AD=A051 659

UNCLASSIFIED

FEDERAL ELECTRIC CORP VANDENBERG AFB CALIF F/6 972

COMPUTATION OF STATE VECTOR AND TRANSITION MATRIX FOR TRAM, (U)

JUN 77 6 T TOMPSON FO4701=72=C=-0203
PA100-77=18 SAMTEC=TR=77=-223

= . S
11 ‘wg lllll”

£ T\III‘ 25 nnr“*ﬂr‘f"

NATIONAL BUREAU OFS ANDARDS
MICROCOPY RESOLUTION TEST CHART

SAMTEC TR 77-223

ADA0S1659

LR

2
1

ﬂi]l, (LB COPY®

il i T

Prepared for

COMPUTATION OF STATE VECTOR
AND TRANSITION MATRIX FOR TRAM

FEDERAL ELECTRIC CORPORATION
VANDENBERG AFB, CALIF. 93437

1 JUNE 1977

UNLIMITED DISTRIBUTION

SPACE AND MISSILE TEST CENTER
Vandenberg AFB, Calif. 93437

This final report was submitted by Federal Electric
Corporation, Vandenberg AFB, CA 93437 under Contract
FO 4701-72-C-0203 with the Space and Missile Test
Center, Vandenberg AFB, CA 93437. Operations Research

Analyst,- Mr. John M.Conne , XRQR, was the Division
Scientist-In- ~-Charge.

- e

i -

This report has been reviewed by the Infornat1on Office
(0I) and is releasable to the National Technical Infor-
maticn Service (NTIS). At NTIS, it will be available
to the general public, including foreign nations.

This technical report has been reviewed and is approved
for publication.

JOHN McCONNELL GS-13 CLA

Project Scientist Ch1ef Requ.q;ments & Eval.
Div1510n

|
J
|
|
FOR THE COMMANDER |
ROBE FOSTER Colone1 USAF
Director of P]ans Programs & Resources i

T

——

sthnsin sl

e

SECURITY CLASSIFICATION OF THIS PAGE (When Data Fntered)

(\AREPORT DOCUMENTATION PAGE

READ INST
BEFORE COMPLETING FORM

RUCTIONS

1%

Ty

SAMTEC JTP-77-223

\ REPORT 2. GOVT ACCESSION u(rf.jzcmsm‘s CATALOG NUMBER

(e]

@

PORT! & PERI

L

i ram ’ e .
LQOMPUTATION OF STATE YECTOR AND JRANSITION / 1(_Final /121 Mar 76 -1 Jun 7
e e - Technical Report

!

FATRIX FOR TRAM .

— f /% -

. REPORT NUMBERN

PALOF-77-1

/33 4
Gene l /‘Tompson / Contract

RANT NUMBER(s)

Space Mi

\
3

FM761-72-C76253 ;

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Federal Electric Corporation,

10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

P.0. Box 1886 PE 65807F
Vandenberg AFB, CA 93437

11. CONTROLLING OFFICE NAME AND ADDRESS
Space and Missile Test Center // 1J 77
Code XRQ
Vandenberg AFB, CA 93437 71

4. MONITORING AGENCY NAME & ADDRESS/if different from Controlling Office) 1

Same

S. SECURITY C

o
Unclass /

(of

SiANEDUL

‘Sa. DECL ASSOEFICATION DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Unlimited distribution

Approved for puli

DISTRIBUTION €77 =

Distribution Uniiriiiod !

Unlimited distribution

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il neceasary and identily by block number)

.Stgte Vector, Transition Matrix Numerical Integration, Numerical Partial
Differentiation, Spline Polynomials, Filtering, Algorithmes, Subroutines

entiation and interpolate using Spline polynomials.

M‘ST.ACT (Continue on reverae side if necessary and identily by dlock number)

is report contains the analysis and documentation of subroutines which
contain the capability to efficiently compute the state vector and tran-
sition matrix needed for the Kalman Filter in TRAM, a post flight esti-
mation program. The analysis contains the development and testing of
algorithms to numerically integrate, perform numerical partial differ-
The subroutines, which
are documcnted in this report, use these algorithms to compute the state

ler

Qn

oD |:2:'f’, 1473 EOITION OF 1 NOV 63 1S OBSOLETE

SECURITY CLASSIFICATION OF THIS PA

Yp5 (7

e 2
GE !;'hm Dﬂ-ﬂ-ud)

A

$
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

vector and transition matric for the Kalman Filter. This capability has
more general use than for TRAM. :

\
\

Mcmsion -
s Nt St

(] Soff Secties [}
BNANNOURCED B
JHSTIFIGATION

SIRTRIBUTION,/AVAILABILITY COUES’

T T

AVAIL wad/o6 SPEGIAL

ol]

B et

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Section

I

Il

[

Iv

TABLE OF CONTENTS

INTRODUCTION

1.3
1.2
1.3

TRAM
The Estimation in TRAM
The Purpose of this Study

CONCLUSIONS

é.)
4.4
2.3
2.4
€.5

The Three Areas of Study

The Conclusions Concerning Numerical Integration
Conclusions Concerning Numerical Partial Differentiation
Conclusions on Using Spline Interpolating Polynomials
Summary of Results

MATHEMATICAL DESCRIPTION

3.1
3.2
a3
3.4

The Mathematical Description of the Integration Algorithm
Algorithms for Numerical Partials

Spline Interpolation

The Generalized Transition Matrix

DESCRIPTION OF SUBROUTINES

4.1
4.2
4.3
4.4

fhe Capabilities of the Subroutines
Subroutine INTCON
Subroutine INTERP
Other Subroutines

NUMERICAL VERIFICATION

5.1
9L
°.3
5.4

Verification of the Numerical Integration

Verification of the Accuracy of the Numerical Partials
Verification of Accuracy of Spline Interpolation
Numerical Error Summary

Page

(=2 B> TS , T - S N = od

(o]

10
1
14

16
16
16
16
16

17
17
17
18
19

T e i z T s P ———

TABLE OF CONTENTS (Cont)

Section Page

VI DOCUMENTATION OF SUBROUTINES 21
6.1 General Comments on Documentation 21
6.2 INTCON Subroutine Description 22
6.3 INTERP Subroutine Description 26
6.4 INT Subroutine Description 29
6.5 PVXTRP Subroutine Description 32
6.6 INTQ Subroutine Description 38
6.7 DPHINV Subroutine Description 4
6.8 FMATRX Subroutine Description 44
6.9 DRGPAR Subroutine Description 47
6.10 ROTPAR Subroutine Description 49
6.11 GRVPAR Subroutine Description 52
6.12 EGRAV Subroutine Description 55
6.13 DIFFUN Subroutine Description 58
6.14 FVPMAT Subroutine Description 61
6.15 CON Subroutine Description 65

i
i1

COMPUTATION OF STATE VECTOR AND
TRANSITION MATRIX FOR TRAM

I. INTRODUCTION
%3 TRAM (Trajectory Reconstruction Analysis Method)

TRAM will be a system of subroutines produced for SAMTEC which, running
under the control of a main program, will use telemetered inertial guidance
data and metric sensor data to estimate selected parameters of the missile,
the sensors, the earth and the atmosphere. These parameters will include,
for example, the position and velocity of the vehicle, coefficients of the
error models for the guidance system and for the metric sensors. Normally,
parameters of the earth and atmosphere will not be estimated. It will be
possible, however, to propagate the effect of errors of these, or any of
the parameters not being estimated, on those being estimated. TRAM will

be useful for many purposes, such as mission planning and special studies,
but it will be used mainly for metric sensor performance analysis and will
subsequently become a part cf the Metric Integrated Processing System (MIPS).

1.2 The Estimation in TRAM

The parameters being estimated are called the state vector. The estimation

is an iterative process which takes place in two steps. The first is the
optimal estimation of the state vector and its covariance matrix at any

given time using all the data up to and including that time. The second

step is to compute the optimal estimate of the state vector and its covariance
matrix at any time using all the data. The first step is called filtering.
The second is called smoothing.

The filtering in TRAM will be done by the Carlson square root adaptation of
the extended Kalman filtering algorithm [1]. The Kalman algorithm is applic-
able to linear systems and in this application the equations are linearized
about a nominal state vector.

There will be two options for smoothing, dependent upon the segment of the
trajectory where the data is taken from. In powered flight a fixed interval
smoother will be used, and during free fall, the smoothing will be done by
retrograde integration. Figure 1 gives a functional flow of the filtering
and smoothing TRAM will perform.

1.3 The Purpose of this Study

The calculations within the dashed box in Figure 1 were studied in this
effort. The nominal state vector is computed by integrating the position
and velocity from one data time to the next. With the nominal state vector,
the transition matrix can be computed. The computation of the transition
matrix will be by numerical integration also. Since the intervals between
data times are normally small (.1 sec or less), and the state vector and
transition matrix are needed at each data point, computation times would be
excessive. Because of this, more efficient algorithms were required. These
were devised and numerical experiments were made to test their execution
time and accuracy.

Therefore, the main purpose of this effort was to establish efficient algo-
rithms and subroutines that will compute (1) the state vectors and transition

matrices, (2) numerical derivatives and (3) numerical integrals that are
needed for TRAM.

TRAM

£Lp

INITIALIZE
PARAMETERS

y

INITIALIZE
STATE VECTOR
& COVARIANCES

1

INITIALIZE
REAUING

s

READ
ONE DATA RECORD

Y

PROCESS DATA

¥

UPDATE
STATE VECTOR
& COVARIANCES

CALCULATE
STATE VECTOR

Y

CALCULATE
TRANSITION MATRIX

L—— ———_J

ESTIMATION

FLOW

EXTRAPOLATE
STATE VECTOR
AND
COVARIANCE MATRIX

{

GO TO

ﬁ‘{ NEXT DATA RECORD

P

INITIALIZE
SMOOTHING

[

T—"H

SMOOTH STATE VECTOR
AND COVARIANCE
AT GIVEN TIME

REACHED
INITIAL TIME

L

G0 TO
PREVIOUS RECORD

o

FIGURE 1
3

CHART

II CONCLUSIONS

2.1 The Three Areas of Study

Three problems were studied. One was the size of the integration step

which would give adequate accuracy when integrating the equations of motions,
the transition matrix and its inverse. Another was whether or not numer-
ical, rather than analytic partials could be used in computing the transi-
tion matrix and its inverse. The third was whether or not Spline inter-
polating polynomials could be used to obtain values of position, velocity,
the transition matrix and its inverse within the intervals of integration.
The following results for the free-fall segment of the trajectory are given.
They do not necessarily apply to powered flight or reentry.

2.2 The Conclusions Concerning Numerical Integration

Numerical integration formulas can be divided into two classes, one step

and multi step methods. The one step methods use only the information at

the current time step to integrate to the next time step. Some algorithms
compute values of the variables being integrated within, or at the end of

the current interval being integrated over. Methods which are of this class
are the Euler method, the modified Euler method and the Runge-Kutta methods.
There are many Runge-Kutta methods differing because of the order of their
accuracy and because of the specific constants used in the algorithms. The
Euler method, is less accurate than the modified Euler which is, in turn, less
accurate than any of the Runge-Kutta methods. However, the Euler method takes
less time than the modified Euler, which in turn, takes less time than any

of the Runge-Kutta methods.

The multi step methods are numerous. They use information at past steps to
integrate from the current step to the next. All of these methods, however,
require that not only the function being integrated but its derivates up to
the order of the algorithm be continuous. This is not the case in this
application, and therefore, these methods cannot be used.

Results from numerical experimentation have determined that the fourth order
Runge-Kutta gives the best accuracy and computation time when compared with
the Euler and modified Euler methods. It has further been determined that

a step size of five (5) seconds may be used when integrating the equations

of motion, the transition matrix and its inverse. These results are valid
because, even though the Runge-Kutta takes more time per step than the

Euler or modified Euler methods take, the step size can be appreciably

larger because of the much greater accuracy of the Runge-Kutta algorithm.
Another reason for the larger step size is that during free-fall, acceleration
is slowly varying. During powcred flight the acceleration is much greater, and
a smaller step size will be needed.

.3 Conclusions Concerning Numerical Partial Differentation

The differential equations of metion need to be differentiated with respect
to position and velocity in order to obtain the transition matrix and its
inverse. This study has shown that these partial derivatives can be com-
puted numerically, rather than analytically, with a central difference
formula. The study was made by comparing the results of the numerical
differentiation with the analytic differentiation.

If the analytic differentiation is done without mathematical errors, and

the evaluation of the formulas is done with infinite precision, then the
values would be exact. However, analytic partial differentiation normally
becomes very detailed and numervus terms are developed. As a result, chances
of error are high and very thorough checking is needed. Moreover, if there
are a large number of terms, round off errors can degrade the accuracy of

the computation.

Cften, numerical partial differentiation is simple to program compared with the
analytic approach. Once a subroutine to evaluate the function has been
developed, all that is required to obtain the partial derivative with respect
to a given variable is to evalute the function for two different values of

the variable, leaving all the other variables the same; then, form a quotient
of the difference of the values of the function divided by the difference

of the two values of the variable. Although this is easy to perform on a

computer, there are truncation and round off errors associated with this \ |
method which the analytic approach does not have. The reduction of these
errors to an insignificant value was one of the goals which this study achieved.

There is another advantage to obtaining partial derivatives numerically and
that is it is much more flexible. The acceleration calculations depend upon
the model of gravity acceleration, of course. There are many gravity models
and even the form of them can change. To write down the partial derivatives
of all of them would be a monumental task indeed. However, partials can

be obtained relatively simply by numerical differentiation.

2.4 Conclusions on Using Spline Interpolating Polynomials

The position, velocity, transition matrix can be integrated accurately at
step sizes up to five (5) seconds during free-fall, but the values of these
quantities will be needed at every tenth second or at smaller intervals.

In this study it was determined that values at the finer mesh can be obtaired
satisfactorily by interpolation with Spline polynomials.

Spline polynomials are constructed such that the function and a specified
number of its derivatives fit data at the end points of an interval. In
the case of the state vector, the position, velocity, and acceleration are
given at the end points. For each of the three variables this specifies
six conditions, and therefore, a quintic polynomial is determined. For
the transition matrix and its inverse, the function and its derivative are
given at the end points of the interval. This specifies four conditions,
and therefore, a cubic is determined.

This study has shown also that the velocities in the state vector can be
obtained satisfactorily at the finer mesh by evaluating the derivatives of
the Spline interpolating polynomials that have been derived for position.

2.5 Summary of Results

The amount of computation time can be reduced appreciably by integrating
the state vector, the transition matrix and its inverse over a five second
interval and then obtaining these quantities at the finer intervals of the
data rate (0.1 second or less) by using Spline interpolating polynomials.

It has been determined that the accuracy of these algorithms s sufficient
for the estimation performed in TRAM.

It has been determined also that the partial derivatives needed to calculate
the transition matrix can be computed by numerical partial differentiation
with accuracy sufficient for TRAM. Computation of derivatives numerically
will improve computation times and allow for greater flexibility.

Therefore, the purpose of this effort has been accomplished and algorithms
and subroutines have been developed that will compute, (1) the state vectors
and transition matrices, (2) partial derivatives, and (3) the numerical
integration needed for TRAM.

I MATHEMATICAL DESCRIPTION
3.1 The Mathematical Description of the Integration Algorithm
The differential equations of the motion of a vehicle are given by

p(t) = w(t)
v(t) = a(p(t), v(t))
(3.1.1)
with the initial condition of

p(o) = p,

v(o) = Vo

where p(t) is the position at t, v(t) is the velocity at time t and
a(p(t), v(t)) is the acceleration. The acceleration has the form

a(p(t), v(t)) = ag(p(t)) + a.(p(t), v(t)) + a,(v(t))

(3.1.2)

Where ag is the gravitational term and is a function of position, a, is the
acceleration which would be sensed because the equations are in a rotating
coordinate system, and ay is the drag and 1ift term. In the case under
study free fall,

39
The differential equations of the transition matrix are given by

at) = F(t)a(t)
(3.1.3)
Q0) = I

Q is a square matrix of order 6 and F is determined by differentiating equations

(3.1.1) with respect to position and velocity. F is, therefore, equal to

0 1
3a(giv) aagg'v) (3.1.4)
F =
p v

where each partition of F is a 3 x 3 matrix.

Both (3.1.1) and (3.1.3) are integrated by the same algorithm and, therefore,
the equations are written in general form

X(t) = £ (X,t)

(3.1.5)

X(0) X

(o}

and the algorithm is applied to the general form.

The method used is the standard fourth order Runge-Kutta method [2]. It
is described as follows.

Let the values of the variables be given determined at time t Therefore,
xn is known. The values of the variables at time tn+] are then determined
by these equations.

K] = hf(Xn, tn)
K2 = hf(Xn + K1, t, * h/2)
Ky = hf(Xn +1/2 Kss th * h/2)

Ky = hf(xn + Kyt + h)
1
In the formulas above h is the step size and the function f is the right

hand side of the differential equations. X represents the unknown variables
being integrated.

e ———— o e it S iab g bt T

3:3 Algorithms for Numerical Partials

From equation (3.1.4) it is seen that the partials of acceleration with
respect te position and velocity are needed. Equation (3.1.2) gives the

i

form of the acceleration, with ay = 0.

The gravity a, is the rotation term and has a very simple form which can

—————————
¥ .
-

f" be differentiated analytically with ease.
-
i The gravity term ag may vary markedly in its form and the number of terms
' it has. This leads to complicated analytic partials and, therefore, the
F- numerical approach was used. The equation can be derived zimply from a
iv Taylor series expansion.
} ' Let
b
?‘“ xo + AX = X]
F: xo - AX = X_-l
L : N o
’r f(x]) = f(Xo) + AXF (XO) + 3T f (XO) + 3T f (n) (3.2.1)
boe
where
"o
o o 2 T h
) (X) = #(X) - AR} » axt) - & Ll (3.2.2)
| -1 0 0 &Y () B e
b where
b
f M RSN
r
}nm Subtracting the second equation from the first, we have
L.“] Ax3 L] [N}
‘ f(x]) - f(x_1) = 20X f (xo) t ST [f'''(n) + £ (£)] (3.2.3)
Therefore
TR . pay o SEIPTR S P (3.2.4)
0

oo

26X T2

S T T L P vp—

IN1s 1S the central uitrerence formuia for the aerivation of r(X) at o

The truncation error is given by the second term on the right hand side of
the equation. The trucation error is seen to be of order (AX)Z. Therefore,
the formula used to compute the partials is

where the value of AX was determined to be five.
3.3 Spline Interpolation

Spline interpolating polynomials are used to obtain values of the state
vector and the transition matrix within the five second interval of inte-
gration. The state vector uses a quintic Spline, and the transition matrix
and its inverse uses a cubic Spline. The development that follows is
general and therefore, applies to both cases.

Suppose a function f(t) and its derivatives up to and including nth order

are given over an
round off errors,

[o, 11].

Let

where

-
"

Define g(u)
Then

o' (u)

where the prime denotes differentiation with respect to the variable in the

parenthesis.

3 fg}x + AX) - Agfff AX) (3.2.4)

26X

interval t, st Because of improvements in the
the interpolating polynomials are developed over the interval

[}

T f'(ta + uT)

T2 £ (t, + uT)

™ f(")(ta +uT)

1

Let the spline for g(u) on the interval [0, 1] be g (u); and f (t) be

defined as follows:

f(t) = gl(t - t)/T)
Then

£1() = 19" ((t - t)/M)

#M(e) = ;}5‘"’(& - £,)/M)

What is given is F(t), £'(t)s..., f("’”(ta). ft,), £'(ty),..

f("'])(tb). From these the following is computed.

g(0) = f(t,)

g'(0) = TF(t)
g(ﬂ-])(o) " Tn-]f(n‘])(ta)

g(1) = f(tb)

g'(1) = TH(t,)

g(n-])(]) = Tn-'f(n-]) (tb)

From these it is possible to get the coefficients of the normalized Spline

on [0, 1]:
2n-1

g(u) = Ag+Au+ ... +A, U

by solving the system of linear equations
g(0) = g(0)

g'(0) = g¢'(0)

12

o™ Vi) « g™
g(1) = g(1)

g'(1) = ¢'()

¢ V() = N

For the quintic Spline the system of equations would be

Ay = 9(0)

Ay = g¢'(0)

A, = g''(0)/2
A5+A4+A3+A2+A]+A0 = g(1)
5A5 & 4A4 + 3A3 i 2A2 + A] = g'(1)
20A5 + 128, + 6A, + 2A2 = g"(1)

The first three equations give the values for Ao, A], and AZ' The values
for A5, A4 and A3 are determined by the last three equations. This, then,
determines the Spline polynomial for position in the state vector. The
velocity is determined by differentiating this polynomial and dividing

the derivative by T. This would be done for each variable, x, y and z.

The equations for the transition matrix or its inverse would be

Ao = g(0)
A] = g'(0)
Ay + A, + Ay + Ay = g(1)

Ay 4 2h, + A =g'(1)

These equations can be easily solved and the coefficients for the cubic
are thereby determined. A cubic Spline is needed for each of the 36
elements of the transition matrix and its inverse.

13

-,ﬁ~<._u

T Y - o

Then in general, ; is the nth order Spline segment on [ta' tb] approximating
f, where

f(t) a(u)

£1(t) .}, g’ (u)

t - ta
U’-—T——
=(n-1) o | ~(n-1)
P = s L
u.-—T_—-
3.4 The Generalized Transition Matrix

The solution of the differential equation

X(t) = F(t)X(t) + G (t)u(t)

X(t)) = X,

is given by [3].
K() =0 (¢, t)) DX + 77 O(tg 0)G(o0) ulo)do]

0
where 0 (t, t,) satisfies the differential equation

0 (t, t)) =F (£)0(t, t), 0 (tgs ty) = 1

0 (t, t)07'(t, t) = 1
Therefore

0 (£) 077 (8, t) + 0(t, £)07 (ks ¢) =0
and

't t) = 7N 0 £ 07Nk, 8

14

Pt W

07 (6 1) = - 07k e)F(R)
0 (e, t) = 1

Now let u(t) = 0, and let X, be arbitrary.

Then

X(t) = 0(t, t)X

X(s) = O(s, t)X,
But also

X(s) = 0(s, t)x(t)
Therefore

0(s. t;) = 0(s, £)O(t, t)
Now let s = t

I o= 0 (e, t)0(t, t)
and so

Oty t) = 07'(¢, t,)
From the equation

0(s, t) = B(s, t)O(t . t)
It is clear that

0(s, t)

0(s, t)07 (¢, t,) (3.4.1)

Since s and t are arbitrary, (3.4.1) is a way to calculate a transition
matrix from one arbitrary point to another.

15

e e . et et

IV DESCRIPTION OF SUBROUTINES
4.1 The Capabilities of the Subroutines

With the mathematics set forth, it is now possible to describe how it was
implemented. There were two subroutines developed. INTCON integrates the
state vector and the transition matrix, and then calculates the coefficients
for the interpolating Spline polynomials. It uses the Runge-Kutta inte-
gration scheme, and when the transition matrix is integrated, the partial
derivatives in the F matrix, are calculated numerically. Moreover, it
computes the Spline polynomial coefficients as described in Section 3.4.

The second subroutine developed was INTERP. It calculates the inter-
polated values for the state vector and the transition matrix. The tran-
sition matrix is from one arbitrary point to another. The mathematics
of Sections 3.3 and 3.4 have been employed in the algorithms in this
subroutine. INTERP must be called after INTCON.

4.2 Subroutine INTCON

The subrqutine INTCON calls two subroutines INT and CON. INT performs the
integration and CON calculates the coefficients of the Spline polynomials.

4.3 Subroutine INTERP

The subroutine INTERP first calculates the interpolated values of the

state vector for an arbitrary time t,. It then calculates the transition
from the last time t;_, to the current t;. It does this by finding the
inverse of the transition matrix from the beginning of the interval to t, ,.
Then it finds by interpolation the transition matrix from the beginning

of the interval to t, and multiples the two matrices together.

4.4 Other Subroutines

These two subroutines call others. Altogether there were fourteen subroutines
developed.

16

V. NUMERICAL VERIFICATION
5.1 Verification of the Numerical Integration

The first steps taken to determine which of the one step methods would be
adequate were to run the three methods, the Euler method, the modified Euler
method and the Runge-Kutta method, over a large segment of the trajectory
and see if adequate ancwers could be obtained. Only the Runge-Kutta gave
answers which were accurate enough.

With the method of integration selected it was then possible to determin:
an optimum step size which would give the best accuracy. A step size of

one second and a step size of five seconds gave answers which agreed to more
than 0.001 foot in position and to 0.00001 foot per second in velocity when
integrated over an interval of 1500 seconds. Consequently, the five second
step size was chosen.

The magnitudes of the round off and transition errors caused by the numerical
integration are well below errors from other sources and therefore, will not
affect the estimation capability in TRAM. The total CPU time to integrate the
state vector, the transition matrix and its inverse 1500 seconds was two
minutes and 32 seconds. This is an acceptable execution time.

5.2 Verification of the Accuracy of the Numerical Partials

The transition matrix is initialized to the identity matrix every five seconds
and then integrated for a five second span. To bound the error~ caused by the
use of the numerical partials, this was done twice, once using analytic partiais
and once using numerical partials, and the difference between the two transition
matrices was computed. This difference matrix is then multiplied by a vector
which has as its elements the largest error which can occur at any step in
position and velocity. The product of the matrix times the vector gives

the maximum error that can occur at each step caused by the use of numerical
partials. If the resulting vector is multipled by the number of steps, a

bound for the total error due to numerical partials is obtained.

17

In the error matrix which was obtained by subtracting the transition matrix
computed using analytic partials from the transition matrix using numerical
partials no term was larger than 10']4. This meant that the terms which propa-
gates position and velocity errors into position and the terms which propa-
gate position and velocity errors into velocity were all less than 10 .
Further, the maximum TRAM estimation error which can be made in position at
any step is less than 100 feet and in velocity it is one foot per second.

Since the data could be taken at one tenth second for 1500 seconds, their
would be 15000 steps. These numbers provide the following bounds for the
errors caused by the use of numerical partials.

i IR 102
< 15000 X X

€14 we wh 1

ep & 1515 % 1079 feet

gy & 15.15x 1077 feet/sec

where €1p is the error in position caused by the use of numerical partials
and €1y in the error in velocity caused by the use of numerical partials.
Clearly, these errors are insignificant.

5.3 Verification of Accuracy of Spline Interpolation

To determine what the accuracy of the Spline interpolation was, the trajectory
was integrated to 1500 seconds. At the beginning, at mid trajectory and at
the end of the trajectory, Spline polynomials were fit over the five second
interval. The state vector, the transition matrix and its inverse were
approximated when analytic and also when numerical partials were used.

The error in position in the state vector was always less than 10'4 feet and
the error in velocity was less than 10'5 feet per second. In the transition
matrix, the term which propagates errors in position into posftion is less
than 10'9. and the term which propagates velocity error into position is
less than 10”7, The term which propagates position error into velocity

was less than 10"], and the term which propagates velocity error into

8

velocity was 10'9. Since position estimation errors are less than 100 feet
per step, and velocity estimation errors are less than one foot per step and
there are 15000 steps, the error terms are bounded by

-9 -7 2
€2p 10 10 10

| A
>

x 15000
€2y 10

where €2p and €y, are errors in position and velocity respectively which are
caused because of Spline interpolation.

R

Therefore i
2 -3
ezp < 3 x 10 7 feet
-5
€oy i 3 x 10 ¥ feet/sec.
5.4 Numerical Error Summary

For the state vector, the two sources of error, one from numerical inte-

gration and the other from Spline interpolation cause the following total
error

n

= .0011 feet

| A
o
+
o
i

2 X 10'5 feet/second

=
A
(=]
+
-—
(=)
0

where ”p and n, are position and velocity errors because of ..umerical
approximation. Both of these errors are insignificant.

For the transition matrix the following total ervor bounds are valid.

2x10° ¢ 3x10°% < n1x10°

pt <€1p * €2p

8 5

+ 3x10°°% < 3.1x10°

{A
L}
+

vt < 1y €2y 2 x10

19

T e T o ey —r— mrr e : *,r.,,"_j
]
)

Both of these errors are insignificant. It may be concluded, therefore,
that the errors due to the numerical approximations discussed here will in
no way impair the estimation accuracy in TRAM and further, it may be con-
cluded that these algorithms will greatly improve the speed and flexibility
of the computation of the estimation.

20

R Y e . - —— “d

VI DOCUMENTATION OF SUBROUTINES
6.1 GENERAL COMMENTS ON DOCUMENTATION

The documentation which follows is intended to be sufficient enough so that
the capabilities of these subroutines can be understood, used and modified.
The function that the subroutine performs is stated first. This is followed
by a description of the input and output variables. The restrictions, if any,
under which the subroutine must be used come next, and then a list of the
subroutines this subroutine calls is given. The documentation also inciudes

a listing of the subroutine and a flow chart.

The main subroutines are INTCON and INTERP, but these call others which are
documented also.

21

6.2

FUNCTION:

INPUT:
/VAR/

TS

ID

OUTPUT:

/VAR/

PHI

PHID
PHIN

PHIND
PHIO

PHIDO

INTCON SUBROUTINE DESCRIPTION

Integrates the state vector, the transition matrix and its inverse

over the interval of integration and then computes the coefficients

for the interpolating Spline polynomials. A quintic Spline is

determined for the state vector and a cubic Spline is determined

for the transition matrix and its inverse. |

|
. 2
Nine dimensional state vector containing position, velocity and |
acceleration. Only position and velocity are needed as input to ?
INTCON. ;

Time at the beginning of the intervai of integration.
Start time of the trajectory
Step size of the integration

Flag to indicate whether or not the inverse of the transition
matrix should be integrated.

Nine dimentional state vector which contains position, velocity
and acceleration integrated to the end of the interval

6x6 dimensional array containing elements of the transition
matrix at the end of the interval of integration

6x6 dimensional array containing the derivatives of PHI

6x6 dimensional array containing the elements of the inverse
of PHI

6x6 dimensional array containing the derivatives of PHIN

:
6x6 dimensional array containing the elements of the transition :
matrix at the beginning of the interval of integration

6x6 dimensional array containing the derivatives of the elements v
of PHIO
]

22

PHINO
PHINDO
X0

XC

PHIC

PHINC

6x6 dimensional array containing the inverse of PHIO
6x6 dimensional array containing the derivatives of PHINO

9 dimensional array containing the values of the state vector at
the beginning of the interval

6x3 array containing the coefficients for the quintic Spline
for the state vector. The first index the coefficients and the
second indicates the variable.

4x6x6 array containing the coefficients for the cubic Spline
for the transition matrix. The first index indicates the coef-
ficient and the last two indicate the element in the transitior
matrix

4 x 6 x 6 array containing the coefficients for the inverse of
PHI. The indices are the same as for PHIC.

SUBROUTINES USED: FMATRX, INT, CON

23

-

o - N—

- e ———
: i

-~

INTCON

IFT=TS

INITIALIZE
DIFFERENTIAL EQUATIONS

T

SET UP VALUES FOR

STATE VECTOR AT
BEGINNING OF INTERVAL

|

INITIALIZE
F MATRIX

l

INITIALIZE
OF
PHI AND PHIO

s

24

FLOWCHART

IF ID = 1

INITIALIZE
PHIN, PHINO,
PHINDO, PHIND

i

CALCULATE
PHID & PHIDO

T

CALL INT

INTEGRATE STATE VECTOR,
TRANSITION MATRIX &
INVERSE FORWARD

|

CALL CON
CALCULATE SPLINE POLY-
NOMIAL COEFFICIENTS FOR

STATE VECTOR TRANSITION
MATRIX & INVERSE

LEVEL

1SN
ISN
ISN

1SN
ISN
1SN
ISN
1SN
ISN
ISN
ISN
ISN
1SN
ISN
ISN
Isn
ISN
1SN
1SN
ISN
ISN
ISN
ISN
ISN
1SN
ISN
ISN
ISN
1SN
ISN
ISN
1SN
ISN
ISN
1SN
ISN
1SN
ISN
1SN
1SN

21.7 (JAN 73) 0S/7360 FORTRAN H

COMPILER OPTIONS = NAME =

0002
0003
000«

0005
0006
0007
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0021
0022
0023
0025
0026
(1 rag
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044

®STATISTICS®

®STATISTICS®

22

SOPTIONS IN EFFECT®

SOPTIONS IN EFFECT®

10

20

17
18
19

25

MAINOPT=01 L INECNT=60+SIZE=0000K

UATE

SOURCE +EBCOIC 9NOL 1ST +NODECK o LOAU yNOVAP ¢NOEDIT ¢ 10 ¢ NOXREF

SURKODUYINE INTCON
IMPLICIT QEAL®B(A=-N,0-2)

COMMON/ZVAR/X(Y) 9PHI(646) sPHID(G6) «PHIN(6s6) sPHIND(696) o
1 PRIO(GE) 4P41D0(6+6) sPHIND(646) +PHINDO(6+6) e XO(9) 9XC(603) o

2 PHIC(44646) yPHINC (44646)+TSeTeHID
COMMON/PHIM/F (646)
LDIMENSION OX(6)
IF(T.NE,TS) GO TO S
CALL DIFFUN(6sToXsDX)
00 3 I=1.43
X(1+6)=0X(13)

CONT INUE

LO 10 I=1.9

xX0(n)=x«I)

CALL FMATRX{X)

0O 20 [I=1.+6

00 20 J=1.+6

PHI(I+0) =000
IF(1.EQ.J) PHI(IJU)=1D0
PHIO(1eJ)=PHI(Lv))
CONT INUE

1F(10.EQ.0) GO YO 19
LO 22 I=1,+6

00 22 J=1,+6
PHIN(I9J)=PHI(1J)
PHINO(T) =PHI (1 yJ)
CONTINUE

DO 18 J=1.+6

00 18 [=1.+6
PHINDOC(],J) =000

DO 17 K=146

PHINDO (T ¢ J) ==PHINO(I yK) ®F (Ky J) +PHINDO (I J)
PHIND (I ¢ J)=PHINDO(L D)
CONT INUE

CALL DPHI(PHI+PHID)

D0 25 I=1.+6

00 25 J=1.46
PHIDO(T «) =PHID(T)
CALL INT(XsUXsPRIPHIDIPHINIPHINDyToeHy 10)
CALL CON

RETURN

END

NAME= MAIN,OPT=01sLINECNT=60+4SIZE=0000K,

SOURCE +EBCDICyNOLISToNODECK ¢ LOAD ¢ NOMAP «NNEDT T4 10 ¢ NOXREF

SOURCE STATEMENTS = 43 +PROGRAM SIZE =

NO OJAGNOSTICS GENERATED

®seves END OF COMPILATION ®esses

25

1132

67K BYTES OF CORE NOT USED l%

BEST AVAILABLE COPY

BB i, Hete et e LT e D IS MR ST,

6.3

FUNCTION:

INPUT:
TI
HS
/VAR/

ID

PHIO

/TST/

OUTPUT:

/TST/
QI

S

INTERP SUBROUTINE DESCRIPTION

Interpolates the state vector to time TI using Spline polynomials,
obtains a transition matrix form TI-HS to TI by interpolation

Interpolation time

Difference between last interpolation time and TI

Time at the beginning of the interval

Flag to indicate how the inverse of the transition matrix
is to be computed

6x6 array containing transition matrix at the beginning of
the interval

6x6 array containing elements of transition matrix from the
beginning of the interval to time of last interpolation TI-HS

6 dimensional array containing state vector interpolated to
time TI

6 x 6 array containing the transition matrix from time TI-HS
to time TI

6x6 array containing inverse of transition matrix from beginning
of interval to TI-HS

6x6 array containing transition matrix to time TI

SUBROUTINES USED: PVXTRP, DMINV, INXTRP, FIXTRP, DGMPRD

26

P ——

INIERP FLOWCHART

CALL PVSTRP

INTERPOLATE STATE
VECTOR TO TIME TI

i

IFTI < T +HS

Q <— PHIO
g g
NO
! INTERPOLATE
S =
COMPUTE Ql S
FOR TI - Hs
IF ID =) COMPUTE
INTERPOLATE §™! = QI Q= S-QI

AT TI - HS

|

y

- BESTAVAILABLE COPY' --

2le7 (JAN 73) 057360 FORTRAN H DATE

' LEVEL
> COMPILER OPTIONS - NAME= MAIN,OPT=01+LINECNT=60¢SI1ZE=0000K
. SOURCE yEBCOIC «NOL I ST +NODECK 4 LOAD s NO“#AR JNOEDT T4 10 yNOXREF
ISN 0002 SUBROUTINE INTERP(TIsYeQoehS)
C SUBRUUTINE INTERCOLATES POSITION AND VELOCITY TO TIME TI USING THE
C SPLINE POLYNOMIAL AND STGRES IT IN Y. IT ALSO COMPUTES THE TRANSITION
C MATRIX FROM TI=-HS TO TI USING THE SPLINE POLYNOMIALS ANO STORES IT IN
c o.
ISN 0003 IMPLICIT REAL®B(A-H,0-2)
ISN 0004 COMMON/VAR/X (9) ePHI(646) «PHID(6+6) «PHIN(696) sPHIND(646) ¢
] PHIO(646) «PHIDO(6+6) sPHINO(646) sPHINDO(606) 9XO0(9) ¢ XC(693) ¢
2 PHIC(4¢6+6) yPHINC(49696) o TSeToHID .
ISN 000S COMMON /TST/ S(646)+QI(6,6)
ISN 0006 OIMEMNSION Y(6)9sQ(696) 9L 1(6) M) (6)
1SN 0007 CALL PVXTRP(TI,.Y)
ISN 0008 TU=TeHS+10-6
ISN 0009 IF(TI.LE,20~1) WRITE(6¢100) TIoTUsT
ISN 0011 100 FORMAT(2Xs*TIsTUsT"93E20,8/)
1SN G012 IF(TI.GT.TU) GO TO 10
ISN 0014 DO 5 1216
ISN 0015 00 5 J=146
ISN 0016 _ QU1eJ)=PHIO(I)
ISN 0017 S S(le«d)=Q(lsY)
ISN 0018 IF(TI.EQ.T) RETURN
ISN 0020 10 CONTINUE :
1SN 0021 IF(10.£0.1) GO 1O 1S 3
ISN 0023 00 12 I=1+6 1
ISN 0026 DO 12 J=1+6
ISN 0025 12 QI tIs) =St1ed)
ISN 0026 N=6
ISN 0027 CALL DMINV(QIsNosDsL1oM1)
1SN 0028 GO TO 20
ISN 0029 1S TExT[=HS
ISN 0030 CALL INXTRP(TE,QI)
ISN 0031 20 CALL FIXTRP(TI,S)
ISN 0032 IF(T1.LE.20-1) wRITE(6s110) S
ISN 0036 110 FORMAT(2X+*S*/46(2%+6E20,10/)7)
ISN 0035 CALL DGMPRDI(SsQl+1Q969646)
ISN 0036 RETURN
ISN 0037 ENOD
®OPTIONS IN EFFECTe NAME= MAINJOPT=01+LINECNT=60,SIZE=0000K, %
®OPTIONS IN EFFECT® SOURCE +EBCOTC +NOLIST +NODECK o LOAD s NOMAP ¢NOED I T+ 1D yNOXREF g
*STATISTICS® SOURCE STATEMENTS = 36 +PROGRAM SIZE = 1046 i
)
®STATISTICS® NO OIAGNOSTICS GENERATED f
®eeses ENO OF COMPILATION eecsss 75K BYTES OF CORE NOT USED

28 : ‘

6.4

FUNCTION:

INPUT :
X

PHI
PHIN
ID

H
OUTPUT:
PS

PHI
PHIN
DX
PHID

INT SUBROUTINE DESCRIPTION

Integrates state vector, transition matrix and its inverse from
T to T+H

9 dimension array state vector containing position, velocity and

acceleration
6x6 array containing transition matrix at time T
6x6 array containing inverse of PHI at time T

Flag to indicate if inverse of transition matrix should be
integrated

Step size of integration

6x4 array contains four intermediate values of the state vector
used in the Runge-Kutta integration algorithm for integrating
the transition matrix and its inverse

9 dimensional array state vector containing position, velocity
and acceleration at T+H

6x6 array containing transition matrix at T+H
6x6 array containing inverse of PHI at T+H
6 dimensional array containing derivative of X at T+H

6x6 array containing derivative of PHI at T+H

SUBROUTINES USED: DIFFUN, INTQ, DPHI, DPHINV

29

B e T e T T TR,

INT FLOWCHART

s

INTEGRATE
STATE VECTOR FROM
TTOT +H

!

EVALUATE RHS OF
DIFFERENTIAL EQUATIONS
WITH NEW STATE VECTOR

Y

CALL INTQ

INTEGRATE PHI FROM
TTOT +H

!

IF ID = 1
CALL INTQ

INTEGRATE PHIN FROM
TIRFE+H

30

S

s e e e S T e

P———
.
LEVEL 217 (JaN 73) 057360 FORTRAN H vaTE
COMP[LER OPT]IONS = MAME= MAINGORT=0L4L INECHT=A0,SIZE=0000K,
SOUMCE o BCULCoNOLIST «NODECK « LOBD yNOMAR ¢NOEDIT o 10 e NOXREF
IsmM 0002 SUBROUTINE [T (R sUXePHIsPRICIPHINPHIND s ToHo1D)
C SUSRO0UTINE INT OIVES THE VALUES OF POSITION AND VELOCITY. THE
C TRANSTITION MATK]A AND TS ek]VATIVE AMOs AS AN OPTIONe THt [NVERSF
C OF THE T<ANSITION AND ITS DERIVATIVE AT Time Ten, [0 1S A FLAC wHtCH
C INDICATES wHETrme~ THE INVERSE GF THE TRANSITION M4TwIXx ANOD (V3
C OtRlvaTt IS TO ot COMPUTED. Twmt POSITION AND VE: GCITY ARE STCHeD ¢ X,
C THE TERLZNSITION MaTRIXx AND 17S INVERSE AwE STORED N Pr] AND PrYQ
C THFE INVERSE OF TRANSITION MATRIX AND ITS DERIVATIVE AKE SICKRED IN
C PHIN AND PHIMND, -
Is+ 3003 IMPLICIT REAL®B(A=H,0~2)
1<~ 0004 UIMENSION X (1) oOX(1) oPHI(O0) v FHIDIGI0) ¢PHINIE6) yPHIND ‘€ 0",
RPV(6) oPS(Heb) s Y(6) eQ(6) DY (6) 0
8§ Ct3)Dte)
1SN 0005 EXTERNAL DPHI+OPHINV
ISN 0006 DATA €/270.5004100 /+0/1D0+22200+100/ !
ISN 0007 Lo 5 =146 {
ISN 0008 PV =X(]) £
ISN (6009 S PStIeld=x(])
Ism 0010 RELY
IsN 0011 DO 30 [=1+4
1SN u0le IF(l.EQ.1) GO TO 15
ISN CO01l4 K=]=]
1SN 0015 DO L0 J=146 4
IsM 0016 PV (J)=PS(Jel)+CI(K)®Q(J) 4
| _ISN 0017 10 PS(Je L) =PV D)
‘ ISM C01E 15 COtTINUE
ISN 0019 CALL DIFFUN(NeTsPVsOY)
1SN 0020 CO 20 J=1.+6
Ism voel 20 Q(J)=H*0DY (J)
1SN 002¢ DO 25 J=14+6
ISN 0023 €S ¥ () =x(J1+Q(I)*0(1) /600
ISy 002« 30 CONTINUE
isit 002s CALL DIFFUNINeToXeDX)
1S4 002¢€ 00 31 I=1.3
15N 0Qe? 31 xt1e5)=0x(1e3)
ISN G026 CALL INTG(PSeFHI«PHIDToHsKsOPHI) d
1SN 00¢9 LFCIDLEQLL) CALL INTQ(FSsPHINGPHIND s ToHeXeDPHINY)
IsN G631 RE TURN
ISN 003¢ END i
SORTIONS [N FFFECTe® NAME= MA[NGOPT=014LINECNT=604ST26=0000K,
eOPTIONS [N EFFECTe SOUNCE ot 8COTC yNOLISToNODECTH oL CAL aHOMAP WHNAEL I T o lUWNOXREF
°STATISTICS® SOUWCE STATEMENTS = 31 +PROGRAM SI2t = 16b4]

OSTATISTICS® NO D!AGNNSTICS GENERQATED

aesoevn

END OF COMFILATION eeesce 75K BYTES OF CORE NOT USED

- BEST AVAILABLE COPY

3

T £

T ————— ‘ - ' IRRPU——

6.5 PVXTRP SUBRQUTINE DESCRIPTION

FUNCTION: Interpolates state vector to time TE

INPUT:
TE Time at which the interpolating polynomial is to be evaluated.
/VAR/

XC 6x3 array containing the coefficients for the Spline interpolating
polynomial for the state vector. The first indicates the coef-
ficient and the second indicates the variable being interpolated.

OUTPUT :

¥ 6 dimentional array containing the interpolated values of position
of the state vector

ENTRY FIXTRP

FUNCTION: Interpolates values of transition matrix to time TE
INPUT:
TE Time at which interpolating polynomials are toc be evaluated
/VAR/

PHIC 4x6x6 array containing coefficients of Spline polynomials. The
first index indicates the coefficient and the last two indicate
the variable

QUTPUT:

Q 6x6 array containing elements of transition matrix at time TE

ENTRY INXTRP

FUNCTION: Interpolates inverse of transition matrix to time TE
INPUT:

TE Time at which the interpolating polynomial is to evaluated

32 ' j
:
|

/VAR/

PHINC 4x6x6 array containing coefficients of the Spline polynomials for
the inverse of the transition matrix. The first index indicates
the array and the last two indicates the element.

OUTPUT:

S 6x6 array containing the elements of the inverse of the transition
matrix for time TE

33

R

A R

-

PYXTRP FLOWCHART

‘ COMPUTE
| U= (TE - T)/H
l

. i

§

¥

J |
{

¥

i

r

i

i EVALUATE SPLINE

AT U FOR X, Y, Z

| EVALUATE DERIVATIONS

b OF SPLINE AND DIVIDE

; BY H FOR VELOCITY
b T

ESONSEE 1 oot SR S E R S A T

@ |

ENTRY:"FIXTIRP

U= (TE - T)/H

T

EVALUATE 6 X 6 SPLINES
FOR VALUES OF
TRANSITIGN MATRIX

35

ENTRY

INXTRP

COMPUTE
U= (TE - T)/H

T

EVALUATE 6 X 6 SPLINE
POLYNOMIAL S
AT U FOR INVERSE OF
TRANSITION MATRIX

36

-

LEVEL 21.7 (JaN 73) 057360 FQRTKAN H UATE

COMPILER OPTIUNS = NAME= MAINJOPT=01+LINECNT=60+¢SIZE=0000K
SOUNCE « toCOICHOLLST +NODECK + LOAD oNO AP oNOED I T4 ID e NOXREF
IsN 0007 SURROUTINE PVXTNP(TELY)
C SURWOUTINE PVXTRE(TEGY) EXTHAZCI ATED POSITION Aww VELOCITY TO TIME TE
C USING & QUINTIC SPLINE FOR HUSITION AND TS DEWIVATIVE FOw VELOCITY,.

-
C THE COEFFICIENTS FOR THE QUINTIC SPLINE ARE COMPUTED [N SUHHOUT INE §
C INTCON, INTERPOLATED POSITION AND VelLOCITY awt STORED IN v, !
ISN vood 1P ICIY REALYHtA=-HR.0=2)
ISN 0004 COMMONZVAR/X () oPH] (646) o FHID(6¢6) sPHINIOe6) « PHIND(646) «

1 PRICI6e6) sFAIN0C(640) ¢PHINO(6+6) sPHINDO(616) 9X0(Y) o XC(EeI) o
g PrIC(Gen'b) yPHINC(4eHheb) 9 TSeTohylD

1SN 0005 DIMENSION Q(646)
1sn U006 UIMENSION S(646)
fey 2007 DIMENSION Y (6)
1SN vQ0B US(TE=T)/H !
ISN 0009 Lo 10 I=1,3 %
ISN 0010 J=1e3 ;
Isn 0011 Y(L)= UeUcUOURUOXC (1] cUaUeUaUOXC(241) vUPUSUSXC (Il eUPUSRL (w0 i)
] sUeXC(5e])eXC(6,4]) L
1SN 0012 Y ())=500°U2UeeUXC(1e]) ¢4D0OURULISXC (20]) ¢3D02UCURXC(S30]) !
1 ecU0PU®XC(avi) *XC(SyI)
Isn 0013 Y(J)=Y(J)/H
1SN 0014 10 CONT INUE
ISN 0015 RETURN
ISN 0016 ENTRY FIXTRP(TE Q)

C SURKOUTINF FIXxTRO(TEWQ) EXTRAPOLATES PHI TO TIME TE USING A CUBIC
C S3LINt. THE COEFFICIENTS FOR THE CUBIC SPLINE ARE COMPUTED IN
C SUHPOUTINE [MTCONS INTERPOLATED VALUES OF Prl ARE STORED IN Q.

ISN 0017 Us(TF=T)/H
Isn 0018 U0 1S 12146
IsN 0019 ug LS J=1,6
ISN 0020 15 W(LeI)=00USYSPHIC (141 4J) ¢UPUSPHIC (20 19J) *UPHIC(3eleJ) sPHIC (G J) {
1SN 0021 »ETURN 4
IsN 0022 ENTRY INXTRP(TELS) i
C SUSOUTINE INXT=P(TesS) FXTRAPOLATES THE INVEKSE OF PHI TQ TIME TE q
C JSING A CURIC SPLINE, THE COEFFICIENTS FOR THE CubIC SPLINE ARE 1
C CO™EUTED IN SUERDJUTINFE INTCON, INTERPOLATED VALUES OF PHI INVERSE ARF f
C STOREN IN S
1eN 0023 Us(TE=T)/H ‘
1SN U024 DD 29 I=146 :
ISN 0025 L0 20 J=1.6
ISN 1026 20 StIed)=12@USPHINC (1ol sJ) ¢UPUCPHINC (2ol v J) *U®PHINC (200 J) ¢
2 PHINClGas] o)
ISV 0027 RETURN
ISN 0028 END .
@QPTIONS IN EFFECTe® NAME= MAINJOPT=0) LINECNT=60e5,/ 820000
SUPTIONS IN EFFECT® SOURCE +EHBCOICoNOLIST yNODECK s LOADoNUMAT o FOTToJDeNOXREF
®STATISTICS® SOUWCE STATEMENTS = 27 +PRQURAM SIZE = 1354

@STATISTICS® NO ODIAGNOSTICS GENERATED

essees END OF COMPILATION enesee 71K BYTES OF CORE NOT USED

BEST AVAILABLE COPY

37

— , o ————————

6.6 INTQ SUBROUTINE DESCRIPTION

FUNCTION: Integrates both the transition matrix and its inverse from
T to T+H. [The subroutine for evaluating the differential
equations is passed in via the calling list.]

INPUT:
PS 6x4 array containing the four intermediate values of the state
vector needed for the Runge-Kutta algorithm
PHI 6x6 array containing transition matrix or inverse at time T
) Time at beginning of interval of integration
H Integration step size
X 9 dimensional state vector at time T+H :
FQ Procedure which is called to evaluate the right hand side of the !
differential equations
OUTPUT:
PHI 6x6 array containing the transition matrix of its inverse,
dependent upon the way subroutine is called, at T+H
PHID 6x6 array containing derivative of what is in PHI at time T+H

SUBROUTINES USED: FMATRX, FQ

Wit

INTQ FLOWCHART

INTEGRATE PHI TO

TIME 7 + H

CALL FMATRIX

EVALUATE]

F MATRIX AT X ;
d

CALL FQ /I ;
COMPUTE |

DERIVATIVE OF PHI / !
AT T +H /

39 HL

e
-

3

BEST A h&'_,'.'l ,f. COPY 3

LEVEL 21.7 (JUAN 73) 0S/7360 FORTRAN H

COMPILER OPTJONS = MAME= MAIN,OPT=014LINECNT=60+SIZE=0000K
SOURCE +£EBCOIC «NOL IST oNODECK « LUAD +NOMAP ¢NOEDIT o ID «NOXREF

1SN 0002 SUBROUTIME INTO(PSyPHIPHIDeToHyXeFQ)
C SUHSRQUTINE INTQ INTEGRATES €1TmHeR TRANSITION “ATRIX FROM T TO Ten,
C THF COMPUTATION OF THE UERIVATIVES 1S SUPPLIEL BY AN EXTERNAL
C P2OCEDURE AND IS DESIONATED IN THE PARAMETER LIST AS FUe FS ARFE THE
C FOuk VALUES OF X NeeDED FOP THE RUNGE KUTTA INTEGFATION ALGORITHM, THE
C VALUE OF X AT Trmz INTERVAL OF INTEORATION IS DESIGNATED AS Xo IT IS
C USED TO EVALUATE PHID AFTER Thk VALUE OF Pn]l aT THE END OF THE
C INTERVAL HAS BEEN COMPUTED.
1SN 0003 IMPLICIT REAL®3(A-H,0=2)
1SN 0004 VDIMENSION PS(694) +PHI(6¢6) ¢PHID(H96) 9S5(696) «0(646)sU(696)4Y(6)
& C(3)+D(a)ex(])
ISN 0005 DATA C/290.500+100/,0/1005222D0,1D07
ISN G006 V0 5 1=1,46
ISN 0007 00 S J=1,6
[sN 0008 UCTod)=PHI(L o)
1SN 0009 S S(IeJ)=PHI(1s)
1SN 0010 D0 30 I=1.6
ISN 001]) IF(1.E0.)) GO TO 15
ISN 0013 K=]=1
ISN 0014 D0 10 J=1.6
ISN 0015 00 10 L=1+6
ISN 0016 10 UCJoL)=S(JeL) eC(K)®Q(JeL)
ISN 0017 15 CONTINUE
ISN 0018 DO 16 J=1+6
ISN 0019 16 Y(J)=FS(Jel)
ISN 0020 CALL FMATRX(Y)
{SN 002) CALL FQ(U.Q)
1S4 0022 DO 17 J=1.6
ISN 0023 00 17 L=1+6
ISN 002¢ 17 0(Jsl)=H®Q(JsL)
1SN 0025 00 25 J=1,46
ISN 0026 00 25 L=1+6
1SN 0027 25 PHI(JeL)=PHI(J4L) D) *Q(JsL) /7600
ISN 0028 30 CONTIMNUE
ISN 0029 capLL FMATRX(X)
ISN G030 CALL FQ(PHIPHID)
ISN 0031 RETURN
ISN 0032 ENO
SQPTIONS IN EFFECT® NAME= MAINGOPT=0]1+LINECNT=60+ST1ZE=0000K
®QPTIONS IN FFFECT® SOURCE + e BCOIC oNOL IST «NODECK ¢ LOAD yNOMAP ¢NrEDOTT o 10 +NOXREF
OSTATISTICS® SOURCE STATEMENTS = 31 +PROGRAM SIZE = 2008

OSTATISTICS® NO OIAGNOSTICS GENERATED

see0ee END OF COMPILATION weecee 7Tik 8YTes OF COFE NOT USED

40

DATE

2 A4
r-"‘??gw_.w.« it

6.7

FUNCTION:
INPUT:
Q
/FHIM/
F

QUTPUT :
bQ

FUNCTION:
INPUT:
Q
/PHIM/
F

0uTPUT:
0Q

OPHINV SUBROUTINE DESCRIPTION

Computes derivative of the inverse of the transition matrix

6x6 array containing inverse of transition matrix

6x6 array containing coefficients of differential equations for
inverse of transition matrix

bx6 array containing derivatives of the inverse of the t.an.iti
matrix

ENTRY DPHI

Computes derivatives of transition matrix

6x6 array containing transition matrix

bx6 array containing coefficients of differential equations for

transition matrix

6x6 array containing derivatives of transition matrix

4]

DPHINV FLOWCHART

B

COMPUTE
DERIVATIVE OF INVERSE
OF TRANSITION MATRIX

On

ENTRY DPHI

B

COMPUTE
DERIVATIVE OF
TRANSITION MATRIX

On

42

G uhipuatsion. .

I R —

LEVEL <¢1.7 (JAN 73) 0S/360 FORTRAN H UATE

COMPILER OPTJONS = NAME= MAINOPT=0]1+sLINFCNT=00+S1ZE=0000K,
1 SOUKCE «E5COTCoNOLIST o+MOUECK o LOAD «NO*#AR yNIEDIT o ID s NOXREF

1SN 0002 SURROUTINE DPHINV (0,00)

[sN 0003 IMPLICIT REAL®J(A-H0=2)

TSN (00« COMMONZPHIM/E (696)

1SN 0005 DIMENSION Q(606)40Q(646)

ISN G006 DO 10 I=1+6

ISN 0007 U0 10 J=1.6

IsNn 0008 0O (1+J)=000

IsM 0009 DO 10 K=146

ISN 0010 10 00(1eJ)=0DQ(1eJ)=Q(I4K)®F (KsJ)

ISN 0011 HRETURN

Isn 0012 ENTRY DPHI(Q+0Q)

I1sn 0013 DO 20 I=1,6

ISN 0014 DO 20 J=1,6

ISN 0015 LA(1+J)=000

ISN 0016 D0 20 K=146

ISN v017 20 DO (I9J)=DQ(1+J) *F (14K)®Q(KJ)

ISN 0018 RETURN

ISN 0019 END
®OPTIONS IN FFFECT® NAME= MAINsOPT=01+LINECNT=60+STZ2E=0000K,
®OPTIONS IN EFFECTe SOURCE +EBCOICoNOLISToNODECK ¢ LOAD ¢ NOMAP ¢ NPENTT 9 10 9 NOXREF
®STATISTICS® SOURCE STATEMENTS = 18 +PROGRAM SIZE = 800

®STATISTICS® NO DOIAGNOSTICS GENERATED

ssssae END OF COMPILATION ®sscas 79k HBYTES OF CORE NOT USED

8
8y ,
“
@

43

6.8 FMATRX SUBROUTINE DESCRIPTION

FUNCTION: Computes matrix which relates transition matrix and its inverse
to their derivatives
INPUT:

X 9 dimensional array containing position, velocity and acceleration

OUTPYT

r
I

6x6 dimensional array containing matrix which relates transition
matrix and its inverse to their derivatives,

SUBROUTINES USED: GRVPAR, ROTPAR, DRGPAR

DA AP
T

Ry

FMATRX FLOWCHART

COMPUTE
PARTIAL OF VELOCITY WRT
POSITION AND VELOCITY

]

ZERO VELOCITY
PART OF F MATRIX

|

CALL GRVPAR

COMPUTE GRAVITY
ACCEZLERATION PARTIALS
WRT POSITION

CALL ROTPAR
COMPUTE
ROTATION ACCELERATION
PARTIALS
CALL DRGPAR
COMPUTE
DRAG ACCELERATION
PARTIALS

45

LEVEL

ISN

eeeses tND OF CUMPILATION ®eccce

BESTAVALADI COPY .-

€le? JAN 13) 0S/7360 FORTRAN H
COMPILER NPTIONS ~ NAME= MAINeOPT20)«LINECNT=60+SIZEZ0000K,
SOURCE +EBCNDICHNOLIST oNODECK o LOAD 9 NOAR ¢NOEDIT o ID 9 NOXREF
0002 SUBKOUTINE FMATRX(X)

C THIS SUBROUTINE COMPUTES THE F MATKIX USED IN T~E DIFFERENTIAL
C EQUATION FOR PHI AND PH[INVERSE. THE DERIVATIVE OF PHI IS EQUAL TO
C F TIMES PHI. THE OewIVATIVE OF PHI INVERSE IS E~uaL TO MINUS PHI
C INVERSE TIME PHl. THESE EQUATIONS ARE INTEGRATED TO OBTAIN PHI, F IS
C STORED IN THE VARIABLE F.
IsN 0003 IMPLICIT REAL®B(A=H,0-2)
ISN 0004 COMMON/PHIM/F (646)
ISN 0005 DIMENSION X(9)
ISN 0006 0O S I=1+3
1SN 0007 00 S J=1,46
1SN 0008 F(I1+J)=000
1SN 0009 IF(J.EQe1¢3) FilsJ)=100
ISN (G01) S CONTINUE
IsN 0012 00 10 1=4,.6
Ism 0013 00 10 J=146
ISN 0014 10 F(leJ)=000
ISN 0015 CALL GRVPARI(X)
ISN 0016 CALL ROTPAR
ISN 0017 CaLL ORGPAR(X)
1SN 0018 KETURN
1SN 0019 END
®OPTIONS IN FFFECTe® NAME= MAIN,OPT=0)+LINECNT=60+SIZE=0000K,
SOPTIONS IN EFFECT® SNURCE 4EBCUIC«MNOLIST oNCLECK o LOAD «NOMAP s NOED I T ID s NOXREF
®STATISTICS® SOURCE STATEMENTS = 18 +PHROGRAM SIZE = So8

®STATISTICS® NO DIAGNOSTICS GENERATED

OATE

79k BYTES OF CORE NOT USED

Sk e s

6.9 DRGPAR SUBROUTINE DESCRIPTION

In this application this subroutine is a dummy subroutine. Drag is not
modeled in either the powered flight or free fall segments of the trajectory.
However, when the reentry portion of the trajectory is considered, these
partials will have to be computed.

47

BT AVALZE COPY o

- we g - x oy . e . -

LEVEL 21.7 ¢ Jan 73 057360 FORTRAN H VATE
: COMPILER OPTIONS = NAMES MAINGOPT=C] L INECNT=604S12E=0000K
i g SOURCE +EnCUTCoNOLIST yNOUECK o LOAU 91NO%AR ¢NOEDIT 4 [0 s NOXREF
1SN fQue SUARAUT [RE NRGPAR (X)
C SU=POUTINE URGPa~ COMPUTES ThE PARTIALS OF ACCEI EQATION QUE TO URAG
(§ C wlTh RESVECT TO POSLTION AND velOCITY., THESE ARE ADULEDL INTO THE MATRIX
C "
) 18N w003 IMPLICIT REAL®d(A=He0=2)
(1SN ¢OU% COMMON/PHIM/F (646)
18% GOdS DIMENSTION (9)
IS €006 S=100
C IsN Goo7? RE TURN -
1<% v0Us END
POPTIONS IN EFFECT® NAME= MAINJOPT=01+sLINECNT=604SIZE=0000K,
SOPTIONS IN FFFECT® SOURCE +EBCUTCyNOLIST yNODECK 9 LOAD ¢+ NUMAP 4N EUT T o ID ¢ NOXREF
OSTATISTICSe SOURCE STATEMENTS = 7 +PROGRAM SIZ2E = 238

eSTaT{STICSe NO DlAGNOSTICS GENERATED

scocee END QF COMPILATION cecses 79X BYTES OF CORE NOT USED

g

6.10 ROTPAR SUBROUTINE DESCRIPTION

FUNCTION: Computes partials of acceleration due to the rotation of the
coordinate system with respect to position and velocity

QUTPUT:

F Partials of rotational acceleration with respect to position
and velocity are added to 6x6 dimensional array containing F

SUBROUTINES USED: None

T wa—

49

ROTPAR FLOWCHART

COMPUTE AND ADD TO F
PARTIALS OF

ROTATIONAL ACCELERATION
WITH RESPECT TO POSITION

1

COMPUTE AND ADD TO F
PARTIALS OF

ROTATIONAL ACCELERATION
WITH RESPECT TO VELOCITY

50

BEST AVAILABLE cow |

LEVEL 2147 (JAN 73) 057360 FORTRAN H

JVATE
COMPILER OPTIONS = NAME= MAINGOPT=0] oLINECNT=60¢512E=0000K o
: SOURCE +EsCOICoNOL IST o NOUECK o+ LOAU ¢ NOVAR ¢NOEUT T o [U «NOXREF
ISN Coue SUERQUTINF ROTRaR
C SUBROUTINE PDOTRPAZ COMPUTES THt PARTIALS OF ACCHLERATION (UL TO TwHE
C =OTATION OF THE CARTH WITH RESPECT TO POSITION 'NU VELOCITY. THESE AktE
C ADUED INTO THE ¢ MATRIX,
ISN U00J IMELICIT REAL®B(A-M,0~-2)
ISH V00« COMMON/ZPHIM/F (646)
Isy 0009 DATA W/0.72911510-4/
ISM L0V6 w2=wWew
IsN 0007/ Fas))=F(Lsl)oy2
1S~ G008 FUSe2)=F (H02) oWl
[s* 000Y P (4s5)=F (445)+w*200
Ist 0010 F(Se6)=F (S5.6)=42200
1SN V01l HETURN
ISN 00l2 . ° END
SOPTIONS IN EFFECTe NAME= MAIN,OPT=01+LINECNT=60,STZE=0000K, t
SOPTIONS IN EFFECTe SOURCE yEBCOICoNOLIST e NODECK ¢ LOAD « NOMAF ¢NNENTT o I Dy NOXREF :
OSTAT]STICS® SOURCE STATEMENTS = 11 +PKOGRAM SIZE = 290
®STATISTICS® MO DIAGMNOSTICS GENERATED i
#0s00¢ END OF COMPILATION evsees T9% BYTES OF CORKE NOT USED]

51

) ’ - v " incee

15
fl
!
ki

e i At

6.11 GRVPAR SUBROUTINE DESCRIPTION

FUNCTION: Computes partials of gravity acceleration with respect to position
INPUT:
X 9 dimensional state vector. Only position terms are used

/T1G/

IN Flag to indicate whether the partials are to be computed
numerically or analytically

OUTPUT:
F 6x6 array containing gravity partials

SUBROUTINES USED: EGRAV, FVPMAT

COMMENTS: GRVPAR must be called before ROTPAR or DRGPAR. IN = 0 gives
numerical partials. The analytic partials and the gravity is
based upon the J and D model.

T

T —

52

GRVPAR

CALL EGRAV
COMPUTE
Ag (X + 5)

|

CALL EGRAV
COMPUTE
Ag (X - 5)

I

COMPUTE

r= Ag(X#5)-Ag(X-5)

FLOWCHART

J CALL FVPMAT
COMPUTE
ANALYTIC PARTIALS

A

53

-~ BESTAVAIL'ZLE COPY

ViL cled € JAN 13) 0S/7360 FORTRAN W

CNMRILE~ DPTIONS = NAME= MAINGOPT=0] oL INECNT=604STZE=0000K o
SOURCE W ES3CUICONULIST o NOUFCK oLOAU SNUAR ¢NOEDIT o [0 e NORREF
J1aN U0 ¢e e QUTINE GRVPAR(X)
C SuswfitiTINE GrvPaw COMPUTES THE wAQTIALS OF ACCEIF~ATION LUE TO
C G2avVITY WwITh LESPECT TO POSITION AND VELOCITY. THESE Awe AUDED [INTO
C Trpr “ATWIX F

18N v003 IMPLICIT REAL®B8(A-H,0-2)

TN (QU0e COMMON/ZPHIM/E (6e6)

IS Lu0% COM“ON /TIL/ IN

Ten (006 T RSTON AX(3) oY (6) sAY(3) 90X (9)eVI(9) AV ()

1<N L007 JIMENTTION G(343)

Ten GOONM IF(INGE 0 6O TO 70

ten 010 D030 1:143

Psh LOIL1 1) 10 J)=le6

[as QL2 vinsxe))

fem hQjJ3 10 f(Jr=x(J)

ter U0)e re1) =Y (]) 500

ES> 015 Vil)=v(I) =500

1aN 401)¢ LAl PORAVIY4AY)

1as C0l? CALL EGRAVI(VeAY)

1< 001m U0 20 J=143

JonN L0119 LENK]

16 0020 0 F(rel)=(LY(J)=AV(JI)/]10D]

15%: C0ch 37 COMTINUE

16N LQe¢ 10 CONTINUE

16N 0Dueld [t (TM.ENL1) GO TO 60

Iy 0025 CALL FVP¥AT(Re0)

SN U0ebh L0 50 =13

1sn 00e? w0 Su J=led

1Sy 0028 =]}

164 90¢9y 50 FiKeJ)=CL]ed)

Isn GO 30 60 COpeTINUE

1<% U0l RERURN

18 0032 PNQ
ORTIONS [N FFRECTe® knurr MATNGORT=01 ol TP CNT=604512620000K,
SOPTIONS [bbEECT® SHURCE ot HCHTCANOLTST oNGUECK ot OAN eNOMAPR ¢ N7 E O] T o [U o HOAREF
eSTATISTICS® SNUMCE STATEMENTS = 3] PROLRAM S]Z2E = 936

OSTATISTICS® NO UIAGNOSTICS GENERQATED

easses NG UF COMPILATION eesces

54

UATE

75x vYTES OF CORPE NOT USED

~ v

R .

—

T ——

L el ittt ol o i

6.12 EGRAV SUBROUTINE DESCRIPTION

FUNCTION: Computes gravity acceleration using J and D model of gravity

INPUT:
Y 9 dimensional array containing state vector. Only first 3
elements are used
QUTPUT:
GY 3 dimensional array containing acceleration for three variables

SUBROUTINES USED: None

COMMENTS: For descripton of gravity mathematics see [4].

55

TR —

e

e

EGRAYV

FLOWCHART

GRAVITY ACCELERATION

COMPUTE

56

T e e

o BEST AVAILABLE COP.Y'

LEVEL <17 « JaN 713) 057360 FORYRAN W Dave

COMPILER OPTIONS - NAMt = MA[NOPT=0]+LINECNT=60,STIZE=0000%
SOURCE «EHCOLC oNOLIST oNOQUECK o LOAD o NO AR ¢NOEDI T o [0 e NOXREF

ISN 0002 SHEWOUT INE EGRAV(YeGY)
ISN 0003 IMPLICIT REAL®A (A=He0-2)
ISN 000« OIMENSION Y(1)eGY(1)
ISN 0005 UATA GM, CUND+CONAWCUCAS/]) . 66T6468S5 D16,
° 0.10279500 D=4,s 20925672.6 DOe 0,711155219 D12/
c.....o.....Q..Q..'OQ..O........00...........0....0..000.0..000.....0...
C COMPUTt THE ACCELEWRATION IN EFG DUE TO GRAVITY
C® THIS SUHROUTINE IS TAKEN FROM A TRW REPONT ON DT SIMULAT IO .
c....0..0000.QQ...O.Q.........O......Q..........Qn.D...O...O...f00.'.“..
Isn 0006 A = CONA
1SN 0007 0 = CONO i
ISN €008 2 = 0. i
ISN 0009 DO 10 1=1.3 :
ISN 0010 10 2 = R2 ¢ Y(I)ev(])
IsN 0011 W& = R2eR? i
ISN 0012 72R¢ = Y(J)eY(3)/R2 :
Isnv 0013 A2 = AeA i
Isn 0014 DA = DsA2eA2 ;
IsSN 0015 H = (GM/K2)® (1,00 ¢ (CUCAS/RZ)®(1.D0 = S.0007¢Rr2) ¢ (DAG/F4; @
. (0,42685714300 = 22R2¢ (6,00 - 9,00%22R2)))
Isv 0016 a2 = DSQRT (R2)
IsM 0017 GY(3) = =(Y(3)/A2)®(H ¢ (GM/RG)®(2,002CUCAS ¢ (DAG/R2)®
. (171428571400 = «,D0®Z2R2)))
ISN 0018 GY(1) = -(HeY(])/A2)
ISN 0019 GY(2) = =(heY(2)/A2)
IsN 0020 RETURN
ISN 00c) END
®OPTIONS IN EFFECTe® NAME= MAINsOPT=01+LINECNT=00+SIZE=0000K, %
®OPTIONS IN EFFECT® SOURCE +EBCOIC oNOLIST e NODECK o LOAD « NOMAP ¢NAEDI T o 1D o NOXREF '
®STATISTICS® SOUPCE STATEMENTS = 20 +PROGRAM SIZE = 8le¢
*STATISTICS® NO OIAGNOSTICS GENERATED j
:
;
]

esssos END UF COMPILATION ®escces 79x BYTES OF CORE NCT USED 5

57

6.13 DIFFUN SUBROUTINE DESCRIPTION

FUNCTION: Computes acceleration due to gravity and acceleration sensed
because of rotating coordinate. Computes velocity of body in

motion
INPUT:

N Number of differential equations (never used because it is
always 6)

T Time (not used)

Y 9 dimention array containing position, velocity and acceleration.
Only position and velocity are used

DY 6 dimensional array containing gravity and rotation accelerations

and velocities.

SUBROUTINES USED: EGRAV

ITT———

r—

DIFFUN FLOWCHART

COMPUTE

VELOCITY
OF FREEFALL 80DY

:

CALL EGRAV
COMPUTE

GRAVITY ACCELERATION
OF FREEFALL BODY

:

COMPUTE

ROTATION ACCELERATION
OF FREEFALL BODY

59

BEST AVAILAD'® COPY S

LEVEL 21.7 (JAN 73) 057360 FORTRAN H UATE

COMPILER OPTIONS - NAME= MAJN.OPT=01+LINECNT=60,SIZE=0000K,
SOUNCE «EBCDICINOLIST oNODECK o LOAD sNOVAP ¢NOEDI T4 10 «NOXREF

ISN 0002 SURROUTINE DIFFUN(NeToYo0DY)
C COMPUTE THE ACCELERATION DUE TO GRAVITY IN EFG COORDINATES
ISN 0003 IMPLICIT REAL®Y (A=Hy0=2)
ISN 0004 DIMENSION Y(1)+DY(1)eGY(3I)
COQOOOQQQOQOQQO..O.QQOI.0...Q.OQQQQO.............Q..........Q...........
C® w IS EARTH'S ANGULAR VELCCITY IN RADIANS/SECOND L
C..QQQ'QQQ...OQ....O..............0..0..............0.............0.....
ISN 000S w = 0,729211510-4
ISN 0006 WSO = wey o
1SN 0007 w2 = 2.,00ew
ISN 0008 20 0Y(])) = V(&)
ISN 0009 0yYe2y = v(S)
IsSN 0010 DY(3) = Y(8)
ISN 0011 CaLL FGRAVI(YGY)
1SN 0012 OY(4) = GY(1) + w2®Y(S) + wSQ®*Y (1)
ISN 0013 OY(S) = GY(2) - w2®Y (&) + WSQ®Y(2)
ISN 0014 DY(6) = GV (3)
1SN 0015 RE TURN
fsN 0016 €MD
®OPTIONS IN EFFECT® NAME= MAINJOPT=0]14LINECNT=60,SIZE=0000K,
®OPTIONS IN EFFECT® SOURCE +EBCDOIC +NOLISToNODECK o LOAD s NOMAP ¢NNEDI T o 10 s NOXREF i
®STATISTICSe SOURCE STATEMENTS = 15 +PROGRAM SIZ2¢t = “96 : {

®STATISTICS® NO OIAGNOSTICS GENERATED

esesse END OF COMPILATION evcsse 79 BYTES OF CORE NOT USED

60

6.14 FVPMAT SUBROUTINE DLSCRIPTION

FUNCTION: Computes partials of gravity acceleration with respect to position

INPUT:
X 9 dimensional array containing position, velocity and acceleration.
Only position is used
OUTPUT ;
F 3x3 array containing partials of gravity acceleration with respect

to position
5UBROUTINES USED: None

CUMMENTS: Partials are computed for J and D model of gravity

61

FVPMAT FLOWCHART

COMPUTE

PARTIALS OF ACCELERATION
WITH RESPECT TO POSITION

RETURN

Q)

Q)

LEVFL 21.7 (oaN 7))

©BEST AVAILABLE COFY

057360 FORTRAN H

COMPILER OPTIONS = N&ME= MA[MOPT=01 L INECNT=60+SIZE=0000K

1SN 0002

1SH
1SN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
1SN
ISN
ISN
ISN
1SN
1SN
ISN
ISN
1SN
ISN
ISN
1SN
ISN
ISN
ISN
ISN
1SM
ISN
1SN
16N
ISN
ISM
ISN
ISN

ISN
1SN

ISN
ISN

0003
0004
000S
0006
0007
0008
2009
0010
0011
0012
0013
001«
0015
0016
0017
eo1l8
0019
0020
voci
6022
0023
00ce
0025
0026
00e7
0028
0029
0030
0031
0032
0033
003«
0035
0036

0037
V038

0039
0040

SOURCE «ERCUICoNOL 1ST «NOUECK o LOAD o NOMAP «NOEDI T o 1D ¢ NOXREF
SUHAROUTINE F VP4AT (XoF)

Col.ooo.oo....o..oo..........o.n0000'00000.0.00000.000.00000059000..0000

Ce
Ce
Ce
Ce
Ce
Ce
Ce
Ce
Ce
Ce
Ce

COMPUTE THE PARTIALS OF ACCELERATION wlTH RESPECT TO POSITION
Pl = Pl Re (1o/RO82), (1./R%®4)) / P X9 Yo 2)

P2 = P(20%2/R%®2) / P(Xs Yo 2)

P3 = P(X/Re Y/Ry Z/R) /7 P(Xo Yy 2)

P4 = PLH) /7 P Xe Yy)

I R R R R R R T Y S YA XYY Y

10

IMPLICIT REAL®8 (A=Hs0-2)

REAL®8 OMeJAZ

DIMENSION X (1) sPL1(343)sP2(3)sPI(393)sP4(3)sF(3+3)
DATA COND/ U«10279500 D=4 /

DATA CUCAS/ 0.711155219 012 7

DATA w/ 0,72911510=4 /

OATA GM/ 1,.,40764665 016 /

DATA A/ 20925672.6 V0 /

EQUIVALENCE (CJUCAS+JA2) + (D9COND)

P2 = X(l)ex(l) + X(2)eX(2) + X(3)eXx(J)

R = DSORT (R2)

R3 = RepR2

R4 = R2eR2

RS = R3®*RI

DO 10 1=14)

Ol(ivI) = X(I)/R =
Pl(2.1) =2.00%X([) /R4

Pl(3¢s]) = <64,00*X(])/R6

22 = X(3)eX(3)

P211) = =2.,008x(]1)*22/P4
P2(2) = =2,u0%x(2)%72/R4
P2(3) = 2.002x(3)2(R2 - Z2) /R4 g
P3(lel) = (R2 = X(1)®X(]1))/RI
P3(1¢2) = =x(1)2Xx(2)/RI
P3(143) = =X(1)*X(3)/RI
P3(2¢1) = P3(le)

P3(2+2) = (w2 = X(2)®X(2))/R]
P3(2e¢3) = =X(2)2X(3)/RI
P3t3+1) = P14

PA(342) = P3(2,3)

P3(3+¢3) = (R2 - Z22)/R]

72 = Z2/R2

Da4 = DepsAnA®p

H o= (GM/R2)®(1,00¢(JA2/K2)*(1,D00 -~ S,00022) ¢ (VA4G/RG)®

1 (04285714300 - 72%(6,00 ~ 9.,00%Z¢2)))

00 20 I=1.3

PG (1) = (GM/R2)®((JAP/R2)®(=5,D0%P2(])) ¢ JA2®(1.00 -~ 5.00¢22)

1 ®P1(241) = (DB4/w&)®(220(=9,00%P2(1)) ¢ (6.D0 « 9,00022)
4 ®P2(f)) ¢ DAGO(0,6l2857143D0 =~ 22¢(6,00 - 9.,00022))

3 #P1(3e1)) ¢ HeR2epL (241}

20 CONTINUE

GZ = =(X(3)/3)%(H ¢ (GM/RG}*(2,D00JA2 ¢ (DAL/R2)

0AvE

I— . — p—

. BEST AVAIABLE COPY

1 ©(),71428571400 - «,00%22)))
ISN 0041 00 30 I=1.3
ISN 004c F(lel) = =H®P3I(1s]) = (X(1)/R)®P4(])
ISN 0043 F(2el) = «H®03(24[) = (X(2)/R)®P4(])
ISN V04e F(3e1) = <(X(3)/R)*(P&(]) * (GM/R&4)®((DAG/R2)®(~4,D0*F2(]))

1 ¢ DAse(1,71628571400 = 4,D0®Z2)*P1(2.1))
2 ¢ GUR(2,000982 ¢ (VAG/R2)®(].7142857)14D0 - 4,00°22))
3 *P1(341)) ¢ (Re®GZ/X(3))*P3(3s1)

ISN 0045 30 CONTINUE

ISN 0046 4SO = WeW

ISN 00647 RETURN

ISN (048 ENO
®QPTIONS IN EFFECT® NAME= MAINsOPT=01+LINECNT=60+SIZE=0000K,
SUPTIONS IN EFFECT® SOURCE +EBCOICsNOLIST yNODECK 9 LOAD s NOMAP yNOEDI T ¢ ID 9 NOXREF
®STATISTICS® SOURCE STATEMENTS = 47 sPROGRAM SIZE = 1854

eSTATISTICS® NO UDIAGNOSTICS GENERATED

csesse® EN) OF COMPILATION ¢#eescee 67K BYTES OF CORPE NOT USED
*STATISTICS® NO DIAGNOSTICS THIS STEP

64 y i

6.15

FUNCTION:

INPUT:
/VAR/

X0

PHIO

PHI

PHIDO
PHID
PHINO
PHINDO
PHIN
PHIND
ID

OUTPUT:
/VAR/

XC

PHIC

CON SUBROUTINE DESCRIPTION

Computes constants for the Spline interpolating polynomials for
the positior in the state vector and for the transition matrix
and its inverse

Step size of integration

9 dimensional array containing position and velocity at the
beginning of the interval

9 dimensional array containing position and velocity at the end
of the interval

6x6 dimensional array containing transition matrix at the
beginning of the interval

6x6 dimensional array containing transition matrix at the end
of the interval

6x6 dimensional array containing derivatives of PHIO

6x6 array containing derivatives of PHI

6x6 array containing the inverse of PHIO

6x6 array containing derivatives of PHINO

6x6 array containing the derivatives of PHIN

6x6 array containing the derivatives of PHIN

FLAG TO COMPUTE COEFFICIENTS FOR SPLINES FOR TRANSITION INV™RSE

6x3 array containing coefficients for the quintic Splines for
position. The first index indicates the polynomial coefficient
and the second indicates the variable

4x6x6 array containing coefficients for the cubic Splines for
the transition matrix. The first index indicates the coefficiunt
and the second and third indices indicates the matrix element.

PHINC 4x6x6 array containing coefficients for the cubic Splines for the
inverse of the Transition matrix. The indcies are the same for
RHIC

SUBROUTINES USED: None

S

CON FLOWCHART

MULTIPLY STATE VELOCITIES BY H.

MULTIPLY STATE ACCELERATIONS
BY H x H.

MULTIPLY TRANSITION DERIVATIVES

e

COMPUTE

QUINTIC SPLINE COEFFICIENCY
FOR STATE POSITION VARIABLES

1

COMPUTE

CUBIC SPLINE COEFFICIENTS
FOR TRANSITION MATRIX

/

IF ID = 1
COMPUTE

COEFFICIENTS FOR CUBIC SPLINES
FOR TRANSITION INVERSE

67

i —
¢ ; ‘
|ABLE CCPY
i
LEVEL 21.7 (JAN 73) 057360 FORTRAN H DATE
COMPILER OPTIONS = NAME= MAINOPT=01+L INECNT=60¢SIZE=0000K
g SOURCE +EBCODIC oNOLIST ¢NODECK ¢ LOADsNOVAR ¢NOEDIT ¢ IUsNOXREF

IsN 0002 SUHKROUTINE CON

C THIS SUBROUTINE COMPUTES THE COEFFICIENTS FOR TWE SPLINE POLYNOMIALS

C USED TO IMTERPOLATE THE POS. & VEL. THE TRANSITION MATRIX AND ITS

C INVERSE OVER THE INTERVAL OF INTEGRATION, THt COEFFICIENTS OF THE

C QUINTIC SPLINE FOR THE THFEE FOSITION COORDINANTS AKE SOTRED IN THE

C VARIAHBLE XC. THE COEFFICIENTS FOR THE CUBIC SPLINES FOR THE

C TRANSITION MATRIX AND ITS INVERSE AKkE STOReD IN PHIC AND 'PHINC.
IsN G003 IMPLICIT REAL®R(A=-H0=2)
1SN 0004 COMMON ZVAR/X(9) sPH] (640) sPHID(6+6) sPHINIO96) yPHIND(646) o .

1 PRID(646) sPHIDO(A6) sPHINQ(646) yPHINDO(D96) o XO(9) ¢ XC(693) o
2 PHIC(44646) ¢ PRINC(49640) o TSeToeHID
ISN V005 DIMENSION Y(9)9Y0(9) sOQHID(096) yQHICN(696) yCHIND (6+6) +QHINDO(646)
ISN G006 DO 35 I=1.,3
ISN 0007 J=le3
ISN 6008 K=1+6
ISN 0009 Y(I)=x(1)
ISN 0010 Y(J)=X(J) *H
ISN 0011 Y(K)=X(K)OHeH |
ISN 0012 YO(I)Y=x0(I)
ISy 0013 YO(J)=x0(J)*H |
ISN 001« 35S YO(K)=XO(K) *He®N
1SN 0015 DO «0 1=146 |
ISN 00106 D0 40 J=1+6 |
ISN CO17 QRID(TeJ) =PHID(14J) *H 1
IsN 001le& TF(IDEQL) AHINDO(T «J)=PHINDO(L s J) *H |
ISN 0020 WHIDO(14J) =PAIDO(T ¢ J) *H ;
ISN 0021 IF(IDEQe)) QHIND(I v J)=PHIND(]sy) ®oH
1SN 0023 «0 CONTINUE
ISN V02« DO &S [=1,3
ISN 002S ELI=Y(1)=YO(I)=YO(1¢3)=YO(I+6)/200 i
ISN 0026 EL2=Y(1+3)=YD(]+3)=YO(]+6) i
1SN 0027 EL3=(Y(I+et)=YO(1+6)) 7200 A
1SN 0028 XC(1e1)=FL3=3DNEL2+6DOEL] q
1SN 0029 XC(2¢1)=EL2=300¢EL 1-2D04XC()o]) |
ISN 0030 XC(3«I)=EL1=XC(lyI)=XC(2y]) i
ISN 003} XC(es11=Y0(1+6)/7200
ISN 0032 XCUSeI)=Y0(]+3)
Isn 0033 45 XC(641)=Y0(])
ISN 0034 DO S0 I=1,46 }
1SN 0035 DO S0 J=1.6 s ¢
1SN 0036 PHIC(1sle) =QHID(10J) ¢QHIDO(T 4J) =200 (PHI(]«J)=PHIO(I+J))
ISN 0037 PHIC(2¢190)=PHI (Lo N =PHIO(L+J)=QRIDUV (L o) =PHIC (Lol oJ)
ISM 0036 PHIC(3s1e.N=0HIDO(] W)
IsM 0039 PHIC(641+2)22H10(1 D) !
ISN 6040 IF (ID.EQ.0) GO TO 49 §
ISN 0042 PHINC(laleJ) =QHIND (T ¢J) ¢QRINDO(T ¢ J) =200% (PHINI]4J)=PHINO(],J)) }
ISn 0063 PHINC(CeTsJ) PHIN(L 9) =FHINU(T vJ) =QHINOO (1 1) =PHINC(LsT0J) §
ISN 0044 PHINC(3+s14J)=QHINDO(I+J) 4
ISN 0065 PHINC (4414 J)=PHINOC(TvJ) f
ISN 0048 49 CONTINUE !
ISN 0047 S0 CONTINUE ;
ISN 00648 HETURN
ISN 0049 ENO
S0PTIONS IN EFFECT® NAME= MAINOPT=0]1+LINECNT=60+S12E=0000K,

68

REFERENCES

Carison, N.A., "Fast Triangular Formulation of the Square Root Filter",
AIAA Journal, Vol. 11, No. 9, September 1973,pp. 1259-1265.

Ralston, Anthony, A First Course in Numerical Analysis, p. 200,
New York: McGraw-Hill, 1965.

Bellman, Richard, Introduction to Matrix Analysis, p. 169,
New York: McGraw-Hill, 1960.

Miller, A. IDT Simulation, Vehicle Dynamics, Detailed Mathematics
and Flowcharts, p. 4-3, TRW Systems Group, 1972.

69

e —

