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SECTION I

INTRODUCTION

Composite tube has attracted attention as a possible specimen
geometry because it offers several advantages over straight-sided coupons,
One of the advantages is that it can provide data under combined loading
conditions. As a corollary to this, the effect of end -onstraints commonly
observed in off-axis tests [1)] can be eliminated. In case of angle-ply
laminates a tube is not subject to the s0-called free ecge effects [2] which

cannot be avoided in coupon specimens.

Furthermore, the need for testing under a combined state of stress
arises if one wants to answer some cf the basic questions such as the
symmetry of the elastic tensor [ 3], the equality of the tension and com-
pression moduli [4], and the interaction between the transvers.: and shear

stress components in the matrix/interface-controlled failure {5].

In spite of the aforementioned advantages and needs, the available
data from tubular specimens is rather minimal, the main reason being

the high cost of fabricating and testing tubes of high quality.

Another problom associated with tubular specimens of anisotropic
material is that the uniformity of the state of stress produced depends on
the anisotropy as well as the geometry. Tube dimensions ) .quired to
achieve a uniform state of stress have been studied both analytically and
theoretically [6-12]). Although the exact geometry depends on the material
properties, it has been found that the gage section should be at least twice as long
as the diameter and that the wall thickness-to diameter ratio should be less
than 0.03 to ensure fairly uniform stress distribution. Typical tube dimen-
gions reported in the literature are listed in Table 1. The tubular specimens
tested in the present study have the same dimensions as none of these.

However, they satisfy the minimum requireraents aforementioned.
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The present report presents results from the cornbined loading tests

of off-axia, unidirectional composite tubes. The data are then analyzed in

such a way ag to answer the questions raised above regarding the material

properties. It is hoped that the amount of data gathered is sufficient to infer

statistically meaalugiui conciusions.
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SECTION It

EXPLERIMENTAL PROCEDURE

1. SPECIMENS

Specimens are unidirectional 8-ply graphite/epuxy (T300/5208) tubes
30.5 ¢m lonr, and 4.06 cm in ou:side diameter. Each tube iz identified by
the iiba~ orientation angle followed by a spe.imen nun.ber. Thus the
specimen -45-2. for example, is one of the [-45]8T tubes. The reference
coordinate systems used to deiine the fiver orientation angle @ is shown in
Figure 1, where x is parallel ;o the ‘ube axis and 1 is the fiber direction.
The tubes wore purchased from. the Whittaker Corp. and had been kept in
the room environment until the test. This waiting period was long enough to

allow equilibrium maoisture ccntent in the tubes.

The fiber volume content was found to be 58 % 5% from the photomicro-
graphs of a (0] 8T tube. Examination of the photomicrographs also revealed
that the material had unusually large void content ranging up to 2.1%. The
voids manifest themselves in the low transverse strength, as discussed

later. Figure 2 is a photomicrograph showing a void.

2. TEST PROCEDURE

Six pairs of end fixtures were made to grip the tubes. A tube with a
grip attached at each end is shown in Figure 3. The grip essentially consists
of two concentric cylinders, Figure 4. The gap between these two cylinders
is filled with an adhesive material ard then a tube specimen is slipped in.
The adhesive is a mixture of Fpon 828 (6 parts) and Versamid (4 parts).

The complete setup was cured for cne hour at 93°C.

All tests were performed on an MTS closed loop testing system which
is fully computerized. The loading rate ranged approximately from 0.5 to
5 MPa/s and strains were measured at the middle of the gage section using

the three-element (0/45/90) strain rosettes (Micro-Measurements Type
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EA-06-125RD-350). The stress-strain measuremeits were taken at 0
equal intezrvals up to the maximum applicd stresses and were stored in the
computer memory. The data were anilyzed immediaieiy afier each tes!.

The following procedure was adoptcd to calculate the elastic compliance:s.

Suppose ¢ and ¢ are the strain and stress component, respectively,

of interest. Then the paired data (.(i)’ v(i)l i=1,2, *°°, 20) were fit

; by a linear equation of the form

; c( ) = So'( '+ 4

F, The average slope S, which is the elastic compliance, was then printed vut
h on the printer.

L In ail, four different types of tests were performed to characterize the
X elastic properties:
3
F
1 1. Axial loading - tension (cx> 0) and compression (crx< 0)
2. Torsional loading - positive (cxy>0) and negative (cxy< 0)
r 3. Positive combined loading (¢_ /o _>0) - (¢_>0,0__>0) and
: Xy x x xy

(0 <0, 0 <0)
x xy

4. Negative combined loading (¢__ /o_<0) - (¢_>0, ¢_ <0) and
xy x x xy

(¢ <0, ¢ >0)
x xy

3
F,
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SECTION III

RESULTS AND ANALYSIS

1. ELASTIC COMPLIAL.CES

Elastic compliances measured from the tubec are summarized in
Table 2. In all cases the same tension-compression and ﬁure torsion in
both directions were repeated three times, so that the number of measure-
ments analyzed is 24 for each specimen. It should be noted that one test
consists of loading and unloading, thus providing two measurements of the

same compliance. The compliances are defined hy the following equations:

= t 1
®x ° Sllax +Slbcxy ’ (1)
= ' !
eY Sthrx + SZéaxy , (2)
| - \ '
! °xy © S61¢x * S66“xy ' (3)
|
Here, the subscripts x and y are the reference coordinates for loading, i

Figure 1.

" .

| For O0-degree tubes S'lf" Sél’ and S"26 should vanish since the mater-

ial is orthotropic. The measurements are not exactiy as predicted theore-

r tically; however, the data show large scatter, indicating that the nonzero

values are probably a result of experimental error as well as of the devia-

Cabie, | i

tion from the assurned uniform state of stress.

21 26

¥
; Unusually high coefficient of variation (C.V.) in S, and S!, of speci- A
E ment 15-3 is due to the large difference between tension and compression L

moduli which is in turn believed to result from the poor alignment.

In order to check the equality of compliance under loadings in opposite
directions, e.g. tension and compreesion, Sig 1) are plotted against Sig') in ’
Figures 5 and 6. The superscripts (+) and (-) denote the compliances w

obtained under positive and negative loadings, respectively. In these fig- i3

ures the sclid lines are the linear least squares fit of the data. That is, i
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the data were fit by an equation of the {orm

Si§+) = aSig‘)+b , (4)

and the corresponding parameters a and b are listed in Table 3, together
with the coefficient of correlation r. In plotting the data absolute values
were used when S|i_(j+) and S!lg')have the same sign; otherwise, the actual

measurements, including sign, were plotted, e.g. Figure 5(c).
Figures 5 show that the compliances measured in simple tension and

21°
Figure 5(b) to be slightly higher in tension than in compression, It is inter-

compression are equal to each other except for S! | S'le is seen from

esting to note that | S'21| tends to be larger in tension for the off-axis

angles|6| > 45° and smaller in tension when |8] < 45°,

Figures 6 similarly show that the compliances measured in torsion
are independent of whether the torque is positive or negative. Here the
positive torque is defined to be in the same direction as is the angle 0.
Thus, the positive torque results in a positive torsional stress (o’xy>0) if

0 is positive and in a negative torsional stress (crxy<0) if @ is negative.

The best-fit line in Figure §(b) indicates that S'Z(E:) is slightly lower than
S'2(6+). However, the three points far off to the right are from the specimen
which exhibited appreciable misalignment., Although how this misalignment
affects the compliance is not exactly known, it ie suspected that the devia-
tion is due to the misalignment. Thus, if we neglect these measuremer.is,

the results will undoubtedly improve the equality between S‘z(g) and S‘z(é') .

Average values of Sgl are plotted against average values of S'16 in
Figure 7 to check the symmetry requirements, The data are from Table
2. For the material tested, the deviation from the symmetry is rather

small.

Averaging of the compliance data can be performed by using the invar-

iants [13,14]. The necessary invariants are

T
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= ' ' '
I (s”+ 55+ 2512) / 4 (5)
= 1 | ' 1
L (5],+855,- 281,45, / 8 (6)
1/2
- - St ' 2 1 2
R, [« s“+ szz) +(sl6+ S'ze) ] /2 (7
2 2 1/2
= ! t o [~} [ -] ]
R, [(sn+s?_2 zsl?_ 566) + 4(526 Slé) ] / 8 (8)
In the above equations S'16 stands for the average of S'lé and Sél in Table 2.

The calculated invariants are shown in Figure 8. The mean values of
the invariants and the corresponding coefficients of variation are listed in

Table 4. The invariants Il and R, show higher scatter than do the invar-

2
jants I2 and Rl' In the calculation it was assumed that
' - 1 -
S22 (9) Sll (90 - 9)
1 - ' - - -
because S22 was not measured, and that S'16 = 826 = 0 for 0- and 90-deg.

specimens.

The average invariants are then used to calculate the compliances

through the equations

§11 = I, +"1'2-"f<1 - R, (9)
S, = I—l +1, +§1 - R, (10)
312 = Tl -'fz +§2 (11)
§66 = 4f2+4§2 , (12)

where an over bar denotes average. The resulting compliances are also

listed in Table 4.

Comparison between the predictions from the average compliances
and the off-axis data is shown in Figures 9. Aside from the experimental
scatter, the curves based on the average compliances are in fairly good

agreement with the data.
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2, ELASTIC REFAVIOR UNDEFR. COMBINED LOADINGS

The etress ratins employerd in the combined loading tests are listed
in Table 5. These tests can serve as a check on how sufficiently the average

compliances describe the elastic behavior. The loading paths in the o7

plane have been described in Section II. The resulting strain-to-stress ~

ratios are then analytically determined from
ex/ax = S' +S'16 /crx (13)
ey/trx = S' + S'Z6 /v:rx (14)
exy/(rx = l6+ 8:56 /Ux (15)
ex/axY = S'uo' /0' + S'16 (16)
ey/oxy = S'lzc /cr + S'26 (17)
exy/axy = slécx/(rxv* S'66 (18)

In Figures 10 the calculated values are on the abscissa and the
measured ones on the ordinate. 'The straight lines in the figures represent
a perfect correlation. In all cases, the data are scattered closely around

these lines, indicating a good correlation.

3. STRENGTH

The stress components along the material symmetry axes at failure
are listed in Table (. As mentioned before, these stresses are introduced
by applying the axial stress o and the torsional stress ny simalitaneously

while keeping the ratio o__/o_ constant,
xy x

If any coupling between the fiber failure and the matrix/interface
failure is neglected, then the matrix/interface failure criterion can be

written as
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‘ 2 2 —
f(o’z.ﬁ'6) = F202+F2262+F66U6 = 1 (19)

The strength tensor components FZ, FZ‘Z’ and F66 are then determined by

the linear least squares method:

(17 Y {F = [Ty (20)

where -
2 2 ]
c’.(21) cr;l) Ggl)
~e 2
[o‘] = o-f?'z) 0‘2&) ”22) (21)
2 2
(n) (n) {n)
%2 72 s J
-
F, ) |
() - { Faop (22)
A Fee

and sli» is the 1 x n column matrix whuse elements are all urity. The super-

script (i) stands for tne i-th data set. Note that the total number of measure-

ments, n, is 26 in the preseunt case. The results are

F 1

2

3.376 x 10'?‘ (MPa)~

F 4.721 x 10”2 (MPa)™“

22

Foo = 2.384x10—4(MPa)-2

The correspouding failure surface in the P plane is shown in Figure
11,

Table 6 lists the value of f calzulated for each tube from the above

F's and the failure stresses. Since the miniinum value of f is less than

zero, i.e.

:
1
5
+
;
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f . = -
min 4F22

= -0.6035 (23

the scatter of f ir; fit by a Weibull distribution of the following form:

f-fmin ¢
R = exp -(—A—) (24)
f

R is the probability of the failure function greater than f. The shape and

scale parameters determined are
A
a = 3,055 , f = 1.5265
and the coefficient of correlation is 0,9729,.

‘The average value of f obtained from the distribution (24) is only 0.76,
wuich is much lower than the u.ity initially assumed. This is also apparent
in Figure 12 where there are more data points inside the failure surface
(f <1) than outside (f >1;. The reason is because the least squares fit places
more weight on the higher stresses through second order terms in the poly-
nomial. Thus lower stresses have less influence on the strength tensor

components,

The effect of the longitudinal stress component on the matrix/interface
failure is studied in Figure 13 byplotting the value of fatfailure against -
The coefficient of correlation for the data is only 0.0306, indicating very
little influence of o, on the matrix/interface failure within the range of o)
applied. Note that the maximum e is iess than 30% of the typical longitudinal

strength.

Now that the failure function is known, one can examine the margin of
safety involved in the elastic property tests. The maximum value of f to be
reached in each test can be calculated by substituting the intended terminal
stress components in the failure function. The results are listed in Tables
2 and 5. In Table 2, fx and fo are the maximum values of f in the axial and
torsional tests, respectively, and the superscripts (+) and (-) in Table 5

stand for the sign of ¢ /o .
xy' x
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Comparison of the values of f in the elastic tests with those at failure
reveals that two specimeus, -15-2 and 60-2, did not fail in the combined
elastic tosts although in theory they should have failed; i.e., the maximum
f was exceeled in both cases. Thus, it may be concluded that the value of f
at failure depends on the state of stress, which is contrary to the assumed
failure criterion. However, in all the other cases, failure did not occur,
ac expected, when f was lese than that at failure. This indicates that the
discrepancy in the two cases mentioned above is probably due to the variation

from specimen to specimen of the strength tensor components.

In all the tests, failure initiated in the test section in the form of crack-
ing along the fibers. Typical failure modes are shown in Figure 14 for every
off-axis angle tested. Multiple fracture of 60-deg specimens is a result of

those specimens not being able to sustain much torque after the fracture,

11

ot Al e s x4 Bt

e ol e it <t L2 s L

[ERFIPCISIEr T reeY

L -




auiin ARl R

TTEY T Ep——"L

itisicar Te satill o udy T Ty

SECTION IV

CONCLUSIONS

Elastic compliances and the matrix/interface-controlled failure sur-
face of a unidirectional graphite/epoxy composite (' 300/5208) have been
determined by testing off-axis tubular specimens, Invariants have been
used to ubtain the average compliancet and the linear least squares method

to determine the failure surface.

A good agreement is shown between the prediction and the data for the
elastic behavior under combined loadings. The equality between the tension
and compression compliances and the symmetry of the compliance teansor

are established to within the experimental scatter.

The failure surface in the o, - T plane is characterized by a second-

order polynomial including a firstz- order term in Ty This failure criterion
agrees with the experimential observation that the compressive loading per-
pendicular to the fibers can increase the longitudinal shear stress required
for failure (See [5] for Gr/Ep, [10] for B/Ep, and [15] for Gi/Ep). This
is not surprising if one notes that the matrix/interface-controlled failure
initiates from the inherent defects, such as voids and partial debond, which

are aligned fairly parallel to the fibers.

Unfortunately, a large scatter is seen in the strength data and further-
more the transverse strengths, both tensile and compressive, calculated
from the strength tensor are lower than what are reported in the literature.
This difference is believed to be due to the unusually high void content de-
tected in the specimens used., However, the data still show the common

failure characteristics expected of graphite/epoxy composites.
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TABLE 4. AVERAGE INVARIANTS AND AVERAGE COMPLIANCES

Ave., (TPa)"'  26.43 34.63 46.22 5.510

C.V., % 8.96 5.29 5.49 17.50

11 12 22 - See !

i (TPa)~ (TPa)~ 1 (TPa)"!  (TPa™! ]

Wi

wl
7,1

AT Crn e oA

& 9,33 -2.69 101.77 160.56
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TABLE 5. STRESS RATIOS IN COMBINED LOADINGS 1

Spec. No. o-xy / o f( i ) ;

0-2 +0.2 0.05 0.05 A

0-3 +0.2 0.05 0.05 ]

0-4 + 0.4 0.01 0.01 :

15 - 1 + 0.4 0.17 0.45 v,

15 - 1 +0.5 0.24 0.38 i

-15 -2 +0.4 0.19 -0.07

15 - 3 + 0.2 0.26 0.04 :

15 - 3% +0.4 .081 0.19 :

-30 - 1 £0.8 0.72 0.29 i

; -30 - 2 +0.5 0.38 0.09
] -45 - 2 +1.67 0.76 0.37 1
¢ -45 - 3 +0.83 0.43 0.10 3
1 -60 - 1 £1.67 0.77 0.24 1
.‘ 60 - 2 +0.83 0.48 0.02 3
‘ -60 - 3 £0.83 0.48 0.02
l 90 - 1 +1.67 0. 36 0.36 i
g 90 - 2 +0.83 0. 32 0.32
90 - 3 +0.83 0. 32 0.32 g
! 90 - 5 £0.83 0. 32 0.32
L 90 - 6 +0.83 0. 32 0.32 3
£ E
' )
; * Failure in negative loading. )
; i
: ;
]
: 3
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TABLE 6. STRESS COMPONENTS AT FAILURE

Spec. No. B a5 o, . Is crxy_,/crx the same as
MPa MPa MPa one of those in elastic
tests?
0-1 375.4 0 44,38 0.470 -
0-2 0 0 48.04 0.550 Yes
0-3 -375.4 G -39.02 0.363 Yes?
0-4 0 0 -48.60 0.563 Yes
15 - 1 -259.4  -18.62 59,50 0.687 Yes
-15 - 1 139.2 9.99  37.30 0.716 Yes
-15 -2 135.1 -8.03 3,12 -0.238 No
.15 -3 323.2  -58.68  -66.20 0.689 : No 1
15 - 3 11.49 4.26  -9.50 0.174 Yes
| -30 -1 118.4 12,78 45,26 0.997 No
-30 - 2 193.8  -85.15 -17.79 0.623 No ;
'; 230 - 3 S11.64 11,61 6.69 0.466 Yes :
; -45 - 1 -13.79 25,03 5,62 1.148 - |
¥ 45 . 2 97.22 -97.22 0 1.180 Yes ’
. -45 - 3 155.4  -85.81  34.78 0.867 No !
] -60 - 1 55.60  11.05  51.34 1.059 No ;
| 60 - 2 86.56 -34,81 -64.9] 0.401 No ‘
| 260 - 3 116.1  -78.02  78.03 1.691 No
90 - 1 0 12,82 0 0.510 Yes i
i 90 - 2 0 23.67 0 1.064 Yes i
90 - 2rP 0 20.26 0 0.878 - ;
: 90 - 3 0 0 -74.95 1.339 Yes |
'f 90 - 3D 0 0 -79.36 1.501 - |
i 90 - 4 0 8.04 0 0. 302 Yes
: 9% - 5 0 8,94 0 0. 340 Yes
' 90 - 6 0 0 70.12 i.172 Yes :
a. Influence of 0y is neglected.
b. Retested after failure.
21
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