisions concerning it
are made. The second way is by incorporating abstract concepts such
as classes and sets into the language itself. The third way is by
allowing user-defined data structures. A particular application can
conceivably call for concepts of information not readily
representable by a fixed set of data types afforded by a PDL. A
commonly used example of such a data concept not representable by
data types usually found in programming languages is :hat of a
“stack’ - a sequence of elements that can be added to in one
direction and deleted from in the other direction. By permitting
users of a PDL to define their own data structures, the operations
allowed on them, and accessibility rights by modules, a PDL in
essence gives a user the freedom of abstracting information in a
form natural to it. This differentiation between user-defined data

20

Sy oot b

and a fixed set of pre-defined data applies to the aspects of
structures, scope or access, and operations discussed hbelow.

Organization or Structure

e

This refers to the composition of data and how the constituent
parts relate to form the whole. Structure is divided into logical
or physical structure. PDL’s capable of logical representation are
more advanced in the abstraction of data than those that are
incapable. The logical structure of a data item is its conceptual
organization. A typical example is that of a set of related
information. Physical structure is the actual physical form in
which a data item is recorded. The set cited above can be a file
consisting of similar records, or a data structure as in COBOL and
PL/I, or an array (or any other data type in a programming language)
that usually implies a fixed means of implementation by the
compiler.

A PDL may allow a user the flexibility of defining his own data
type, as was discussed above under Data.

Scope or Access

In accordance with the ownership of resources as discussed
above under static structure, the itimitation of accessibility of
data by modules restricts the interface among modules. The tigh‘.of
access is sometimes implied in the scope of modules that contain i
them as in the block structure of PL/I. It can also be explisit, :
which is preferable in design as it renders interfaces among modules i 3
more conspicuous. '

gt

¢
Operations

‘Operations’ refers to manipulations that zan be performed on
data items such as addition, subtraction, multiplication, division
performed on integers and real numbers. ‘“Read” is an operation
defined for records and files. An example of a usergdefined
operation performable on a ‘stack’ as introduced above is that of
“push’ which adds an element to the top of the stack and deletes the §
element at the bottom. ¢

Size

Size refers to the cardinality of the data.

21

Flow

Data flow depicts the sequence in which data pass through the
modules. Note that data flow also indirectly shows the data
dependencies among modules. The difference is that data dependency
of modules is from the module point of view and does not depict the
sequence, whereas data flow is from the data point of view.

Derivation

This refers to the algorithm by which data is derived, or to a
lesser degree of detail, the data items on which the value of a
particular data item depends.

Control Flow

Control flow, sometimes known as logic, of a module specifies
the transfers of control within the module. In cases where a
selection of different actions is involved, control flow may also
specify the state of variables that dictate the choice of a
par ~icular actiomn.

Control flow may be represented at various levels of system

design. The flow within a higher level module in overall design
illustrates the sequence in which lower level modules are executed.
Modern software engineering techniques call for the use of only
several control flow constructs - that of sequence, alternation or
selection, and iteration.

Levels of Abstraction

The idea of viewing a system in varying levels of detail in the
design process is well accepted as a good means of controlling the
complexity of a system. Parts of a system are first considered as
abstract entities; decisions on details are postponed until they
become necessary. As decisions are made, the system description is
refined further and further until all important implementation
issues are decided and coding can take place. Most of the modern
software engineering techniques listed at the beg.aining of this
section have adopted this type of concept. For a PDL to support any
of these software engineering techniques, it must be able to
represent a software system description at different levels of
abstraction.

Abstraction in this case applies to both functional modules and
data items. Part of the abstraction issue has already been

~

22

discussed separately under static structure and data. This
characteristic is not independent of some of the others because the
ability of a PDL to represent abstraction is partially reflected in
the way it represents functional modules and data items. Modularity
in the Parnas sense, the ‘black-box’ approach, is a means of
abstraction where the mechanism internal to the module is not made
known to the rest of the system. Another mechanism of abstraction
is that of user-defined data types and their corresponding
operations. Though dependent on other characteristics, this issue
of abstraction is listed separately so thact all information on
abstraction capabilities can be gathered in one place.

It has also been said that representation of - design affects
thinking [Free76]. The more naturally a PDL can _ress concepts
pertainiang to a system, the more effective that PDL is, especially
in its abstraction capabilities. A concept that is bent and twisted
to fit artificially into a language ultimately finds expression in
an unnatural representation and might affect adversely subsequent
design decisions.

AUXILIARY CONTENT

Decision Details

Design is a process whereby decisions are made to gradually
refine a system description from requirements toward coded programs.
There are aspects of these decisions that are of interest to someone
inspecting a design representation.

e Algorithms = How the processing is done; e.g.,
smoothing algorithms for tracking
functions. Algorithms are some-
times represented by derivation
dependencies, but for those that
involve many variables, the general
algorithm can be stated in a clearer
and more obvious fashion.

e Solution - As in decision tables. This
represents the designer’s
solution to problems posed
by requirements.

e Trade-off between
alternatives - If for some reason a decision
made has to be discarded, it
would be helpful to know what
alternatives exist and their pros
and cons without retracing all
the reasoning in arriving at them.

e Rationale for decisions - Why a decision is made. This
states explicitly the goals of
the present design and will be
useful in further trade-off decisions.

Of the four types of information listed above, the first two
nay actually exist as part of requirements or design, although
theoretically a statement of requirements should avoid specifying
more details than necessary. Furthermore, note that the first two
arc representation issues, whereas the last two are documentation
issues in that they describe things about a system, not what is in
them.

Most of the PDL’s surveyed relegate this function to
supplementary free-form documentation.

Error Handling

One aspect of systems design is how the system will behave in
case of any form of malfunction. Malfunction causes error
conditions and may take place in the environment, operating system,
hardware components, input data or software component parts. The
design of a system is not complete until it has specified what error
conditions it has taken into account and what actions the system
will take at the occurrence of such conditions. Sometimes error
handling is specified as part of the requirements.

Performance Estimates

This is information concerning the resource usage, execution
time, response time, etc., of the system being developed. Current
PDL’s are not too sophisticated in this capability. Many do not
address this issue at all. The few that do, do so by only alilowing
estimates of the designer to be entered into the language represen-
tation so that they can be processed by an automated tool. Thus, the
estimates are no better than subjective conjectures by the designer
and the supporting tool performs only a bookkeeping function.

s

P

Verification Information

Verification information is any information that helps to
verify the internal correctness of a program or to verify that the
design satisfies the requirements. Current PDL’s are not too
sophisticated in this area, although awareness of the importance of
verification is rising. Verification information usually takes the
form of assertion statements placed at strategic places to ensure
certain conditions exist at those points. There may be, however,
much that is built into a PDL or a design technique that indirectly
helps verification. Making interfaces among modules explicit, for
instance, facilitates the verification process. Restriction of
control flow to a few basic structures with no uncontrolled
transfers also prepares the foundations for eventual verification.
The very nature of a PDL in formalizing design representation
renders verification against requirements possible in the presence
of a formal requirements language.

Verification information may also include information useful
for the generation of test plans such as the order of implementation
of modules, modules critical to testing, and the need for driver
modules not part of the system but required for testing.

CONSTRAINTS

A PDL, because of its underlying philosophy, imposes certain
constraints on the design of software. The set of keywords of a PDL
is a form of constraint in that it represents the objects and
concepts allowable in the description of a system. The format, too,
may pose a restriction, e.g., by forcing the modules of a system to
be organized as a tree-structure. The structure of the language may
imply the automatic application of certain design rules. In
addition, explicit rules may be stipulated for use with the
language.

Hierarchy

Some PDL’s require that the design of a system be described in
hierarchical levels. Others further demand that the resulting
structure of the system be expressed as a tree structure. Usage of
such PDL°s will naturally influence the designer to proceed in a
particular fashion and his perspective of the system will also be
affected as he complies with the philosophy of the PDL to stay
within its bounds.

As one speaks of the hierarchical nature of certain PDL’s,
extreme care should be taken to isolate to what the restraint is
applied. The hierarchical restriction may apnly to data or the
dynamic sequence of execution of modules. It is insufficient merely
to say that a PDL imposes a hierarchical constraint on the design.

Construction Rules

Construction rules relate a PDL to its accompanying
methodology, if any. Those PDL's that have been developed as part
of a methodology are expected to be used with construction rules
that reflect the philosophy of the methodology. Not only does the
set of constructs available in a PDL represent the capabilities
provided, but the purposeful omission of some constructs probably
indicates objection to those capabilities.

Construction rules can be either implicit - embedded in the
available constructs or the format - or explicit - stated in the form
of rules or axious.

FORMAT

The format of a PDL can be textual or graphical. Some PDL’s
are supported by automatic tools that are capable of parsing design
representations in those languages, maybe even store the information
in a data base, manipulate the information, and reproduce the design
and its related information in formats more eloquent than the format
of the original. A prime example is when a designer expresses a
design in a textual language, but can avail himself of reports in
pictorial as well as textual form.

For this reason, format should be differentiated into input
format as provided by the designer, internal format if stored in a
data base, and output format as made available to the designer. In
many cases, the internal format does not exist and the input format
is the same as the output format. Note that this characteristic is
discussed in conjunction with characteristics of the support tool.

APPLICATION CONSIDERATIONS

An intuitive feeling of the learning required to apply a PDL
and how applicable it is to the situation on hand may be misleading
for it is composed of several factors that have to be considered
together.

26

Size of the Lapzuage

The size of current PDL’s ranges from only several constructs
to over two hundred keywords.

Syntax

The more complex the syntax of a PDL the more difficult it is
to learn. However, if the syntax is well defined, once learned it
will be easy to apply. This factor has to be considered in parallel
with the size of the language because a PDL can have a complex
syntax and yet contain very few constructs. The difficulty of
learning the syntax is then offset by the small size.

Similarity to Familiar Languages

Similarity to English is obviously an advantage to English-
speaking software designers as far as learning is concerned. So is
similarity to familiar programming languages such as COBOL, PL/I,
and PASCAL. Of course, how much an advantage such similarities are
varies with the background of the designer and other parties using
the PDL. Similarity to PASCAL is obviously not much use to a
designer not familiar with PASCAL.

Orientation toward Implementaticn Language

A few PDL’s are designed for eventual implementation in a
particular programming language. In such cases, the PDL usually
bears a similarity to the programming language of choice so that a
design can be smoothly transformed into code without any major
effort.

Ease of Transformation into Code

PDL’s not designed for implementation in specific programming
languages may also be easily transformed into code. This
characterisctic may help to determine whether a PDL is suitable for
use in global design or detailed design.

Types of Applications Suitable

Some PDL’s are specially designed for use in a particular type
of application, such as real-time systems. A real-time system has
the following attributes: (1) requires the ability to handle
interrupts, (2) interfaces with non-standard equipment such as
sensors, (3) the sequence of events is critical, and (4) has more

27

stringent performance requirements. Another example is that of
systems with concurrent processes. A PDL will be suitable for such
applications only if it can express naturally and efficiently the
concepts pertaining to these applications.

Status

The status of a PDL indicates how ready it is for use - whether
it is well defined or only proposed; if there is adequate
documentation; if support tools have been implemented; if there has
been any experience in its application; if it is in a stable state
or is still being revised.

AUTOIATIC TOOL SUPPORT

PDL’s supported by automated tools such as parsers and
analyzers will be pointed out. The types of analysis will be
highlighted.

SECTION III

SURVEY OF PROGRAM DESIGN LANGUAGES

A brief survey of program design languages was undertaken, and
the results are presented in this section within the framework of
the characteristics defined in the previous section. The PDL’s
surveyed fall within a rather wide scope in that some of them may
not have been originally intended to be a PDL but have enough of the
characteristics of a PDL to be useful as one. The PDL’s surveyed
also span a wide spectrum of functions: some address global design
issues and others address detailed design considerations in
preparation for coding. They also range from PDL’s with a very
strict syntax and semantics to those that resemble free-form
English. :

No actual application of these PDL’s has been performed for the
purposes of this survey. The information reported here is based
mainly on the literature, personal prior experience of the author,
contact with the developers of the PDL, and the indirect experience
of other people who have used the PDL’s. 1In certain cases,
knowledge is limited by the documentation available.

As the survey was first conducted, the points of interest were
special terminology, typical properties, design activities
addressed, information conveyed, applicable problems and
environment. Much of this information has since been distilled and
incorporated into the set of PDL characteristics in Section II. For
each PDL surveyed, a short account of its background will be given
first, and where information is available, a table of its
characteristics will be provided. Characteristics that cannot be
determined at this point for lack of information or documentation
are left blank.

29

CAINE, FAKBER & GORDON PDL (CFG PDL)

The CFG PDL was developed by Caine, Farber & Gordon, Inc., and
has been in extensive use there since 1973 [Cain75]. It is designed
for use with structured programming and top-down design methods.

It is referred to as a form of "structured English" since it
uses the vocabulary of English and a syntax similar to that of a
programming language. Free-form English statements are also
allowed.

The main design body consists of '"segments'", some of which are
congregated to form '"groups'". There are Text Segments, Flow
Segments, and Data Segments. A Flow Segment expresses the logic of
a design and consists of a parameter list, labels, comments, free-
form statements, and special statements (IF, ELSEIF, ELSE, ENDIF,
DO, UNDO, CYCLE, ENDDO, and RETURN). The CFG PDL also allows
references to External Segments, i.e., segments that are not part of
the system being designed, such as operating system services or
utilities.

A processor has been built to support the CFG PDL by reading in
design segments and producing a working design document consisting
of a table of contents, a formatted listing of segments, and a
cross-reference of procedure calls. The processor is available on
several computers but available documentation does not specify which
computers. Further information can be found in the reference guide
[PDL75].

de

e ——— T T T P — T T AT w—re

Ce

1. BASIC CONTENT

External Interfaces

Table 11

Characteristics of CFG PDL

Not explicitly specified.

Static Structure

(D)

(2)

(3)

(4)

Composition and Organization

Text Segments, Flow Segments (like procedures), Data
Segments. A Group contains a number of Flow Segments,
but a segment cannot contain another segment. The
organization is therefore limited to two levels -
Groups and Segments.

Calling Dependencies and Sequence

Implicit in free-form statements that reference other
segnents. Referencing dependencies are listed in a
report from the processor.

Data Dependencies

Parameter list of Flow Segments.

Ownership of Resources

Internal variables can be implicitly defined anywhere
within a Flow Segment by preceding the data name with
a special character.

Dynamic Structure

Not expressed.

31

LT -

d. Lata

(1)

(2)

(3)

(4)

(5)

(6)

Table II (Continued)

Organization or Structure

Only the name of a data item is defined. No
information on the type of data is specified. Each
item is a simple item, not a structure consisting of
constituent parts. Data therefore cannot be
represented in different levels of abstraction.

Scope or Access

Data items defined implicitly in a Flow Segment by
flagging with a data character are internal variables
known only within the scope of the Flow Segment. Data
items defined in Data Segments are all global and can
be accessed by any Flow Segment.

Operations

Not defined except in English commentary.
Size

Not defined except in commentary.

Flow

Not represented.

Derivation

Not represented.

e. Control Flow

Specified by Flow Segments with the constructs of IF,
ELSEIF, ELSE, ENDIF, DO, UNDO, CYCLE, ENDDO, and RETURN.

32

ey S55 e

f.

Table II (Continued)

Levels of Abstraction

Abstraction of modules is limited to two levels: Groups
and Segments. Data cannot be refined into constituent
parts except in commentaries rendering data abstraction
capabilities almost non-existent.

; 2. AUXILIARY CONTENT

ae

be

Ce

d.

Decision Details

(1) Algorithms

Only in commentary.
(2) Solution
Only in commentary.

(3) Trade-offs between Alternatives

No provision.

(4) Rationale of Decisions

No provision.

Error Handling
None.
Performance Estimates

None.

Verification Information

None.

33

3.

4.

5.

Table II (Continued)

CONSTRAINTS
a. Hierarchy

Two levels of hierarchy of modules, and none for data.

b. Construction Rules
Structured programming control structures, and top-down
design are meant to be applied.

FORMAT

a. Input Format
Textual.
Combination of (1) statements with defined syntax and
(2) free-form English statements and commentary.

b. Interual Format
Information not available from documentation.

ce Output Format

Textual.
Same as input format as well as additional listings
produced by reports (see Automatic Tool Support).

APPLICATION CONSIDERATIONS

ae

b.

Size of the Language

Small. Several types of segments. About 10 constructs,
and one data definition statement.

Syntax

Well defined but single syntax for segments and statements
within them. Free-form comments.

34

6.

Table II (Concluded)

ce Similarity to Familiar Lancuages

~,
Flow Segments are similar to procedures in programming
languages. Though the keywords are somewhat different, the
constructs in Flow Segments are basically familiar
structured programming constructs.

d. Eventual Implementation Language

None.

e. Transformation into Code

Seems easy. Recursive references may require special
attention if implementation language does not permit the
use of recursive calls.

f. Type of Applications Suitable

Lack of dynamic behavior representation makes it less
suitable for real-time systems.

g Status

A language reference manual exists and the PDL has been
applied by Caine, Farber & Gordon, Inc.

AUTOMATIC TOOL SUPPORT

The CFG PDL is supported by a processor available on several
computers. Processor output includes: (1) messages on
erroneous input statements; (2) a tree structure showing
nesting of design segment references (recursive references are
denoted once but not traced further); (3) segment index listing
all Flow Segments and External items showing the locations of
their definitions and the references to them; and (4) index of
data items - where defined and where referenced.

35

BRCE _ERE S

l
|

FLOWCHARTS

Flowcharts are included here because of their long history of
being the most widely used form of design representation. Though
their merits have been severely questioned since the emergence of
structured programming, and though some practitioners in the field
have not been as enthralled with them in the first place, one has to
admit that they have satisfied an important need for a long time.

By discussing their characteristics here, a comparison can be drawn
between them and newer PDL’s. It is assumed that high-level
flowcharts are used to show overall program structure and detailed
flowcharts to show control flow within a module.

36 i

R’ Table III

Characteristics of Flowcharts

1. BASIC CONTENT

a. External Interfaces

Shown in high~level flowcharts. There are different
symbols for different physical forms of input and output
media, e.g., punched cards, tapes, printed reports, etc.

b. Static Structure

(1) Composition and Organization

High-level flowcharts show modules (denoted by
rectangular boxes) but not necessarily how they are
organized to form the whole system.

(2) Calling Dependencies and Sequence

High-level flowcharts show calling dependencies and
sequences.

(3) Data Dependencies

Not directly represented.

(4) Ownership of Resources

No.

c. Dynamic Structure

No.
d. Data

(1) Organization or Structure

Flowcharts are not designed to represent data. Data
are referred to by name in the control flow; they are
not declared ahead of time.

37

2.

Table III (Continued)

(2) Scope or Access

No.

(3) Operations

No.
(4) Size

No.
(5) Flow

No.

(6) Derivation
Buried in the detailed logic.

e. Control Flow

By means of arrows, diamond-shaped boxes indicate a
decision (choice), etc. No restrictions on allowable
connections.

f. Levels of Abstraction

Data abstraction is non-existent. For modules, it may be
possible in high level flowcharts.

AUXILIARY CONTENT

a. Decision Details

(1) Algorithms

No.

(2) Solution

No.

Table III (Continued)

(3) Trade-offs between Alternatives

No.

(4) Rationale of Decisions

No.

b. Error Handling

No.

c. Performance Estimates

No.

d. Verification Information

No.
3. CONSTRAINTS
a. Hierarchy
None.

b. Construction Rules

None.

4. FORMAT

a. Input Format

Graphical.

b. Internal Format

ce Output Format

Graphical.

5.

6.

Table IIT (Concluded)

APPLICATION CONSIDERATIONS

ae

f.

Size of the Language

A small number of symbols.

Syntax

The symbols are meant to indicate definite things.
Explanation within boxes, diamonds, etc., is free-form.

Similarity to Familiar Languages

Orientation toward Implementation Languages

None.

Ease of Transformation into Code

The flow is easily transformed into code if the programming
language allows uncontrolled branches (GOTO’s). Data
definitions have to be worked out.

Type of Applications Suitable

Not for real-time systems.
Status

Almost exclusively used as design or documentation aid
until recently.

AUTOMATIC TOOL SUPPORT

Automatic aids have been built to transform code into
flowcharts. No analysis of design is provided.

HIERARCHY PLUS INPUT-PROCESS-OUTPUT (AIPO)

HIPO was developed originally by IBM as a documentation aid,
though since then it has also been used as a representation of
system design during development. The two basic components are
[Kral75, Stay76]:

(1) A hierarchy chart or visual table of contents which shows
how each module is further divided into modules, the order
in which they are first called, and whether the call is
conditional. The modules are also numbered according to
the level and their position among modules on the same
level.

(2) Input-process-output (IPO) charts, which further define
each module in the hierarchy in terms of its inputs and
outputs, the processing steps needed to perform the
function of the module, and some of the control sequence
governing the steps. Each of these charts is numbered
according to the corresponding module in the hierarchy
chart whose expansion it represents. In the lower right
corner of each chart there is usually an extended
description where additional free-form notes can be placed
on any aspect of the design.

The main difference between HIPO diagrams and flowcharts is
that the input-output data requirements for each module are much
more apparent in HIPO diagrams. However, control flow is documented
in a more-or-less free-form manner and usually not as completely as
in a flowchart. For instance, in the hierarchy chart, submodules
are shown in order of execution from left to right, and a diamond-
shaped box denotes that the execution of that submodule is
conditional. However, if iteration of any ot these submodules takes
place, it is not clear from HIPO charts alone which steps are
iterated. The more detailed input-process=-output charts may not
necessarily show the complete control flow either. For instance, a
HIPO chart may not show if a module recycles. Processing steps are
represented by English words and the criteria for the breakdown are
left entirely up to the discretion of the designer.

The hierarchy chart imposes a tree-structure on the
organization of its modules. Service modules that perform a common
utility function for more than one module on the tree are not easily
identified and to identify the commonality of the function the
designer has to bend the rules of numbering of the modules to index
the more detailed IPU charts.

41

|
1
|
:
|

Table IV

Characteristics of HIPO

1. BASIC CONTENT

ae

External Interfaces

Explicitly found in IPO chart of the top level module of a
system.

Static Structure

Usually explicit for high levels only.

(1)

(2)

(3)

(4)

Composition- and Organization

Modules are denoted by rectangular boxes in the
hierarchy chart. The modules form a tree structure.
Functions performed by modules are stated in a few
words.

Calling Dependencies and Sequence

For higher level modules defined in the hierarchy
chart, calling dependency is represented by arrows;
calling sequence is implied from left to right and a
conditional call is denoted by a diamond-shaped box.

Data Dependencies

Partially represented in the inputs and outputs of a
module as shown in the IPO charts. However, neither
the origin of the input nor the destination of the
output is shown so that each module is not related to
another module via shared data.

Ownership of Resources

No internal data is represented.

Dynamic Structure

No.

42

|
£

d.

Data

(L)

(2)

(3)

(4)

(5)

(6)

Table IV (Continued)

Organization or Structure

Only data used as input and output to a module is
specified. Definition is by name only.

Scope or Access

Access right is implied when used as input. No scope
applies.

Operations

None.
Size
None.
Flow

The flow of data can be traced through input/output
arrows and the calling sequence, but this can be
tedious and involves many pages of charts. Also, as
said before, the charts do not show where the inputs
came from. To trace the flow one has to identify the
data by name.

Derivation

Partially represented by arrows in IPO charts
connecting the inputs and outputs to the processing
steps. For instance, an output may be generated from
some input and is used by a subsequent processing step
to help generate another output.

Control Flow

At higher levels (in hierarchy chart), conditional calls
are denoted and sequence is implied from left to right, but
complete control flow is not represented. At the more
detailed level of IPO charts, control flow is represented

43

f.

Table IV (Continued)

in free-form English statements that usually resemble
programming code. However, completeness of the control
flow representation is not guaranteed.

Levels of Abstraction

Functional abstraction is represented by hierarchical
levels of modules. There is no data abstraction
capability.

2. AUXILIARY CONTENT

ae.

d.

Decision Details

(1) Algorithms

In free-form processing steps.
(2) Solution
Same as above.

(3) Trade-offs between Alternatives

In extended description.

(4) Rationale of Decisions

Same as above.

Error Handling

No.

Performance Estimates

None.

Verification Information

None.

44

o

3.

5.

Table IV (Continued)

CONSTRAINTS
a. Hierarchy

Modules are required to be organized in a tree-structure.
The hierarchy chart cannot be drawn as a network. Common
routines from different branches of the tree have to be
recpeated and may be denoted to be the same in the extended
description in a corner of the chart.

FORMAT

ae

Input Format

Graphical format with free-form statements in detailed
charts.

Internal Format

Does not apply.

Qutput Format

Same as input format.

APPLICATION CONSIDERATIONS

ae

d.

Size of the Language

A few conventions and graphical symbols.

Syntax

Syntax defined for modules, conditional calls, and
input/output.

Similarity to Familiar Languages

Free-form statements can be in English or pseudo-code.

Orientation toward Implementation Language

None implied.

45

Table IV (Concluded)

SEY LENE e

e. Ease of Transformation into Code

Seems fairly easy to transform into code, except control
flow is not complete.

f. Type of Application Suitable

2 Not for real-time systems.
g. Status i
Documentation available and has been used.
6. AUTOMATIC TOOL SUPPORT

None.

46

HIGHER ORDER SOFTWARE SPECIFICATION LANGUAGE AXES

Higher Order Software (HOS) is a design methodology proposed by
Hamilton and Zeldin that includes its own notation for defining
sof tware [Hami76]. Proponents of HOS claim that it can be used to
define software at the requirement, specification, and design
levels.

HOS to date consists of a formal set of axioms and laws to
govern the definition of software. "Entities'" considered and their
relations are listed below:

l. An input set of Elements;
2. An output set of Elements;

3. Functions that are mappings from an input set to an output
set; they are organized in a tree-structure;

4, A function is sometimes referred to as a module when it
controls a set of functions at a lower level on the tree
structure.

A set of six "axioms" and the theorems derivable from it
constitute the formal laws governing the definition of software in
HOS. The axioms address the issues of control of modules over: (1)
functions on its immediate lower level; (2) the ordering of the tree
structure at its immediate lower level; and (3) access rights to
input and output sets of variables.

The AXES specification language is the language proposed to
support HOS. It consists of graphical ‘control maps’ and an
“invocation tree’, as well as textual statements. For systems
described in AXES, objects represented are variables, values,
functions, and trees; the relationship described is control.
"Abstract control structures" can be used to define operations,
functions, and structures, all of which contain statements.
Structures can be used to define relations such as partitioning of
data (set partition and class partition). Statements in AXES are
statements of fact, not commands to be performed. For instance, in
a programming language, "z = x + y" means to add the values of x and
y and store the result in z. In AXES, x, y, and z are variables,
each of which represents one of a possible range of values; "="
means identical as in mathematics. "z = x + y" in AXES therefore
means z always represents the same value as "x + y".

47

i A design analyzer and a structuring executive analyzer to
perform automatic analysis of design interfaces are also proposed
but have not been implemented to date.

48

T ——

Table V

Characteristics of HOS AXES

1. BASIC CONTENT

ae

d.

External Interfaces
Shown at the top level on the contrcl map of the system, in
very simple form. If A is the system, y the output of A,
and x the input of A, y = A(x) appears at the top of the
control map of A.
Static Structure
(1) Composition and Organization
Functions or modules which control functions beneath
it. Organization is in the form of a tree-structure
(a control map).
(2) Calling Dependencies and Sequence
The invocation tree indicates calling dependencies but
not the sequence.
(3) Data Dependencies
Shown on the control map, but always in the form of
y = A(x).
(4) Ownership of Resources
Dynamic Structure
No.
Data

In AXES, a variable represents one among a possible set of
values, and this value remains the same because AXES
statements are not commands that can cause the values of
variables to change.

49

= Table V (Continued)

(1) Organization or Structure ﬂ
Fixed types of data (called intrinsic types) as well
as user-defined abstract data types expressed in terms
of existing or previously defined types.

(2) Scope or Access

The normal scope of a variable is within the structure
in which it is declared. Its access rights are
governed by the position of the module on the tree and
selected rights granted it by its parent.

(3) Operations

Can be defined in terms of primitive or already
defined operations.

(4f Size
e :
(5) Flow #
From the control uwap.]

(6) Derivation

L e. Control Flow

No.

f. Levels of Abstraction

For both data and modules.
2. AUXILIARY CONTENT

a. Decision Details

(1) Algorithms

TERPRY.

To decompose functions into further functions, the
input data is decomposed by primitive composition, set

3.

Ce

3 Table V (Continued)

partition, and class partition. Thus the algorithm is
partially indicated.

(2) Solution
No.

(3) Trade-offs between Alternatives

No.

(4) Rationale of Decisions

No.

Error Handling

A FAIL structure can be defined to specify output values
and actions taken in case of the failure of a function.

Performance Estimates

No. ¢ :

Kl

Verification Information

Assertions can be made»about a data type, but its meaning
is not clear from the documentation of the AXES language
[Hami76].

CONSTRAINTS
a. Hierarchy

b.

Botn module invocation and decomposition into functions are
restrained to a tree structure.

Construction Rules

6 HOS axioms governing invocation of modules, access
rights, etc.

51

4.

5.

6.

Table V (Concluded)

FORMAT
a. Input Format

Graphical and textual.

Internal Format

Not known at this point.

Qutput Format

Graphical and textual.

APPLICATION CONSIDERATIONS

ae

€.

f.

Size of the Language

Large. Difficult to learn from present documentation.

Syntax

The syntax of AXES is not trivial.

Similarity to Familiar Languages

Orientation toward Implementation Languages

None specified.

Ease of Transformation into Code

Type of Applications Suitable

Not for real-time systems.
Status

AXES has only recently been defined.

AUTOMATIC TOOL SUPPORT

Proposed but not implemented.

52

IBM PDL

The IBM PDL is documented in [VanL76); a slightly different
version of it is also given as an example of a PDL called Pidgin in
Volume VIII of the RADC Structured Programming Series [Kral75]. The
primary purpose of this PDL is '"to facilitate the translation of
functional specifications into computer instructions using top-down
structured programming" [Kral75). In other words, it is designed
for use in detailed design.

The language is an English-like representation of program logic
utilizing structured programming control structures and indentation
to show nested scopes of logic. 1n this PDL, statements are written
similarly to those of programming languages such as PL/I. Control
constructs allowed by the language are IF THEN ELSE, DO WHILE, DO
UNTIL, CASE, and EXIT. Free-form English statements or textual
descriptions are also permitted in addition to the basic constructs.
Segmentation is accomplished by INCLUDE and CALL statements and the
use of paragraph names.

The IBM PDL is intended to be used in the design of programs
that are to be implemented in PL/I to which it bears much
similarity. It is in fact a non-compilable dialect of PL/I.

53

i
!

1'

Table VI

Characteristics of IBM PDL

BASIC CONTENT

ae

Coe

External Interfaces

Not explicitly specified.

Static_Structure

(1) Composition and Organization

Modules, identified by paragraph names, are nested to
any number of levels. The INCLUDE statement, similar
to that in a PL/I preprocessor, identifies a module
that is eventually to be expanded as in-line code.

(2) Calling Dependencies and Sequence

Calling dependencies are implicit in free-form call
statements and calling sequence is implicit in the
order of appearance of such call statements in the PDL
description of a system.

(3) Data Dependencies

Shown in the form of parameters between the calling
and called modules in call statements.

(4) Ownership of Resources

Files and data can be defined by free-form statements
but it is unclear if data so defined are global or
internal.

Dynamic Structure

Not represented.

Table VI (Continued)

d. Data

(1) Organization or Structure

The emphasis of the IBM PDL is on control flow, so
much so that data is sorely neglected. It is not
clear if the rules of PL/I on data declaration apply
or if data is to be declared in free-form English. In
the former case, organization of data is limited by
what is available in PL/I and the scope of data is
governed by what PL/I implies. In the latter case,
any data can be defined representing different levels
of abstraction, although access rights will not be
enforced. Conceivably, the PDL can be used with
either approach -~ it is just not specified.

(2) Scope or Access
See (1) above.

(3) Operations i

Can conceivably be defined by free-form English but
the language has no special provisions for enforcing
only the legal operations.

(4) Size
Free-form.

(5) Flow

Not represented except for parameters passed among
modules.

(6) Derivation
No provision for this. Maybe in free-form statements.

e. Control Flow

Sequencing, IF THEN ELSE, DO WHILE, DO UNTIL, CASE, and
EXIT.

55

S — ” .

f.

Table VI (Continued)

Levels of Abstraction

Abstraction as applied to modules can be represented in
varying degrees of detail. This PDL has no facility for
handling data abstraction or the ownership of resources.

2. AUXILIARY CONTENT

ae

b.

Decision Details

(1) Algorithms
No provision except in note form.
(2) Solution

(3) Trade-offs between Alternatives

(4) Rationale of Decisions

Error Handling

No.

Performance Estimates

None.

Verification Information

None.

3. CONSTRAINTS

ae

b.

Hierarchy

Construction Rules

Control flow is restricted to IF THEN ELSE, DO WHILE, DO
UNTIL, and CASE. Meant to be used with top-down structured
programming methods. '

56

4.

5.

Table VI (Continued)

FORMAT
(a) Input format
Text and PL/I-like statements.

(b) Internal Format

Does not apply.

(c) Output Format

Same as input format.
APPLICATION CONSIDERATIONS

a. Size of the Language

Small. 5 keywcrds.

b. Syntax

Rules of syntax are simple and apply only to the 5

constructs. Other statements are free-form.

c. Similarity to Familiar Languages

Similar to English and PL/I.

d. Orientation toward Implementation Language

PL/I and COBOL.

e. Ease of Transformation into Code

Easily transformable into code by hand.

f. Type of Applications Suitable

Seems unsuitable for real-time problems because of lack of

dynamic description.

57

Table VI (Concluded)

g. Status

Usable immediately, although documentations do not give
] instructions as to how to handle data. The two versions
2 also seem to differ slightly.
6. AUTOMATIC TOOL SUPPORT

E | None.

58

MODULE INTERCONNECTION LANGUAGE (MIL75)

A class of languages called Module Interconnection Languages
(MIL’s) was proposed by DeRemer and Kron [DeRe76] for use in the
global design of large systems to address issues of overall program
structure. They advocate that information concerning the overall
design usually buried within the modules, linkage instructions, and
informal documentation be brought to light in a more concise,
precise, and checkable form by means of expression in a MIL. They
also advocate that a different language be used in detailed design
languages for programming-in-the-small. MIL75 is their specific
proposal of a MIL to satisfy these objectives. As of the writing of
their paper, MIL75 existed only in concept and had received little
use. Its design was also expected to change. Knowledge of MIL75 in
this paper reflects only what is documented in [DeRe76].

MIL75 describes, by design, only the static interconnections of
modules, not the dynamic relations exhibited during execution. It
allows the description of:

l. System hierarchy - in terms of systems, subsystems, and
functions organized as a tree-structure.

2. Provided and derived resources - each function specifies
the resources provided by it, and the resources it demands
from its children (derived resources).

3. Accessibility - links are drawn among siblings on the
system tree; these links can form any directed graph. The
links specify all the other functions to which each
function has access. "A has access to B" means A can
access all the resources provided by B. '"Inherited access"
refers to access rights of a function that are inherited
from its parent on the tree. By default, a child inherits
all access rights of its parent, unless a parent "wills" a
child a specified subset or nothing. A parent has access
to the "derived resources" it demands from any of its
children. However, all descendents of its children are
invisible to the parent, making it possible to build layers
of virtual machines.

4. Module Placement - the concept of ‘modules’ here is similar
to that of procedures in a programming language and is
sonewhat different from the way it has been used throughout
this paper. Modules are to be programmed using
programming-in-the-small techniques (detailed design);

59

A
i
i
3

their size is determined by intellectual manageability- and
readiness for detailed design. On each leaf on the system
tree one or more modules must be attached. A non-leaf node
may or may not have a module. There are rules governing
the definition of resources in a module. At the least,
each module must state all resources defined in it and all
resources used by but not defined within it.

60

! I ‘
|
|
£
A

| BASIC CONTENT

ae

External Interfaces

Table VII

Characteristics of MIL75

None.

Static Structure

(1)

(2)

Composition and Organization

Has the concept of systems, subsystems, functions
organized in a tree structure. One or more modules
can be attached to each node of the tree.

Calling Dependencies and Sequence

(3)

Calling dependency, but not sequence, is represented
by the system hierarchy tree.

Data Dependencies

(4)

The resources provided by a function are explicitly
stated by the relationship "provides'. Which other
functions can access these resources are indicated
separately by the accessibility relation. Parents can
use "derived" resources from children nodes on the
tree. Data dependencies then are shown as a
combination of '"provides", '"derives'", and "accesses"
relations. There is no provision for global
variables.

Ownership of Resources

Dynamic Structure

"Provides" is a mechanism to insure ownership of
resources. Internal variables can be defined.

MIL75
struc

has been designed to express only the static
ture of a system, not the dynamic structure.

61

d.

Data

(1)

(2)

(3)

(4)

(5)

(6)

No.

el o e

Table VII (Continued)

Organization or Structure

Data can be defined by name only. They can also be
formed into "groups" to identify common data
accessible by certain functions.

Scope or Access

The "access" relationship explicitly allows one
sibling on the system tree to access resources
provided by another sibling (at the same level). A
parent may demand "derived" resources from its
children but not subsequent descendents. A child by
default inherits the access rights of its parent
unless they are explicitly limited by the parent, in
which case only the specified subset is inherited. No
resource is automatically global - accessed by all.

Operations

Not defined.

Size

Not defined.

Flow

By means of usage links (the '"uses'" relation) all
functions that have access to a data item can be
identified, but not the sequence in which the data
item is processed by the functions.

Derivation

No.

Control Flow

62

f.

Table VII (Continued)

Levels of Abstraction

Abstraction of functions is achieved by subsystems and the
hiding of resources with limited accessibility rights.
Data abstractions, however, are not provided for.

2. AUXILIARY CONTENT

ae.

b.

Ce

d.

Decision Details

(1)

(2)

(3)

(4)

Algorithms

No.
Solution
No.

Trade-offs between Alternatives

No.

Rationale of Decisions

No.

Error Handling

No.

Performance Estimates

No.

Verification Information

No.

63

3.

4.

5.

Table VII (Continued)

CONSTRAINTS

a. Hierarchy
Functional decomposition of a system is limited to a tree
structure. The ultimate modules of the system, therefore,
also form a tree structure.

b. Construction Rules

Rules governing access to resources.
FORMAT
a. Input Format

Textual.

b. Internal Format

Unknown.

ce Output Format

Textual and graphical.
APPLICATION CONSIDERATIONS

a. Size of the Language

Not clear at this point. Only a sample is given in the
documentation. Judging from the fact that only a few
relations are cited, the size of the language should not be
too large.

b. Syntax

A rigid syntax is defined for the graphical representation
as well as textual statements.

c. Similarity to Familiar Languages

64

Table VII (Concluded)

d. Orientation toward Implementation Language

No specific implementation language implied.

e. Ease of Transformation into Code

£. Type of Applications Suitable

Lack of dynamic description, hence not suitable for real-~
time systems.

g. Status

Not defined enough for use in the writing of the definitive
paper.

AUTOMATIC TOOL SUPPORT

A compiler has been surgested to support MIL75 by providing
cross-references and graphs of system structure, accessibility
links, and usage links. It can also check for consistency and
support modification of system structure. No known detail
specification or implementation of the compiler exists.

65

t
:

P-NOTATION AND V-NOTATION

The Honeywell WELLMADE design methodology [Boyd76] has adopted
with slight modification two existing notations for use as the means
of design representation in WELLMADE. The P-notation, proposed by
Dijkstra [Dijk75, Dijk76] as the guarded command set, represents
program structure; the V-notation, based on Hoare’s work [Hoar72],
represents the data.

The P-notation has seven program constructs: concatenation,
selection (If), iteration (Do), assignment, null (skip), abort, and
functions (procedures). No order of execution is implied in the
actions listed in If’s and Do’s - if the Boolean expression is true,
all actions listed in connection with it are executed, but in an
arbitrary order. This mechanism is useful in representing what
Dijkstra termed ‘non-determinacy’. One good example of where this
can be useful is in the representation of design for a transaction
processor rzceiving commands from a user at a terminal who may
specify a number of commands, but in any order. Developers of the
WELLMADE methodology are considering the addition of the CLASS
concept as in SIMULA and a similar concept called MONITOR to
manipulate concurrent processes.

The WELLMADE method of design is a constructive approach. An
input set of state variables and an output set of state variables
are first constructed for the top-level function, and then the
output state is used to suggest the “program’ by an informal method.
The “program” is the series of steps to achieve the function. The
same strategy is applied to any lower level functions that may
appear in the “program’. This informal approach is recommended for
informal use and is a simplification of the more formal method
proposed by Dijkstra in [Dijk75] and [Dijk76]. Dijkstra uses the
notation wp(S,R), where S denotes a statement list and R some
condition on the state of the system, to denote '"the weakest
precondition for the initial state of the system such that
activation of S is guaranteed to lead to a properly terminating
activity leaving the system in a final state satisfying the post-
condition R." He shows how the weakest precondition can be derived
and the program constructed. If the input state can be proved to be
a subset of the weakest precondition, then the program constructed
will terminate and accomplish the results represented by the post-~
condition R. This formal approach, needless to say, can be long and
tedious, but does provide a proof of correctness at the same time
the program is constructed.

T

Table VIIL

Characteristics of P-NOTATION and V-NOTATION

BASIC CONTENT

a.

Ce

d.

External Interfaces

Not apparent. The sets of input and output state variables
specify conditions that must be true on entry to and exit
from the system.

Static Structure

(1) Composition and Organization

Functions that transform a set of specified input
state variables into a set of specified output
variables.

(2) Calling Dependencies and Sequence

From function call constructs.

(3) Data Dependencies

Only input and output states of each function.

(4) Ownership of Resources

Internal variables.

Dynamic Structure

Can specify a set of actions whose order is not specified,
i.e., they can happen in random order. Considerations are
taken to include concept of concurrent processes.

Data

(1) Organization or Structure

Several fixed types. The Array type (suggested by
Dijkstra) acts as a structure.

67

P LR

f.

Table VIII (Continued)

(2) Scoupe or Access

Scope allows the specification of access rights to
variables by specifying whether they are:

l. Global - inherited from ancestor, must not be initial-
ized.

2. Latent - inherited from ancestor, must be initialized.

3. Private - introduced and must be initialized.

4. Constant - value must not change.
5. Variable - value may be modified.

(3) Uperations
Fixed set of operations.
(4) Size
(5) Flow
Not apparent.
(6) Derivation

May be partially contained in the ‘program’.

Control Flow

With the constructs of the P-notation. However, since no
order is implied in the If’s and Do’s, one has to counstruct
the Boolean expression in a special way, or nest the If’s
and Do”s, to force an order if so desired.

Levels of Abstraction

The breaking down of functions into lower level functions
as a result of the construction of the ‘program’. For
data, the use of Array, which is a structure that can
define collections of more primitive types of data. Or, in
free-form descriptions in definitions of data at higher
levels.

68

e

3 Table VIII (Continued)

2. AUXILIARY CONTENT

a. Decision Details

(1) Algorithms

May appear as a result in ‘program’.
(2) Solution

No.

(3) Trade-offs between Alternatives

No.

(4) Rationale of Decisions

No.

b. Error Handling

Hidden in I1f°s and Do’s.

c. Performance Estimates

No.

d. Verification Information

The constructive approach of the methodology as explained
briefly in the text allows the verification of programs.

3. CONSTRAINTS

a. Hierarchy

With the given constructs in P-notation, the resulting
“program’ is bound to obey structured programming rules of
construction and fit into a hierarchy structure.

69

4.

5.

Table VIII (Continued)

b. Construction Rules
The philosophy of WELLMADE naturally applies. However, the
P-notation or V-notation can be used separately and
independently as Dijkstra and Hoare first envisioned them.
FORMAT
a. Input Format
Textual.
b. Internal Format
ces Output Format

Textual.

APPLICATION CONSIDERATIONS

de

Size of the Language

6-7 program constructs and about 6 data constructs.
Syntax
Well defined but also admits free-form expressions.

Similarity to Familiar Languages

Orientation toward Implementation Languages

None.

Ease of Transformation into Code

Seems easy as long as the data types offered by V-notation
are easily implementable in the programming language of
choice.

I’ Table VIII (Concluded)
i

1 f. Type of Applications Suitable

Admits specification of random events for partial real-time
specification.

2. Status
Documentation still not complete on the methodclogy.
6. AUTOMATIC TOOL SUPPORT
DOCA - to display documentation.
P-notate - on-line tool to format P-notation, assign

: statement numbers, and retrieve a portion of
program structure for display.

V-notate - on-line tool for formatting V-notation, retrieving
associated documentation, and producing cross-
references of the data.

PROBLEM STATEMENT LANGUAGE (PSL)

Problem Statement Language (PSL) was developed by the ISDOS
(Information Systems Design and Optimization System) project at the
University of Michigan [Teic74]. The Air Force has acquired a
special version of PSL/PSA with some added capabilities. This
version is known as URL/URA (User Requirements Language and
Analyzer). i

PSL was originally designed to formalize the requirements for a
large computer-based information system, but its capabilities make
it useful in high-level design as well. It has the ability to
describe the static structure of a target system in terms of objects
within the system, the relationships among them, including data
connections. For example, PSL delineates the boundaries of the
system by identifying physical units of data or information external
to the proposed system, such as documents used as input to or
reports generated by the system - these are called Inputs and
Outputs. It also identifies the people, departments, etc., who
produce these Inputs and use the Outputs - they are called Real
World Entities. Next, the units of data are identified, called Sets
of Entities or Groups of Elements. They, together with Inputs and
OQutputs, represent the information flow through the system.

Finally, there are Processes and their constituent processes which
operate on the data.

The objects listed above are tied together by relationships
such as Subpart 0f, Contained In, Uses, Derives, and Updates.

The ability to represent the dynamic behavior of a system is
limited to describing Events that Trigger certain Processes. In
addition, sizing information, some project management information,
and narrative descriptions can be expressed.

Concomitant with the development of PSL was the development of
a software package PSA (Problem Statement Analyzer) that builds a
data base from a set of PSL statements, checks it for consistency
and completeness, and retrieves as well as manipulates selected
information from the data base, generating reports to the user for
analysis [Berg74]. Reports generated include varied representations
of the information in the data base such as selected listings,
retrieval by keyword, matrices, and flow diagrams.

72

1.

Table IX

Characteristics of PSL

BASIC CONTENT

ae.

b.

Ce

External Interfaces

PSL emphasizes this area. Real World Entities in PSL refer
to the people, departments, organization, etc., using the
target system. Inputs and Outputs represent data external
to the system as distinct from internal variables.

Static Structure

(D

(2)

(3)

(4)

Composition and Organization

Processes form the basic units. Each Process can be
decomposed into Subparts that are also Processes.

Calling Dependencies and Sequence

Calling dependencies are embedded in the Subpart of
relationship for it is assumed that a Process will
call on its constituent parts to perform its function.
The calling sequence is not indicated.

Data Dependencies

PSL has no parameter-passing capability. The data
dependencies among Processes are hidden in the Uses,
Derives, and Updates relationships. A Process
specifies the data items it uses and modifies, but
where the data come from or go to are not specified.
One report in PSA tabulates these relations in matrix
form.

Ownership of Resources

All data are global; no internal data are allowed.

Dynamic Structure

Events Trigger Processes. Conditions can also be specified.
But none of the dynamic activities are related to the data.

73

d.

Data

(1)

(2)

(3)

(4)

(5)

(6)

Table IX (Continued)

Organization or Structure

Units of data are Sets of Entities (e.g., files of
records) or Groups of Elements (structure of primitive
data types). Entities can consist of Groups. Data is
declared by name, and type is specified by ATTRIBUTE.
Sets, Entities, and Groups are meant to denote logical
collections of data; each can be further decomposed
into constituent parts.

Scope or Access

All global, accessible by all.

Operations

Not defined except in free-form description, or
contrived by using the ATTRIBUTE keyword.

Size

Cardinality can be specified.

Flow

The processes that interact with the data are
indicated by the Uses, Updates and Modifies relations.
However, the order in which the data flow through the
Processes is not known, i.e., a thread cannot be
traced.

Derivation

Partially from the Derives, Uses or Using relations.

A Process can Derive a variable using other variables,
but the full algorithm is not specified.

Control Flow

None.

74

NSV W

f.

e

d.

Table IX (Continued)

Levels of Abstraction

Modules are abstracted by specifying Processes in a top-
down manner from abstract to concrete. Data abstraction is

accomplished by using the four levels of Sets, Entities,
Groups and Elements.

2. AUXILIARY CONTENT

Decision Details

(1) Algorithms

Only in textual description.
(2) Solution
Only in textual descriptiom.

(3) Trade-offs between Alternatives

Only in textual description.

(4) Rationale of Decisions

Only in textual description.

Error Handling

No.

Performance Estimates

Via ATTRIBUTE and textual descriptions.

Verification Information

None.

75

Table IX (Continued)

3. CONSTRAINTS

a. Hierarchy
The SUBPART OF relation governing both the Processes and
data is in the form of a tree structure. The CONSISTS OF
relation forces a hierarchical structure.

b. Construction Rules

4, FORMAT

a. Input Format
Textual.

b. Internal Format
CODASYL data base.

ce Output Format

Textual, graphical and matrices.

5. APPLICATION CONSIDERATIONS

ae

Ce

d.

Size of the Language

Over 200 keywords.

Syntax

Defined for Sections and Statements.

Similarity to Familiar Languages

Ease of Transformation into Code

Since control flow is missing, it is not suitable for use
in detailed design.

76

Table IX (Concluded)

e. Type of Applications Suitable

PSL admits partial description of dynamic behavior for
real-time systems.

f. Status

The support tool PSA has been installed at various places,
on various computers. Documentation for some versions is
available.

AUTOMATIC TOOL SUPPORT

The Analyzer PSA parses PSL statements and performs checks on
the consistent use of names, the completeness of definition of
data items; produces various listings; and tabulates relations
between Processes and data items. It also produces pictorial
output for certain items.

77

PROCESS DESIGN LANGUAGE (PDL2)

The Process Design Language is a part of the Process Design
Hethodology developed at Texas Instruments Inc., Alabama, in support
of the Ballistic Missile Defense Advanced Technology Center. The
primary goal of TI-PDL is to provide a means of defining and
manipulating large real-time processes where timing and order of
events are critical. Koppang published a paper [(Kopp76] in which
Process Design Language is discussed. In his presentation of the
paper at the 2nd Irternational Conference of Software Engineering,
Koppang stated the following as requirements for the language:

Extensive error detection capability,

Supports structured programming,

Well-defined scope rules,

Advanced data structures,

Based on an established programming language,

Allows efficient code generation (because of real-time
application),

Supports synchronization of concurrent processes, and
0 Access to bare hardware.

0O O0OCOO0OOCOo

o

PASCAL, deemed most suitable, was chosen to be extended to meet
the above requirements. The current version of the language is

called PDL2. The extensions to PASCAL incorporated the following
capabilities:

Absolute memory accessing (user restricted),

Memory boundary alignment for execution time efficiency,
Double precision arithmetic,

Communication with FORTRAN,

Tasking and synchronization,

Variable length arrays,

Vector operations,

Assertion statements providing run-time verification,
Data collection statements for performance data,
Parameterized string substitutions (MACROS), and

An Escape statement.

O 0000 OCOO0OO0OO0OOoO

An integrated set of tools, called Process Design System
(PDS2), is being developed to support PDL2 and contains a compiler
for PDL2. PDS2 is scheduled for completion in 1977. Plans have
been made for its use within Texas Instruments.

Table X

Characteristics of PDL2

1. BASIC CONTENT

ae.

b.

d.

External Interfaces

Static Structure

(D

(2)

(3)

(4)

Composition and Organization

Procedures form a tree structure. Macros permit the
definition of in~line procedures.

Calling Dependencies and Sequence

In procedure call statements.

Data Dependencies

Explicitly by parameter 1list, and implicitly by the
fact that a procedure has knowledge of all definitions
and variables declared in the higher level modules in
which it is nested..

Ownership of Resources

Internal variables.

Dynamic Structure

Processes may be interrupted by higher priority tasks.
Tasking and synchronization of concurrent processes.

Data

(1)

Organization or Structure

PASCAL has good data structuring capabilities
including sets of data whose members are denumerable.
Variable length arrays and vector operations are
added. Data type defines the set of values that may
be assumed by that variable. More detailed

79

Table X (Continued)

information on PASCAL data definition can be found in
[Wire71].

(2) Scope or Access

A data item declared in one procedure can be used by
all other procedures defined within that procedure.

(3) Operations
Fixed set of operationms.
(4) Size
As in PASCAL.
(5) Flow
Only in parameter lists.
(6) Derivation
No.
e. Control Flow
IF, CASE, REPEAT, WHILE, FOR, GOTO, and ESCAPE statements.

f. Levels of Abstraction

Functional abstraction is achieved by the use of nested
procedures. Limited data abstraction is achieved by the
use of the set and class structures of data.

2. AUXILIARY CONTENT

a. Decision Details

(1) Algorithms

No.

80

3.

4.

b.

Table X (Continued)

(2) Solution
No.

(3) Trade-offs between Alternatives

No.

(4) Rationale of Decisions

No.

Error Handling

No.

Performance Estimates

Data collection statements collect program performance data
in a standardized, compiler verified format to promote the
implementation of general purpose design analysis aids.

Verification Information

Assertion statements are verified at run time.

CONSTRAINTS
a. Hierarchy

b.

Static system structure must be a tree structure.

Construction Rules

Structured programming rules apply.

FORMAT
a. Input Format

Textual.

81

b.

Ce

ae

b.

Coe

f.

Table X (Continued)

Internal Format

OQutput Format

Textual.

Se APPLICATION CONSIDERATIONS

Size of the Language

PASCAL + extensions.

Syntax

PASCAL syntax.

Similarity to Familiar Languages

PASCAL.

Orientation toward Implementation Language

Although it has not been stated that eventual

implementation is limited to PASCAL, presumably it would be

easier to implement the design ultimately in PASCAL.

Ease of Transformation into Code

Easy to transform PDL2 into PASCAL code.

Type of Applications Suitable

Designed to handle real-time processes.
Status

Language reference material has not been received or
reviewed for this task.

82

6.

Table X (Concluded)

AUTOMATIC TOOL SUPPORT

An extensive set of tools called Process Design System (PDS2)
was planned and scheduled for completion in 1977. Components
of the tools include the PDL2 Compiler, Object Module
Processor, Process Constructor, Simulation Experiment and
Process Design Analysis System. Capabilities include the
maintenance of each module as a separate entity, the
maintenance of system configuration, control of access to
modules, automatic look-up of data available to a module from
high-level modules, detection of interface errors, and the
simulation of processes to approximate their behavior in a
multi-tasking environment.

83

PROGRAM DESIGN AND DOCUMENTATION LANGUAGE (PDDL)

PDDL is a product of Jet Propulsion Laboratory, California
[Heim 77], consisting of a set of notational conventions for
recording the design of a system, and a computer program written in
SIMSCRIPT to maintain the system design and generate reports. Three
publications are planned: a user’s guide, program documentation, and
the engineering methodology - though none is available at this
point.

Modules are represented as procedures. Each procedure is
separate and lists at the beginning variables it receives (GIVEN),
uses (USING), and returns (YIELD). Statements within procedures
include file manipulation statements, procedure call statements, and
typical control structures such as DO, SELECT, IF, ELSE, and ENDIF.
Files and data structures are also defined separately from
procedures and from one another. Each ‘program data-structure’
defines a data structure associated with a name and type. Its
contents are listed by name and type within it. Data can be
entities, data structures or substructures, definitions of which are
not clear from available documentation at this point. The support
tool generates module reference trees and data cross-references.

84

S RS R 2

Table XI

Characteristics of PDDL

1. BASIC CONTENT

3

ae

Ce

External Interfaces

Portions of input provided by the user may be found in file
definitions, but other than that, external interfaces are
not represented.

Static Structure

(D

(2)

(3)

(4)

Composition and Organization

Procedures, each of which is separate.

Calling Dependencies and Sequence

In procedure call statements. The support tool,
however, generates a module reference tree as well as
a procedure cross-reference showing where the code of
each function resides and where it is referenced.

Data Dependencies

Stated explicitly at the beginning of each procedure
under GIVEN, USING, and YIELD. However, it is not
known where these variables come from. Only in
conjunction with calling dependencies will data
dependency among modules be complete.

Ownership of Resources

No internal variables.

Dynamic Structure

No.

85

o

d.

f.

Data

(1)

(2)

(3)

(4)

(5)

(6)

Table XI (Continued)

Organization or Structure

Data can be a structure, entity or substructure. Each
can be defined in terms of the others.

Scope or Access

All data are defined separately in a ‘program data-
structure’ or ‘program’ and are global. Variables
used as parameters concern only the modules involved.

Operations

Not defined.

Size

By the structure or listing of component parts.

Flow

No. The automatic tool does provide a report showing
places of reference of each data item in terms of the
procedure that performs the reference, and the page
and line of the referencing statements. It does not
specify the order of the references.

Derivation

No, except in free-form text.

Control Flow

In procedures. DO, SELECT, IF, ELSE, and ENDIF statements.

Levels of Abstraction

None

for modules. Data can be organized into structures

but existing documentation does not specify if they can
first be declared by name only and have the details filled
in afterwards.

L]
v% Table XI (Continued)

2. AUXILIARY CONTENT

a. Decision Details

”fé (1) Algorithms
No.

$ (2) Solution

. No.

(3) Trade-offs Between Alternatives

No. 1

(4) Rationale of Decisions

' . No.

b. Error Handling

No.

c. Performance Estimates

SIS

No.

d. Verification Information

No.
3. CONSTRAINTS
a. Hierarchy
Each module and data definition is separate.

b. Construction Rules

(1) Explicit Rules

(2) Implicit Rules

4.

5.

Table XI (Continued)

FORMAT

ae

b.

Input Format

Textual.

Internal Format

Unknown.

Qutput Format

Textual. Lists and cross-reference tables.

APPLICATION CONSIDERATIONS

ae

f.

Size of the Language

Medium.

Syntax

Many notational conventions that have to be learned.

Similarity to Familiar Languages

Orientation toward Implementation Languages

None specified.

Ease of Transformation into Code

Since PDDL representations are divided into procedures and
data definitions, transformation into code should not be
difficult.

Type of Applications Suitable

Status

S SRR S, B S

1.
2.

| 3

6. AUTOMATIC TOOL SUPPORT

The support tool generates several reports:

Table XI (Concluded)

module reference tree;
data versus places (procedure, page, and line) of reference;
procedure cross-references in alphabetical order showing,

for each procedure, all references to it and the location
of its text; and

miscellaneous listings showing cross-references of files
and changes from the previous version.

SOFTWARE DESIGN LANGUAGE (SDL-1)

A family of software design languages has been suggested and
its first member SDL-l1 introduced by Chu [Chu76)]. Chu sees a SDL
mainly as a design aid to describe the design of software for
communication and documentation. Should a simulator become
available, the design can be checked out. He also thinks that there
is a methodology implied in a software design language.

SDL-1 represents design in several parts. The first three
paragraphs in the DESIGN SPECIFICATION (i. e., the PROCEDURES, DATA,
and SWITCHES paragraphs) deal with overall design. The PROCEDURES
paragraph consists of two parts, one called PROCEDURE DECLARATION
where all procedures are declared in nested levels by name and
function, and the other called PROCEDURE STRUCTURE where all
procedures called by each procedure are listed. Likewise, the DATA
paragraph consists of DATA DECLARATION and REFERENCE STRUCTURE.
Similar dichotic schemes also exist for SWITCHES, which are similar
to status variables. All data and switches declared at this level
are global.

The last paragraph of design in SDL-1, the DEFINITIONS
paragraph, consists of procedure definitions. Each procedure
defined under PROCEDURES is further expanded into detailed
statements with appropriate control structures.

Table XII

Characteristics of SDL-1

1. BASIC CONTENT

a. External Interfaces

Not explicitly defined.

b. Static Structure

(1) Composition and Organization £

Declaration of single-in-single-out (i.e., one-entry-
one-exit) procedures within the PROCEDURES paragraph
in nested levels. Procedures can also be implicitly
declared in the PROCEDURE STRUCTURE as part of a "call
list". 7

] (2) Calling Dependencies and Sequence

Another part of the PROCEDURES paragraph is the
PROCEDURE STRUCTURE where each procedure declared
lists the procedures it in turn calls, in a "call
list". No sequence is implied. Sequence has to be
deduced from the detailed procedure definition showing
control flow and call statements. Procedures in the
"call list" may be already declared, or implicitly
defined by their occurrences in the gist.

(3) Data Dependencies

Shown in the REFERENCE STRUCTURE ﬁnder DATA, sorted by
data name. The inverse relationship (the data items

that a particular procedure references) has to be deduced.
v

(4) Ownership of Resources

Internal variables can be defined within a procedure
definition.

ce Dynamic Structure

No.

SIS LBAY W

d.

f.

Data

(1)

(2)

(3)

(4)

(5)

(6)

Table XII (Continued)

Organization or Structure

Data items are defined by name, type, and descriptive
explanation. Each item may contain several further
levels of data items in a tree-structure. SWITCHES
act as status variables.

Scope or Access

All data declared in the DESIGN SPECIFICATION are
global. All data declared in a PROCEDURE DEFINITION
belong internally to that procedure.

Operations

Fixed set, not user-defined.

Size

No.

Flow

The list of modules that reference a data item is
given, but the order in which referencing takes place
is unknown.

perivation

No.

Control Flow

In PROCEDURE DEFINITION of each procedure. Statements
allowed are BLOCK, SET, IF, CASE, LOOP, EXIT, CALL, RETURN,
and UNWIND.

Levels of Abstraction

As represented in the various levels of procedures and in

data

structures.

92

ST

2.

3.

Table XII (Continued)

AUXILIARY CONTENT

a. Decision Details

(1) Algorithms
No.

(2) Solution

No.

L]

(3) Trade-offs between Alternatives

No.

(4) Rationale of Decisions

No.

b. Error Handling

Error exits are handled by UNWIND, but the conditions
handled are buried in the PROCEDURE DEFINITIONS.

c. Performance Estimates

d. Verification Information

SWITCHES can be used to represent conditions to be tested
later in the design.

CONSTRAINTS

a. Hierarchy

Procedures are declared in a hierarchy, but the calling
relationship is not limited - a procedure can call
procedures above and below it except the main procedure.
Data is restricted to a tree-structure.

b. Construction Rules

93

AD=AOS1 672 MITRE CORP BEDFORD MASS F/6 9/2
PROGRAM DESIGN LANGUAGES=AN INTRODUCTION.(U)
JAN 78 L L CHENé FI“ZO-W-C-OOOI
UNCLASSIFIED MTR=3446 ESD=TR=T77=324

END '
r:\;.la“rl‘l' |
A=m78 _

||||| 10 e e

= = 12 o
e 22

=

o ke
=

| e
22 it e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-4

4.

5.

Table XII (Continued)

FORMAT

a. Input Format
Textual.

b. Internal Format

Not applicable.

Output Format

Textual.

APPLICATION CONSIDERATIONS

ae

Ce

d.

€.

Size of the Language

3 levels of description, each level containing 2 or 3
blocks of information.

Syntax
Fixed syntax except in comment.

Similarity to Familiar Languages

Orientation toward Implementation Languages

Ease of Transformation into Code

Seems easy except for SWITCHES.

Type of Applications Suitable

Not for real-time applications because of the lack of
dynamic representation.

Status

Language is well defined, awaits experiences in application
to study its sufficiency.

94

Table XII (Concluded)

REF R i “S'

6. AUTOMATIC TOOL SUPPORT

Suggested but neither defined nor implemented.

95

-

SOFTWARE SPECIFICATION LANGUAGE (SSL)

SSL, a product of Science Applications Inc., is a formalism for
the definition of software specifications. It is designed to
emphasize module interconnections, flexible data abstractions, and
global data flow; it is not designed to depict the control flow
within modules. The formal grammar of SSL is documented in Backus-
Naur-Form (BNF) in [Aust 76], and historically its design has been
influenced by MIL, levels of abstraction, structured charts, PASCAL,
ALGOL 60 and NEUCLEUS.

A subsystem in SSL consists of a collection of modules. SSL
statements are used to convey additional information about each
module. The Assumes statement specifies conditions that must be
true upon entry to the module. The Satisfies statement states data
conditions that must be true upon module exit. The Fulfills
statement specifies the requirements accomplished by the module.

The Accesses statement indicates which environmental objects such as
peripheral equipment are utilized by the module. The Receives and
Transmits statements indicate real-time data activity. The Creates,
Modifies, and Uses statements distinguish between input and output
data variables.

Besides a basic set of data types, SSL allows additional user-
defined data types. Each data declaration is related to the
requirements. Conditions that must be true for the creation of a
data item can also be specified.

SSL is the only PDL among the ones surveyed to relate design to
requirements.

Table XIII

Characteristics of SSL

1. BASIC CONTENT

ae.

Ce

External Interfaces

Requirement declaration is used to identify the data flow
between the software and its external environment. System
level input (stimulus) received by a software package from
an external source and system level output (response) are
represented as Input and Output parts. The Accesses
statement also indicates which environmental objects are
utilized by a module.

Static Structure

(1) Composition and Organization

Modules are the basic system objects in SSL. A
subsystem is a group of modules. The requirement
satisfied by each module is stated in the Fulfills
statement.

(2) Calling Dependencies and Sequence

Only in Execute statement which is the equivalent of
what is generally known as a Call statement.

(3) Data Dependencies

The Creates and Modifies statements within a module
show the input and output variables of a module but
not where they came from or are going to.

(4) Ownership of Resources

Internal variables can be defined within a module.

Dynamic Structure

Receives and transmits statements represent real-time
activity.

Table XIII (Continued)

Organization or Structure

SSL offers a fixed set of data types and also the
capability for user-defined data types. Data is also
related to requirements attributes.

Scope or Access

The normal scope of all data items is the subsystem in
which it is declared. Global variables can be
declared only in the main subsystem.

Operations

Fixed set, not user-defined.
Size

Flow

Can be traced from the Creates, Uses, and Modifies
statements.

Derivation
Not the algorithm, but the variables used in the

derivation of a variable can be obtained from the Uses
and Using statements.

Control Flow

Not designed for this.

Levels of Abstraction

Concept of a system, subsystems and modules; also data
abstraction by means of user-defined variable types.

FI
‘?1
Ly Table XII1 (Continued)
A
‘t!
& 2. AUXILIARY CONTENT
a. Decision Details
! (1) Algorithms
&
{ No.
| (2) Solution
}
' No.
(3) Trade-offs between Alternatives
No.
(4) Rationale of Decisions
The projection of specialized forms of requirements
, onto the data and module definitions establishes the
: rationale for the creation of such.
b. Error Handling
No.
c. Performance Estimates
No.
d. Verification Information
’ Conditions necessary for the execution of a module and its
3 return, and conditions necessary for the creation of a
] variable are stated so that they can be tested. Assertions
represent conditions attached to the creation of variables
and entry and exit of modules.
3. CONSTRAINTS
i a. Hierarchy
Subsystems are separate from each other but contain
] modules. No module is contained within another module.
99

4.

Table XIII (Continued)

b. Construction Rules

Levels of abstraction are meant to be applied. SSL also
encourages a designer to relate design to requirements.

FORMAT

a. Input Format

Textual.

b. Internal Format

Unknown.

ce Output Format

Textual. No more information at this point on detailed
capabilities of support tools planned.

APPLICATION CONSIDERATIONS

a. Size of the Language

70 reserved words.
b . S ! !!tax
Formal grammar.

c. Similarity to Familiar Languages

d. Orientation toward Implementation Languages

None.

e. Ease of Transformation into Code

No control flow specified. Detailed design necessary
before transformation into code.

100

6.

Table XIII (Concluded)

f. Type of Applications Suitable

Attempts to handle real~time applicatibns.
g. Status

Language is well defined, but not the tools.

AUTOMATIC TOOL SUPPORT
Several tools, collectively known as Software Specification and

Evaluation System (SSES), are planned, including a static code
analyzer, a dynamic code analyzer, and a test case analyzer.

101

STRUCTURED CHARTS

Structured charts are graphical notations used to support a
design technique called structured design. The underlying
consideration of Constantine’s structured design technique [Stev74]
is to isolate more simple independent modules with minimal
connections among them. The result is that modules so defined are
easier to comprehend, easier to implement, less error-prone, and
also less repetitive because they are more likely to be reusable
without recoding, thus avoiding duplicate code.

Design takes place at three hierarchical levels: systen,
program, and module. In [Stev74] the authors discuss coupling - the
strength of the association among modules; cohesiveness; and
binding. They also describe a charting method to record the
decisions made, the modules identified, and their connections.

This structured design technique also places much emphasis on
identifying abstractions of external conceptual streams of data and
the transformations necessary to change them into the output stream.
"External" data lies outside the system; a "conceptual" stream of
data is a stream of related data that is independent of any physical
input-output device.

Structured charts consist of a system structure tree with
rectangular boxes denoting modules and lines connecting them
denoting invocation (or calling relationship). All calling
relationships are further defined by specifying the input variables
(variables passed to the called module) and output variables
(variables returned). Both modules and variables are identified by
name or a short phrase of description such as "a list of unsafe
factors and names".

L0z

SVLERE R

Table XIV

Characteristics of Structured Charts

1. BASIC CONTENT

ae

b.

d.

External Interfaces

Although external data are emphasized in the structured
design technique, they are not represented in the charts.
Structured charts show data connections between modules,
but not between the whole system and the outside world.

Static Structure

(1) Composition ard Organization

Modules, as denoted by rectangular boxes and a free-
form description, form a tree-structure.

(2) Calling Dependencies and Sequence

Calling dependencies are apparent in the system tree.
The actual sequence is not depicted although it is
roughly from top to bottom.

(3) Data Dependencies

Shown for every called module. The name or a short
description of data passed from the calling module to
the called module and vice versa is recorded.

(4) Ownership of Resources

No internal resources are depicted.

Dynamic Structure

No.
Data

(1) Organization or Structure

Free-form description of data type or structure or
enumeration of values.

103

REP SRS 7 VTS z

2.

(2)

(3)

(4)

(5)

(6)

Table XIV (Continued)

Scope or Access

Only data passed among modules are specified. All
data named concern only the calling and called
modules.

Operations

None, except maybe in free-form description.

Size

Cnly in description, or implied by enumeration.
Flow

Can be traced indirectly from system tree, but the
tree itself is based on hierarchical levels of
modules, not on following one thread of data.

Derivation

No.

e. Control Flow

No.

Only calling relationship.

f. Levels of Abstraction

Hierarchical levels of modules. For data, abstraction can
be represented only in free-form description. It is
interesting to note that although abstraction issues are
emphasized in the design method, the charts are kept simple
enough so that no special provisions are made to represent
them in the notation.

AUXILIARY CONTENT

a. Decision Details

(L)

Algorithms

No.

104

Table XIV (Continued)

w L

(2) Solution
No.

(3) Trade-offs between Alternatives

No.

,; (4) Rationale of Decisions
No.

b. Error Handling

No.

c. Performance Estimates

No.

d. Verification Information

No.
3. CONSTRAINTS
a. Hierarchy
Calling structure of module is in the form of a tree.

b. Construction Rules

The philosophy of the structured design method is implied.
In constructing the modules, the rules of coupling,
cohesiveness and binding apply. In constructing data, it
is assumed that the design will start from a conceptual
stream of data and proceed toward actual physical
representation in the machine.

105

4.

5.

Table XIV (Continued)

FORMAT
a. Input Format
Graphical.

Internal Format

Ce

Not applicable.

Qutput Format

Graphical.

APPLICATION CONSIDERATIONS

ae

€.

f.

B

Size of the Language

Small. Boxes, lines, input and output variables.
Syntax
There is a definite syntax.

Similarity to Familiar Languages

Simple charts.

Orientation toward Implementation Languages

None in particular.

Ease of Transformation into Code

Since no control flow is specified, much design needs to be
done in transforming structured charts to code.

Type of Applications Suitable

Status

Documented and has been applied.

106

-

SR

A
Q t: Table XIV (Concluded)
6. AUTOMATIC TOOL SUPPORT
None.
1
E
| 4
|
i
|
4 1

107

UMTA SPECIFICATION LANGUAGE (USL)

USL was developed by the Urban Mass Transportation
Administration for the detailed technical specification of computer
programs. It is intended to replace flowcharts and most of the
prose documentation of program design.

Modules are specified in USL as procedures. Lower level
modules can first be identified by name and expanded later. The
logic within procedures is limited to IF THEN, IF THEN ELSE, WHILE,
and FOR EACH statement. Indentation is used to denote the scope of
a clause.

Data are declared as RESOURCES and are considered to be sets.
Primitive data types are considered a set with one member.
Attributes of resources can be used to define the maximum number of
members, methods of access, scope of the definition, and members.

USL is similar to ALGOL, but can be translated into code in any
algorithmic language. One support tool automatically translates a
design written in USL into FORTRAN [Zieg73]. It is claimed that
"the technical specifications written in USL can also provide the
design for a simulator of the system to be developed." [Zieg74]

For a language designed to specify detailed technical
information of design, USL, though inadequate in specifying inter-
module connections, is surprisingly capable of managing
abstractions.

108

Table XV

Characteristics of USL

1. BASIC CONTENT

a. External Interfaces

No.

b. Static Structure

(1) Composition and Organization

Basic units are Procedures.

(2) Calling Dependencies and Sequence

Embedded in procedure call statements.

(3) Data Dependencies

Only in parameter list.

(4) Ownership of Resources

Internal resources can be defined by defining them
LOCAL. For recursive procedures these local variables
can be stacked.

ce Dynamic Structure

No.
d. Data

(1) Organization or Structure

All data are considered sets of objects, primitive
data types being sets with one member. Data are
declared by name as RESOURCES.

(2)

(3)

(4)

(5)

(6)

Table XV (Continued)

Scope or Access

Scope or access is defined in 3 ways: by declaring

resource LOCAL; by explicitly listing all procedures
that can reference the resource; in the absence of a
specified scope, a resource is assumed global - any

procedure can reference it.

Operations

Random and consecutive methods of access are provided.
Access methods are specified in a general way so that
the intent of the access method is specified, not one
way of implementing it.

Size

By maximum number of members.

Flow

Hidden in statements in procedures.

Derivation

No.

e. Control Flow
By IF THEN, IF THEN ELSE, WHILE, and FOR EACH statements.

f. Levels of Abstraction

Procedures are defined in the abstract and expanded
afterward. Data are considered sets and can also be
conceived of in the abstract with details filled in
afterward.

2.

3.

Table XV (Continued)

AUXILIARY CONTENT

a. Decision Details

(1) Algorithms

No.
(2) Solution
No.

(3) Trade-offs between Alternatives

(4) Rationale of Decisions

Detailed design decisions can be recorded and the
intent stated in prose under DICTIONARY.

b. Error Handling

No.

c. Performance Estimates

No.

d. Verification Information

No.
CONSTRAINTS

a. Hierarchy

Because of control constructs available, resulting
~ structure of modules form a hierarchy.

111

Table XV (Continued)

SRELER

b. Construction Rules

Indentation is to be used to denote the scope of a clause
in statements within procedures. Control flow is
restricted to structured programming constructs.

4. FORMAT

i; a. Input Format

Textual.

: b. Internal Format

Not applicable.

ce Output Format

Textual.
3 5. APPLICATION CONSIDERATIONS

a. Size of the Language

Fair.

|
;
$
%
E
:
2.
b
g

b. Syntax

Combination of free-form statements and well defined
statements.

ce Similarity to Familiar Languages

Similar to ALGOL.

d. Orientation toward Implementation Languages

Not limited to any particular one.

6.

(=Y

f.

AUTOMATIC TOOL SUPPORT

USL has been translated into FORTRAN via an automatic tool.

Table XV (Concluded)

Ease of Transformation into Code

Status

Has been automatically translated into FORTRAN. Ziegler
claims USL is readily translated into FORTRAN, PL/I, COBOL,
JOVIAL or ALGOL.

Type of Applications Suitable

Well defined.

113

SECTION IV

CONCLUSIONS

Up to this point, the background, purpose, and a definition of
PDL’s have been discussed; characteristics of PDL’s in general have
been defined; and specific properties of 14 PDL’s have been
examined. It is appropriate to see if the totality of this
information offers any indications toward trends in the development
and criteria in the selection of PDL’s.

Related work that might warrant investigation are Earley’s work
on high level languages [Earl74), Schwartz’ set-theoretic language
SETL ([Schw74], Parnas” specification language [Parn72b], Alphard
programs [Wulf76], the Semantic Description Language for the
Information Automat [Wils77], and System Analysis Design Technique
(SADT) [Soft76]. These works have not been included in this survey
because of the lack of timely dccumentation, the proprietary nature
of the work, or time constraints.

SELECTION

Some of the more directly observable characteristics of the
PDL’s surveyed are summarized in Table XVI. This tabulation of
survey results is intended only to give a quick comparison of the
PDL’s reviewed. The information is very cryptically coded and
nuances of the language may be lost in the transcription. Judgment
of the applicability of a PDL should not be solely based on
information conveyed by such a tabulation, although it may point out
a few more promising candidates. A PDL is a communication tool and
nothing can supplant first-hand knowledge obtained by learning from
the original documentation and trial use.

In selecting a PDL for use, all of its characteristics have to
be considered. Domination of one particular aspect with no regard
for others may be deceptive. A poor format, or ineffective
representation, for instance, will detract from the merits of a PDL
despite its adequacy in information content. Some characteristics
will be more pertinent for certain applications and should be given
more weight than others in the selection process. This brings up
the question of “desirability’ of the characteristics. Some
characteristics merely of fer a choice of options such as textual
format or graphical format, and ‘desirability’ does not apply. For

e TR

e

Table XVI

Summary of Some Characteristics of PDL's

Characteristics BASIC CONTENT
STkl O e s S AT LRSI Ry |
8 Static Structure 1 s Data
et
s N — (PR 85 2 = H
E s 9 i 3 - = 8 " -1
= 7 B 8 = S8 o H s s|% <8
Bl & = 3 Fi _T3E S 2 5 HEERE
s =3 c £9 E5 o8 2o 8 = 2 e £ 2HE P = K-}
POL's = ced FEXg 832 5 S g S 2 2 5/5:55 8
P 8§¢ Sa 883888« & S < S & = 8|8 3¢
CFG POL jg | Oeoues. Segments, © p i oy o Ty ! | Simpletiem Al Locel N N N|Y P-|N
(2 levels) | or Global
SARE T leie s L S e L e S s e St e T
Flowcharts P Modules Y Y N N N N N N N N'Y P- | N
S S T I S | ol 2 bt I o 8 :. P |
HIPO Y | Modules ¥ %oF Nlw P N N N H P iv P | P
HOS AXES P ::::‘::u: ')‘““'°“" ¥ N | User-Defined Y Y P iN Y |-
} —
1BM POL N | Modules M - e N H N NP N 'v P | N
2
f .
MILTS g | DEESSNE R N e P Y N NP N{N P |N
tems, Functions i
; |
Pomians . foyl ricuom ooWE Y v ¥ N NIY Y N
V-Notation [
i
Implied by
POL2 :::‘:’s“’“' Wy ¥l Y Nested Fixed P Ny P | N
r Procedures
PDDL P | Procedures N CE W N o Rty Global N P NTNIY P |N
Substruc.
PSL Y | Processes ol RO e All Global N Y P PN Y | N
Groups, Elements
SOL N | Procedures ¥ Ry o vin Y Globsfor o % P nlY v | B
Internal
ssL | S B R P Y [o] SN | P P N P |P
Subsystems Internal j
?!::::W.d N | Modules Y N Y N | N| FreeForm N N N H N|P P N
usL N | Procedures H H P Y | N Sets Y Y Y H N[Y Y [P,
b | 1 1 i - 1 i i

- PO
P WA Oy M\ M S PO e 1

Summary of Some Characteristics of PDL's

Table XVI

C CONTENT AUXILIARY CONTENT FORMAT TOOLS
| e R N o) A=ty e PR - > —1 .
Data [! ;
ey s ey ey] -
s g 13 3 g =5| | : 3
E =3 ° b o ® g e 5 ow &
3 2 5 ;s ¥|EcBlas SEE2E H E_%
B g § & 5 5|35 gs8S5ss588| 2 5 5388
S < S & T 8|8 3388 s2ELESE| = S <23
Simple Item M Lo N N N[Y P~ [N N N N [Tt Text Y
or Global
| . ok TeRlent ol U T o S R I i | SR Sl e e
N N N N N N!'Y P- N N N N Graph Graph N
E Y Shoees i :. PRGN (e £
P N N H P i Y p P- N N N | Graph Graph N
. E Text& Text&
User-Defined Y Y P IN Y P- P N P Grigll * Gaaph Planned
L
H N P Nly P [N N N N [T Tem N
% Text &
ext
P Y N P NN P N N N N | Text Planned
} ; Graph LEGEND:
i Y - Yes
Y Y Y N NjY Y N N N P Text Text Planned N - No
P — Partial
. H — Hidden
Implied by ; T — Provided
Y Nested Fixed P N Y P N N P P Text Text Y by aito-
Procedures mated
Struc. Entit Text Tool
ruc. Entity
Substruc. Global N NT N[Y P N N N N Text Tebles Y
Sets, Entities Text, Graph,
4 P Text . Y
Groups, Elements All Global N P P N Y N N N ex Matsices
Global or !
Y Fixed PONLY Y N P P Text Text Planned
Internal
Fixed o Fixed P PN P P N N P Text Text Planned
Internal
Free-Form N N H N|P P N N N N Graph Graph N
Sets Y Y H N|Y Y P N N N Text Text Y
=2 i i ki ki o
115
_ U L

NOT . 1
Fumed §

Teceding Fgpe Zyamkh -

‘ others, except perhaps basic content, desirability varies according
to the job they are intended to do.

k'
OBSERVATIONS

Judging from the frequency of occurrence in the PDL’s surveyed,
some form of graphical representation seems popular for the high
level description of a system. If this is not available in the
language itself, it can be part of the output of an automatic
support tool, although the design of good graphical output is by no
means easy. The only form of graphical representation for low level
design of logic within a module is the much-used but perhaps out-
dated flowchart. It is not unreasonable to conjecture that the
success of structured programming and the consequent familiarity
with basic structured programming constructs have rendered textual
representation of control flow adequate.

In the realm of information content, i.e., information
representable in a PDL, one thing is apparent: no one PDL satisfies
all the characteristics set forth. Some emphasize abstractions and
interconnections among modules and therefore seem particularly more
suitable for global design: MIL75, PSL, HOS, SSL, and structured
charts. Others emphasize control flow and are typically more suited
to detailed design: IBM PDL, CFG PDL, PDL2, PDDL, and of course,
flowcharts. HIPO diagrams, SDL-1, and USL seem applicable to both
global and detailed design, but are less satisfactory in the
handling of data. Areas not well covered by current PDL’s seem to
be dynamic structure; data flow and data derivation; abstract data
representation; and all auxiliary content, namely, decision details,
error handling, performance estimates, and verification information.

Another interesting observation is the number of disparate
approaches taken in the development of design languages. On the one
hand, there are approaches that start from statement of
requirements. Proponents of HOS claim that it can be used to
represent requirements, specification, and design of software. PSL,
originally designed for problem statement of business information
systems, was also meant for logical systems design. Both stop short
of detailed design. On the other hand, programming languages are
being extended to form design languages: PDL2 is extended from
PASCAL; IBM PDL and CFG PDL are both pseudo-code similar to PL/l.
Then there is MIL75, whose proponents advocate the use of a language
for detailed design (languages for programming-in-the-small)
entirely different from languages for global design (module
interconnection languages). Much overlap seems to take place among

117

the areas of requirements, design, coding, and documentation,
although there seems to be some indication that global and detailed
design issues be considered separately. Peters and Tripp, in their
report on graphical and non-real-time design representations
[Pete76], actually dealt with the two groups separately.

Practitioners spoke of ‘requirements languages’, “specification
languages’, and “design languages’ as distinguished from programming
languages, and yet their work resulted in products that do not
distinctly separate the associated activities. One basic question
is left unanswered: should different languages be used for
requirements, design, and coding, or will one language ultimately
suffice? If one language suffices, no one has yet come up with such
an all encompassing language. 1f different languages are required
because of unresolvable differences in the various functions, then
the questions of smooth transition from one stage to the other and
verification issues have to be addressed.

Meanwhile, the study of PDL characteristics attests to the fact
that most PDL’s, with all their imperfections, are definite
improvements over flowcharts. They may slowly but surely help point
the way toward building better software.

118

Alfo76

Aust76

Boyd76

Cain75

Chu76

DeRe76

Dijk68

Dijk75

Dijk76

REFERENCES

Alford, Mack

"A Requirements Engineering Methodology for Real-Time
Processing Requirements," 2nd International Conference
on Software Engineering, 13-15 October 1976, San
Francisco, Calif.

Austin, S. L.; B. P. Buckles, J. P. Regan

SSL - A Sof tware Specification Language, SAI-/7-537-
HU, Science Applications, Inc., Huntsville, Ala., Jan.
1976.

Boyd, D. L.; G. J. Gustafson

The Design Methodology WELLMADE and its Relationship
to the Software Generation Process: An Overview,
Corporate Research Center, Honeywell, Minneapolis, MN,
Oct. 1976.

Caine, S. H.; E. Kent Gordon
"PDL - A Tool for Software Design," National Computer
Conference, 1975.

Chu, Y.

"Introducing a Software Design Language,'" Proceedings
of the 2nd International Conference on Software
Engineering, Oct. 1976.

DeRemer, F.; H. H. Kron
"Programming-in-the-large vs. Programming-in-the-small,"
IEEE Transaction on Software Engineering, June 1976.

E. W. Dijkstra

"The Structure of the “THE’ Multiprogramming System,"
Communications of the Association of Computing
Machinery, May 1968.

Dijkstra, E. W.
"Guarded Commands Non-determining, and Formal
Derivation of Programs,' CACM 18, August 1975.

Dijkstra, E. W.

A Discipline of Programming, Prentice-Hall, England
Cliffs, N. J., 1976.

119

Earl74

Free76

Gaul76

Gerh76

Grah73

Hami76

Heim77

Hend72

Hoar72

Earley, J
"High Level Operations in Automatic Programming,"
Proceedings of A Symposium on Very High Level
Languages, CM SIGPLAN Notices, March 1974.

Freeman, P.; A. I. Wasserman
"Tutorial on Software Design Techniques," IEEE Catalog
No. 76CH1145-2C, Oct. 1976.

Gaulding, S. N; J. D. Lawson
"Process Design Engineering: A Methodology for Real-
Time Software Development,' Proceedings of 2nd

International Conference on Software Engineering, Oct.
1976.

Gerhart, S. L.; L. Yelowitz

"Control Structure Abstractions of the Backtracking
Programning Technique," presented at the 2nd
International Conference on Software Engireering, LEEE
Trans. on Software Engineering 1976.

Graham, R. M.; G. J. Clancey, Jr.; D. B. DeVaney
"A Software Design and Evaluation System,' CACM, Vol.
16, Number 2, Feb. 1973.

Hamilton, M; S. Zeldin

Integrated Software Development System/Higher Order
Software Conceptual Description (Version 1), U. S.
Army Electronics Command, ECOM-76-0329-F, NJ, Nov.
1976.

Heimburger, D. A.

Private Communication, Jet Propulsion Lab.,
California Institute of Technology, Pasadena, CA,
Jan. 1977.

Henderson, P.; R. Snowdon
"An Experiment in Structured Programming," BIT 12,
1972.

Hoare, C. A. R.

"Notes on Data Structuring" in Structured Programming,
(Dahl, D. J., Dijkstra, E. W., and Hoare, C. A. R.),
Academic Press, New York, N. Y., 1972.

120

~

Horo75

Kopp76

Kral75

Lisk74

McCr73

McGo75

Mill7l

Parn72a

Parn72b

PDL75

Horowitz, E.
“FORTRAN - Can It Be Structured - Should It Be?,"
Computer, IEEE Computer Society, June 1975.

Koppang, R. G.

"Process Design System - An Integrated Set of Software
Development Tools,'" Proceedings of 2nd International
Conference on Software Engineering, Oct. 1976.

Kraley, T. M.; J. J. Naughton; R. L. Smith;

N. Tinanoff

"Program Design Study," Structured Programming Series,
Vol. VIII, IBM, Gaithersburg, MD, RADC-TR-74-300, Vol.
VIII, May 1975.

Liskov, B.; S. Zilles
“"Programming with Abstract Data Types,'" ACM SIGPLAN
Notices, Volume 9, Number 4, April 1974.

McCracken, D. D.
"Revolution in Programming: An Overview," Datamation,
Dec. 1973.

McGowan, C. L.; J. R. Kelly
Top-Down Structured Programming, Petrocelli, 1975.

Mills, H.
"Top-Down Programming in Large Systems," from
Debugging Techniques in Large Systems, Prentice Hall

Inc., NJ, 1971.

Parnas, D. L.

"On the Criteria to be Used in Decomposing Systems
into Modules," Communications of the Association of
Computing Machinery, Dec. 1972.

Parnas, D. L.
"A Technique for the Specification of Software Modules
with Examples, Communications of the ACM, May 1972.

PDL - Program Design Language Reference Guide, Caine
Farber, & Gordon, Inc., March 1975.

121

Pete76

Reif75

Reif76

Rich76

Ross76

Schw74

Soft76

Stay76

Stev74

Teic74

Peters, L. J.; L. L. Tripp

"Design Representation Schemas," Boeing Computer
Services, Seattle, Washington, Nov. 1975, Revised
April 1976.

Reifer, D. J.; L. P. Meissner

"Structured FORTRAN Preprocessor Survey," Lawrence
Berkeley Laboratories, Univ. of Calif., UCID-3793,
November 1975.

Reifer, D. J.

"Sof tware Specification Techniques - A Tutorial,"
Digest of Papers, Compcon Fall”76 Conference, Sept.
1976.

Richter, M. D.; J. D. Mason, et al.

Software Requirements Engineering Methodology, TRW
Defense and Space Systems Group, Huntsville, Ala., 1
Sept. 1976.

Ross, D. T.; K. C. Shoman

"Structured Analysis for Requirements Definition,"
presented at the 2nd International Conference on
Software Engineering, TEEE Trans. on Software
Engineering, 1976.

Schwartz, J.

"Automatic and Semiautomatic Optimization of SETL,"
Proceedings of a Symposium on Very High Level
Languages, ACM SIGPLAN Notices, Mar. 1974.

SofTech, Inc.
An Introduction to SADT, SofTech document #9022-78,
Feb. 1976.

Stay, J. F
"HIPO and Integrated Program Design,'" IBM System
Journal, Vol. 15, No. 2, 1976.

Stevens, W. P.j; G. J. Myers; L. L. Constantine
"Structured Design," IBM Systems Journal, May 1974.

Teichroew, D.; M. J. Bastarache; E. A Hershey III
An Introduction to PSL/PSA, ISDOS Working Paper No.
86, Univ. of Michigan, Ann Arbor, Michigan, March
1974.

122

Wils75

Wils77

Wirt7la

Wulf76

Zieg73

Zieg74

Van Leer, P.
"Top-down Development Using a Program Design
Language," IBM Systems Journal, Vol. 15, No. 2, 1976.

Wilson, M. L.

The Information Automat Approach to Design and
Implementation of Computer-based Systems, draft, IBM,
Gaithersburg, MD, June 1975.

Wilson, M. L.
Semantic Analysis and Description: Language Reference
Summary, draft, IBM, Gaithersburg, MD, March 1977.

Wirth, N.
"Program Development by Stepwise Refinement,"

Communications of the Association of Computing
Machinery, April 1971.

Wulf, W. A.

"An Introduction to the Construction and Verification
of Alphard Programs,' Proceedings of the 2nd
International Conference on Software Engineering, Oct.
1976.

Ziegler, E. W.

"The UMTA Specification Language and Translator -- An
Interim Report,'" The MITRE Corporation, MTR-6459,
McClean, VA, June 1973.

Ziegler, E. W.
"An Introduction to the UMTA Specification
Language,''ACM SIGPLAN Notices, April 1974.

