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1. INTRODUGTION

Given n set & in. R" of form {x : Ax s a} and a linear

“function §(x) = Cx + ¢ from ¥ to R" we considor the existence

" and computation, in a finite number of steps, of a stationary point.

A point x% in % 1s dofined to be a stationary point of (B.%) if
Cx* + ¢ 1sa an lnward normﬂ of &L at xv, oi‘ in other worde, if
(y = x%) o @(x*) is nonnegative for all cholces of y in¥X.

The exlstence and computation of atationary points 1a, in
particular, central to tha solution of certain quadratic programa,
matrix gamaa, and economic equilibrium problems. Such problema can
often he cast into the lincdr complamcntarity problem which is @
at:nt.ionarity problem (£,%) where % is the nonnegative orthant;
Lemke's algorithm (6] offers the principal avenue for solving the
linear complementarity problam,

Herein we adapt Loemke's algorithm in order to approach tho
general atationarity problem (£%). Towards deacribing our main re-
sult lat xo be an arbitrary point in X . We introduce coustralnts
Bx < b 80 that xo is the unique solution to Ax < 4 and Bx < b.
Next define &, to be the set of x's asuch that Ax < a and
Bx < b + 0e where e = (1, 1, ..., 1) and 0 varies over tha in-

terval [0, +=) . Also define a pivcewise linear path (X,0) to be

a (continuous) function (X,0) t [0, +=) + R" x [0, +=) that ls ¥
White Ssation W
affine on each of a finite number of closed,intervals where tha cloacd Buff Sectis o
i
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intervaln cover [0, 4m) « The following theoruem capluren our

principal concluslon.

Theorem:  The algoricthm computes a plecewise linear path
(X,8) such that X(0) = Koa 0(0) = 0, O(p) tends to infinity am
p does, and X(p) 18 a atationary point of (t‘xo(n)) for all p. M

One intereating consoquance of the theorem fa the Fallowing.

Corallary:t The algovithm computes either a statilonary

point x% of (f%) or a ray {xv + 0x : 0 > 0%} 4n X wmuch that

X * B(x" + 0x) 18 negative for all 0 exceeding 0w,
For emphasis ond clarity we note that throughout the papaer
C 1is not asmumed to bo symetric, 8 {s not assumed to lic in the :
nonnegatlive orthant, and % 1w not assumed Lo have any oxtreme points. %
Some pertinent referances are Cottle [1), Lemke [6,7], and [3,4]. £
?,:
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2. ALGORITIN

In this section we givae a demcription of the algorithw,

A o

Cortain detalla of execution arce amplified upon in Section 3, a
complate example fa exccutea in Section 4, and the proof of con-

- vergance 1is elaborated upon in Appendices 1 and 2.

Uuiha a Eﬁeorem of the alternative it is o simple matter to

=

,-155 ‘ R E

_ sae that finding o stationary polnt x of (£,9 1is equivalent to
g é? finding a solution to the systonm 3
- W i
3 Ax + 8 w a, Cx o+ AN =0, 4
(1) - |
: ‘ s >0, A>0, 8 A=0, t

TR
,‘:"!EE g

If x is a stationary point, then there im a (s, A) so that

O e S R

(x, »,-2) 1w a mwolution, If (x, 8, \) is a solution then x 1is

a stationary point,
With regard to the data, A im an m x n matrix, AT is the

transpose of A, a 48 m» 1, C 48 nxn, and ¢ 18 n x 1, and

for the variables, x 48 nx 1,8 18 mx 1, and A 4is m~ 1,
Step One of the alporithm is to melect any point O % ®

In Bection 3 we describe a way of axecuting Step One, If it

is notad that & ims a mingleton, then the algorithm could be terminated

for xo is a stationary point, however, it is not necessary to terminate

here in this case.

L
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Step Iwo of the algorithm fn to adjoln addltlonal conntraints ' g

Bx = b in order that xn 1R the unique solution to the sykriem, -4
Ax <a, Bx<b. X

¥

Assuming £ additional conatraints atre addad, that ia, (B, h) ‘ "f

is £ x (n + 1), then observe that & must bo at least as lurga as,
but need not be larper thon, n - h + 1 whera h 14 the nunhor of

linearly independent rows A, of A such that A, x0 = a, . By )y,

wa dehote the ith row of the cnclosed matrix. 1n Section 3 we deacribe
a way of sclecting (B, b).

Towards fimling> a stationary point of (#,% wo conuider the
intermediary task of finding stationary pointm of (g, ’0) where xe
is the set of x's auch that Ax < a and Bx < b + 0¢ where
e= (1, «.vy 1). Clearly xo is ompty for negative 6 and bounded

for all @,

Computing a stationary point of (g, xe) is equivalent to

gsolving the system,

T T

AX + a » a, Cx+c+ AL +Bym=0,
(2) B ¢+t - a0 = ), B*A » tey wQ,
820, t >0, A>0, w20,

Of course, if we have a solution (x, &, t, A, u, 6) to (2) with

ekt Cosnta v B R




QRG22 7 TR

s

’ =0 thon (x, 8, A) solves (1) and x 18 a stationary point of i
L b @ | ;
4 %E Raweiting (2) in detached coelficient form we have u

& ,
?‘ x [ t A VTR '
¥ ' A N e dwidsy
3 § c ] o o] A] 0] o -c
E (2) Al fofojo o =] a
: B 0 1 0 0 | -0 b
; f(
E- -
3 3 8>0, t>0, A>0, u>0, 030,
r %‘- g * A= t e yumw 0 .
"_ % ) : For purpoaes of computational efficlency and to emphasim thae
f i
L §. relation to lemke's algorithm, we now eliminute x from the system
3
(2). By ),B we denote the submatrix of columns indexed by 8.
4 % Step Threo of the algorithm ia to select a set B of n indices j
r ;
! 3 from {1, ..., m+ 2} ao that
g
.J 7 ) A) 0 Qa '-
& : X = J€8 !
3 3 B t '
E ( 3 ’) 3 '
ki : |
5 i so that the rows
- ¢ B, jcs
3
S8 are lincarly independent,and so that

$
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has a solution. W

In Section 3 we describe a way of selecting 0.

For any x in 3{0 we have

T R R T

-1
: ! - A a 1 0 0
1 (3) X ™ - 8 = t + 0 .
'- B g b 0 1 e B
8 E
X i Step Four of the algorithm 18 to usa tho expresaion (3) to
f ? eliminate x  from the syatom (2) in order to obtain tha systom (4)
3 ; which we have illustratod in detached coefficient form,
v ¢
. ; 4 t A u 0
- f
B { 7 1
(4) .
. £
; : \13 J4 0 0 clz qy
L
i
3
; 820, t>0,A>0,u>20,8¢* 2wt u=0,.
;

Letting o be those elements in (1, ..., m + L} not in 8

we have

SR ORORERCRIOROS R
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L;i Hence (x, 8, t, A, u) solves (2), Lf and only il It nolves (3) *
3 =f‘“ and (4), 'Thus, 1f we solve (4) and use (3) to compute %, we have
F.‘ & solvad (2). ' 3
% ﬂ;! A 18 done in tho simplex method in ordar to ramove coincideﬁce :
- ll and consequential ambipulty, we partdrh the vectora CH and 9, to 7
-
E ¢ Tt
3 ;_. ql. + (A » H )'B [E]l and qz + [‘:]z
4 !
i where t© 18 8 positive infinitesimal, [e]1 e (¢, ez. ey cn) and
g [”2 - (E"H, iy r.mﬂ"“). The ryatem (4) is thus porturbed to ob-
o ' tatn (5),
3 ) t A u ]
; i
: T T T R

{ 3 Jq A B oy q, * (A » B ).B fely
- (5)
e

% 820,620,120, 1u>0,0>0,8¢Amtonu=0,

‘ That is to say, (3) and (5) are cquivalent to (6).

Equivalently, defining [e;]3 and IEJA by

3 le] (e]

1 3

- » 3 " [clz

; (€], lel,

% B 4]

{ (2) 18 perturbed to (6)
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S ¢ oo ] AT st o -c + (A‘. n").ﬁ le],

&) | A t- ] oo 0 0 a4 [e],

TR S AL B T T R e S e e

B 0 1 0 0 -a b + [514

T e s s b TR e T ad FRTCTE TR e < Ty y

S 820, 20,420, 120,020, 8¢ A=tey=0,
3 é We ohserve that (ag. tg. kg ) ug » 0)  1s a solution to (3) :
g 5 where : 3
i a? a A ‘

" - Xy + lel,

,.
et e
T

Ll ) e
-2

—

-

Qa a [+ 2

O

s O

A -1 1
- -(ﬁT, BT) (Cx0 + ) + [e]l . 4

¢
S 0 ‘ 3
A i M g
A

f
f:; :. By t = 0 Ay u ] =0 ."
. (L “)ﬁ ( - ")a 3

v
e

This asolution of (5) is defined to be the initial solution. We shall

show in Appendix 1 that, in fact, the initial solution is the only ' k.

I o o T

B

; solution to (5) with 6 = 0, note however, that for ¢ ~ 0 the _ :g

e

golution may not be unique. \Q
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The perturbation as desceribed here 38 8 conceptual devieed it
is implemented in a computer code by waking lexicographic cnmpnriéunu.
soe Dantzig (2, Chapter 10).

The next step of the algorithm is to "complemantary pivot" on
(5) & la Lomke wharoln one begine with the initial solution and
inereasas 0 . To he more explicit here we necd some definltions.

Due to the perturbation every solution of (3) has (m + )
or (m+ & + 1) pouitive components. If a solutlon has exactly
m+ & poaitive components Lt ia defined to be a basic solution and
the positive variables are called the basic variables. By a ray of
solutions to (5) we mean a Fanily of wolutiona to (5) of form
(8%, t*, A%, p%, 0%) 4 r(a, t, A, 4, 0) whore r varles over the
interval [0, +») and (s, t. X, §, 0) is nonzero.

Stop Five of the algordthm 18 to complementary pivot; such

is begun in Lteration 1,

Iteration k = 1t Begluning with the initial solution, which
is basic, increase 0 and adjust basic variables in order to retain
a solution to (5); elther we can increase 6 to infinity imn this
manner or some basic variable, now designated the blacking variable,
is driven to zero, In the first case a ray of solutiona

(?g, tg‘ Ag. ug, é) + r(;. t, A, 0, 5) to (5) has been gencrated

where the positive componants of each solution are 0 and the basic

[N
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variables; the plvoting is terminated. In the second case o new

solution (}i. ti. A;.'ui, Oi has heen generated where the positive

components are 6 aud the baslc variables excluding the blocking

variable; the new solution is basic and we mova to Iteration 2., K

lteration (k41) = 2, 3, ...: Assume that the basie solutiors

(ag, t?. XS. "S' 02), iy (%E, t:, A%. u:. 0?) have beetl generatod
0

€ ( .
and that t la poasftive. There 18 oxactly one 1 in {1, ..., m+s)
auch that both
“ N
:k =0 and K «0
"
€ r

One of these two variables was bnsic in the (k-1)st basic solution;

let us now designate the other variable of the pair, the driving

vatiahle. Beginning with the basle solution GE. tﬁ. L k)

¢! M;. et
increase the driving varfable and adjust tha basle variables Lo maln-
tain a solution of (5); either we can increasoe the driving varliable to
infinity in this manner or some basic variable, now designated the
blocking variable, is driven to gzero. In the flrat case a ray of

k k - - - =

solutions (sr. te. At. ut. eE) + r(;. t, A, U, 0) to (5) has
been genoratod whare the positive components of each solution are

the driving and basic variables} the pivoting is terminated., In the

k+l k]l kel uk+1 Wil
]

second case a new solution (%c k. An » Mg Os ) haa been

10
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gencrated where the pogitive componenis are the driving and basle

variables oxeluding the blocking varlable; the new solution fu bastice

and we move to [teration k + 2. K

Our deseription of the algorithm is now essentlally complete.

The only remalning matter 18 to show that 1t gencrated the path of the

Theoram.

We hasten to remark that Or 18 positive for k exceeding

zero, hecause the lnitial selution is the only one with 0 ecqual to

zero and becausc the algorithm cannot cycle} this arguement Is amplifled

upon in Appendices 1 und 2, Since there are only finitely many basic

solutions the complementary pivoting must terminate on a ray.
Assuming the complementary pivoting terminates in lteration

k + 1, the ray of solutlons to (5) generated has the form
k k .k k k - e e = - e e o
(HE.' ts' )‘g) “g;’ OE) +r(s, t, A, u, 0) where (s, ¢, A, u, 6) #0

and r varies over [0, +4m) ,

Defdine xt and X Dby

-1
x:f = ’I} E 01 ok - (1) sk - (]) o
- B+ M € [ C C ]
-1 !
- A 0] = l - 0 -
X = 0 - 8 - t .
Bl \Lt 0 I A

Then
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is a ray of solutdons to (6) where r  vardes over the Intorval
[()’ +)

Of course, it follows that

x 8 t 3 m 0
= =
¢ 0 0 A B 0 0
(" A 1 0 0 0 o = | o0
B 0 1 0 0 | -e 0

§>0 t>0 X>0 ji>0 020
E'X LY I'E -] ;o)\k = touk a g_.;lfc‘}.\ ™ tkoT e “koAk Lko“ o ) .
€ [ ¥ 2 € £ £

Townrds proving our main theorem it ds {fmportant to prove that

6 1w positive. LIf the complementary plvoting terminates in dteration

one, then obviously 0 4w positive, 10 the plvoting terminatas In

iteration k + 1 where k excouds one, then OE is posltive as

we have already arpuced, Let us suppose 0 1s zero amd show that it

leads to a contradiction.

Suppose 0 i zero. Then x 18 zero, since that 1s the only

solution to Ax < 0 and Bx < 0., Herc 8 and t are zero. There-
fora, XA + B = 0. Adding XAxt “w A(a + {c]ly) to ﬁﬂxr - ﬁeO?
=l + [tlé) we pot —uvot = A + [c]a) + (b + [u]a) . Se If

12

|

e i T e e 2 o vt S,

= R

il

s

ok

R e

esiog .

iy e et s




§
T
i ;
: [
i
: . ]
‘

. 1]
? 1s nonzero, the multiplicrs  (A,0)  show Ax < a [u]3 with § i
% Bx < b+ [n]a to bhe Infeasible which is a contradiction, Thus, p . g é
z is zero and N is nonzero. Hence, A v 0 and X(n -+ [x]3) (), (i i
ﬁ 1t follows that (le:]a)j is zero whenevor Xj 1s posltive, Bul % %
thls cannot be by cholce of [u]z, since the rows Aj- for XJ % %
: positive are lincarly dependent.  Our supposition leads to a cuntra- ,{ 6
.
& dictlon and we may assume 0 1 positive. ? %
5 Now that 0 18 astablished as positive, we relas our perturs g ;
" batdion, that is, for 4 =0, 1, ..y k the &th solutfon i
: (xé, Rj, L:. A:. u:, Oi) to (6) bocomes a qolutfon (xi, nl, ti, A‘. p1. 01) ? E
é' to (2) upon setting ¢ to zervy a coordinate of the later solution ls i
l; positive, only 1f the corresponding solution of the {fermer one is ;
; positive, We have that (xk, Hk, tk, Ak, uk, Ok) o r(g. By Ly A, ﬁ, 0) j
§ as a ray ol gsolutionn to (2).
{ To prove the Theorem we set X(1) = x1 and  0(1) = Ol for
; w0, «ovy ky oxtend  (X,0) to [0,k] by making tt affine on each ‘
% . interval [t, L + 1] Tor 1 =0, ..o, k=L, and finally, extend (8,0)
g to [0, +) by setting X(kér) = xk + rx and O(kebr) = Ok +r0 for
é all r >0 .
g To prove the Corollnry we [{rst consider uk R A4 uk 1y zoro ;
" then xk Is a stationary point of (&) . Otherwise let us assume .
: uk i8 not zero and we conatder the roy xk +rx In X. We have :
N |
; !
13 1
%
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3. SHLEGTING X', (B, h), B

In the provious sectlon the quantities xu. B, b) and R
wvere needed to execute the alporithm. In particular settlings their
gelectlon mipht be evident, for exumple, xo in 2 might be a
known cstimite of a stationary polnt. Our purposce here, however,
18 to deseribe a general wvay of generating xo. Ry b)), and 8 .

Salecting xO: Use Phase 1 of the simplex method to solve
the systom Ax + la = a, 5 > 0 . Asauming Ax < a is feanible,
the system (8) is obtained via elementary row operatlons on

AX + Ig = a .,

xy Xs 8 K,
(8) 1 by B, ] o a,
0 n, E, 1 52 >0

Note that 52_1 0, that {1, ..., n} 18 a disjoint union of y and
§, that {1, ..., m) 4is a digjoint unfon of n and &, and that
y and n contain the same number of elementa.  Clearly x0 deflned

by 0 w 51 and xg “ 0 is a solution to Ax < a . N

Y
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it v
: 3!
_g i
.
" Setecting (I b))t The systen ? ‘j
; d oo
i‘ X o \ ,
_ ne 1 3
‘ |
) xg 2 0 |
.
-t A xtex, -0 g
ne § - n q A
; P
F 0 N
3 has a unlque solutlon, namely, x° , ‘o see this observe that (9) ; j
t is equivalent to i
. v Iy
N -
33 ' .
! An.xuan, xéno S-.
and, consequently, to i‘f
b

b i i .

) A x wa X, =0 .

. ny 'y n’ $

2 But from the alementary row operations we sece that A;t "n v ﬁ] . ﬁ .
? Thercofore, we can deflune (B, h) by 2 .
: 0

-1, 0

: B b - &
I el, = oA -¢ ' a
:. 0 n
{

t

. Selecting K¢ lLet R be the set n Y {m+ 1, ...y m+ 2} of

n+1 elements where B 48 L x n v Solve

S AT T e T AT e LT A e ma A o

3 AT, YY) ?l w-ex? - o

3 B R

3 ,

'. Ay Wz 20 1

’ for a banle solution, ‘then discard from £ an clement corresponding ;
3

to a zero component of tho solution to get B . K

16
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i)

ho o EXAMPLE
W
b o Using the alporithm as spectifled in Sactions 2 and 3 we cow-
: pute a stationary point of (B30 where f(x) = Cx + ¢, X= {x : Ax < a}
I W
: v and
b :

3 g (Ay a) = | =1 2 0 6

¢ -2 -4 0 4
h

‘s €, e)=| 1 0 0 0

-2 0 1 -1

i .
E 'f' By projecting ®L into the (x]‘, x2) plone we get the set of Flgure 1.

17

T PP KR O S A ROV L P PP aicdile ER N GO T ER Pt LIS VO I A oo | L AR ST 4 AR LS I VAT A THUYTE Wo R ot TS ST




-

: : proJ

Figure 1

i 18

e s e vrset

4




Upan applying Phase 1 to the system Ax A+ daowsoa, w0 0, that i

.

the system ‘i
. b
xl )..Z X3 Hl 52 ‘33 ?‘1&
1 0 I 0 ] 0 0 2 17
-1 2 l 0 0 ) 0 6 ¥
: it adismnse e st )
-2 -4 ’ 0 0 0 1 -4 fzf
}
1!
1
we got the ayatem (8), namely ;?
y
S T T T T B :
1 0 0 L 4] 1] ? 5
-2 0 0 0 1 o5 4 ‘
o5 1 0 0 0 f-.2 1 )
whereupon we get xo - (0, 1, 0)y v =(2), 5 = {1, 3}, r.= {1, 2}, :
nw {3}, 8= (3,4, 5, 6}, and :
§
-1 0 o0 o0
i
(B, b) = 0 0 -1 0 |
3 4 1 4 3

s i R
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Figure 2 diasplays simuleancounly synteoms (4) and (5).  Por
2

o~

a given row the perturbation coefliclents  for o, €7y 4oy, u6 are
n found, respoctively, In columns 9, 10, 12, 1, 2, 5; this fact rewains

g0 follaowing pivots on the matrix,

Y ' By plvotiap on the posltions {1, 9), (2, 10), and (3, 12) of
; : the matrix of Figure 2 the dnftlnl solution (k » 0) 14 displayed,
: that fa, we have thao cannoulcal form with respect to the inftial

' . hasic solution., Next, for the complomentary pivotlng we contlnuo
pivoting on the matrix on posltions (1, 13), (6, 3), (5, 11), (2, 8),

' (5, 4) and (3. 45) in order to oxecute iterations ko« 1, 2, .,., 6

4 vhereupon a ray is encounterced.  The solutiong corresponding to cach

iteration are given fn Flgure 3y In comunm 6 the values for

3 : (%, 8, t, X, W, 0) are displayed. As antleipated From the Corollavy
A :

3 the algorithm yields a statlonary polut for (ﬁ.&), namely

L x = (=1, 2.5, -1) . In Figure 4 the path  (X,0) as projected onto

the (x]‘ x?) gpace In shoewn,
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APPENDIX 1: UNIQUE INITIAL SOLUTION

The following lemma shows that (5), or equivalently, (6),
has a unique solution with 8 = 0 for all sufficiently small positive
€ . Observe that it 1s critical that the constraints are perturbed
less than & Here our notation has been simplified, and the result
is more general than is required in Section 2,

Let 0,25 be .the set of x's in R" that satisfy Ax < a + B[r.:]2
where B is mxm and [e], = (en+l, ey En-hn) +  Let ﬁe(x) be
the linear function Cx + c + D[e]l where D 18 n x n and v

[t-:]l - (':1, caey e™) . Consider the linear program (y, €)

m,i‘n x 2y

s/t Ax < a + Blel,

2 e e

3
L

Of course, if x 18 an optimal solution to the program (y, €¢) and
if y = x, then x 1is a stationary point of (fe.xa).
Lemmna: Assume Ax < a has a unique solution xo and that D 18
n nonsingular. Then there is an X 80 that xo + X[E]2 is the unique
solution of the linear program (y, e) for any y 1in °xe for all

4 sufficiently small positive «.

25




il
i
i

Proof: Consider the linear program (xo, e). For each (xo, £)
there is a B such that A':é exists, x = A;%(a + B[E]Z)B is optimal,
and (A;].‘) ﬁe(xo) < 0. Consequently, since there are only finitely
many B's and D 18 nonsingular, there is a B such that

-1
AQ(AB,(B + 3[512)8) La

a where o = VB and (AEI)T

all sufficiently small positive e. Next observe that € times the

£c<x°> <0 for

diameter of ')(E tends to zero as £ tends to zero. Hence, for all
sufficiently small positive € and any y in ‘ke we have

-1 -1,T
A (AL (a + Blel) ) <a, and (Ag) (ge(y) < 0. It then follows that
for all sufficiently small positive ¢ that x_ = A;{'(a + Blely), is
the unique optimal solution of the linear program (y, ) for any vy
in ¥ 3 4f x #x_ 18 in % _ then Ag.x #(a + Blely) g,

T -1 T -1

( Ee(y)) Ag, Ag.x > CE. ) AB.(a + Ble],), and
x gs(y) > x ﬁs(y). ®
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APTENDIX 2:  CONVERCENCE 10 A RAY

This appendix 1s supplied to assist the remdor who deafves to
pursue more carefully the couverpgence proof for the com’ sientary
pivoting of Sceetlon 2, Using the concepts of [5]1 we arpae, briefly,
that the algorithn penerates o ruy. A thorough argument 4 not junti-
fied here because 1t iy Tengohy and because the T ernture s now
laden with proofs establishing similar conclusion @ btowever, using
the remarks made below together with the general ¢heory of |[5], ove
has a rigorous and complete exposition of the converpence Lo o ray,

As In Appenddixg 1 we simplify the notatlon.

Congldor the systoem

Rw + 8z + dd = q + Qfc)
(10)

w>0 =z2>0 02>0 we*izn0
wheve the matrices Ry 8, and Q arce n X n, @ is nonsinpular, tha

vectors w, %, d, q and [c] are n x 1, [¢]) = (sl, ey sn), and

the variables are (w, #, 0) « Tdentdfy this svatom with (5) where
we (s, t), zv (\u), qm= (47, qy)s ete.

In Appendix 1 wo proved that for ceach sufficiently nmall
positive w the system (5) has a unique solution with 0 zero, and

now let ug assume that (10) also bhas this property,

D T R U Y

e

o s

]
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let M be the set RY x 1)

. and let I be the subdivinton

. ]
of M wheve colls of Gn are of Torm ¢ x R, and whore € g any
orthant of 1", Define the plecewise linear map @ M - R by

n
F(y,0) = § Fy(y,) + 6d

wheroe Fj(yi) iy defined by

— .

Sy ity 0
P Yo
Folyd =

| -R, iy, 20 .

Y4

Firat wo observe that the systow (10) dy cquivalent Lo F(y, 0) = g + [&],
and, 1in particular, F(y, 0) = g + [c] has a unique solutdon for
small positive e, or in other wvords, (F—l(q + [e])y N (Rn x 0) con=
tafus exoctly one alement where R' x 0 18 the boundary of M,

For small positive =, F—l(q + [c]) 18 a l-manifold ncat in

MM let wr be the route in F~1

(q *+ [£]) whlch moets Wxo.
The complementnry pivot scheme applicd to (10) follows WL for all
sufficiently small &  beginning with the point Wr V'(Rn x Q) . wc
is subdividod by a finite number of colls of form wt N o where o

is an eloment of ﬁﬁ\. Since wc cannot return to the boundary of M,

it must terminate with a ray.
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