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• ABSTRACT

This is Part I of a two-part paper which generalizes and extends the

work of Hollander, Proschan, and Sethurainan (to appear) for functions

decreasing in transposition CDT). In Part I we introduce reflection ordering and G-

ordered functions. 1
~e develop many preservation properties for these functions.

We note that G-ordered functions contain, as a special case, G-monotone functions

• (Eaton and Perlman (1976)) and we prove a preservation theorem for G-monotone

functions under an integral transform. We extend the results of Hollander,

Proschan , and Sethuraman (to appear) in the area of stochastic comparisons

to a larger class of probability distributions. In Part II we present

applications in statistics. In a forthcoming paper we will explore the

notion of stochastic G-majorization as an extension of the work done in the

area of stochastic majorization by Nevius, Proschan, and Sethuranian (1977).

1. Introduction and Summary.

In this two-part paper we introduce and develop the concept of reflection

ordering and G-ordered functions. In Part I we explore some of the basic

aspects of reflection ordering, G-ordered functions, and the preservation

properties of these functions. In Part II we present applications in

statistics. Our purpose is to continue the work of unifying the area of

stochastic comparisons done by Proschan and Sethuraman (1977), Nevius,

Proschan , and Sethuraman (1977) , and Hollander, Proschan, and Sethurainan

(to appear) . 10N for
Whi e Sec ’Jon W

In Section 2 we define reflection groups and enumerate some of their ~~U ~tction 0
‘JOUNCED 0

• properties. We determine the fundamental regions for any finite reflection ICATION

group and define for each distinct fundamental region a partial ordering 
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on the group. The partial ordering associated with a distinct fundamental

region is unique. We present a partial ordering on Rn with respect to a

fundamental region through the ordering defined on the group. The partial

ordering on R~
’ is useful in applications whereas the ordering on the group

unifies the theory and contributes to mathematical elegance.

In Section 3 we define G-ordered functions for any finite reflection

group acting on R~. We show that the G-ordered property is preserved under

mixtures with respect to a positive measure and under composition with

respect to a G-invariant measure. We establish that products of nonnegative

• G-ordered functions are G-ordered. Preservation under composition is

particularly useful in further developing the properties of G-ordered functions.

In the context of new work by Eaton and Perlman (1976), we present

in Section 4 a preservation theorem for G-monotone functions under an

integral transform. It contains as special cases similar theorems for

Schur functions of Proschan and Sethuraman (1977) and Hollander, Proschan ,

and Sethuraman (to appear). We show how our theorem extends results obtained

by these authors to a larger class of probability distributions, in particular

to the multivariate normal and the multivariate T. We relate the G-majorization

ordering introduced by Eaton and Pen man (1976) to reflection ordering and we

show that G-monotone functions are special cases of G-ordered functions.

In Section S we present a short example in the area of nonparametric

statistics. We show that the Wilcoxon signed-rank statistic is a G-ordered

function of the signed ranks. We determine conditions under which tests

based on the Wilcoxon signed-rank statistic have power functions G-ordered

with respect to F.
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2. Fundamental Regions and Reflection Ordering.

In this section we introduce the notion of reflection ordering. We

use the notion of a fundamental region in Euclidean n-space with respect

to a finite reflection group. (See Benson and Grove (1971), pp. 27-33.)

Each fundamental region defines a partial ordering, called reflection ordering,

on the elements of the group. We present a short summary of the derivation

of reflection groups and fundamental regions.

Throughout this paper RT’ denotes Euclidean n-space. Elements of

are represented by column vectors and the transpose of a vector z is denoted

by z’. The unit ball in R~ is denoted by 5n’ i.e. s~ = Cx a R~: l x i i  — 1),

where l ix i l  = ix’ x is the usual Euclidean norm.

Definition 2.1. Let r c S~ and let be the n x n identity matrix. The

matrix, Mr = I,~ - 2rr’, is called the reflection defined by r.

Geometrically, Mr reflects points across the ~n-l)-dimensiona1 subspace

of R~ perpendicular to r. Clearly Mr M..~ ~~ 
Mr

1 In particular , we

note that M
~ 

c 0(n), the group of n x n orthogonal matrices.

Definition 2.2. A closed subgroup G of 0(n) is called a reflection group

if there exists a subset of S~ such that G is the smallest closed subgroup

of 0(n) containing the 3et of reflections {M
~

: r a

We call a generating system of G. A minimal generating system of G

is called a set of fundamental roots of G.

Definition 2.3. The root system of G, denoted 
~G’ 

is the set Cr a S~:

M c G}.
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For any given r c we partition R~ into the following three subsets:

1. Hr~~
I; {x c R

~
: r ’x > O } ,

2. Hr~~
= (x c R

~
: r ’x < O } ,

3. H O a { xc R n: r’x = O ).

Since M
~
x = (I - 2rr’)x = x - 2rr’x , we note that Mrx = x if and only if

x c H
~
°. Thus the Set H

~
° is invariant under the transformation defined

by the reflection M
~
.

Define the set TG Ct c R”: r ’t � 0 for each r c 
~~ 

Thus TG is

the complement of the set n Hr
°
~ 

When there is no possibility for
rc
~G

ambiguity we will drop the subscript G in TG. For a fixed t e 1, define

the sets:

1. 
~~~

= ( r c AG : r ’t>O },

2. ~~~~= { r e ~~G : r ’t c O } .

Since r c if and only if -r c AG, ~~~ and A~~ partition AG into two sets

of the same card inality.

We call the set of t-positive roots and we note two useful properties

relating to positive roots.

1. Por everygeG, g A ~~~I A ~~.

2. The equality, A~~ = A , holds if and only if g is the identity matrix.

For proofs of the above two statements, we refer the reader to Propositions

4.2.2 and 4.2.3 of Benson and Grove (1971).

We partition T into certain regions, termed fundamental regions, by

means of the equivalence relation defined below. The equivalence relation

is based on the set of positive roots.
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Definition 2.4. Let t, a £ T. Then t is equivalent to s (t ‘~‘ a) if — A .

Definition 2.5. Let t c T. The fundamental region F defined by t is the

set ta c T: t’~ s}.

It is evident that for t, s c T, if t is equivalent to s, then t and s

define the same fundamental region. For any t £ T, gt defines a different

fundamental region for each distinct g a 6. To see this, note that t is

not equivalent to gt for I a g a 6. This is true since A~~ - if and only

if g a ~ as claimed in statement 2 above. It is consequently of interest

to note that the number of distinct fundamental regions and the number of

elements of the group 6 are equal.

In light of the definition of fundamental regions and the above assertions ,

one can easily perceive the following properties of any fundamenta l region F.

• (See Benson and Grove (1971), p. 27.)

i F i s an open set in R~ .

2. F n gF — 0 if g c G is not the identity matrix.

3. R~ a u(gF: g a G}, where V is the closure of F in Rt%.

Thus the fundamental regions {gF: g £ G} are the equivalence classes under

the equivalence relation presented in Definition 2.4.

For any fixed finite reflection group G, we define a set of partial

orderings on the elements of G. Each distinct fundamental region in R~
’

defines a unique partial ordering. In order to define the ordering on the

group G we present a partition of G.

For any fundamental region F, the set c AG is the set of F-positive

roots, i.e. = Cr a AG: r’t > 0 for all t a F}. Fix a root r a and

~~Ae-~~~~~~~

- --. 

- 
. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . ,,
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• let gF be a fundamental region. Then r a A F or r a A~~. For the given

fixed r we partition G into the sets and G , where G is the set {g a 6:

r a and G is the set {g a G: r a A
~F
}. Technically, G and G depend

on the fundamental region F as well as the root r. We suppress reference to

F unless ambiguity may result.

• Definition 2.8. Let r a S~ and let F be a fundamental region in R~. Then g

is n-larger than Meg, in symbols,g 
~T 1~g if and only if g a G .

Note that if g a G , then g is r*_larger than ~çg .  where r* = -r.

Definition 2.9. (Reflection Ordering). Let F be a fundamental region in

RT’ and let g1, g2 a 6. If there exists a sequence h0, h1,... ,h~ 
in 6

satisfying g1 = h0 �rl h1 �‘2 �rmh=g where r1 a A , ~ a j~ 2,...,m,

then g1 is V-larger than g2; in symbols,g1 
~F g

The G-orbit of a point x a R1’ is the set {gx: g a 6).

Definition 2.10. Suppose x1, x2 a and they belong to each other’s orbit,

i.e. x2 = for some g a 6. Then there exists x a F such that x1 = g1x

and x2 = g2~ for some g1, g2 £ G. We say that x1 is V-larger than x2
(x1 x2) if g1 I g2.

Definition 2.10 presents a partial ordering on the G-orbit of a point

x a F. We have presented our definition in terms of any fundamental region

in ~~ In most statistical examples the appropriate fundamental region will

suggest itself naturally.

To illustrate the preceding concepts let us consider G a P~ , the group

of all n~ pernitation matrices. A generating system of G, A~, is the set



7

Cr : j a 1, 2,...,n - 1), where r! = (0 ,..., _.L —~--,O,...,O) with _!an’~ -~being
t h e  1th and (j~ 1)5t coordinates of r1 respectively. A root system of G, A6, is the

set (±r~~ : 1 � i c � n}, where rjj — ~~~~~~~ O,...,-~
_, O,....,0) with

- and ._L being the ith and Jth coordinates of r.. respectively. The 6-orbit
of a point x in R11 is the set of all n~ permutations of the coordinates of x.

Let us take our fundamental region F to be the set Cx a R”: x1 <

<~~•~~< X~}. Since, for i < j ,  the ~
th coordinate of x a F is larger than the

c ith coordinate, A is the set {+ r
~~
: 1 � i c � n}. The set G , r1~ a AG,

contains any permutation matrix g such that for x a F, the i coordinate of

gx is less than the 3
th coordinate. This is obvious, since r

3
gx is the

coordinate o~ gx less the 1th coordinate . Now if g £ 6+ , then Mr g a G
~~ ~~~~

For x a F , gx r i4 - larger than Mr gx means that the i~ coordinate of gx is

thsmaller than the j coordinate. The point M gx is a permutation of the

th thi and j coordinates of gx. The reader will recognize reflection ordering

for the fundamental region F as the familiar transposition ordering of

Hollander, Proschan, and Sethuraman (to appear).

3. 6-ordered Functions.

In this section we define functions which are isotonic with respect to

reflection ordering. We define functions on the group G, functions on R11,

and functions on R2n which have a 6-ordered property. Although the 6-ordered

property is essentially a property of functions on the group, it becomes more

convenient for theoretical and practical applications to formulate the G-ordered

n 2nproperty for functions on R and R

6-ordered functions contain as a special case functions decreasing in

transposition (ff1’). (See Hollander, Proschan, and Sethuraman (to appear).)
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We establish some basic preservation properties for 6-ordered functions. For

example , we show that mixtures and compositions of 6-ordered functions are

6-ordered functions. We note that the 6-ordered property is preserved under

products of nonnegative G-ordered functions.

Definition 3.1. A function f from C into is C-ordered with respect to F

if g1 g2 implies f(g1) � f(g2), for g
1, g2 a G.

Definition 3.2. Let X be a subset of R11. It is said to be 6-invariant if

gXcXfor a l l g a G .

Unless otherwise specified, G will be a fixed finite reflection group

acting on R’1, although some of the results are true for arbitrary subgroups of

0(n). The sets A and X, with or without subscripts, will denote G-invariant

subsets of RT~.

• Definition 3.3. A function f from X into R1 is C-ordered with respect to F on

X if for every x a V n X and for every pair g1, g2 a G such that g1 I g2, we
have f(g 1x) � (g2x).

For each x in some fundamental region F define the function h
~
(g) a

f(gx). Note that hx is G-ordered with respect to F on G if f is G-ordered

with respect to F on X.

Definition 3.4. A function K from A x X into R1 is 6-ordered if the following

two conditions hold.

i. K(gA , gx) — K(X, x) for all g £ G.

ii. For every fundamental region F when A a V n A , x a V n X, and
g ~F g2, then K(A, g1x) � K(A , g2x).

~~~
:-.--.r- - - - • . •

~ 

.• • •
, -

- ~~~~~~~~~~~ 
-
~~~~~~~~~

.— 
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Remark 3.5. The reader should note that condition (1) above can be replaced by:

i~• K(M~,A~ MrX) 
a K(A , x) for all r in a set of fundamental roots.

Leema 3.6. Let K(A, x) = K(gA , ~, 
) for all g a 6. Define

(a) K(x, A) a K( A , x) for A a A , x c X.

(b) f
~
(x) a K(A , x) for A a A , x c X.

Cc) h~~~(g) — K (X , gx) for A £ ~V n A , for x a n X, for all g a 6,

and for some a 6. Then the following are equivalent:

(1) K is 6-ordered on A x

(2) k is 6-ordered on X x A .

(3) 
~ 

is 6-ordered with respect to F on X for each A a V n A.

(4) hx~~ 
is G-ordered with respect to ~F on G for each A £ n A and

each x a n X.

The equivalence follows directly from the definitions of 6-ordered functions

on C, on X, and on A x

We now present some preservation properties for G-ordered functions. The

-: proofs of Propositions 3.7, 3.8, and 3.9 below parallel the proofs of corres-

ponding results in Hollander, Proschan , and Sethuraman (to appear), so we

omit them.

Proposition 3.7. Let K(A , x) be 6-ordered on A x X and let f and h be nonnegative

G-invariant functions on A and X respectively. Then f(A) K(A , x) h(x) is

I ‘ G-ordered on A x X.

Proposition 3.8. Let (1~, F, v) be a measure space. Suppose K (A , x) is, G-

ordered on A x x for each w Q, and suppose that for all (A, x) £ A x X,

KW (A , x) £ L~((1, F, v). Then JK (A, x) dv(~) is 6-ordered on A x X.

II ’~
-. -•*-- - .

~~~

-.- •

~~~~ 

. - - .-

- —--~~~~ - ~~~~~~~~ . ~~~~~~ . -
~~~~~

. .- --~~~
. 

-- ‘ . . . . . . . . .
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A similar result for mixtures holds for functions 6-ordered with respect

to F on 6 and on X.

Consider any probability density Q(A , x) defined by Q(X, x) =
k

c(A) h(x) exp( ~ Q1(A , x)). Using Proposition 3.7, Proposition 3.8 with
M i—i

the counting measure, and the fact that increasing functions of 6-ordered

functions are G-ordered, we can show that Q(A , x) is 6-ordered if c and h are

6-invariant and Q., i = 1, 2,...,k, is 6-ordered. Note that densities

belonging to the multivariate exponential family are special cases of this

form.

Note that if K(A , x) is 6-ordered on A x x, then K(A, x) is 6-ordered on

A~ x X*, where ft* and X~ are any G-invariant subsets ~‘f A and X respectively.

Thus if K(A, x), a G-ordered function on A x x, is the density of a random

variable X and u is a G-invariant function on X, the conditional density of X

given u(X) a u0, Ku (A , x) is C-ordered on A x X
0, where X0 

a Cx £ X:

u(x) a u~,}.

Proposition 3.9. The product of nonnegative 6-ordered funct ions is G-ordered .

Definition 3.10. A measure ‘~a on X is 6-invariant if u(A n X) — p(gA n X) for

any g a C and any Borel set A in R~.

Theorem 3.11. Let K1 be 6-ordered on X1 
x x and let K2 be G-ordered on K x

Let K(x, z) a JK1(x , y) K2(y, z) du(y), where ~i is a G-invariant measure.

Then IC is 6-ordered on X1 
x

Proof. (i). First we show K(gx, gz) a K(x, z) for al l g £ G. Let g a G. Then

IC(gx, gz) * JK1(gx, y) K2(y, gz) d~(y) a JK1(gx, gy) K2(gy, gz) du (gy)x x
a fK1(x, y) I(2(y, z) du (y) (using the G-invariance of p]

x

a K(x, y), as desired.

~~~~~~~~~

— _‘,— - • — • ..•- - —. -  
• • L ~~~._aII- ~~~~

‘ •

~~~~~~~~~~~ 
-—---- - -. . _ _ _ . 

-~ _ __— — _
~~~~~~~~ tSflr S 
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(ii). Now let x a V n X1 and z a V n X2. We need to show that g1 g2

implies K(x, g1 z) � K(x, g2 z). It suffices to show that K(x, z) �

K(x, M
~
z) for some r a A .  Let r £ A~ , then K(x, z) - K(x, M~

z)

I K1(x, y)[K2(y, z) - K2(y,

a J K 1(x, y)(K2(y, z) - K2(y, M~z)Jdu(y)

• f K 1(x, y)(K2(y. z) - K2(y, H z)Jd~(y)H r
r

+ ~~K1(x, y)[K2(y, z) - K2(y, Mrz)]du(y)•

• Since K2(y, z) - K2(y, MrZ) 0 for all y a H~, we drop the third integral

above. We use the transformation y a M u  in the second integral above and by

the G-invariance of ~i we conclude that the second integral is equal to:

(x, M
~
u) 
~~ 

(u, MrZ) - ~2 
(u, z)] dii (u).

r

We now combine the first and second integral and factor the integrand to

obtain that K(x, z) - K(x, MrZ) 
a f~[K1(x, y) - K1(x, M~y)](K2(y. z) -

• H
K2(y, P4rZ)]dii(y)• Both factors are’nonnegative in the region y a H , so

K(x, z) - K(x, MrZ) � 0, as desired. ~i

Corollary 3.12. Let K(A, x) be G-ordered on A x X and let f(x) be G-ordered

with respect to F on X. Let h(A) = JK (A, x) f(x) dp (x), where ii is a

G-invariant measure on X. Then h(A) is C-ordered with respect to F on A .

Proof. Let A~ c V n A and define the set a {gA*: g £ G}. Let Q(x, gA*)

d~f f(g~~x) and note that Q is G-ordered on K x °A* To see this, note that

when g — 1n’ Q is G-ordered with respect to F and that Q(g1x, g1gA*) a

IIe- -
~~
- • .  • 

~~
~,
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f((g1 g)
4g1x) f(g~~g1

4g1x) a f (g4x) a Q(x, gA*). By Theorem 3.11,

Q*(A, gA*) d~f fK(A, x) Q(x, gA*) dii(x) is G-ordered on A x OA*• But for

-

• g a I , Q*(4, I~A*) — h(A). Thus h(A) is G-ordered with respect to F on A ,

as desired. ~f

Corollary 3.13. Let f1 and f2 be 6-ordered with respect to F functions.

Define f(g) a ~ f1(g
4g0) f2(g0). Then f is 6-ordered with respect to F.

g0cG

4. 6-majorization, G-monotonicity, and the Preservation Theorem.

G-majorization is a partial ordering on R~ introduced by Eaton and

Pen man (1976) (EP (1976)). G-monotone functions are isotonic with respect

to this ordering. In this section we relate reflection ordering to G-

• majonization and show that 6-monotone functions are a special case of

G-ordered functions. We use the properties of G-ordered functions to obtain

a preservation theorem for C-monotone functions under an integral transform.

We supply a brief summary of relevant parts of the work of Eaton and Perlman.

Definition 4.1. Let x, y a R’1 and let x
111 ~ 

x~2~ �.. .~~~ and y(1] 
�

• 
�• � y1 1 be decreasing rearrangements of the elements of x and yU U k

respectively. Then x is said to ~~jorize y(x �
m y) if ~k

• I Yrji’ k a 1, 2,..., n - 1, with equality when k n.
i— i ’ ’

Definition 4.2. A function f defined on R~ is Schur-convex (Schur-concave)

if x ~m y implies f(x) � (�) f(y).

Majonization induces a partial ordering on R!I and Schur-convex functions

are order preserving with respect to majonization. The G-majonization ordering

of EP (1976) includes majorization as a special case.

~~~~~~~~~~~ ~~~ -~~~~~~~~ —- A



13

Definition 4.3. Let x, y a X and let 6 be a closed subgroup of 0(n). The point x is

said to G-majonize y(x�Gy) if y is an element of the convex hull of the G-orbit of x.

The term “G-majonization” and the notation “x�6y” are ours, but as mentioned be-

fore, the concept of the ordering belongs to Eaton and Perlman. When GaPn , the group

of permutation matrices, G-majorization coincides with the familiar majonization

ordering of Definition 4.1. (See EP(l976).)

Definition 4.4. An extended real valued function f on X is 6-monotone increasing

(decreasing) if x�~y implies f(x) � (�) f(y).

When GaP~, the group of permutation matrices, the class of G-monotone increasing

(decreasing) functions coincides with the class of Schur-convex (Schur-concave)

functions.

Lemma 4.5. (EP(l976)). Let 6 be a finite reflection group. Suppose x�6y, xay. Then

there exists a sequence of points z0,z1,. •~~
Z
m 

such that z0=y, zm
ax, and

(A jIn+(
l_A

j
)Mr.]Zj~ l~j~m, where r~aA6. O�A~cl. and ‘n is the ~~~ identity matrix.

GNote that z.~ Z. for all j.
~

Eaton and Pen man devote a significant pantof their paper to establishing the

above path lemma. It demonstrates the existence of a polygonal path between a point

xcR~ and any point y in the convex hull of the G-onbit of x.

~his lemma is a key tool in the study of G-majonization and C-monotone functions.

For example, to show that a function f on R~’ is 6-monotone increasing it suffices to

show that for all xcR” and rcA6,f(x)�f((AIn+(
1_A)M

r]x). The above procedure is only

one method for determining G-monotone functions. We refer the reader to EP(l976) for

their differential characterizations of smooth G-monotone functions.

Before we show the relationship between 6-ordered functions and G-monotone func-

tions we need to establish some technical lemmas. We will find the following notation

useful in the remainder of the paper.

Lemma 4.6. Let rcA and let u ,u ...,u be an orthonormal bas~~ for R” such that u ar.
Suppose x, yaRn are such that u~xau~y,ia2,3,...,n. Then x� y if and only if IrkI�Ir~’!
Proof. The point y is on the line which passes through the points x and MrX• Conse-

quently, y is in the convex hull of the 6-orbit of x if and only if ~~~~~~~~~~~
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Lemma 4.7. Let F be a fundamental region in R~. Then g Pçg if and only if

(r’gx) � 0 for all x £ V.

p. + +Proof. By definition, g � M g  if and only if g a Gr~ 
But g a Gr if and

only if g V c H u H~. N i gx a H u H~ if and only if (r’gx) � 0 and

gV c u u H ~~if and on1yi f g x e H u H ~~for aIl x s V .  Thus the result is

i ediate. fl

Lemma 4.8. Let r £ AG and let x a V. Then g ~F M~g if and only if

A + gx A • *f~gx (A - M
~
gx � A -gx) for all A £ H u H~.

Proof. We will show that g ~~ if and only if A + gx ~G A + M~gx for all

A a H u H~. The proof that g 2P M~g if and only if A - M~gx ~
G A - gx is

analogous. Without loss we assume g = and we show that A + x A + MrX

if and only if (r’x)(r’A) � 0. Let u1, u2,. ..,u be an orthonormal basis

for R” such that u1 = r. Now A + x = ((r ’A + r ’x)r + Z ( u~A + u~x)u1) and

A + Mrx = ((r ’A - r’x)r + 
~ 

(u~A + u~x)u1). So A + x �.G A + M~~ if and

• only if Ir ’A + r’xI � (r ’A - r’xI as a consequence of Lemma 46. But

Ir ’A + r’x~ � Ir ’A - n ’xI if and only if (r’A)(r’x) � 0. Thus A + x A + MrX

if and only if (r ’A)(r’x) � 0. By Lemma 4.7 , g � 1 M~g if and only if

(r’A)(r’gx) � 0 for all A a H u H~ and all x a V. In particular,

• 1~ �
F MnIn if and only if (n ‘A) (r’x) � 0 for all A £ H u .. Thus g �~

if and only i f A + g x �6 A + M ~gx for all A c H u 1 4~. fl

Lemma 4.9. Let r a S~ and let z a ~~ Then for any a, 0 ~ a < 1, there

exist A , x a R’~ such that z 
a A + x , (r ’A )(r ’x ) ~ 0 , anda a a a a a

+ (1 - a)Mr)(Aa + xa) a + M

~~Ti1i ~~~ 

- L. . . . .  -. 

.-



.-.• .••-~~~~~~~~

aProof. Let x a (1 - a)z and A = — x , then• a a 1-a a

(i) A + x  a _ a~~x + x  a -1--x = z
a a 1-a a a 1-u a

(ii) (n ’Aa)(r ’xa) = (r ’ ~~~ xa)(r ’xa) a 
~~~~~~~~ 

(n ’xa)
2 � 0.

(iii) (uI~ + (1 - a)Mr )(A a + x )  = T X  + M x  a A + M x . 
~

Theorem 4.10. Let K(A , x) be of the form f(X + x)(f(A - x)). Then K(A , x) is

6-ordered on R2~ if and only if f(A + x) (f (A - x)) is 6-monotone increasing

(decreasing) on R~ .

Proof. We show that IC(A , x) is 6-ordered if and only if f(A + x) is 6-monotone

increasing. The proof that K(A , x) is G-ordered if and only if f(A - x) is

6-monotone decreasing is analogous .

(i) We show for all g a 6, K(A , x) a K(gA , gx) if and only if f(A + x) a

f(g(A + x)). Now K(A , x) = f(A + x) and K(gA , gx) a f(gX + gx) a f(g(A + x)).

So K(A, x) a K(gA, gx) if and only if f(A + x) = f(g(A + x)).

(iia) Suppose f is 6-monotone increasing. Let A £ V n A , x a V n X, and

r a A~ for every t £ F. Then (r’A)(r ’x) � 0 which implies A + x A + Mrx

by Leimnas 4.7 and 4.8. Consequently K(A, x) - ICC)., M
~

x) = f(A + x) -

f(A+Mx ) � 0.

(jib) Suppose K is G-ordered on A x X and let z1 z2. Without loss

assume z2 a (aI~ + (1 - u)M
~

)z 1 for any arbitrary a, 0 ~ a -C 1. By Lemma

4.9, there exist 
~a’ 

Xa such that z 1 * Aa + Xa~ 
Z2 

a Aa + Mrxa, and

(n ’A a)(r ’xa) � 0. Consequently f(z1) - f(z 2) a f(A + X
a
) - 

~~~ 
+ MrX5) 

a

• 1(
~~a’ 

xa) - K(Aa~ MrX5) � 0 since (r ’A a)(r ’xa) � 0 implies I~ �~ MrIn by

Lemma 4.7. I I

~~~~~~~~~

-

~~~~

• -

~~ 

--.
~~~~~

-- - •‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . .- • -•~~~~~~~~~~~~ ~~~~~~~~~~~ , ~~~~~~~~~~~~~~~~~~~~~~
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Definition 4.11. A measure ~i on X is said to be translation invariant if

A (A n X) = u((A + x) n X) for all Bond sets A cR ~ and all x a X.

Corollary 4.12. The convolution of G-monotone decreasing functions on Rn

with respect to a translation and 6-invariant measure ~i is 6-monotone decreasing.

Proof. Let f 1, f 2 be G-nionotone decreasing on R’t and define h(x) a

Jf 1 (x - y) f2 (y) dp (y) . Then h Cx - y) ff 1 Cx - z - y) f2 (y) dii (y)

— I ~~~~ 
- u) f2 (u - z) dp (u) , using

the translation u a z + y. By Theorem 4 .l0, f1(x - u) ,  f 2 (u - z) are

C-ordered on R2~. By Theorem 3.ll,h(x - z) is 6-ordered on R2~. Thus by

another application of Theorem 4.10, h is G-monotone decreasing on R~. fl
The convolution theorem (Theorem 5.1) of Eaton and Perlman (1976) is a

stronger result than Corollary 4.12. They prove that the convolution of

6-monotone decreasing functions is 6-monotone decreasing for a general, not

necessarily finite, reflection group.

Remark. For Corollary 4.12 it is not necessary that the functions be 6-monotone

decreasing on Rn. Suppose X is a subset of Rn such that the set U d~f

• Cu a R~
1: u a x + y, x, y £ X} is G-invariant, then the convolution of

G-monotone decreasing functions on X is G-monotone decreasing. The reader

should note that the above condition is satisfied if X forms a semigroup under

addition, for then U X.

• Definition 4.13. Let A , X C R n form semigroups under addition. A function

ICC)., x) on A x X is said to have the G-ordere~ generalized seinigroup property with re-

spect to a trans1atio.~ invariant measure ~i if, for A 11 A2 a A and x a X, t~iere exist

_ _ _ _ _ _  _ _ _ _ _
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6-ordered functions ~~~~~~ x) and IC(2)(A , x) on A x K such that K(A
1 

+ 
~2’ x) 

a

— >r~ K~
2
~ (A 2, y) dii (y).

Theorem 4.14. Let A, X be as in Definition 4.13 and let a function K on A x K

have the G-ordered generalized seinigroup property with respect to a 6-invariant

and translation invariant measure ~i. Then h(A) a JK(A , x) f(x) dii(x) is

6-monotone increasing (decreasing) on A if f(x) is G-monotone increasing

(decreasing) on X.

Proof. We show that F is G-monotone increasing implies that h is G-monotone

increasing. We will show that ho). + ).*) is G-ordered on A2 and conclude that

h is G-monotone increasing on A using Theorem 4.10. Write

ho). + A*) = 1x K(A + ).*, x) f(x) dp (x)

a f ~ 1x 1(
(1)~)., x - y) IC~

2
~ (A , y) dii(y) f(x) dp (x)

= f ~ 1(
(2)~~* y) J~ 1(o)., x - y) f(x) dii(x) dp (y)

- : — 1x K
(2)(A* , y) f xy~~~0 ’ z) fCy s z) dp (z) du(y),

where a Cu £ R~
1: u a x - y, 

~~, y a X}. (We use the translation z a x - y.]

Since X forms a semigroup under add~tio; X>, ~ K for all y £ K. On the set

X~ - X, K 01
~~(A , .) is zero, so we can replace Xy by X for the region of

integration of the inside integral. Thus ho) . + A*) a f~ K °2
~ (A*

, y)

z) f(y + z) d~(z) dii(y). By an application of Theorem 2.12,

z) f(y + z) dp (z) is G-ordered . By a second applicat ion of Theorem

2.12 , ho) . + A*) is 6-ordered on A2. Thus h is G-monotone increasing on A. To

show f G-monotone decreasing implies h G-monotone decreasing, we need only

consider -f which is 6-monotone increasing and deduce that -h is G-monotone

increasing.
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We give a simple example to illustrate the concepts and notation . The

reader will see how Theorem 4.14 can be used to develop monotonicity properties

for power functions in hypothesis testing. Applications of significance are

given in Part II.

~~~~~~~~~~ 
Consider the group C generated by = {[t.~j .  

[ 
~~~~~~~~~~~~

Let ICC)., x) be the density of an exchangable bivariate normal random variable.

C It can be verified that K has the G-ordered generalized semigroup property. If

we wish to test the hypothesis H0: A a 0 against the alternative H
~
: A � 0,

then a test with critical region Q~ = Cx a R2: f(x) ‘ c} where f is a

* 

G-monotone increasing function has a C-monotone increasing power function.

As an example, consider f(x) = 1x 11 + 1x21. The power function, h(A) =

fK(A, x) I~~(x)dx, is 6-monotone increasing since I~~(x) , the indicator

• function , is C-monotone increasing. Thus any test of H0 versus H1 with

critical region Qf is unbiased and has a power function which increases

monotonically as either or both of the coordinates of A increase in absolute

value.

Theorem 4.14 is an extension and generalization of a similar preservation
• theorem under an integral transform (Theorem 3.7) of Hollander, Proschan ,

and Sethuraman (to appear). It yields their theorem as a special case when

G a F , the group of permutation matrices, ~01) - K~
2
~ - K, and A and X

are the positive reals or the positive integers.

Definition 4.16. Let A, K be as in Definition 4.13. A function ICC)., x) on

A x K is said to have the C-ordered conditional generalized semigroup pr~perty with

respect to a translation invariant measure ~i, if there exists a a-finite measure spac.

~~~~~~~~~~~~~~~~~~~~ 

--- • s - ~~~- 
• • • •  

_ _ _ _ _ _  
_ _ _ _ _ _ _~~~~~~~~~~~~~~~~~~~~ LiL — ~~~~~ ~~- • _~~~~~~~~~~~~ - — - • — •
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(a, F, v) and functions K (A, x), ~ £ ~~, such that:

i. ICC)., x) a f~ K (A , x) dv(~).

ii. For each w £ ~~, K~ has the 6-ordered generalized semigroup propert y

with respect to ii.

Corollary 4.17. The conclusion of Theorem 4.14 holds if K()., x) has the

C-ordered conditional generalized setnigroup property.

Proof. Let h
~

(X) a f ~ Iç~(A , x) f(x) dii(x). Then by Theorem 4.14, h
~

(A)

is 6-monotone increasing (decreasing) on A for each w a a. Now

hO).) — 

~~~ 
x) f(x) d~ (x)

— J~ f t~ 
K~(A , x) dv(w) f(x) d~ (x)

- f ~ I~ K~(A, x) f(x) dp(x) dv(w)
a f ~ h~(A) dv(w).

By the mixture result, Proposition 3.8, and Theorem 4.10 we conclude that ho) .)
is 6-monotone increasing (decreasing) . ~I

It should be noted that in the case where 6 a “n we have relaxed the

assumptions imposed on ICC)., x), the kernel of the transform, by Hollander,

Proschan , and Sethuraman (to appear). We conclude that all the results

relating to statistical applications of their preservation theorem under an

integral transform are applicable to a imach larger class of probability

distributions, in particular , to the distributions of exchangeable normal and

t random variables .

r

~~~~~~~~~~~~~~~~~~~~ •___ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Example 4.18. A bivariate T random variable can be expressed as I a

where is a chi-square random variable with n degreas of freedom and U is an

exchangeable bivariate normal variable. If A is the mean of U, then K( A , x),

the density of T, has the 6-ordered conditional generalized semigroup property.

Thus for the same test, with critical region 
~~ 

the power function has the

monotonicity property described in Example 4.15.

5. A Sample Application.

In this section we consider an application in the area of nonparainetric

statistics. We show that the Wilcoxon signed-rank statistic is a function

G-ordered with respect to F of the signed ranks. Using results from previous

sections we will determine under what conditions the frequency function of

the signed ranks is G-ordered. We also present monotonicity properties for

power functions of tests based on the Wilcoxon signed.’ank statistic.

Let C be the group of all permutations and sign changes of the coordinates

acting on the elements of R”. Given a set of real numbers Ox1, x2,. ~~~~~

let r1 = 1 + ~ L(Ix~ t~ )x .)), i a 1, 2,...,n, where L(a, b) a 1 if a >

j*i 3

~ if a = b, and 0 if a c b. Let v~ a (sgn xi)ni, then v a (v1, v2,...,v~)

is the vector of signed ranks of the set of real numbers Ox1, x2,...,x~}.

Define the function J(x, v) on R2~’ as follows :

1 if v~ a (sgn x~)r1. ~ a 1, 2,...,n
J(x , v ) a

0 otherwise.

It can be verified that J(x, v) is 6-ordered for the group G of penimatations

and sign changes. The frequency function gO)., v) of the signed ranks v can be

written as follows:
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g o)., v) a f ICC)., x) J(x , v) dii(x).

• If K(A, x) is G-ordered and p is a 6-invariant measure, then by the composition

theorem (Theorem 3.11), g(7., v) is C-ordered. We note that both Lebesgue

measure and counting measure are G-invariant for the group of permutations and

sign changes.

Define the function f(x) on R1’ in the following manner:

n
f(x) = ~ x.I(x. > 0).

i—l 1

Then £ is G-ordered with respect to F with F = Ox a Rn: x1 c x2 < ... cx~}.
Let — Cx £ Rn: f(v) caL. Since f is C-ordered with respect to F, the

indicator function I(x a Q~) is G-ordered with respect to F. If K(A , x) is

• 6-ordered, then by the composition theorem for functions 6-ordered

with respect to F (Corollary 3.12), the power function, h(A) d~f

fK (A , x) I(x a Q~) dp(x), of any test based upon the Wilcoxon signed-rank

statistic is a function G-ordered with respect to F on the parameter space.

Actually a stronger result than this is true. Define the power function

h~~) as h(A) fg(A, v) I(f(v ) > ca) dp (v). By Corollary 3.12, hO).) is

G-ordered with respect to F if go) ., v) is G-ordered. Thus it is not necessary
that 1(o)., x) be G-ordered . It suffices that the frequency function go) ., v) of

the signed ranks be G-ordered .
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