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SUMMARY

A new portable , self-contained facility for investigating the cuttin g
of ice with water jets has been built and tested . Following the initial trials
some modifications and improvemen ts to the facility have been recommended .

Fro m current and previous ice cutting tests it has been established
that significant cuts in ice can be made over a wide range of conditions. At
moderate pressures , that is less than 2,000 psig, and low traverse speeds , it
has been possible to cut through ice 28 inches thick. Corre lation with previou s
test results by regressio n analysis has been made.

RESUME

On a construit et mis a l’essai une nouvelle installation portative et
indépendant pour étudier La coupe de La glace par des jets d’eau. Après les
premiers essais, on a recommandé d’y appor ter certaines modifications et
ameliorations.

Les résu ltats des derniers essais et des essais antérieurs sur Ia coupe
de La glace ont révélé qu ’il est possible de réa Liser des coupes dans une grande
gamme de conditions. A des pressions moyennes , c’est-à-d ire inférieures a
2,000 1./po 2 , et a des vitesses de coupe peu élevées, on a réussi a couper une
épaisseur de glace de 28 pouces . On a ensuite étab li, par analyse de régres-
sion , une correlation entre ces résu ltats et ceux d’essais antérieurs.
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THE CUTTING OF ICE WITH WATER J ETS

1.0 INTRODUCTION

Canada’s present ice breaking capability is limited to Class 4 with the 27 ,000 hp Louis St.
Laurent~’~. A new ice breaker currently proposed by the Canadian Coast Guard would have a Class 7
capability with 90,000 hp. Also it has been suggested that a 150,000 hp Class 10 polar ice breaker be
designed and built with the ability to go anywhere in the Arctic at any time of the year .

Because of the enormous power required for conventional ice breaking, there is an incentive
to find some more efficien t way of breaking ice. One approach , with a potential to reduce significan tly
the vessel propulsion power requirements , would be to weaken the ice sheet and/or create stress concen-
trations in it by cutting a groove (or grooves) through the upper surface of the ice . A relatively simple
device utilizing a water jet as the cutting tool may be capable of cutting suitable grooves. Such a device
has the potential for development into a rugged , practical system for notching ice ahead of the ice
breaker ’s bow.

Previous work of this Division ’s Gas Dynamics Laboratory in cutting a variety of material s
with high pressure water jets led to exploratory small scale ice cutting trials in the laboratory 12

~. While
these trials showed that ice could indeed be cut with high pressure water jets , extrapolation of the
results to a full scale system was impractical. In collaboration with the US Army ’s Cold Regions
Research and Engineering Laboratory, various series of cuts were made in ice ranging from floating
icet3

~ to manufactured icet4
~ to lock wall ice collarst5

~ with a pumping system about one full order of
magnitude larger than the laboratory system. These cuts covered a fairly wide range of conditions ,
from relatively high speed shallow penetration cuts to low speed relatively deep penetration cuts.
Extrapolating about two orders of magnitude from these results, while not at all reliable , did indicate
that a realistic full scale system might be possible.

To further explore the cutting of ice with water jets , a new moderate pressure portable
facility has been built co-operatively by the Low Temperature and Gas Dynamics Laboratories. This
report describes the new facility and the results of the initial series of tests.

Z0 NEW ICE CUTTING FACILITY

This facility basically consists of a diesel engine driven main pumping system installed in an
ISO 20’ X 8’ X 8’ container , a gasoline spark ignition engine driven self-priming feed pump system
mounted on a utility trailer and a water jet cutting lance with support column for mounting on a trav-
ersing device. Except for the need of a traversing device, the entire facility is self-contained once it is
placed in position. See also Appendix A for additional details.

2.1 Main Pumping System

The main pump is an eight-stage, 4” X 4” X 10” centrifugal pump with horizontally split
casing. It is capable of producing about 2 ,300 psig at up to about 400 US gpm. The performance
curves are given in Figure 1.

A water cooled 1191 C.I.D. V-8 diesel engine with aftercooled turbo-chargers drives the main
pump. The “Hydra-Mechanical” governor is set to limit the full load speed to 2,000 rpm and the low
idle speed to 500 rpm. The engine is rated at 480 bhp @ 1,800 rpm for continuous duty, 610 bhp @
2,000 rpm for intermittent duty and 735 bhp @ 2,000 rpm maximum . For the engine performance
curves see Figure 2.

To match pump and engine speeds an available speed increaser with a 2.2 to 1 ratio is inter-
posed between the engine and the pump. This speed increaser has ample capacity, 5,000 hp @ 3,600
rpm.

___



- 2 -

A centrifugal clutch coupling with a high idle speed of 560 rpm connects the engine to the
speed increaser , thus allowing the engine to be started without load and the pump to be stopped with-
out stopping the engine. It is rated at 840 hp @ 1,800 rpm.

The pump is coupled to the speed increaser through an oil filled high speed gear coupling.

In Figure 3 the limitations on pump performance imposed by the rated capabilities of the
diesel engine have been superimposed on the pump performance curves , assuming no slip of the cen-
trifugal clutch.

All components of the main pumping system, with the exception of the engine silencer and
batteries, are mounted on a tubular steel base designed to maintain alignment of the engine, speed
increaser and pump under the worst expected conditions of support. This entire system is enclosed in
a 20’ X 8’ X 8’ ISO group IC container , and is bolted to the container floor (consequently , the con-
tainer should not be subjected to accelerations or decelerations beyond about 2 G’s). Both the batter-
ies and the silencer are fastened directly to the container.

The water piping system within the container is shown in Figure 4. To prevent freezing of
water in the system after shutdown, drain connections are provided to permit rapid draining of the
entire system with the exception of small quantities in the bottom of five of the eight pump volutes.
After draining, any water left in the system is diluted with methanol fed into the system at critical
points from a drum seated in a cradle on the container roof. A propane space heater provides back-up
protection as well as allowing for a “warm ” start-up of the system.

2.2 Feed Pump System

A 4” X 4” self-priming centrifugal pump can be used to supply water at low pressure from a
reservoir (usually beneath the ice sheet) to the main pumping system for both engine cooling and feed
to the main pump. It is capable of pumping about 400 US gpm @ 80 psig when running at 2 ,600 rpm
and can pass spherical solids as large as 3/ 4 ” diameter.

An air cooled 108 C.I .D. V-4 gasoline fuelled spark ignition engine drives the feed pump. At
the governed speed of 2,600 rpm the engine is rated at 29 hp.

A manually controlled power take-off clutch , integral with the engine, and a serpentine steel
band flexible coupling connect the pump to the engine. Thus the engine can be started and warmed up
without load and the pump can be stopped without shutting down the engine.

2.3 Cutting Lance and Support Column

A convergent stainless steel nozzle mounted on the end of the lance accelerates the water to
create a high velocity water jet capable of cutting ice. The mounting accommodates interchangeable
nozzles and allows for the insertion of various flow modification devices into the flow immediately
upstream of the nozzle. The lance , a stainless steel pipe approximately 4 ft. long, provides a straight
channel of about 26 pipe diameters without discontinuity for the stabilization of the flow to the
nozzle.

For the first series of tests the swing of a hydraulic crane with a telescoping boom was used
to traverse the cutting lance. A relatively lightweight triangular latticed column was mounted from the
head of the crane boom using existing fittings on the head . The mounting was designed to avoid the
application of twisting moments to the crane boom , to provide for vertical adjustment of the column ,
and to allow use of the main crane hook. By locating the adjustable lance mounting at the centroid of
the column , eccentric loading due to jet reaction was minimized. Overall adjustment allowed the nozzle
tip to be positioned from 12’- 6” to 19’- 3” below the upper mounting point. For the first series of
tests this adjustment was set to provide a dimension of 16’- 0” for this distance. 
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A 12-ft. length of 2” diameter pipe , connected to t~ie lance inlet , extended upward s through
the open centre of the column for the first test series. A 90° elbow at the top of the pipe permitted a
simple and convenient connection to the supply line.

2.4 Water System

The entire water system is shown diagrammatically in Figure 4. Water is drawn through the
suction strainer and one or two 20-ft . lengths of 4” diameter heavy dut y suction hose by the feed pump.
This pump supplies the water to the container system through one or two 50-ft. lengths of 4” diameter
heavy duty discharge hose. When more water is needed for engine cooling than for ice cutting, the
excess is returned to the reservoir through the return line, consisting of the remaining length(s) of dis-
charge hose (a total of three lengths of discharge hose are available). All low pressure hose connections
are made with mating quick-connect fittings , thereby allowing a variety of hose arrangements.

As the water enters the container it passes through a fine strainer (3/ 16” diameter holes) . A
small quantity is passed through a filter (10 micron) for cooling and sealing the pump. The remainder
can he directed through a variety of paths , depending on the setting of the butterfly valve and the
three-way cock.

(a) Butterfly closed, cock straight through

All the flow will pass through the engine heat exchangers and return to the reservoir .

(b) Butterfly closed, cock connecting heat exchanger return to pump inlet

All the flow will pass in series through the engine heat exchangers and main pump
discharging through the cutting nozzle.

(c) Butterfly open, cock straight through

The flow will split as per the extent of the butterfly valve opening . That portion
passing through the engine heat exchangers will return to the reservoir while the
remainder will pass through the main pump and discharge from the cutting nozzle.

(d) Butterfly open, cock connecting heat exchanger return to pump inlet

The flow will split as per the extent of the butterfly valve opening. That portion
passing through the engine heat exchangers will re-mix with the remainder of the
flow at the pump suction. The total flow will then pass through the main pump
and discharge from the cutting nozzle.

On leaving the container the wal~er flows to the cutting lance through two length s of 2”
diameter high pressure hose totalling 75 ft. in length . Pipe is used to provide any additional length
necessary .

Two 24’ Lengths of 1-1/4 ” diameter plastic drainage hose are available to carry drain water
and/or blowdown from the fine strainer away from the container.

Water pressure can be measured at the inlet and outlet of both the feed pump and the main
pump, and at the ice cutting nozzle.

3.0 ICE CUTTING TEST SITE

A spring-fed pond adjacent to Building U-89 at Uplands was selected as a convenient test site
(Fig. 5). This site had adequate accessibility, adequate size (about 300 ft. X 100 ft.) and adequate depth
(up to about 8 ft.). By late January , it had an 18-inch natural ice cover with only a light covering of snow.



—~~~~~~~~~~~~~~~ .-~~~~~~~~~~~~~~-.—~~~~~~~—-~~~~~~~~~~~

- 4 -

Because of a desire for a thicker layer of ice, snow was removed from a 100-ft . radius
circular segment of the pond. This area was then flooded by pumping water onto the ice surface from
beneath the ice sheet. Flooding continued daily, weather permitting, over a five-week period fro m
28 January to 4 March , 1977. The total ice thickness at the end of this period reached 28 to 30 inches.

4.0 ICE CUTTING TEST SET-UP (FIG. 6)

On 8 March 1977 , the container complete with the main pumping system was placed and
levelled on the bank of the pond immediately adjacent to the site selected for the crane. The trailer
with the feed pum p system was placed on the ice surf ace nearby. On the following day the crane was
posit ioned and “levelled” on the selected site (the levelest and most accessible available ). The cutting
lance support column was mounted on the head of the cr~n]~ boom and the cu tting lance and pipe were
mounted in the column.

One length of high pressure hose with one 20-ft. length of pipe was laid on and hung from
the partially extended crane boom. The remaining length of high pressure hose was then draped
between the crane boom and the main pump connection in the container. As the crane boom was
swung through the maximum arc to be used in the tests the extension of the crane boom was adjusted
to the maximum allowed by the high pressure line.

The low pressure suction and return hoses were placed in holes drilled at convenient locations
through the ice . Both lengths of suction hose were used for the suction line while one length of dis-
charge hose connected the feed pump to the main pumping system. The remaining two lengths of dis-
charge hose were used for the return line.

To provide a refe rence for the traverse speed measurement , ten posts (see foreground Fig . 6)
were set at 10 ft. increments on a 90-ft. radius arc centred on the swing axis of the crane.

5.0 ICE CUTTING TEST PROCEDURES

Prior to the ice cutting test the feed pu mp engine was started and warmed up. When it was
running smoothly, the clutch was engaged to start the feed pump which required some assistance to
establish its prime . Circulation was established through the heat exchangers for diesel engine cooling
and through the seal and cooling systems of the main pump. All the heat exchanger water was returned
to the pond. The diesel engine was then started and r’in at slow idle to warm up. Since the cuts were
to be made with the crane swinging from east to west , the crane was swung to the east end of the pond
in readiness for the first test .

With the proper nozzle installed on the lance and the crane boom elevation adjusted to
establish the desired nozzle stand-off distance , low pressure water was re-directed through the main
pump and out the cutting nozzle in order to prime the pump and purge air from the high pressure lines.
The feed pump was then accelerated to full power and the diesel engine to the desired pump operating
condition. Once the high velocity water jet was stabilized the crane boom was swung to traverse the jet
at the desired speed , thereby cutting a continuous groove in the ice.

While traversing, the following data was recorded :

(a) engine rpm

(b) main pump discharge pressure

(c) nozzle pressure

(d) nozzle stand-off distance

(e) time to traverse the arc subtended by a pair of posts
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(f) cine and still photographs.

At the end of the desired cut the swing of the boom was stopped, the diesel engine was
returned to low idle and the feed pump was slowed to a reduced load condition. Afterwards the depth
of cut and radius at which it was made were measured and recorded .

Prior to the next cut any changes of stand-off distance, nozzle size , and/or radius of traverse
were made. For nozzle changes the low pressure water to the nozzle was cut off , being re-directed
through the return line to the pond. Subsequent cuts either continued on the same arc or started a
new arc after the radius was adjusted.

Upon completion of each day’s testing the water system was drained and charged with suffi-
cient methanol to dilute any remaining water.

6.0 ICE CUTTING TESTS

Fourteen ice cutting tests were attempted as shown in Table I. However , Test No. 1 was
aborted before starting the traverse, since the centrifugal clutch slipped badly and became overheated .
Therefore , for Test No. 2 the smallest nozzle , 0.375” diameter , was tried so that the power demand of
the pump would be reduced . Tests No. 2 through 14 were successfully completed , although the cen-
trifugal clutch had to be water cooled during Tests No. 13 and 14.

6.1 Tests No. 2 Through 5 Summary

Nozzle diameter 0.375” (smallest)
Nozzle pressure 1,640 to 1,910 psig
Nozzle flow 170 to 183 US gpm
Hydraulic power 162 to 204 hp
Nozzle stand-off 6 to 36 inches
Traverse speed ~ to 36 fpm
Engine power Maximum available for all but Test No. 2.

For all these tests the minimum depth of cut was 18”, that is, approximately to the upper
surface of the bottom clear layer of ice (see Section 7). At the slower traverse speeds complete pene-
tration was achieved in some areas.

6.2 Tests No. 6 Through 10 Summary

Nozzle diameter 0.500”

Nozzle pressure 1,490 to 1,560 psig
Nozzle flow 288 to 294 US gpm
Hydraulic power 250 to 268 hp
Nozzle stand-off 12 to 60 inches
Traverse speed 10 to 52 fpm
Engine power maximum available

Penetration was complete for all but the fastest traverse.

6.3 Test No. 11 Summary

Nozzle diameter 0.500” (flow straightener installed immediately upstream of nozzle)

Nozzle pressure 1,530 psig 

~~~~ . .
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Nozzle flow 292 US gpm
Hydraulic power 260 hp
Nozzle stand-off 48 inches
Traverse speed 18 1pm
Engine power maximum available

Cut was 21” deep, that is, into but not through the bottom clear layer of ice.

6.4 Test No. 12 Summary

Nozzle diameter 0.500” (flow straightener installed immediately upstream of nozzle )
Nozzle pressure 1,560 psig
Nozzle flow 294 US gpm
Hydraulic power 268 hp
Nozzle stand-off 48 inches (approx.)
Traverse speed not measured
Engine power maximum available

After manually drilling an eight-inch diameter hole through the ice with an ice auger to get an
accurate ice thickness measurement , a block approximately 4 ft. square surrounding the hole was cut
out with the water jet. The block is shown in profile in Figure 7 and from the underside in Figure 8.

6.5 Tests No. 13 and 14 Summary

Nozzle diameter 0.656” (largest)
Nozzle pressure 1,050 psig
Nozzle flow 416 US gpm
Hydraulic power 255 hp
Nozzle stand-off 48 inches
Traverse speed 17 to 160 fpm
Engine power maximum available

Penetration was complete for the slow speed traverse and 8” to 12” for the high speed
traverse. The centrifugal clutch was slipping badly for both of these tests.

Figure 9 shows the pump performance curves with both the engine characteristics and the
theoretical nozzle performance curves superimposed. The operating points for Tests No. 2 through 14
are also indicated.

7 0  ICE QUALITY

On the day following the water jet ice cutting tests, sample blocks of ice were cut from near
the centre of the pond for subsequent strength testing. These blocks were transported to the Low
Temperature Laboratory where they were stored in a cold chamber at - 10°C.

As can be seen from Figure 7, which shows a cross-section of the pond ice, many different
layers of ice were discernible. Except for the top surface ice , wh ich was badly candled, three distinctly
d ifferent grades of ice were identifiable. At the bottom of the ice sheet was a single layer of clear ice
approximately 11” thick. On top of this were three or four apparently similar layers of semi-opaque ice
containing many included air bubbles. The total thickness of semi-opaque ice was about 7” . The top
10” of ice apparently consisted of many thin layers of opaque “white ” ice containing a great deal of air. 

.-. .— ---
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During the week following the ice cutting tests the blocks were cut into more than 30
individual test specimens, several from each of th2 three distinct grades of ice. Each specimen was
tested for strength and a representative number were tested for density~

6 > . Except for brief periods ,
during which the samples were transferred between cold chambers , they were maintained at - 10° C.

The clear bottom layer of ice was typical of clear fresh water ice in both strength and density.
However , the laminated semi-opaque ice had only 75% of the strength and 95% of the density of the
bottom ice, while the top opaque “white” ice had only 60% of the strength and 85% of the density of
the bottom ice.

The laminated semi-opaque layers in the centre of the ice sheet apparently were the result of
successive submergences of the ice sheet and precipitation; the clear bottom layer appears to have grown
on the bottom of the initial ice sheet and the top opaque “white” ice layer was the result of the daily
flooding of the surface.

8.0 ANALYSIS OF TEST DATA

Since the ice thickness was limited to only 28” , many cuts penetrated through the entire
sheet of ice. This left only seven tests with any measurable depth of cut and only five with a measur-
able maximum. In addition , only the final cut , Test No. 14, differed appreciably from the others.
Consequently, the data from these tests alone were not adequate for analysis.

The inferior strength of the top layers of ice also raised a concern as to the relationship
between the results of these tests and the cutting of more normal ice. However , it was also suspected
that the energy dissipation characteristics of this aerated ice were greater than for more normal ice.
Since these two characteristics would somewhat compensate for each other , it was decided to compare
the results with data accumulated fri n previous testing.

Exploratory analysis indicated that the results from the early laboratory trials~
2
~ were incon-

sistent with the rest of the results. Apparently, the low power , high pressure operating regime involved
in these trials was so totally different from the operating conditions of the remaining tests that they
had an inordinate effect on the overall results. Therefore , they were excluded from further analysis.

Table II lists, along with the results from the current test series, the results from the previous
testing, with the exception of the inconsistent laboratory results. Data sets No. 1 through 9 list the
results of cuts made in a sheet of floating ice~

3
~; data “~ts No. 10 through 19 list the results of cuts made

in manufactured icet
~~; data sets No. 20 through 3 ~1 results of cuts made in lock wall ice collars~

5
~;

and data sets No. 31 through 42 list the results of the . irre~it series of cuts made in a sheet of floating
ice. Note that the last five data sets, No. 38 through 42 , involve cuts through the ice sheet and , therefore ,
may not represent the true penetration potential for these conditions; unless otherwise stated they were
not included in the regression analysis which follows.

8.1 Preliminary Regression Analysis

Of the various parameters which may have an effect on the depth of cut , those that were
selected for measurement and analysis were nozzle traverse speed , nozzle diameter , nozzle pressure and
nozzle stand-off distance .

Expressed mathematically,

Y = f ( u , d ,p , s) ( 1)
where : Y = depth of cut (inches)

u nozzle traverse speed (fpm)
d nozzle diameter (inches)
p = nozzle pressure (psig)
s = nozzle stand-off distance (inches).
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As a first approximation it was assumed that a zero value for this function would result in a
zero depth of cut. Therefore, multiple linear regression analysis was applied to a logar ithmic transfor-
mation of this expression, so that ,

log Y = A + B l o g u + C l o g d + D l o g p + E l O g S (2)

By taking the anti-logarithms of this expression , the resulting function was of the form ,

Y = A X u B X d C’ X p D X s E ( 3)

Thus this function yielded a set of exponents for the parameters. In addition , analysis of
variance indicated highly significant correlation with nozzle traverse speed , nozzle diameter and nozzle
pressure, but no significant correlation with nozzle stand-off distance. A repeat log-log MLR with the
nozzle stand-off distance non-dimensionalized by dividing it by the nozzle diameter did not improve
the correlation. Thus, the log-log MLR analysis was repeated without the nozzle stand-off distance
parameter. This resulted in the following relationship :

d24 8  X ~ l .94
Y 0.00044 (4)

It was noted that the numerator of this equation was not too dissimilar to the expression for
power in a fluid jet ,

P = C X d 2 X p312 (5)

where: P hydraulic power (hp)
C = dimensional constant
d = nozzle diameter (inches)
p = nozzle pressure (psig)

A third log-log MLR analysis was run with the nozzle diameter and nozzle pressure parameters
replaced with a single parameter , the calculated theoretical hydraulic power in the jet. The resulting
relationship was,

1.1 0
Y = 0.26 p— (6)

.55

8.2 Final Regression Analysis

Since Equation (6) was so close to the more rational relationship,

Y = f ( ~;~~) 
(7)

a linear regression analysis of this form was app lied to the data without the log-log transformations.
This yielded,

P
Y = -1.0 + 0.43 — = (8)

vu
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Statistically this equation was significant beyond the 99.9% level. In addition , 95% of the
data fell between the following limits,

P
= 2.7 + 0.51 (9)

P
= -4.7 + 0.35 —~= (10)

vu

When the linear regression was repeated with the five data sets involving through cuts, No ’s. 38
through 42 , in cluded, the relationship was only slightly changed to,

P
Y = -0.04 + 0.41 — (11)

The differences between Equations (11) and (8) were those to be expected fro m the under-
estimation of cutting depth for the five data sets.

A similar linear regression analysis that had been performed previously~
4
~ on the first 19 data

sets of Table II had yielded the relationship,

Y = -2.2 + 0.45 ~~~~~ (12)v~
Comparison of Equations (12) and (8) indicated little change in the relationship between

power, traverse speed and depth of cut with the additional data used to obtain Equation (8).

9.0 OBSERVATIONS AND DISCUSSION

.i.1 New Ice Cutting Facility

For all tests utilizing the 21/32” d iameter nozzle (Tests No. 1, 13 and 14) the centrifugal
clutch failed to lock-up. It continued to slip about 200 rpm over the duration of Tests No. 13 and 14.
No such slip occurred when the smaller nozzles were in use.

Subsequent investigation has revealed that the power required to supply a 21/32” diameter
nozzle follows closely the clutch rated capacity curve. While clutch lock-up may be obtainable when
using this large a nozzle under ideal operating conditions , it is unlikely that it will be achieved in the
more rigorous real operating environment. More realistically, the actual capacity of this clutch can be
expected to impose an upper limit on nozzle diameter somewhat smaller than 21/32” . A nozzle of
9/16” diameter should be within the capabilities of the clutch , it would provide a significan t extension
of the operating range beyond that provided by the 1/2 ” diameter nozzle , and it would permit operation
with almost the greatest net power input to the jet that this facility can deliver. Should significant
additional clutch capacity be available when operating with a 9/16” diame er nozzle , it could be en-
larged until the maximum clutch capacity is approached .

During commissioning of the engine, water was unavailable for pump loading when the engine
governor controls were being set. Consequently, the settings were made only under high and low idle
conditions. The resulting engine performance was limited to less than the intermittent duty rating of
the engine (see Fig. 9). The governor controls will be readjusted under load to maximize the engine
nower output.

_  - -
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To assist in operation of the facility, additional instrumentation is needed, a tachometer to
measure actual pump speed and a thermocouple readout to monitor continuously the diesel engine
exhaust stack temperature. The thermocouple readout will allow maximum power to be drawn from
the engine without over-temperature damage to the turbo-chargers.

9.2 Ice Cutting Tests

This series of tests has shown that significant cuts can be mad e in ice with water jets produced
with nozzle pressures as low as 1,050 psig. However , due to the laminated ice structure (Fig. 7) with
the relatively weak upper layers, the ice cutting characteristics of the water je ts used in these tests may
not be representative of their characteristics in more normal ice. Specifically,

(a) a threshold pressure higher than 1,050 psig may be necessary to cut snore typical fresh water
ice,

(b) the energy dissipation characteristics of the opaque “white” ice may have been greater than
for more typical ice,

(c) the bond of the clear bottom ice layer to the remainder of the ice sheet was apparently weak.

The latter condition is particularly apparent upon examination of Figures 7 and 8. In Figure 7
it can be readily seen that the water jet has cut cleanly through all but the bottom clear ice layer. Figure 8
shows that significant delamination has occurred between the bottom clear ice and the first opaque ice
layer. In addition , Figure 11 illustrates a phenomenon often found during these tests; the jet was causing
the delamination , which then allowed part of the water jet to escape through the resulting gap and up
the neighbouring slot cut during a previous pass. This may explain why portions of many of the cuts
apparently terminated at or near the top surface of the bottom clear ice layer. However, Table 1 indi-
cates that this layer was penetrated by the water jet during Tests No. 2, 3, 10 and 11.

Figures 7 and 8 also illustrate one manner in which full penetration was achieved . While the
upper layers were cut cleanly, entire sections of the bottom clear layer were apparently broken out.
Since the fractures were at approximately 45° to the plane of the ice sheet , and since they were often
remote from the water je t cut , it is postulated that the delaminated clear bottom layer failed by exceed-
ing the principal shear strength of the ice where the bending stresses were highest , i.e. generally at the
ends of a beam with fixed ends.

Figures 12 and 13 show the water jets cutting ice during Tests No. 9 and 13 respectively
while Figure 14 shows the high speed traverse of Test No. 14. Figure 15 shows the cut made during
Test No. 3. From Figures 11, 14 and 15 it can be seen that fairly large ice particles were ejected from
the slot during the cutting. The considerable amount of dirt on the ice surface, m ost apparent in
Figures 7 and 14, was deposited there when the penetrating water jet disturbed the bottom of the pond .
Towards the end of Test No. 12 the jet so disrupted the bottom that weeds blocked the intake strainer.

9.3 Nozzle Performance

All nozzles produced quite coherent jets , with the jets from the 3/8” diameter nozzle and the
1/2 ” diameter nozzle (Fig. 12) having the greatest and similar coherence. The 1/2 ” diameter nozzle
with the flow straightener insert immediately upstream of the nozzle produced a noticeably inferior
jet; its ice cutting ability was also noticeably inferior to that of the plain 1/2 ” diameter nozzle. The
21/32 ” diameter nozzle (Fig. 13) produced what appeared to be the least coherent jet but it cut just as
well as the smaller plain nozzles. Microscopic examination revealed small flaws in the metal at the exit
of the 3/8” diameter nozzle and a slightly rounded exit on the 1/2 ” diameter nozzle. However , the
21/32” diameter nozzle had an exit close to the sharp corner ideal. An objective method of measuring
jet coherence would assist in assessing the quality of jet produced by nozzles of different design and
workmanship. An alternative would be the measurement of stagnation pressure and/or impingement
force at varyin g stand-off distances.

_________________________________________________ _____________ .- ~~~~~~~~~~ --- - - - .- -- -
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9.4 Traversing System

While the hydraulic crane did provid e a safe and convenient means for traversing the nozzle
without deadweight loading of the ice sheet, it did not provide adequate control of either nozzle
traverse speed or nozzle stand-off distance. For several tests considerable variations in traverse speed
were measured during the test runs. The cin e photographs also revealed a rather jerky, pause-and-
continue motion to the traverse. This may account for some of the variation in depth of cut.

Because of the flexibility of the crane boom and an inability to truly level the crane , the
nozzle stand-off distance varied both as the nozzle pressure changed and as the crane was swung
through the traversing arc.

For any traversing system it would be desirable to continue use of the latticed column with
the long straight approach pipe to the nozzle. This would optimize the approach flow conditions, thus
providing the most coherent water jet and , therefore , the most intense concentration of energy on the
point of jet impingement.

9.5 Ice Cutting with Water Jets

While the present series of tests could not in themselves define the ice cutting abilities of
water jets, comparison with previous ice cutting tests indicated compatibility at least. Although there
was considerable scatter in the data , particularly at the greater penetrations (Fig . 10), the regression
analysis indicated excellent correlation.

The measurement of penetration or depth of cut , while providing a range, did not yield a
good statistically useful measurement. Much of the scatter mentioned above must have originated
with this data. For each test a series of careful measurements at fixed intervals should be made.

Extrapolation of Equation 8 to realistic ice breaking requirements, while rather extreme,
does yield the interesting estimate that about 5,000 hydraulic horsepower (at the nozzle ) would be
needed for full penetration under Class 10 polar ice breaking conditions of 10-ft. penetration at 3 knots.
At the 95% confidence limits, Equations 9 and 10 indicate that between about 4,000 hhp and about
6,200 hhp would be the range of power required for such Class 10 service. On this basis the present
facility should have an ultimate capacity of a little more than one order of magnitude smaller than a
practical system for use with polar ice breakers.

100 CONCLUSIONS AND RECOMMENDATIONS

10.1 New Ice Cutting Facility

A new self-contained portable facility for cutting ice with water jets has been built and tested.
It will ultimately be capable of producing water jets at pressures as high as 2,300 psig with flow rates
exceeding 250 US gpm. At reduced pressures, about 1,500 psig, flow rates greater than 400 US gpm
will be possible.

While the centrifugal clutch in the high pressure pump drive presently limits the range of the
system, the rather small unavailable high flow , low pressure regime may have little relevance to ice cut-
ting. It is recommended that the rather wide range of available conditions be fully explored before
attempting to extend the range. In this connection , a 9/ 16” diameter nozzle and a 7/16” diameter
nozzle should be made. The former would be useful in defining the limits of clutch capacity and testing
the high flow, low pressure regime; the latter would allow operation very close to the conditions corre-
sponding to the maximum engine power. If , after exploring the available range of operating conditions ,
it is still desirable to explore the unavailable regime, the present clutch should be modified to increase
its capacity and the operating procedures should be altered to suit. A set of the necessary components
should be obtained so that clutch modification can be readily accomplished.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Readjustment of the engine governor control to allow full exploitation of the engine should
be done at the first opportunity.

A tachometer should be obtained for monitoring the actual pump speed and for developing
the best operating procedures to obtain the maximum clutch performance. A continuous thermocouple
readout should be obtained for monitoring the engine exhaust stack temperature, so that the engine
may be exploited to its fullest .

A superior traversing system with better control of traverse speed and stand-off is needed.
Traverse speed should be controllable from about 3 fpm to 300 fpm . While there is no need to re-
produce accurately any particular speed , the actual absolute speed should be readily measurable and it
should remain constant throughout each test run . Stand-off should be variable from about 3 inches to
60 inches, again with the proviso that it be constant and measurable during each test run.

10.2 Ice Cutting with Water Jets

Thirteen successful cuts were made in ice with various water jets in this test series. While
cuts were made with nozzle pressures as low as 1,050 psig, the ice that was cut at this pressure was
weaker than typical fresh water ice because of considerable air inclusion. At some places an apparently
weak bond , between the bottom clear ice layer and the semi-opaque ice layer immediately above it , was
broken by the jet with the result that parts of the bottom clear layer broke off in large chunks when the
traverse speed was slow. At other places the clear ice was cut by the water jet.

When compared with previous ice cutting tests the present cuts conformed to the general
characteristics. Regression analysis indicated an excellent overall correlation. However , measurements
of penetration should be taken more carefully and at specific intervals to provide a statistically more
useful measurement.

While the ice cutting tests to date correlate penetration with power and traverse speed, the
separate effects of the individual components of power , pressure and flow rate, should be determined.
Since from a cost and maintenance standpoint it would be desirable to operate at the lowest pressure
that will produce the desired results, it will be necessary to determine what threshold pressure is neces-
sary to cut ice and if a higher pressure, per Se, is beneficial.

Exploration of the operating regime available with this facility should be fully explored next
winter at a convenient location with a maximum thickness of natural floating ice. However , for those
conditions when the penetration exceeds this ice thickness, it is recommended that an artificial ice
slab of appropriate size and thickness be built at a convenient location on land. With such a slab, the
limits of jet penetration could be explored .

Factors other than those considered to date should be included in future testing. Nozzle and
approach piping design and workmanship should be examined; the effect of angling the jet in the direc-
tion of traverse should be examined, and measurements of the ice quality should be taken.

Possibly a measurement of the jet coherence, stagnation pressure or impingement force with
respect to distance from the nozzle would provide an objective measure of jet quality which ultimately
could be related to the nozzle and piping characteristics.

At present an impact test involving the impact of a weighted sphere onto an ice surface is
felt to provide the best available measure of ice quality as it relates to water jet cutting.
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TABLE II

ICE CUVFING W ITH WATER JETS

REGRESSIO N PARAM ETERS

M m .  Depth Avg. Nozzle Nozzle Nozzle H ydraulicData of Cut Traverse Dia. Pressure Stand -off Power Remarks
Y(inches) ~~~~~I

) d(inches) p(psig) s( inches ) P(h p)

1 2.24 320 0.089 9,300 3 124
2 2.60 242 0.089 9,500 3 128
3 3.15 159 0.089 9,500 3 128
4 3.27 148 0.089 9,700 3 132 Cuts made in
5 5.90 58 0.089 9,800 3 134 floating ice sheet ( 3 )
6 8.00 40 0.089 9,800 3 134
7 5.90 34 0.063 11,700 3 87
8 8.50 32 0.089 10,000 3 138
9 8.74 13.5 0.063 11,000 3 80

10 9 16 0.086 9,600 1.5 121
11 8 16 0.086 9,600 2.5 121
12 12 12 0.086 8 ,500 5 101
13 13.5 9 0.086 9,600 4 121
14 28 3 0.086 9,100 5 112 Cuts made in
15 28 3 0.086 9,400 2 117 manufactured ice( 4 )
16 12 3 0.152 3,000 2 66
17 22 3 0.063 12,000 3 91
18 34 3 0.086 9,500 2 129
19 29 3 0.086 9,400 4 117

20 16 15 0.093 8,500 3 118
21 15 13.3 0.093 9,000 6 128
22 20 9.6 0.093 9,000 6 128
23 20 8.6 0.093 8,500 3 118
24 12 8.6 0.093 8,500 22 118 Cuts made in
25 32 4.4 0.093 8,500 3 118 lock wall ice collars( 5 )
26 36 3.6 0.093 8,500 3 118
27 10 3 0.152 3,000 3 66
28 18 3 0.101 7,000 3 104
29 42 3 0.093 8,500 3 118
30 20 2.3 0.093 8,500 32 118

31 8 120 0.656 1,050 48 255
32 16 44 0.500 1,530 50 260
33 18 36 0.375 1,640 12 162 Cuts made in
34 21 18 0.500 1,530 48 260 floating ice sheet
35 18 14 0.375 1,910 12 204
36 18 13.3 0.375 1,820 36 190
37 18 10.5 0.375 1,820 6 190

38 28 38 0.500 1,530 60 260
39 28 17.4 0.656 1,050 48 255 Cuts made through
40 28 12.6 0.500 1,490 12 250 floating ice sheet
41 28 11.3 0.500 1,560 60 268
42 28 10.8 0.500 1,550 39 265 

~~~~~~~~~~ ~~~~~~~~~ 
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FIG. 5: ICE CUTTING TEST SITE
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FIG. 7: CROSS-SECTION OF POND ICE
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APPENDIX

1.0 MAIN PUMP

Make: Bingham Pump Company

Size and Type: 4” X 4” X 10” MSB

No. Stages: 8

Rotation : Clockwise (looking at coupling end)

Discharge: 4” dia. with 900 lb. ASA flange

Suction: 4” dia. with 300 lb. ASA flange

Bearings: Ball bearings for both radial and thrust loads, self circulatin g oil
lubrication , water cooled

Seals: 8 ring packings in each box with lantern rings for water lubrication ,
water cooled

Rating: At 3,570 rpm , 600 US gpm @ 3,000 ft. head (1,350 psig) with suction
pressure of 50 psig pumping water with S.G. = 1.0 at normal tempera-
tures

2.0 DIESEL ENGINE

Make: Caterpillar

Model: D346 Watercooled

Type: 4 stroke cycle

Aspiration: Turbo-charged and aftercooled

Cylinders: V-8

Bore & Stroke: 5.4 in. X 6.5 in.

Displacement: 1,191 cu. in.

Rotation: Counter-clockwise (looking at flywheel end)

Starting: 24 volt heavy duty electric starter with glow plugs for cold weather
starting assistance

Batteries: Two 12 volt heavy duty, connected in series

Battery Charging: Heavy duty alternator

Fuel: No. 2 light diesel fuel

Fuel Tank: 250 I gal. located below main pump
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Cooling: Two closed circuit coolant systems, one for the engine jacket and one
for the aftercoolers discharge heat into the main water system through
heat exchangers

Silencer: Residential grade mounted on the roof of the container

Safety Shut-offs: Mechanical, protect engine against over-temperature , over-speed and
low engine oil pressure

Instruments: Engine rpm tachometer
Fuel pressure gauge
Engine oil pressure gauge
Jacket coolant temperature gauge

3.0 SPEED INCREASER

Make: Falk Corporation

Size: 13.166” X 16-3/4 ”

Gear: 112 teeth

Pinion: 51 teeth

Type: Herringbone

Lubrication: Oil circulation pump driven from speed increaser

4.0 CLUTCH COUPLING , ENGIN E — SPEED INCREASER

Make: BLM Automatic Clutch Ltd .

Type: PMH14O-192 centrifugal clutch

Mounting: On front end of engine

5.0 COUPLING, SPEED INCREASER — MAIN PUMP

Make: Sier-Bath

Type: Flexible gear coupling

Size: C-3 —

• 6.0 BASE FRAME

Main Rails: 12 ” X 8” X 5/ 16” hollow structural steel tubing

Cross Rails: 8” X 6” X 1/4 ” hollow structural steel tubing

Construction: Welded
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7.0 CONTAINER

Make : Steadman Containers Limited

Size : 20’ X 8’ X 8’

Type: iSO, Group IC heavy duty

Specification: S-1226

Construction: Aluminum and steel

8.0 FEED PUMP

Make: Gorman-Rupp of Canada Ltd.

Type Self priming centrifugal

Model: 04C3-B
,, ,,

Size: 4 X 4

Bearings: Ball bearings

Seal: Mechanical self-lubricated

9.0 SPARK-IGNITION ENGINE

Make: Teledyne Wisconsin Motor

Model: VH4D air cooled

Type: 4 stroke cycle

Cylinders: V-4

Bore & Stroke: 3-1/4 in. X 3-1/4 in.

Displacement: 108 cu. in.

Starting: 12 volt electric starter with automatic choke

Battery: 12 volt

Battery Charging: Alternator

Fuel: Regular grade gasoline, gravity fed

Fuel Tank: 5 I gal. engine mounted

Power Take-off Clutch : Integral with engine, manually engaged

10.0 COUPLING, ENGINE - -  FEED PUMP

Make: Falk Corporation

Type: Standard Type F Steelfiex

Size: 9F
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