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Definition 4.3, Let x, y € X and let G be a closed subgroup of 0(n). The point x is
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ABSTRACT
This is Part I of a two-part paper which generalizes and extends the

work of Hollander, Proschan, and Sethuraman (to appear) for functions

decreasing in transposition (DT). In Part I we introduce reflection ordering and G-
ordered functions. We develop many preservation properties for these functions.
We note that G-ordered functions contain, as a special case, G-monotone functions
(Eaton and Perlman (1976)) and we prove a preservation theorem for G-monotone
functions under an integral transform. We extend the results of Hollander,
Proschan, and Sethuraman (to appear) in the area of stochastic comparisons

to a larger class of probability distributions. In Part II we present
applications in statistics. In a forthcoming paper we will explore the

notion of stochastic G-majorization as an extension of the work done in the

area of stochastic majorization by Nevius, Proschan, and Sethuraman (1977).

1. Introduction and Summary.

In this two-part paper we introduce and develop the concept of reflection
ordering and G-ordered functions. In Part I we explore some of the basic
aspects of reflection ordering, G-ordered functions, and the preservation
properties of these functions. In Part II we present applications in
statistics. Our purpose is to continue the work of unifying the area of
stochastic comparisons done by Proschan and Sethuraman (1977), Nevius,

Proschan, and Sethuraman (1977), and Hollander, Proschan, and Sethuraman

(to appear). SION for
White Sectlon
In Section 2 we define reflection groups and enumerate some of their Buff Section O3
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properties. We determine the fundamental regions for any finite reflection ication

group and define for each distinct fundamental region a partial ordering

DISTRIBUTISN/AVAILABILITY CODES

ist. AVAIL. and/or SPECIAL

#l |




e L, SRS
;- ooy

-

on the group. The partial ordering associated with a distinct fundamental
region is unique. We present a partial ordering on R" with respect te a
fundamental region through the ordering defined on the group. The partial
ordering on R" is useful in applications whereas the ordering on the group
unifies the theory and contributes to mathematical elegance.

In Section 3 we define G-ordered functions for any finite reflection
group acting on R". We show that the G-ordered property is preserved under
mixtures with respect to a positive measure and under composition with
respect to a G-invariant measure. We establish that products of nonnegative
G-ordered functions are G-ordered. Preservation under composition is
particularly useful in further developing the properties of G-ordered functions.

In the context of new work by Eaton and Perlman (1976), we present
in Section 4 a preservation theorem for G-monotone functions under an
integral transform. It contains as special cases similar theorems for
Schur functions of Proschan and Sethuraman (1977) and Hollander, Proschan,
and Sethuraman (to appear). We show how our theorem extends results obtained
by these authors to a larger class of probability distributions, in particular
to the multivariate normal and the multivariate T. We relate the G-majorization
ordering introduced by Eaton and Perlman (1976) to reflection ordering and we
show that G-monotone functions are special cases of G-ordered functions.

In Section 5 we present a short example in the area of nonparametric
statistics. We show that the Wilcoxon signed-rank statistic is a G-ordered
function of the signed ranks. We determine conditions under which tests

based on the Wilcoxon signed-rank statistic have power functions G-ordered

with respect to F.

|
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2. Fundamental Regions and Reflection Ordering.

S In this section we introduce the notion of reflection ordering. We

use the notion of a fundamental region in Euclidean n-space with respect

to a finite reflection group. (See Benson and Grove (1971), pp. 27-33.)

Each fundamental region defines a partial ordering, called reflection ordering,

on the elements of the group. We present a short summary of the derivation

of reflection groups and fundamental regions. §
Throughout this paper R" denotes Euclidean n-space. Elements of R" %

are represented by column vectors and the transpose of a vector z is denoted |

by z'. The unit ball in R" is denoted by S,» i.e. 5 ={xe R™: ||x|| =1},

where ||x|| = ¥x" x is the usual Euclidean nornm.

Definition 2.1. Let r ¢ S and let I be the n x n identity matrix. The |

matrix, Mr = In - 2rr', is called the reflection defined by r.
Geometrically, Mr reflects points across the (n-1)-dimensional subspace

of R" perpendicular to r. Clearly Mr = M_r = M; = Mr'l. In particular, we

note that Mr € 0(n), the group of n x n orthogonal matrices.

Definition 2.2. A closed subgroup G of 0(n) is called a reflection group ]

if there exists a subset Aé of Sn such that G is the smallest closed subgroup
of 0(n) containing the set ofreflections{Mr: re Aa}.

We call Az a generating system of G. A minimal generating system of G

is called a set of fundamental roots of G.

Definition 2.3. The root system of G, denoted AG’ is the set {r ¢ Sn:

Mr e G}.




For any given r € g we partition R" into the following three subsets:

1. Hr' = {x e R™: r'x > 0},

2. H W ={xeR" r'x<0},

3. Hr0 = {xeR": r'x = 0).
Since er = (I - 2rr')x = x - 2rr'x, we note that er = x if and only if
X € Hro. Thus the set Hro is invariant under the transformation defined

by the reflection Mr'

Define the set TG ={t e R™: r't =0 for each r ¢ AG}. Thus T, is

G
the complement of the set n Hro. When there is no possibility for
reAG
ambiguity we will drop the subscript G in TG. For a fixed t € T, define
the sets:
+
1. At = {re AG: r't > 0},
™ . '
2. 8, {reag: r'tc< 0}.
Since r ¢ AG if and only if -r ¢ AG’ At+ and At- partition AG into two sets

of the same cardinality.
We call At* the set of t-positive roots and we note two useful properties
relating to positive roots.

+ +
1. For every g e G, g At = Agt'

v A:, holds if and only if g is the identity matrix.

gt

For proofs of the above two statements, we refer the reader to Propositions

2. The equality, A

4.2.2 and 4.2.3 of Benson and Grove (1971).
We partition T into certain regions, termed fundamental regions, by

means of the equivalence relation defined below. The equivalence relation

is based on the set of positive roots.
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Definition 2.4. Let t, s € T. Then t is equivalentto s (t v s) if A: = A;.

Definition 2.5. Let t € T. The fundamental region F defined by t is the

set {seT: t~s}.

It is evident that for t, s € T, if t is equivalent to s, then t and s
define the same fundamental region. For any t ¢ T, gt defines a different
fundamental region for each distinct g ¢ G. To see this, note that t is
not equivalent to gt for I = g ¢ G. This is true since Ag: = A: if and only
if g = I as claimed in statement 2 above. It is consequently of interest
to note that the number of distinct fundamental regions and the number of
elements of the group G are equal.

In light of the definition of fundamental regions and the above assertions,
one can easily perceive the following properties of any fundamental region F.
(See Benson and Grove (1971), p. 27.)

1. F is an open set in R,

2., FngF=¢g if g € G is not the identity matrix.

3. R" = u{gF: g € G}, where F is the closure of F in R".

Thus the fundamental regions {gF: g ¢ G} are the equivalence classes under
the equivalence relation presented in Definition 2.4,

For any fixed finite reflection group G, we define a set of partial
orderings on the elements of G. Each distinct fundamental region in R"
defines a unique partial ordering. In order to define the ordering on the

group G we present a partition of G.

For any fundamental region F, the set A; € 4 is the set of F-positive

roots, i.e. A; = {r ¢ b8t r't >0 for all t ¢ F}. Fix arootr ¢ AG and




let gF be a fundamental region. Then r ¢ A;F orr e A;F. For the given

fixed r we partition G into the sets G; and G;, where G; is the set {g € G:

+ - . ! - ’ + -
T € AgF} and GF is the set {g € G: r ¢ Agp}. Technically, Gr and Gr depend
on the fundamental region F as well as the root r. We suppress reference to

F unless ambiguity may result,

Definition 2.8. Let r € Sn and let F be a fundamental region in R". Then g

5 : T2 +
is r-larger than Mrg’ in symbols,g 2 Jrg if and only if g € Gr'

Note that if g ¢ G;, then g is r*-larger than Hr.g, where r* = -r.

Definition 2.9. (Reflection Ordering). Let F be a fundamental region in

R" and let B1» By € G. If there exists a sequence ho, hl,...,hm in G
HEpERn r T T +

satisfying g, = h 2 1 h, 2 A mhm=g2, whf?e r,ebg, i=1,2,...,m,

then g, is F-larger than g,5 in symbols,g, oF g,

The G-orbit of a point x € R" is the set {gx: g € G}.

Definition 2.10. Suppose xl, X, € R" and they belong to each other's orbit,

i.e. Xy = 8 for some g € G. Then there exists x € F such that X) = 84X
and x, = g,x for some g)» 8 € G. We say that x, is F-larger than X,
(xl zF.xz) if g, zrigz.

Definition 2.10 presents a partial ordering on the G-orbit of a point
x € F, We have presented our definition in terms of any fundamental region
in R®, In most statistical examples the appropriate fundamental region will
suggest itself naturally.

To illustrate the preceding concepts let us consider G = Pn, the group

of all n! permutation matrices. A generating system of G, Aa, is the set
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1 o,...,0) with —Land 2 being
vz 2 2
A root system of G, A., is the

{r;,: i=1, 2,...,n - 1}, where r! = (0,...
i ] » » ] 1 ’ ] ’
ely.
2 1
set {trij. 1 sic<j<n}, where rij (0,000 ,-——

1 1 th th 2
- — and — being the i*" and j coordinates of rij respectively. The G-orbit

the ith and (i+1)s coordinates of T, respective

L o0,....5 0,...,0) vith
7

of a point x in R" is the set of all n! permutations of the coordinates of x.

Let us take our fundamental region F to be the set {x ¢ R": x, <

Xy <.u0< xn}. Since, for i < j, the jth coordinate of x € F is larger than the

ith coordinate, A; is the set {+ rij: 1sic<js<n}. The set G; 5 rij € b,
ij
contains any permutation matrix g such that for x ¢ F, the ith coordinate of

gx is less than the jth coordinate. This is obvious, since r{jgx is the jth

coordinate of gx less the ith coordinate. Now if g € G; , then Mr ge G; .
.ﬁj ij ij

For x € F, gx rij - larger than Mr gx means that the itM coordinate of gx is

ij
smaller than the jth coordinate. The point Mr gx is a permutation of the
ij
th and ]th coordinates of gx. The reader will recognize reflection ordering

for the fundamental region F as the familiar transposition ordering of

Hollander, Proschan, and Sethuraman (to appear).

3. G-ordered Functions.

In this section we define functions which are isotonic with respect to
reflection ordering. We define functions on the group G, fuuctions on Rn,
and functions on R2n which have a G-ordered property. Although the G-ordered
property is essentially a property of functions on the group, it becomes more
convenient for theoretical and practical applications to formulate the G-ordered
property for functions on R" and R2n

G-ordered functions contain as a special case functions decreasing in

transposition (DT). (See Hollander, Proschan, and Sethuraman (to appear).)



We establish some basic preservation properties for G-ordered functions. For
example, we show that mixtures and compositions of G-ordered functions are
G-ordered functions. We note that the G-ordered property is preserved under

products of nonnegative G-ordered functions.

Definition 3.1. A function f from G into Rl is G-ordered with respect to F

if g 2" g, implies £(g)) 2 £(g)), for g, g, < G.

Definition 3.2. Let X be a subset of R". It is said to be G-invariant if

gX < X for all g ¢ G.
Unless otherwise specified, G will be a fixed finite reflection group
acting on Rn, although some of the results are true for arbitrary subgroups of

O(n). The sets A and X, with or without subscripts, will denote G-invariant

subsets of R".

Definition 3.3. A function f from X into Rl is G-ordered with respect to F on

X if for every x € F n X and for every pair 81» & € G such that g zphgz, we
have £(g,x) 2 (g,x).

For each x in some fundamental region F define the function hx(g) =
f(gx). Note that hx is G-ordered with respect to F on G if f is G-ordered

with respect to F on X.

1

Definition 3.4. A function K from A x X into R™ is G-ordered if the following

two conditions hold.
i. K(gi, gx) = K(A, x) for all g e G.

ii. For every fundamental region F when A e Fn A, x ¢ F n X, and

F
gl 2 gy then K(), glx) 2 K(2, gzx).

e e,
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Remark 3.5. The reader should note that condition (i) above can be replaced by:

is, K(er, er) = K(A, x) for all r in a set of fundamental roots.

Lemma 3.6. Let K(A, x) = K(gA, x°) for all g € G. Define

(a) R(x, A) = K(A, x) for A € A, x € X.

(b) fx(x) = K(A, x) for A e A, x € X.

() hA,x(g) = K(A, gx) for A e gFn A, for x € gF n X, for all g ¢ G,
and for some g € G. Then the following are equivalent:

(1) K is G-ordered on A x X,

(2) K is G-ordered on X x A,

3 fx is G-ordered with respect to F on X for each A ¢ F n A.

4) hl,x is G-ordered with respect to éF on G for each A € é? n A and
each x ¢ gF n X.

The equivalence follows directly from the definitions of G-ordered functions
on G, on X, and on A x X, ||

We now present some preservation properties for G-ordered functions. The
proofs of Propositions 3.7, 3.8, and 3.9 below parallel the proofs of corres-
ponding results in Hollander, Proschan, and Sethuraman (to appear), so we

omit them.

Proposition 3.7. Let K(A, x) be G-ordered on A x X and let f and h be nonnegative

G-invariant functions on A and X respectively. Then £(A) K(A, x) h(x) is

G-ordered on A x X,

Proposition 3.8. Let (2, F, v) be a measure space. Suppose Kw(x, x) is G-

orderedonA x X for each w ¢ Q, and suppose that for all (A, x) € A x X,

K,(A, x) € Ll(n, F, v). Then Iﬁu(k, x) dv(y) is G-ordered on A x X,
Q




A similar result for mixtures holds for functions G-ordered with respect

to F on G and on X.

Consider any probability density Q(A, x) defined by Q(A, x) =
c(2) h(x) exp(_E Qi(A, x)). Using Proposition 3.7, Proposition 3.8 with
the counting m:;iure, and the fact that increasing functions of G-ordered
functions are G-ordered, we can show that Q(A, x) is G-ordered if ¢ and h are
G-invariant and Qi’ i=1, 2,...,k, is G-ordered. Note that densities
belonging to the multivariate exponential family are special cases of this
form.

Note that if K(A, x) is G-ordered on A x X, then K(A, x) is G-ordered on
A* x X*, where A* and X* are any G-invariant subsets of A and X respectively.
Thus if K(A, x), a G-ordered function on A x X, is the density of a random
variable X and u is a G-invariant function on X, the conditional density of X
given u(X) = us l(n (A, x) is G-ordered on A x Xo, where Xo = {x € X:

o
u(x) = uO}.

Proposition 3.9. The product of nonnegative G-ordered functions is G-ordered.

Definition 3.10. A measure u on X is G-invariant if u(A n X) = u(gA n X) for

any g € G and any Borel set A in R".

1 x X and let K2 be G-ordered on X x Xz.

Let K(x, z) = [Kl(x, y) Ky(y, 2) du(y), where u is a G-invariant measure.

Theorem 3.11. Let Kl be G-ordered on X

Then K is G-ordered on Xl x Xz.

Proof. (i). First we show K(gx, gz) = K(x, z) for all g ¢ G. Let g € G. Then

K(gx, gz) = {Kl(gx. y) Ky(y, g2) du(y) = )J;Kl(g)t. gy) K,(gy, gz) du(gy)

= le(x, y) Kz(y, z) du(y) [using the G-invariance of u]
X

= K(x, y), as desired.
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(ii). Now let x ¢ F n X1 and z e Fon xz. We need to show that g, F g

implies K(x, g, z) 2 K(x, g, z). It suffices to show that K(x, z) 2

2

K(x, Mrz) for some T ¢ A;. Let T ¢ A;, then K(x, z) - K(x, Mrz)
= [K (x, VK, (y, 2) - Ky(y, M_2)]du(y)

- &,Kl(x. N K, 2) - Ky(y, M2)]du(y)
T

+ £_K1(x. K, 2) - Ky, M 2)]1du(y)
r

+ 1K (s Y)IK Oy, 2) - Koy, Moz)]du(y).

i
Since Kz(y, z) - Kz(y, Mrz) = 0 for all y ¢ H:, we drop the third integral
above. We use the transformation y = Mru in the second integral above and by

the G-invariance of u we conclude that the second integral is equal to:

£+Kl(x, M) [Ky(u, M 2) - Ky(u, 2)] du(u).
T

We now combine the first and second integral and factor the integrand to
obtain that K(x, z) - K(x, M_z) = [ [K (x, ¥) - K, (x, MyY)][K,(y, 2) -

T u* 1 1 T 2
Kz(y, Mrz)]du(y). Both factors arernonnegative in the region y € H;, SO

K(x, z) - K(x, M z) 2 0, as desired. |

Corollary 3.12. Let K(A, x) be G-ordered on A x X and let f(x) be G-ordered

with respect to F on X. Let h(A) = [K(A, x) £(x) du(x), where u is a

G-invariant measure on X. Then h(A) is G-ordered with respect to F on A.

Proof. Let A\* ¢ F n A and define the set 0, = {g2*: g e G}. Let Q(x, gA*)

def

= f(g'lx) and note that Q is G-ordered on X x 0 To see this, note that

ar
when g = In’ Q is G-ordered with respect to F and that Q(glx, glgx*) =
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-1 -1 -1 -1
£((g; 8) "gyx) = £(g 181 g,x) = f(g "x) = Q(x, gA*). By Theorem 3.11,
Q*(A, g\*) dgf JX(A, x) Q(x, gA*) du(x) is G-ordered on A x 0,.. But for
g = In’ Q*{A, Inl') = h(A). Thus h(A) is G-ordered with respect to F on A,

as desired. ||

Corollary 3.13. Let f1 and f2 be G-ordered with respect to F functions.

Define f(g) = } fl(g'lgo) £,(g)). Then f is G-ordered with respect to F.

goeG

4. G-majorization, G-monotonicity, and the Preservation Theorem.

G-majorization is a partial ordering on R" introduced by Eaton and
Perlman (1976) (EP (1976)). G-monotone functions are isotonic with respect
to this ordering. In this section we relate reflection ordering to G-
majorization and show that G-monotone functions are a special case of
G-ordered functions. We use the properties of G-ordered functions to obtain
a preservation theorem for G-monotone functions under an integral transform.

We supply a brief summary of relevant parts of the work of Eaton and Perlman.

Ry n
Definition 4.1. Let x, y ¢ R and let x[l] 2 x[2] Senie x[ ] and y[l] 2

y[2] i y[ ] be decreasing rearrangements of the elements of x and y

respect1vely. Then x is said to majorize y(x 2" y) if Z X4y 2
i=1
Z Y(i)e k=1, 2,..., n -1, with equality when k = n.
i=1

Definition 4.2. A function f defined on R" is Schur-convex (Schur-concave)

if x 2" y implies £(x) 2 (s) £(y).

Majorization induces a partial ordering on R™ and Schur-convex functions

are order preserving with respect to majorization. The G-majorization ordering

of EP (1976) includes majorization as a special case.
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Definition 4.3. Let x, y € X and let G be a closed subgroup of 0(n). The point x is

said to G-majorize y(xzcy) if y is an element of the convex hull of the G-orbit of x.

The term '"G-majorization'" and the notation "szy" are ours, but as mentioned be-
fore, the concept of the ordering belongs to Eaton and Perlman. When G=Pn, the group
of permutation matrices, G-majorization coincides with the familiar majorization

ordering of Definition 4.1. (See EP(1976).)

Definition 4.4. An extended real valued function f on X is G-monotone increasing

(decreasing) if szy implies f(x) 2 (s) f(y).

When G'Pn’ the group of permutation matrices, the class of G-monotone increasing
(decreasing) functions coincides with the class of Schur-convex (Schur-concave)
functions.

Lemma 4.5. (EP(1976)). Let G be a finite reflection group. Suppose szy, x*y., Then
there exists a sequence of points Z00ZyseeesZy such that z =y, Z,°X, and zj-l'
[Ajln+(l-Aj)Mrj]zj, 1sjs<m, where rjeAg, OsAj<1, and In is the nxn identity matrix.

Note that szGZj_l for all j.

Eaton and Perlman devote a significant partof their paper to establishing the
above path lemma. It demonstrates the existence of a polygonal path between a point
xeR™ and any point y in the convex hull of the G-orbit of x.

‘his lemma is a key tool in the study of G-majorization and G-monotone functions.
For example, to show that a function f on R" is G-monotone increasing it suffices to
show that for all xeR" and reAG,f(x)zf([AIn+(I-A)Mr]x). The above procedure is only
one method for determining G-monotone functions. We refer the reader to EP(1976) for
their differential characterizations of smooth G-monotone functions.

Before we show the relationship between G-ordered functions and G-monotone func-

tions we need to establish some technical lemmas. We will find the following notation

useful in the remainder of the paper.
Lemma 4.6. Let reAG
Suppose x, yeR" are such that uix=uly,i=2,3,...,n. Then x2° y if and only if |rk|2|ry!
Proof. The point y is on the line which passes through the points x and M x. Conse-
quently, y is in the convex hull of the G-orbit of x if and only if |r'x|2|r'y|.||

and let ul,uz,...,u be an orthonormal bas;s for R" such that u, =r.
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Lemma 4.7. Let F be a fundamental region in R". Then g zF Mrg if and only if

(r'gx) 2 0 for all x ¢ F.

Proof. By definition, g ZF Mrg if and only if g € G’. But g ¢ G* if and
0
u
T
0

onlyingcH;uH:. N igxeH H°1fandon1y1f (r'gx) 2 0 and

gF H; u H: if and only if gx € U H° for all x € F. Thus the result is

immediate. ||

Lenma 4.8. Let r e A; and let x ¢ F. Then g oF Mg if and only if
G - = 3 +
A+gx 2 A+ .!rgx @) Mrgx 2 A -gx) for all X ¢ Hr v H:

Proof. We will show that g ZF M g if and only if A + gx 26 A+ Mrgx for all

i Ae H; v H: The proof that g 2 Mrg if and only if A - Mrgx 26 A - gx is

|~

analogous. Without loss we assume g = I and we show that A + x ZG A+ Mx

if and only if (r'x)(r'A) 2 0. Let Ups UgyeeesUy be an orthonormal basis

for R" such that u, = T, Now A+x= ((r'2A +r'x)r + Z (u'x + u! x)ui) and

A+ Mx = ((F'2 - ')+ Z(u'k+ux)u) Sox+x1:(z;x+er if and

only if |r'A + r'x| 2 lr'AI:Zr 'x| as a consequence of Lemma 4.6. But

[r*'A + r'x| 2 |r'A - r'x| if and only if (r'A)(r'x) 2 0. Thus A + x 252 e M x
if and only if (r'A)(r'x) 2 0. By Lemma 4.7, g ZF Mrg if and only if
(r'A)(r'gx) 2 0 for all A ¢ H U H° and all x ¢ F. In particular,

=z I oF M_I_if and only if (r'A)(r'x) 2 0 for all A ¢ Hy u HJ.. Thus g oF 1 M g

if and only if A + gx 26 2 + M_gx for all A eHruH:. I

Lemma 4.9. Let r ¢ Sn and let z ¢ R". Then for any a, 0 < a < 1, there
n - ' '
exist Aa, x, € R such that 2z Aa * Xo» (r Aa) (r xa) 2 0, and

(aln + (1 - a)Mr)(Aa + xa) = Aa + Mr Xy.
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a
Proof. Let T (1 - a)z and Aa g then

2 a 1
(1) RS R -t R Rl

(i) ENYE'x) = @' = x)'x) = = @'x)? 2 0.

222 a
(iii) (uIn + (1 - u)Mr)(Aa + xa) ;i era = ka + er“, [

Theorem 4.10. Let K(A, x) be of the form f(A + x)(f(A - x)). Then K(A, x) is
G-ordered on RZn if and only if £(A + x)(f(A - x)) is G-monotone increasing

(decreasing) on R,

Proof. We show that K(A, x) is G-ordered if and only if f(A + x) is G-monotone
increasing. The proof that K(A, x) is G-ordered if and only if f(A - x) is
G-monotone decreasing is analogous.

(i) We show for all g € G, K(A, x) = K(gA, gx) if and only if f(A + x) =
f(g(A + x)). Now K(A, x) = £(A + x) and K(gr, gx) = £(gA + gx) = £(g(A + x)).
So K(A, x) = K(gA, gx) if and only if f(A + x) = £(g(A + x)).

(iia) Suppose f is G-monotone increasing. Let A e Fn A, x ¢ F n X, and
T E€ A: for every t € F. Then (r'A)(r'x) 2 0 which implies A + x ZG A+ er
by Lemmas 4.7 and 4.8. Consequently K(A, x) - K(}, er) = f(A + x) -
f(A + er) 2 0.
2G z,. Without loss

1 2
assume z, = (aIn + (1 - a)Mr)z1 for any arbitrary a, 0 < a < 1. By Lemma

(iib) Suppose K is G-ordered on A x X and let z

4.9, there exist Aa’ Xy such that z, = Ac * X0 2y Aa + era’ and

(r'Au)(r'xQ) 2 0. Consequently f(zl) - f(zz) = f(xa + xa) - fgig + erc) =
x F

K(Aa, xa) - K(Aa, era) 2 0 since (r'xa)(r'xc) 2 0 implies In 2 Mrln by

Lemma 4.7. ||
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Definition 4,11, A measure p on X is said to be translation invariant if

;“‘ A(An X) = u((A + x) nX) for all Borel sets A E_Rn and all x e X.

i Corollary 4.12. The convolution of G-monotone decreasing functions on R"

with respect to a translation and G-invariant measure y is G-monotone decreasing.

Proof. Let fl' f2 be G-monotone decreasing on R" and define h(x) =
[£,(x - y) £,(y) du(y). Then h(x - y) = [£,(x - z - y) £,(y) du(y)

= ffl(x - u) fz(u - z) du(u), using

.y

the translation u = z + y. By Theorem 4.10,f1(x -u), fZCu - z) are

M By Theorem 3.11, h(x - z) is G-ordered on R>". Thus by

G-ordered on R

another application of Theorem 4.10, h is G-monotone decreasing on R". I
The convolution theorem (Theorem 5.1) of Eaton and Perlman (1976) is a

stronger result than Corollary 4.12. They prove that the convolution of

G-monotone decreasing functions is G-monotone decreasing for a general, not

necessarily finite, reflection group.

Remark. For Corollary 4.12 it is not necessary that the functions be G-monotone
decreasing on R". Suppose X is a subset of R" such that the set U o
{u e R': us=x+ Y, X, ¥y € X} is G-invariant, then the convolution of
G-monotone decreasing functions on X is G-monotone decreasing. The reader

should note that the above condition is satisfied if X forms a semigroup under

addition, for then U = X.

Definition 4.13. Let A, X S_R" form semigroups under addition. A function

K(x, x) on A x X is said to have the G-ordered generalized semigroup property with re-

spect to a translation invariant measure u if, for Al,xz e A and x € X, taere exist




b

LA e

I )

G-ordered functions K(l)(x, x) and K(Z)(A, x) on A x X such that K(Al + Az, x) =

KMo, x -9 Pay, » am.

Theorem 4.14. Let A, X be as in Definition 4.13 and let a function Kon A x X
have the G-ordered generalized semigroup property with respect to a G-invariant
and translation invariant measure u. Then h()) = IK(A, x) £(x) du(x) is
G-monotone increasing (decreasing) on A if f(x) is G-monotone increasing

(decreasing) on X.

Proof. We show that F is G-monotone increasing implies that h is G-monotone
increasing. We will show that h(A + A*) is G-ordered on Az and conclude that
h is G-monotone increasing on A using Theorem 4.10. Write

h(: + A*) = fx K(A + A%, x) £(x) du(x)
= [y kP, x - 0 kP00, y) o) £00 du
= [ kP00, ) [y kO, x - ) £00 dui) duly)

- [, k@0, ) [ kD0, 2) £ 2) du) o,
y

where Xy ={ueR™ u=x-y,r,yeX}. [Weuse the translation z = x - y.]
Since X forms a semigroup under additioq,xy > X for all y € X. On the set

Xy - X, x(l)(x, .) is zero, so we can replace xy by X for the region of
integration of the inside integral. Thus h(A + A*) = fo(z)(l‘, y)

IXK(I)(A, z) f(y + z) du(z) du(y). By an application of Theorem 2.12,

jxx(l)(x, z) f(y + z) du(z) is G-ordered. By a second application of Theorem

2.12, h(Ar + A*) is G-ordered on Az. Thus h is G-monotone increasing on A. To
show f G-monotone decreasing implies h G-monotone decreasing, we need only
consider -f which is G-monotone increasing and deduce that -h is G-monotone

increasing.
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We give a simple example to illustrate the concepts and notation. The

reader will see how Theorem 4.14 can be used to develop monotonicity properties

for power functions in hypothesis testing. Applications of significance are

given in Part II.

Example 4.15. Consider the group G generated by A; = l—,wl— ‘, iLu-—l-‘
2 /2 2 /2

Let K(A, x) be the density of an exchangable bivariate normal random variable,

It can be verified that K has the G-ordered generalized semigroup property. If

we wish to test the hypothesis HO: A = 0 against the alternative H A =0,

)
then a test with critical region Q = {x ¢ R2: f(x) > c} where f is a

G-monotone increasing function has a G-monotone increasing power function.

As an example, consider f(x) = lel + lle. The power function, h(A) =

Q¢

function, is G-monotone increasing. Thus any test of Ho versus H

IK(A, x) qu(x)dx, is G-monotone increasing since I_. (x), the indicator

with
: ]

critical region Qf is unbiased and has a power function which increases

monotonically as either or both of the coordinates of A increase in absolute
value.

Theorem 4.14 is an extension and generalization of a similar preservation
theorem under an integral transform (Theorem 3.7) of Hollander, Proschan,
and Sethuraman (to appear). It yields their theorem as a special case when
G = Pn’ the group of permutation matrices, K(l) = K(z) = K, and A and X

are the positive reals or the positive integers.

Definition 4.16. Let A, X be as in Definition 4.13. A function K(A, x) on

A x X is said to have the G-ordered conditional generalized semigroup property with

respect to a translation invariant measure u, if there exists a o-finite measure space




v

o

19

(?, F, v) and functions K, (A, x), w € 9, such that:

i, KQ, x) = [oK (A, x) dv(w).

ii. For each v e @, K has the G-ordered generalized semigroup property

with respect to u.

Corollary 4.17. The conclusion of Theorem 4.14 holds if K(A, x) has the

G-ordered conditional generalized semigroup property.

Proof. Let h (A) = [y K, (A, x) £(x) du(x). Then by Theorem 4.14, h ()
is G-monotone increasing (decreasing) on A for each w ¢ Q. Now

h(A) = [y KQ, x) £(x) du(x)
= Iy Jq K, O x) @v(w) £(x) du(x)
= Jo Iy X, 00, %) £(x) du(x) dv(w)
= [q h, () dv(v).

By the mixture result, Proposition 3.8, and Theorem 4.10 we conclude that h(A)

is G-monotone increasing (decreasing). ||

It should be noted that in the case where G = Pn we have relaxed the
assumptions imposed on K(A, x), the kernel of the transform, by Hollander,
Proschan, and Sethuraman (to appear). We conclude that all the results
relating to statistical applications of their preservation theorem under an

integral transform are applicable to a much larger class of probability

distributions, in particular, to the distributions of exchangeable normal and

t random variables.
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/n
X

where x? is a chi-square random variable with n degrecs of freedom and U is an

Example 4.18. A bivariate T random variable can be expressed as T = u,

exchangeable bivariate normal variable. If A is the mean of U, then K(1, x),

o

’
”

the density of T, has the G-ordered conditional generalized semigroup property.
Thus for the same test, with critical region Qf, the power function has the

monotonicity property described in Example 4.15.

5. A Sample Application.

In this section we consider an application in the area of nonparametric
statistics. We show that the Wilcoxon signed-rank statistic is a function
G-ordered with respect to F of the signed ranks. Using results from previous
% sections we will determine under what conditions the frequency function of
the signed ranks is G-ordered. We also present monotonicity properties for
power functions of tests based on the Wilcoxon signed-rank statistic.

Let G be the group of all permutations and sign changes of the coordinates

acting on the elements of R". Given a set of real numbers {xl, xz,...,xn}.

letr. =1+ ) L(x.|, |x;]), i=1, 2,...,n, where L(a, b) =1 if a > b,
i i i j

4 ifa="b, and 0 if a < b. Let v, = (sgn xi)ri, then v = (vl, vz,...,vn)

is the vector of signed ranks of the set of real numbers {xl, xz,...,xn}.

Define the function J(x, v) on R2n as follows:

1 ifv, = (sgnx,)r,, i=1, 2,...,n
Ix, v) = i i ;i

0 otherwise.

It can be verified that J(x, v) is G-ordered for the group G of permutations

and sign changes. The frequency function g(A, v) of the signed ranks v can be

written as follows:
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g, v) = [ K(A, x) J(x, v) du(x).

If K(A, x) is G-ordered and u is a G-invariant measure, then by the composition

theorem (Theorem 3.11), g(A, v) is G-ordered. We note that both Lebesgue

measure and counting measure are G-invariant for the group of permutations and

sign changes.
Define the function f(x) on R" in the following manner:
n
£(x) = ] x.I(x, > 0).
jop + 1

Then f is G-ordered with respect to F with F = {x ¢ B k. 2% <...<xn}.

1 2
Let Qf = {x ¢ R™: f(v) > c“}. Since f is G-ordered with respect to F, the
indicator function I(x € Qf) is G-ordered with respect to F. If K(A, x) is
G-ordered, then by the composition theorem for functions G-ordered

with respect to F (Corollary 3.12), the power function, h(}) dgf

[K(A, x) I(x ¢ Qf) du(x), of any test based upon the Wilcoxon signed-rank
statistic is a function G-ordered with respect to F on the parameter space.

Actually a stronger result than this is true. Define the power function

h(x) as h(2) = [g(r, v) I(£(v) > c,) du(v). By Corollary 3.12, h(}) is

G-ordered with respect to F if g(A, v) is G-ordered. Thus it is not necessary

that K(A, x) be G-ordered. It suffices that the frequency function g(A, v) of

the signed ranks be G-ordered.
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