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SUMMARY

This report documents work performed for the Edgewood Arsenal Suppressive Structures
program from January 1976 through June 1977. Included in this work was the developmcnt
of approximate energy solutions for the response of structures to blast loading, the analysis
of strain data from the Category I 1/4-scale model tests, and calculation of pressure-time
histories for the burning of M 10 propellants in the Category V shield.

PREFACE

The investigation described in this report was authorized under PA, A4932, Project
5751264. The work was performed at Southwest Research Institute under Contract DAAA 15-
75-C-0083.

The use of trade names in this report does not constitute an official endorsement or
approval of the use of such commercial hardware or software. This report may not be cited
for purposes of advertisement.

The information in this document has been cleared for release to the general public.
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ANALYSIS AND EVALUATION OF SUPPRESSIVE SHIELDS

I. INTRODUCTION

This final technical report documents work performed under Contract DAP.AI 5-75-C-0083
for Edgewood Arsenal in support of the suppressive structures program. Principally, it includes
work performed during the time period of January 1976 through June 1977; however, some
earlier work has been included in summary form. Also, some work performed during this
time period and documented in separate letter reports has not been included. Work performed
prior to January 1976 is documented in References I through 9.

Contents of this report cover three different aspects of the work:

* The use of energy methods to predict deformations in olast-loaded structures,

* Strain data analysis for the Category I 1/4-scale model tests, and

* Calculation of pressure-time histories produced by burning propellant in
vented enclosures.

Chapter I1 contains recent work on the development of energy solutions for structural
response. This recent work includes a study of the influence of .tae deformed shape on
the accuracy of the solution obtained, energy solutions for coupled response, energy solu-
tions for combined elastic-plastic behavior of beams and strings and the construction of
general graphical solutions for blast-loaded beams. Chapter III contains a summary of
solutions which have been developed over the total contract period.

Analysis of strain data from the Category I 1/4-scale model tests is covered in Chapter
IV. Comparisons are made between measured strains and strains predicted by the approxi-
mate energy methods and by finite-element methods. Chapter V describes the calculation
procedures and gives results for M 10 propellant burning in vented enclosures.

II. ADDITIONAL SOLUTIONS WITH ENERGY METHODS

A. Importance of the Assumed Deformed Shape

In using energy solutions to compute maximum deformations or strains in blast loaded
structural components, we select a deformed shape with appropriate boundary conditions.
Usually, this assumed deformed shape is either the first mode from an infinite series of modes,
or the static deformed shape carried over to a dynamic analysis. We will demonstrate that
either assumption can give excellent predictions of strains or deflections using either assumed
deformed shape. This generalization pertains for both elastic and plastic response of struc-
tural components, and is true for both quasi-static and impulsive transient loads.
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1. Influence oj Higher Modes

A general deformed shape for a simply-supported elastic beam loaded with a
unifurm quasi-static pulse ic given by Eq. (I).

cc N(1x
y~)o F AN sin (1)

N= 1,3.5

The even modes are missing because of symmetry, and cosine contributions are missing be-
cause of simply-supported boundary conditions. For bending only, the strain in the beam is

hdy r2 w2h , NAN sin - (2)

d ax'- 22 N-1,3,s

In a rectangular beam, t ..,e is given by:

U/2 Q/7
Vol.=4b f dh f dx (3)

0 0

The strain energy U is:

U=, j 2 d V, (4a)

or:

U LrLEw.b1H/2 00 Q/2

Q4___ f h2dh N N4Akf sin" (,' Q (4b)
0 N=1,3,5 0

The cross-products associated with squaring the strain integrate to zero in the preceding
equation because of orthogonality of the mode shapes. Performing the rmquired double
integration gives for the strain energy:

00

U = !rEwI E bH3 AN (5)
48 23

N= 1,3,5

Next we compute the maximurn possible wort. imparted to the structure with the deformed
shape of Eq. (I). This work equals:

12



Q• 1 2 M i22 Nirx

wk = 2pbwv ,X AN f sin dx (6)

N = 1.3,5 0

Or, after integrating:

00

wk= 2pbw_ 2 AN
ir N()

N= 1,3,5

The Rayleigh-Ritz method can be used to obtain the relative amplitudes of the different
modes. This is accomplished by subtracting the work from the strain energy,

00 0

(U -- wk) bH3  NA'4 A 2pbwQ , .k . AN (8)
U482Q N Ir N

N = 1,3.5 N= t,3,5

and differentiating with respect to AN so the energy difference is minimized. This procedure
yields:

a(U- wk) = ir4 EwobH3 N4Av 2pb~voA 1 = 0 (9)

6AN 24£3 7r N

or:

_48__ I
AN ( i5-- o3') N- (10)

If one substitutes AN from Eq. (10) back into the preceding equations, a series
solution for the deformed shape is obtained. The influence of higher modes can be obtained
by dividing AN by the amplitude of the first mode. This step yields

AN I(I
A1  N 5

For a three-mode solution, the deformed sfiape will equal:

7r I 3irx I 70
ýmwo ir. -+ -sin ---- +---sinn (12)

y w 243 2 3125

The paramctcr in equals 1.0038 if y is to equal wo at mid-span (at x/2 to 0.5). Substituting
for in, differentiating Eq. (12) twice, and multiplying by --h gives the strain.

S7T 2
Wh/I [ rx I 37rx 1 .5_rx_f - (.08 .... + •- sin • + • sin (13)

22 R027 k 12.5 R
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From Eq. (4a),

t0- 120076 f h, dh f in nx: + 2sI 3nrx I irx
\ =24) f ISh 2 dh J L sin -12- - sin--/ dx (14)

0 0

Performing the double integration gives for the strain energy:

( 1r4 Ebw,,oHl
U= 1.053 ( 4-83 (15)

The factor 1.053 has been separated from the other terms in the precedir: .-quation,
as this 5.3 percent increase in the strain energy U is the effect of adding the third and fifth
mode contributions to the first mode estimate. A similar procedure will be followed in
prest'nting the influence of high modes in subsequent relationships.

The work which must be equated to this strain energy is given by:

wk %2pb{I.OO38w) J sin +- - sin - + -- sin 5 dx (16)
L £ 243 £ 3125

0

or, after integrating:

wk = 1.00524 E2DbwO j (17)

The influence of higher modes on the work is less than a 1 percent increase.
Equating the work to the strain energy and solving for a nondimensionalized mid-span
deformation, w0 H/122 , yields:

woH1 r96pl21
w--H= 0.9546 r96p3 (18)

This equation implies that the actual deformation will be less than that estimated with the
one mode approximation, but the difference is less than 5 percent. The maximum strains
can also be estimated. Substituting 11/2 for h, Eq. (18) into Eq. (13), and 2/2 forx gives
for the maximum strain:

CmSX = 0.9304 (I9)

Equation (19) shows that the one mode approximation also overest"mates the strain in this
illustration, but that this error is lees than 7 percent.
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We present one more illustration to show that these same conclusions can be
reached for plastic as well as elastic response, and for extensional as well as bending behavior.
As the second illustration, consider a string* with the deformed shape given by Eq. (1). The
string has a different shape from a beam; however, this difference i5 reflected in the AN
coefficients. In a string,

d= ) 2 (20a)

or

00ff2' WO2

0 2 Nirx
22 N 2 A'v cos 2 - (20b)

N= 1,3,5

The plastic strain energy equals the yield force times the strain integrated over the length:

•,v Q12
'zr 2 F~~ 2/2 INirx\E N2A 2 f Cos2  - dx (21)
N=1,3,5 0

or, after integrating:

U = N2A (22)
42

N - 1,3,5

If the loading is a quasi-static pressure of intensity p, then the work is given by the
previously obtained Eq. (7). We again use tne Rayleigh-Ritz method to obtain amplitudes of
the different modes. Although our system is not conservative, it is linear because we have
chosen to consider rigid-perfectly plastic mateiial behavior over the full range of deformation.
Proceeding as before by taking the difference in the strain energy and work, we have

00 00

71`2F__W 2pbw0Q R - A_
(U--wk) = , N 2Av w (23) I40 7r N

Nl - ,3,5 N 1,3,5

Differ -ntiating with respect to AN and setting the result equal to zero yields for AN:

,4 pb22  IAN = k7r3 Fy Wo A 3  (24)

*A string is defined here as an element with negligible bending stiffness.

15
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Hence, the amplitude of various modes relative to the first one is

I A, N3  (25)

If we now proceed with a dynamic solution, the deformed shape for a three mode
solution is given by:

y = mw, in 7Q + I7 sin 3r + I sin ] (26)

The parameter m equals 1.0299 because y is equal to w, at mid-span. Substituting into
Eq. (20a) gives as an approximation for the strain:

1 7r I c W.'l Wx 1 31rx I 5_rx1 2
C2-- 1.0 60 7  [os-+-•cos-- + - cos- (27)

[203 J I 2 9 R 25 2

The plastic strain energy is

W/2

U=2 f Fy c dx (28a)

0

or

jw/ 2  rx I 37rx I rx1
U 1.0607 L 2 os-+- cos---I-cos dx (28b)

0

Performing the desired integration yields:

U= 1.2 2  -r-YJwO (29)

The work which must be equated to this strain energy is given by:

wk 2pb(.0299w)- sin - + sin dx (30)Q 27 R 125 Q
0

or, after integrating,

wk- 1.0443[2pbw-- ] (31)

16



Equating the work to the strain energy and solving for a nondimensionalized mid-span defor-
mation, w,,12, gives:

.08553 8 (32)

This plastic extensional solution is not as exact using only one mode as the elastic
bending solution. Nevertheless, the deformation is predicted to within 1 5 percent, and the
single mode does overestimate the deformation. The maximum strains can also be compared.
This maximum occurs at x 0. Substituting Eq. (32) into Eq' (27) and nettingx 0 gives
for the maximum strains:

(32p•2 221
Cmlx =,1.0282 2F7r-- / (33)

As is seen in Eq. (33), the strain is predicted fairly accurately using a one mode
approximation. rhe difference between a one mode (the first) and a three mode approxi-
mation is less than 3 percent. Considering the mathematical complexities which are intro-
duced by adding more modes, the additional effort is probably not worth it.

2. hifluence of Other Shapes

To illustrate the influence of assumed deformed shape on results, we analyzed
elastic bending and plastic bending of simply-supported beams loaded with a uniform impulse.
Examples of these solutions are given in Part C of this section and will not be repeated here.
Equations are summarized in Chapter III.

For an elastic analysis, We evaluate computed results for three different deformed
shapes. The first shape is a parabola, the second is the first mode sine wave, and the third
shape is the static one for a uniformly applied load. Because each of these deformation
patterns must satisfy the essential boundary conditions of a simply-supported beam, they
will be similar in shape. Nevertheless they represent three distinct deformation patterns.

All three solutions give similar results for the strain energy U, the maximum defor-
mation w0, and the maximum strain cmax, as can be observed in Table I. The results in Table
I have been nondimensionalized so numerical coefficients can be compared directly. Only the
numerical coefficient differs slightly in'all of these solutions. Both the first mode and static
deformed shape approximations yield the same answer to within a few percent.

The second group of illustrations includes plastic bending in a beam loaded
dynamically w~th a uniform impulse. One more deformed shape will be added to the results
for the three elastic shapes. The fourth shape is a static hinge yielding plastically' in the center
of the beam while the rest of the beam remains rigid. This deformed shape is a common one
in civil engineering applications, Whereas the other three deformed shapes distribute the
deformation, the stationary hinge concentrates the deformation. Table I1 compares non-
dimensionalized numerical coefficients for strain energy, maximum plastic deformation,
and maximum plastic strain for these four different deformed shapes.

17



TABLE I IMPULSIVE BENDING SOLUTION FOR A SIMPLY-SUI'IOKTED ELASTIC BEAM

Deformed Parabola First Mode Static Deformed
Shape Shape

2 )2 sin(- 16

Parameter

SIrain u2
Energy EbH3 we- 2.666 2.029 2.048

w,, vpTE H2
Deformation - 0.4330 0.4964 0.4941

Strain efla Nx V/H 1.732 2.449 2.372i

TABLE i1. IMPULSIVE BENDING SOLUrION FOR A SIMPLY-SUPPORTED PLASTIC BEAM

Deformed First Static Deformed Stationary
Shape Mode Shape Hinge

(y4 x 16 -- 2 3+ 4 2 for•0 -S• 4sin Q \• 2

Parameter

Strain _ . _

Energy OywobH- 2.00 1.571 1.60 1.00

Deformation WoPOYtI 3  0.250 0.3183 0.3125 0.50O

Strain emaxPoy-f 1.00 1.571 1.500 No Meaning

In the plastic beam, the first mode and static deformed shape give deformations and
strains which are close to one another. The stationary hinge yields no rational estimate for
strain because there is~no gauge length associated with a concentrated hinge. The deformation
is also much larger for a stationary hinge than comparable deformations from distributed
deformed shapes. A concentrated hinge yields much too small a strain energy and too large
a deformation. Distributed deformed shapes are much closer to reality and give more accurate
predictions,

18



As these illustrations show, either a first mode approximation or.a static deformed
shape is a good approximation. We would recommend a first mode approximation for sym-
metric deformations. as in simply-supported and clamped-clamped beams, because the resulting
algebra is slightly easier. For nonsymmetric responses, as in a simply-supported clamped beam,
the static del'ormed shape should be used. If the static deformed shape is not used in non-
symmetric cases, uncertainty will otherwisc exist.

iolls In all of the illustrations, the assumed deformed shape being applied to a solution
is of less importance to the resulting deformations and strains than the effects of coupling.
Supporting a flexible structural component oti a flexible foundation has a much greater
influence on structural response than the assumed deformed shape, as the next part of this
section shows

B. Energy Solutions for Coupled Rigid-Plastic Systems

In the suppressive structures program, energy solutions have been difficult to apply be-
cause the actual structure is a combination of plates and beams or a combination of I-beams
and hoops, rather than a simple beam, plate. or membrane configuration. Although energy
solutions developed to date in the Suppressive Structures Program (.see Refs. 1, 4, 6, and 9)
apply for simple structural elements, structural configurations which are combinations of
elements canl also be solved using this approach; however, to complete such a solution, one
more equation is needed to couple deformation in the first structural element with defor-
maltion in the second. For a rigid-plastic system, derivation of the required relationship is
straightforward.

Coupled plastic systems can be visualized by a rigid-plastic,
rheological miodel as in Figure .1. In Figure 1, the yield forcef I
must exceed the yield force f 2 , and tile quagi-static force P must be
less than bothf', and f 2 : otherwise, the system will not act as a
coupled system. The relative residual deformation (XI - X 2 ) isT related to the residual deformation X 2 through an impedance match

involving the parametersm 1m I, Pn2 .f, , f2 , and P. Equation (34) is
this coupling relationship.

m (XI-X 2 ) me2 (f2 -- P) (34)i [ ~X2 rn~l(i' -J`]2 )(4

VX To complete aan energy sohition, one now only has to equate the2 kinetic energy to thestrain energy or the maximum possible work to

the strain energy to obtain estimates for the deformation in a dynami-
cally loaded suppressive shield. In a coupled system as in Figure 1, the
strain energy is given by:

FIGURE 1. RIGID-PLASTIC
R1IEOLOGICAL NODEL . S.E =fl (XI -X 2 ) + f 2 (X) (35)

Because two equations now exist for X, and X2, they can be.solved.simultaneously. We will
proceed by developing Eq. (34) and illustrating its use in two exampleproblenms.

19



1. Developrnent of the Coupling Equation

Assume m I is hit simultaneously with an impulse I and a quasi-static force P. Then
the two equations of motion are:*

m1 - 1 +fj =P (36a)

tn3.2 +f2 4' 1  (36b)

For no initial displacement, no initial velocity for m2 , and an initial velocity of 1/mr for in,
we obtain by direct integration:

It f, r2  Pt 2

x =- - +- (37a)
mI 2rn1  2m,

(f, -- f2 )t2

x-4 = (37b)2M2

Coupled motion continues until (x - x2) equals zero,

dx2 O r f +(38)
)t -)( + 2 m 2  mI

or until time t' given by

V = 2  (39)
[m + m2 )f 1 -- mnf 2 7-m 2 PJ

At this time, the new initial conditions for m2 are:

,m 2(f, - ()0a
XA2

2 [(ml +rma)f, -= m-f -- mP] 2. (40a)

dx-- (f--f 2 ) (40b)
di [(mI + m 2 )f, --mlf2 --m 2 P]

The relative motion (x - x2) equals the maximum relative residual motion (XI - X 2 )

(XI - X2 ) "2(41)
2n I[(mI + m 2 )f1 -- M f2 -m 2 P]

After element f, "locks up" at time t' motion continues as an uncoupled system.
The equation of motion in this'second phase is given by:

*Note that I is total Impulse with dimenslons of FT, rather than poctfle blast impulne I with dimensions of FT/L'.

* 20

______________



(inm + m 2 ):2 +f 2 P (42)

By establishing a new time zero at the instant I* when the motion becomes uncoupled, using
the initial conditions given by Eqs. (40), and integrating, we obtain as the equation for dis-
placement in the second phase:

-(1'2 - P)t2 (V1 - 1' Y)t M_ 2_ Q-1 1 )PX2 = + +1 (43)
201n + 'n2) 2 (pitI + i2)f' - in 1'21 2[(in + in 2 )f Y- 1 2 ]2

All motion stops at time It given by:

It (in I + i m2 )(f, - f2)1
V(2 -P)mmI +m 2 )fl -mfJ'2 -m 2 P]

Substituting It into Eq. (43) and gathering terms gives the maximum residual deformation,
X2, for element m2.

(f, -f 2 )12 (42(f- -P)[(mI + m2 )fl -m f 2 -m 2P] (45)

Finally, dividing Eq. (41) by Eq, (45) gives the relative displacement coupling equation
already presented as Eq. (34).

(XI -X 2 ) m2 (V2 - P) (34)
X-2  mI V, - f2 )

This equation is the key coupling relationship which will be used in all calculations. Use of
the equation is best illustrated by some example problems. Calculation of the mass m for a
structural component is no problem; however, the effective force f requires assumptions when
calculated for a beam or plate element. We will calculate the forcef by assuming a deformed

* shape for a structural component, calculating the strain energy stored in that deformed shape,
determining the average deformation for a given deformed shape, and finally dividing the
strain energy by the average deformation. Once this procedure is complete, the coupling
Eq. (34) and energy relationships permit structural deformations and strains to be deter-
mined in a procedure similar to that used in any uncoupled structural analysis.

2. Application to the Category I Shield

The Category I shield is used as the approximate illustrative example because it
.was the first to draw our attention to the need for a coupled solution. Here we will derive
the equations for coupled response of the beams and iings. In Chapter IV, comparisons
with data from the Category I 1/4-scale model demonstrate the validity of the coupled
energy solution.

Basically, this shield is a barrel as shown in Figure 5 (page 52). External circular
hoops provide restraint for longitudinal I-beams. The I-beams represent the mi - f1 structure,
and the hoops are the inm - fa structure. We will treat the I-beams as clamped-clamped
beams. An assumed deformation pattern for this structural component is given by:

21



we( WO +o. 27r) (46)
where

we = maximum mid-span deformation relative to the supports

2 = total span

x = coordinate system with origin at mid-span

y -- deformation at some value of x

Differentiating Eq. (46) twice gives:

dzy -27r 2 wo 21rx-" 2 Cos (47)

The strain Energy S.E. 0 i6 given by the integral

Q/2 d2 yS.E. = 2 f MY- dx (48)

0

where

My= plastic yield moment

Substituting Eq. (47) into Eq. (48) and completing the desired integration gives:

S.E.( -- (49)

The average deformation YAVG must be calculated next. It is obtained by the integral

IlkYAvG•2 f - I + Cos ,x (50)
0

or
oWO

YAVG = 2- (51)2

The force fl in one beam equals S.E. 0 divided by the average deformation, or:

f= (52)

22

22I



The mass mi equals:

in, =PbAbR (53)

where

p, = mass density of a beam

A b = cross-sectional area of a beam

NextJ'2 and m2 must be calculated for the hoops. if we assume hoops of equal
effective cross-sectional area, Ah, on each end, the deformation will be a symmetric change
in radius AR. The strain energy for both hoops is:

S.=E. (2Oy) R (27rRAh) (54a)

or

S.E.q) = 47wyAhAR (54b)

The average deflection in a hoop is the deflection AR. This means that the force f 2 is given
by:

f2 = S.E.a /AR (55a)

or

fo2 41royA h (55b)

The mass m2 equals twice the mass density times the area times the circumference, or:

m = (2ph)(A, )(2rR) (56a)

or

m 2  41rphAhR (56b)

The quasi-static force P equals the pressure p times the internal circumference times the
length, or:

P = (p)(27rr)(Q) (57a)

p = 21rrkp (57b)

Now the coupling equation can be used to relate the average deformation in the
beams (wo/2) to the deformation in the hoops AR. Substituting form,, m 2 ,f, ,f ,and
P then yields:
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IVo

2 = (4wrphAhR)l(41rOhAh )- 21rr] (58)
AR (N-) 47r(hA8)

The parameter N stands for the number of beams. The mass of the beams and force equals
N times m I or.f' , respectively, for a single beam in Eq. (58). In addition, the yield stress
ob times the plastic section modulus z was substituted for the yield moment in the beam
force equation. Eq. (52). Reducing Eq. (58) algebraically gives the ratio for the maximum
deformation in the beams relative to the change in hoop radius.

8rphAhR I prkWo NPbAb2ohAh 
(59)

AR 
[2 ( N~bZ 

1

\OhAhR)--1

The solution proceeds by writing the strain energy S.E. for the entire system.
This energy equals the sum of Eqs. (49) and (54), or:

S.E. = 41rNabZWo + 4rohAh AR (60)

Substituting Eq. (59) for AR in Eq. (60) gives:

4lrNcrbzw 0  NpbAboh•Wo [2 ( Nubz .
S.E. - +__ _ L OhAhk) (61)

2 2phR (I prA,2ahAh

Next the energy imparted to the structure must be estimated. This energy comes
from the kinetic energy imparted through blast waves and the work from the quasi-static
pressure buildup within a suppressive shield. Algebraically, this energy EN equals Eq. (62)
with loads imparted to the beams.

NI
2

EN,= +Pb2(YAVG + AR) (62)

where

b loaded width of the beams.

Substituting for 1, ml , YAVG, and Eq. (59) for AR yields, after collecting terms:
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____ [ 2NObZ
NM2 b 2q+ pbQw 0  NpbAbk \ahAh (63)EN + - 11.O+ ' rQ• (63
2pbAb 2 47rphAhR R \2Ih J

Finally, equating EN, Eq. (63), to S.E., Eq. (61), and gathering terms yields an equation
which can be solved for w0, the maximum deflection in the beams.

_2b_+___ pb02  + NpbAb9 \ahA)s - = I) OhPbAbQ' 2ohAh

+ .+ . (• r-_/ 8+ )ipr
pbAbuhZW 0  N 4vphAhR I pr ObphzR I prk\ 2uhAhlJ 2u,,A h)

(64)
Equation (64) yields w0 , the maximum beam deformation relative to the rings,

and subsequent substitution in Fq. (59) yields AR, the change in hoop radius. Strains can
also be estimated. The residual hoop strain equals ARIR as in Eq. (65a), and the maximtm
residual bending strain in the beams equals half the beam depth H12 times the maximum beam
curvature as given by Eq. (47). Equation (65b) is the maximum reseidual strain in the beams.

ehoup R (65a)
R

C rmw0s Q2 (65b)

Refer to Chapter IV for calculations based on these equations for the l]4-rcale model of the
Category I shield.

3. Application to the Category III Shield

The second example will be that of a rectangular membrane, supported rigidly
along two opposite edges and by flexible clamped-clamped beams along the other two
edges. This configuration might be representative of the original Category III containment
structure" 9) which was replaced by the 1/4-scale Category I shield. We begin by assuming
a deformed shape for the membrane, Eq. (66).

w;ý WO Cos 7XCos 7Y(6
2X 2Y (66)

In a membrane the strains are calculated from the first derivatives of the slope by:

I {aw\ 2 7(2W0EXX = \ -8 sin cos2  (67a)
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Im = 2 8r2 7Y 2 2 27/

,.y ý:( = W) - (!') sin 2n(sin(67b)

In a structure under a biaxial state of stress, the strain energy per unit volunte is given by
the integral:

S-o =f_ ox dexx + 2 axy de.y + ayy dEyyJ (68)

If we assume a rigid-plastic material with a yield point in the plate ap, then oxx = Uyy = up
and u.Y = ap/l/3 according to the distortion energy yield theory. Substitution of constant
stresses into Eq. (68), integrating Eq. (68) for strains, substituting the strains from Eqs. (67)
into Eq. (68), and expressing the volume of the membrane through the thickness times a
double integral yields:

X Y r
S E.0  4 f dx f dy sin' cos 2

0 0

+2-ph-Tw2 sin (-J sin (r)- (69r2w)V/i 16XY•" 8Y2

X cos2 r sin 2 (h;)'
Performing the required double integration gives:

S =r2aphwo [Y 1.6 +X (70)S .E'. " 8 Lx +/,•

The average plate deformation must be calculated next by double integration.

x Y
( 4 XY)WAVG = 4 f dx f dy w, cos 2X 2Y (71)

o 0

or:

WAVG 4 (72)

I2

26

1 ~~~~~~~~~~. ... . . . ..... .. . v..... . • ." -. - -... -- w., , .



The force f' in a plate equals S.E.() divided by wAVG, Or:

47r' ohw[Y 16 + 1X
32 -J (73)

The mass in equals:

min = 4pphXY (74)

Next,f 2 and m2 must be calculated; however, this has already been done in the
first example. Because there are two beams, the quantity f2 equals twice fin Eq. (52), and
the mass m 2 equals twice in in Eq. (53). These results are summaiized as Eqs. (75).

f/2 =6M Y (75a)
2

m., 2PbAQ (75b)

The average deflection of the beams is still wb /2, and the quasi-static force is given by Eq. (76).

P = 4pXY (76)

We are now prepared to substitute into Eq. (34). Substituting for m, m2JI, f 2 , and P
yields the coupling equation for deflections.

8wp_ =327prPM0,A - 8PbPXYAQ (77)

2it2 Wb pj X jiophw, Y + 16 -+X 161rMl 77S4p~hXYL2 J

or:

7rP~u~h
2XYwI 164 X 6p

32 pbmA - -X + 72 PbAk
)(78)

4M,

The solution proceeds by writing the strain energy S.E. for the entire system. This energy is
two times Eq. (49) for the strain energy in one beam plus E-I. (70).

87= Wb+r2o(,ph wP2Y 16 X
S.E. M + +- [(79)

S8
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Substituting Eq. (78) for wb and collecting terms yields:

S.E. W2 up hva 1 2p X Yh __Y 16 X
SE 8 (1 pY\ X + -_"ý +

L b2 4M (80)

S128pp,MyX'hwp

irPbAQ2 (I pXY4

The kinetic energy from the blast wave which is imparted to the system equals:

t2 (4XY) 2  2W2 XY
2(4ppX]h) pph

The work from the quasi-static pressure loading equals:

WK = p(4XY) W( + "wb) (82)

Or after substituting Eq. (78) for wb:

[ 8 I• rp[Y 16

WK= 2p.YwP V2 2 +
32PbM A (IP 4y)

L PXY-](83).

16pphXY 1SpXYA
7 2 PbAR I( PX-Y. ]

Equating WK + KE to S.E. gives the final solution. In nondimensional format this solution
is:

"± ~ 0.3927i1rp~,,wrr2w 6'484vrprw= 0.6169lr, + 7rp [0.8106,7. + "-066
L_ (4 -wrw,,p) (4 -- 7rp)jS~(84a)

SX i +- 8-r I iry4'--81.48
( 4 -- r.7rp)J ir,,(4 - 7r.','o)

where

rp -•X Yh
TP (84b)
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fOR

PRX Y

SP XY (84b)
(Concl)

Y 16 X
iTy - + + Zr

7tw W-

h

Equation (84) is a quadratic equation that must be solved for 7r, or wp. After wp is ob-
tained, ivb is obtained from Eq. (78), wh.'ch in nondimensional format is:

%vb 0.3927r5 7r, 7y7rw - 6.484wr(4), _•v. ... •(85)WP (4 -- 7r. 7rp

To comolete this illustration, let us apply Eqs. (84) and (85) to the Category Ill
shield. We will assume parameters as follows:

p 66 psi

1 0. 179 psi-sec

X 26.5 in.

SY 56.5 in.

h 1.033 in. (this is an effective thickness)

lb-sec2

Pp Pb =7.33x 10- in. 4

a = ob =48,000 psi

A = 61.71 in.'

S= 113 in.

My = 1.21 X 10+'7 in.-lb

S. 29
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Substitution of these parameters into the fr terms gives:

1T'0 = 0.2218

7r, = 0.4783

ir, = 1.929

=r1  1.197

try -= 3.537

Substituting into Eq. (84) gives a positive root for 7r, of 3.953; hence, wp 4.083 inches.
Finally, 3ubstitution into Eq. (85) gives Wb = -1.135 inches. This negative sign associated
with wb is not a mistake. It means that the plate and beam systems are not coupled as has
been assumed; hence, this analysis is not appropriate for the parameters substituted into it.
In this particula. sclution. f2 is greater than fl. This means there is no plastic deformation
in the second element, and the particular sy-tcmn under investigation is uncoupled. Appro-
priate answers can be obtained by using uncoupled techniques which have already been
preseiuted. The purpose of this second iliustration was to emphasize the meaning of a
negative sign when it is encountered in this type of analysis.

4. Importance of Treating Coupled Response

We have shown that eneigy solutions are possible for coupled perfectly plastic
systems. For two members in a codpled system, one additional equation is needed to relate
deflections in the first member to deflections in the second member. Equation (34) is
presented as a relationship for coupling the deflections. With the assistance of this one
extrz equation, energy solutions can be developed as in any rigid-plastic coupled system.

In Chapter IV we will show that the effect of coupling is very important for pre-
dicting respoase in the Category I shield. On the other hand, the example above shows
that coupling is unimportant for predicting membrane deformations in the Category III
shield. While these solutions are more complicated than uncoupled solutions, residual
deflections and strains for coupled systems can be predicted with cloed-form algebraic
solutions, and the usefulness of the approximate energy methods for predicting response
to blast or impact loading is greatly enhanced.

C. Elastic-Plastic Energy Solutions for Beams

In the design of suppressive shields we are usually interested in predicting onset of
failure, and hence maximum strain or maximum strets. In most problems, a beam has
segments which remain elastic and segments which go plastic. The assumptions of total
elasticity or total plasticity throughout a!l elements in a structural component, or concen-
trated plasticity in a hinge, are approximations. To obtain an idea of how elastic-plastic
solutions could be presented to designers, and to see how combined solutions might be
obtained from simple elastic and/or simple plastic solutions, two elastic-plastic solutions
have been developed for a simply-supported beam and a string.
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• The constitutive relationship used for boih solutions is given by Eq. (86).

Ec
oa=y tanh (86)

oy

This is an excellent approximation to an elastic-plastic material. For small strains, Ee/oy <
0.5. the stress-strain curve is a linear one with a EEc and, for large strains, Ee/ay. > 2.0,
the stress-strain curve is a perfectly plastic one, with a oy.

L. Solution for a Simply-Supported Beam

In any structural element under a uniaxial state of stress, the strain energy per
unit volume is given by:

U = fade (87)Vol.

If we substitute Eq. t86) for a and integrate from a strain of zero to the maximum strain e,
we obtain:

Vol. f y tanh de (88)
0

Or:

UU = n cosh (89)
Vol. E LOY/

Equation (89) is then applied to any bending or extensional solution by substituting the
strain and integrating over the volume. If we use the assumed deformed shape for a simply-
supported beam given by the first term of Eq. (1), the strain e for a differentivl element in
bending is:

S3.

e=w-hd = h sin- (90)
x2  22

If the beam is of rectangular cross sectioni, the volume equals:

•H2 Q12

SVol. = 4b dh dx (91)
0 0

Substituting the expression for e and the volume integral into Eq. (89) gives the following
double integration for the strain energy U... . -

42bH12 2/2 rw h wr
b cosh W E On dh dx (92)
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or

w12 " /3 , r/"- H E (93a)
•. E f f k. coh ,o sin/ do dot

0 0

where

o =xx/R and 13 h/H. (93b)

Next we assume that the loading is a uniformly applied impulse, giving for the kinetic
energy:

P1 2 bPH
KE .. (94)

2m 2pH

Equating the kinetic energy to the strain energy and rearranging yields the dimensionless
equation:

(.K " 2. 12 WL2 \ro " n
.Y H2y f f ). ooh %•r- in a]dO du (95)

': "0 0

This equation can be written as:

Pr/2 2 D
C= f f R cosh Dflsin d doa (96a)

where

C =(i 212E/gpc•hf) and D (,rwoHE/oay 2 ) (96b)

A computer program was required to numerically perform the double integration. Results
of this program are represented by the solid continuous line in Figure 2. Dashed lines in
the figure are the asymptotes for completely elastic or fully plastic behavior. Note that the
elastic-plastic solution correctly approaches the elastic asymptote for small deformations
and the plastic asymptote for large deformations.

2. String Solution

The string solution uses the same strain energy per unit volume equation, Eq. (89),
as the beam solution, These solutions differ in the equations relating strain to deformation.
In an extensional element the strain Is given by Eq. (20a). Substituting the first term of
Eq. (1) for the assumed deform.ed shape in Eq. (20a) gives Eq. (97).

2J 2£-- - - c o 2 O x(9 7 )
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The volume for an extensional element equals

Vol.'2A f dv (98)
0

where A is the cross-sectional area.

Substituting Eqs. (97) and (98) into Eq. (89) gives the following integral equation for the
strain energy U.

U = _• z..._ f 9"1 C•O Ol - Wo' ON' 2 ('os d X¢ (99)f f .Los 22 o~/.0 lj. d

or. using Eq. 493b),

U: 2AQ f/ n cosh FCos 2  da (100)u E7 - LK 221ao /

The.kinetic energy imparted to a string equals:

12 i 2b 2 (0

2m 2pA

Equating the kinetic energy to the strain energy and rearranging yields the nondimensional
equation:

2 f (n coSh\ -cos2 da (002)(4pux2 A2J i055 1 [ )2o~0

This equation can be written as:

F= Vf ii cosh IG cos2 a] da (103a)

where

F(i 2 b2 E/4p.A 2 ) and G (r 2 woE/222 Ov) (103b)

Numerical integration of Eq. (103) yields the solid line in Figure 3. As for the beam solution,
the dashed lines in Figure 3 represent the asymptotes for fully elastic or fully plastic behavior,
and the inset is a nondimensional plot of Eq. (86).
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Although the elastic-plastic solutions given in Figures 2 and 3 are extremely useful
for designers. they are somewhat difficult to derive because numerical integration is required.
We will now show that the numerical solution can be approximated to within one or two per-
cent by properly combining the elastic and plastic asymptotes. The asymptotes are easily
derived.

3. Limiting Elastic and Plastic Cases

Before an approximate elastic-plastic solution can be found, the asymptotes are
required. Although these limiting cases have been derived many times before (see Refs. I.
4, 6. and 9), we will rederive them here for completeness.

In elastic problems, the strain energy per unit volume, Eq. (87) becomes:

U_ E 2  (104)
Vol. 2

In plastic problems, the strain energy per unit volume, Eq. (87) becomes:

Vol.= aye (105)

Of course, these equations apply to either the beam or string solution.

For the beam solution, both elastic and plastic strains are given by Eq. (90),
and the volume equals the double integial given by Eq. (91). Substituting these two equations
into Eq. (104) for the elastic case or Eq. (1 05) for the plastic case givel:

elastic:

H1/2 /12
27r 4 EWo 2 b /•

Q4 f f h2 sin 2  dhdx

0 0

rigid-plastic:

2 H1 /2 R/2

U f f h sinT d dx (107)
0 0

Or, after completing the required double integration-:

elastic:

M =r 4 Ewo bH3
- 48 (108)
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rigid-plastic:

U W2 (109)
2k

Now, by equating Eq. (108) to Eq. (94) and Eq. (109) to Eq. (94). the elastic and plastic
asymptotes, respectively, of Figure 2 are obtained. These are given by Eqs. (110) and (I I I).

(elastic beam)

1224 if4

pEw0
2 H4  24 (110)

and

(rigid-plastic beani)

pay woH2

For the string solution, both elastic and plastic strains are given by Eq. (97), and
the volume is given by the integral in Eq. (98). Substituting these two equations into Eq.
(104) for the elastic string or Eq. (105) for the plastic string gives:

elastic:

,U= n 4  f cos4 !x-dx (112)

rigid-plastic:

r 2f
2 oW0 2 A (•7irxX d

L 2- f cos2  (113)
2 2

0

Or, after completing the required integrations:

elastic:

~37r4 EA wo 4
3 wU (114)

64R3
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rigid-plastic:

U 73'VY . 2(115)
4k

The elastic and plastic asymptotes for the string solution are obtained by equating Eqs. (114)
and (115), respectively, to the kinetic energy given by Eq. (101). Equations (116) and (117)
obtained in this way are the asymptotes of Figure 3.

(elastic string)

i2b2 j 4  37(4

pEA2wo 4  32 (116)

and

(rigid-plas~tic string)

i2b~2k2  7r (17

puoA 2 wo 2  2 (117)

The approximate elastic-plastic solutions can now be derived.

4 Approximate Elastic-Plastic Solutions

The elastic-plastic solutions in Figures 2 and 3 are very closely approximated by
Eq. (118) where Y is the ordinate, X is the abscissa, and coefficients A and B are constants.

Y =A tanh2 (BX)' /2 (118)

The elastic asymptote for Eq. (118) is:

(elastic asymptote)

Y-X (AB) (I119a)
X

And the plastic asymptote is:

(plastic asymptote)

Y= (A) (I 19b)

These equations have the same form as the asymptotes for the beam and the string. Thus,
for the simply supported beam the terms in Eqs. (119) are defined by comparison with
Eqs. (110) and (I0 ). We tind:
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12 £2

po•wYH" (120a)/ pay w H02

X pEw0 2Hf (120b)

A 7ir (120c)

AB 7 4 (120d)24

Solving for X and B and substituting into Eq. (118) gives an accurate approximation to the
elastic-plastic bending solution without encountering the inconvenience of a numerical
integration of a complicated function.

i 2k2 =[3.1416 tanh2 1.1366 ( o )• . 2 (121)

To compare with Figure 2, this solution can be recast in the format:

1r Y 1 F~~,H (rw H 12
H--- w1.234 L tanh 0.641 (2 ,a)

8ay 2 H [ R 
2

or

SC~ 1.234 D tanh2 (0.641 D' 2 ) (122b)

Either of the preceeding formats is acceptable for the elastic-plastic beam solution.

The advantage to the format given by Eq. (1 22) is that the deformation w0 is isolated on one
side rather than appearing on both sides. Designers would prefer to isolate w, in this manner
because this deformation also directly deternines the maximum. strain. Equation (122) is not
the computed line appearing in Figure 2; however, it is very difficult to detect differences in
Eq. (122) and the computer solution.

Equation (118) and its asymptotes can also be used to obtain an accurate approxi-
mation to the string solution. The elastic and plastic string solutiont are given by Eqs. (116)
and (117). Comparing Eqs. (119) to these equations, we have:

Y P b2 R2  
02a

X PEAZw0
4  (123a)

Q2Y Pa b2 R

!Y=po•,,A~wo 2  (123b)

(123b)
324I AB = 32 (1 23c)
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A (123d)
N 2

Solving for B and X and substituting into Eq. (118) yields:

2 2 [tanh 2.356 WyL0, ] (124)
payA w0

2  2 (Y 2'1

Or after modifying the format to isolate tet:ms containing w, on one side and using Eq. (I 03b),

r Ari2 Eb 2  1 . 785 Ew, 2 2 ( 2 I/S=0.7854 tanh2 0612.4 7r Ew1025a)
L~1pay 2AJ La Ru~2 J 0 [ 'R'

or

F= 0.7854 G tanh2 (0.6124 G" 2 ) (125b)

This solution also approximates the more detailed elastic-plastic solution with the
same degree of accuracy as the bending beam analysis. Philosophically, one should not be
disturbed by the use of the hyperbolic tangent squared as a function for combining elastic
and plastic solutions. After all, any solution requires an approximate stress-strain curve.
No approximation to a stress-strain curve uniformly matches all materials. Instead of
approximating the stress-strain curve, one can elect to approximate the strain energy trans-
ition from elastic to plastic as we have done.

D. Graphical Solutions for Beams

The procedures developed in the precedirng section can be used to derive general graphica!
solutions for blast loaded structural elements. These graphs are attractive because they permit
rapid solutions to difficult problems without recourse to complicated mathematical procedures.
In fact, as we will demonstrate, the graphical solutions are self-contained and can be easily
applied.

Our example for these solutions will be beams loaded in the same manner as those in
the case of the Category I shield. These beams are subjected to an initial impulse produced
by the shock wave, plus a long duration quasi-static pressure produced principally by the

* heating of air in a confined space. Because the blast wave part of the loading is described
* only by an initial impulse (not a pressure and impulse or pressure and time), this solution is

suitable only when the duration of the overpressure in the blast wave is less than one-quarter
of the fundamental period ot the beams. The pressure, p, in this solution refers to the quasi-
static pressure, not the blast wave overpressure.

In response to these loads, the beams undergo elastic and plastic deformations. For
this example, coupling between the beams and rings is neglected, but different end conditions,
i.e., simply-supported, clarIped or a combination of the two, are included.
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The solution to this problem is similar to the impulsively-loaded beam solved in Section
C except that an additional term is required to define the energy produced by the action of
the quasi-static pressure. p. on the beam as it displaces. With the addition of this term called
the work. WK. the energy balance is written as

KE + WK -- U (126)

KE is the kinetic energy produced by the initial impulse, and U is the strain energy (elastic
and plastic) stored or absorbed by the beam.

Kinetic energy is the same for each beam regardless of the support condition and is
given by Eq. (94), derived previously. The work and kinetic energy depend upon the mode
shapes assumed, and this will differ for each support condition. For these calculations, we
have assumed that the deformed shape under dynamic loading is the same as the static
deformed shape. The calculations are illustrated in detail for a simply-supported beam.

The static deformed shape for a uniformly-loaded, simply-supported beam is giveil by
Eq. (127)

y =16w (X4 - 29x 3 + R3x) (127)

where w0 is the center deflection (x = 2/2). We can now derive the work from the quasi-
static pressure p as

WK= pby dx (128)

where b is the beam loaded width and Q is its length. Substituting Eq. (127) into (128) and
* performing the required integration, the work is foand to be

16
WK = pb2wo (129)

As shown in Eq. (90), the strain in a beam cross-section at a distance h above or below
the neutral axis is

d2 y
e -h (130)

Again using the deformed shape of Eq. (127), we have

16w,
e -h (-i2X - 12U) (131)
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The strain energy can now be computed from Eq. (89); however, the solution can be made more
general if we reformulate the strain energy in terms of gross cross section properties of the
beam. This can be don- by replacing the stress-strain constitutive relationship given in Eq. (86)
by an approximalion for the moment-curvature relationship. Such a relationship is given by
Eq. (132)

E/y"
M MP tanh M (132)Mr,

where j " is the second derivative of the beam displacement with respect to x (curvature), and
Al, is the fully plastic moment of the beams. Notice that Eq. (132) has exactly the form of
Eq. ,82). It was not derived from Eq. (82) and represents a slightly different approximation
to the stress-strain behavior. In fact, the stress-strain behavior will differ slightly for beams
of different cross-sections.

The strain energy per unit length for a teain in bending can be written as

U /Ely" 4f2 /Elyf (133)
- f MP, tanh - d~v"~ P- n cosh I

Fcr the tctal strain energy, Eq. (133) is integrated over the beam length, R, to obtain:

M V
U E f ncosh (v C-) d (134)

Substituting for y" from Eq. (127) gives

Vu-j ' R coh[/iv 19 (X2 - X) d (135)
"I f 5

It is convenient to nondimensionalize the integral by letting

t •- dx R d/t (136)

With these substitutions wo have

I -

U=M-- f En cosh E .v0  192 Z2 d' (37)
El K q, 5)S0
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Now substituting Eqs. (94), (129), and (137) into Eq. (126), we obtain Eq. (138). which
relates the deformation of a simply-supported bean! to its basic properties and the blast
loading parameters;

_2 ~ ncoh .) 19IQ• 1":'PO£ +2p 516 pb~w° EM Vnes t-• --- ll- dt (138)

2pA 25 OElf [PR 50

Equation (138) is nondimensionalized by dividing each side by the coefficient of the integral,
or:

12 b2El 16pbElw0  f Elwo 1+ c) E( ) dt (139)
2M2 A 25M2 J 5f cos

In nondimensional pi terms, the equation is:

/ 192\1
rI +r 2 =7 f n cosh 3  Q(2--1) d( (140)

0

A more convenient relationship is obtained if w. is eliminated from all but one group. This
is accomplished by rewriting ir2 as the product of 7r3 and a new group 7r,,.

ff 2 = (16pb22 7r' f'E-w (141)

AAlso, if one wishes to limit the maximum strain in the beam rather than the mrximnum
deformation, w, can be replaced by fmax in 7r3 uring Eq. (13 1). For a simply-supported
beam, emax occurs at x = Q/2 and h H/2. Thus,

Miv,

24era 5 (142)

With this sub3tituticn, 7r3 becomes.

* _5EIemax
7r3 - (143)

!. ~2041pt H

* INow Eq. (139) becomes:

f !l•m+ S en cosh
2 Mp~/r?4)kaPMP) kieMPh) f 1( L4ph)

(144)
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where the constants in 7r6 and T3 have been replaced by cvp and a, respectively.

Similar equations car, also be derived for clamped-clamped and clamped-simply-supported
beams. If we again use the static deformed shape under uniforta loading, the following
equations are obtained.

Deformed Shape

c-c: y= Ž W(x4 - 2k2x + Ox")

7.7w, x 3 1cIss:- y = - V'-X - + -23
2 2

Strain Equation

Oc." C = -h--2-- (6X2 -6Ux + Q2)

7.7wo _
c-as." e.= -h--- -- (2x• 9£R)

Maximum Strain

i 6Hwo
c-c: eM~y _Q

11 .55Hwo
C$S." emax = -

J 2

The defo;med s1~apes are substituted into Eq. (128) to compute the work, and the strain
expressions are substituted into Eq. (134) to compute the strain energy. These expressions
are then combined with the kinetic-energy (Eq. (94)] according to Eq. (126) to obtain ex-
pressions similar to Eq. (138). Performing the manipulations described for simply-supported
beams and generalizing the results, an equation can be obtained which applies to all three
boundary conditions. It is given by Eq. (145).

2 + (pbR 2  Efem.,X cosh rE~~
\P VrP74 kCrm ctMjxMPH [cz-.MH

* 0 (145)

X (Ct' + C2t+ C3 ) dt

Note thlnt the only difference between Eqs. (145) and (144) is in the descripton of the
nondimensional deformed shape. The proper equation for each beam boundary condition
is obtained by substitution of the appropriate constants am defined in Table Ill;
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TABLE Ill, CONSTANTS FOR EQUATION (141)

11, C, C3 C3

clamped (c-c) 1.875 16 192 -192 +32
clamped5slmply supported (c.ss): 1.732 11,55 92.4 -- 63.3 0
simply supported (ss-ss): 1.5625 4.8 38.4 - 38.4 0

Equation (145) was numerically integrated for each beam boundary condition to obtain
the graphical solution of Figure 4. To better understand the information presented in the
figure, rewrite Eq. (145) in the following form:

2 rt + r 2•7r 3 =I (146)

where I is tile value of the integral. Note that if the applied pressure, p, is zero, then the
dimensionless group ?r' 2 is zero, and Eq. (146) becomes

-Wj =I (147)
2

This equation yields the asymptote for impulsive loading, or

A p.0 =ir0 V"2"T (148)

Likewise, for 1 = 0, 7r, 0, and the asymptote for pressure loading becomes

I
A 2 =' =- (149)

Equation (146) can be written in terms of these asymptotes if it is multiplied by 11l. This
gives

+ =1 + 
(150a)

or

-A + r+2  (150b)

or

1r2 + f =I(1S5c0

This is the general form plotted in Figure 4. Because the integral I dependsupon ir3 and
the beam boundary conditions, the asymptotes A I and A 2 are given in the Inset as a function
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of 7r., and the beam boundary conditions. One difference in the graphical solution and the
form given by Eq. (145) is the absence of the constants cup and a. Because separate curves
are plotted for the different boundary conditions, these constants could be eliminated. For
example, to eliminate ip, the 7r2 asymptote, A 2, was simply multiplied by the constant
given for (k, in Table Ill for the appropriate boundary condition.

Observe that the solution for either impulsive loading only or for pressure loading only is
given directly. This is clear from Eq. (150b) and from Figure 4. Ifp 0, for example, then
7r3  0 and we have

A, 7r, =m (151)

Thus, if the beam properties and the impulse are known, A can be computed and -t3 read
directly from the appropriate curve in Figure 4. Alternately, if one wished to know what
impulse would produce a prescribed strain in a beam, 7r 3 could be evaluated, A 1 read from
the graph, and I computed from Eq. (15 1).

A similar approach holds for pressure loading only; however, for the case of an initial
impulse plus a quasi-static pressure, an iterative approach is required. Consider as an example
the beams in the cage of the Category I 1/4-scale model. Beam properties and the loading
parameters are listed below. (Refer also to Chapter IV.)

Beam Properties: Loading:

A = 1.67 in.2  1 0.48 psi-sec
I= 2.52 in.4  p 190psi

z= 1.95 in. 3

b = 143 in. (loaded width)
H '3.0 in.
£ 30 in.

Soa 45,000 psi
E= 30 X 0psi
p = 0.000733 lb-se 2 /in. 4

With these values, 7r, and 7r2 can be computed.

it 1 =-~~--1.944

7r. 2  2.787'

To find the maximum strain in the beams, first conmputý the values for pressure and impulse
separately.

Impulse only: A1 I r = 1.944
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From Figure 4 for a clamped (c-c) beam:

3 =Iemax 2

Emx 0.01114

Pressure only: A,2  7ra2 2.787

From Figure 4,

EIemax
13- - 0.235

emx = 0.000818

The beam is more sensitive to the impulse than the pressure. Also, the maximum strain for
the combined loading will be larger than the sum of the strains computed separately. There-
fore, try

Em1x 1.l(0.01114 + 0.000818) 0.01196

For.this strain, 7r3 is:

r13 3.434

and from Figure 4,

A, = 2.02 A2 17.9

A, and A 2 must satisfy Eq. (1 50b) (or the curve in Figure 4), which for this problem becomes

1.944 2 + 2.787

Substituting Al and A 2 gives

(i1.944)2 (1.71) .8
- - .9 1.082

For a closer result, try

1.944A, 0.995 = 2.1
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From Figure 4, the corresponding values of A 2 and 'r are

A 2 = 18.1

7r3  3.65

Now check Eq. (1 50b) again.

S2.787

2.1 18.1

This result is close enough. Therefore, the maximum strain for the S3 X 5.7 beams in the z
Category I 1/4-scale model for clamped ends and rigid support is predicted to be

= 3.65 ' 0.01271 = 12 ,7 10OgeEl

Also note that, with the asymptotes A/ and A, deteimined, the entire p-i diagram, for a
* maximum strain of 12,7 1Ope in the beam, can be established from Eq. (150b) o, from Fig-

ure 4. So, what we have really obtained is a general solution for the, beam at, not just the
solution for one set of loading parameters.

"If one wishes to compute maximum deflection in the beams, the relationship between
maximum strain and the deflection can be used. For a simply-supported beam, this relation-
ship is given by Eq. (142), and, for the other boundary conditions, by the expressions on
page 44. Generaizing, we can write

W= (152)

where ae is given in Table Ill,

Thus, we have obtained a general graphical solution which includes: A

* beams of different boundary conditions (with rigid support)

* elastic-plastic beam behavior .1

# predictions of maximum strains and deflections

0 beam response predictions for any combination of an initial impulse, 1, afd
quasi-static pressure, p.

Such a solution provides a convenient tool for preliminary design of beams subjected to this
particular type of loading. For final design, a more rigorous approach is usually required,
which includes the effects of support flexibility, etc. The need for a more rigorous analysis
will be demonstrated by the comparisons in Chapter IV between measured and predicted
strains for thf- Category I 1/4-scale model.
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Ill. EQUATIONS FOR RESPONSE OF STRUCTURAL
ELEMENTS TO BLAST LOADING

Numerous equations for estimating the response of structural components to blast
loading have been developed during the Suppressive Structures Program. Derivations of
these equations have been reported by Baker, et al].(') by Westine and Baker,( 6 ) and by
Westine and Cox.A4) A partial summary was included in the report by Baker, et al."9 )
Here, a final summary is made which collects the equations reported in References 1,4,
and 6, plus othei equations that have not previously been reported, Equations presented
are for the response of individual structural elements. Rigid behavior of the component
which loads the element or the support for the element is assumed. Equations for coupled
responae have been developed for a few cases, but these are included separately in Chapter
II. Chapter I1 also includes graphical solutions for selected components

This summary, given in Table IV, is an expansion of Table B-I in Reference 9. Cor-
rections to equations have been made, as required, and both elastic, elastic-plastic and rigid-
plastic solutions are included. Structural elements covered include beams, rings, membranes,
plates, cylinders, and spheres.

Equations in Table IV relate the peak deformation in the structurai element, usually
desigroted as w0 , to the element's material and geometric properties and to the applied loading.
The applied loading is treated as the simultaneous application of an impulse, ir, and a quasi-
static pressure, p. This loading is representative of that on suppressive structures produced
by the internal detonation of a high explosive. The blast wave from the detonation is of
short duration relative to structural frequencies (and so can be treated as an impulse), and
heating of the air in the structure produces a pressure buildup of much longer duration.
Simultaneous application of the impulse and quasi-static pressure is supported by pressure
measurement from the 1 / 16.scale venting tests reported by Schumacher and Ewing( I ) a:nd
by pressure data from the Category I 1/4-scale model tests reported by Schumacher, et al."I 2)

For purposes of deriving the equations, the quasi-static pressure is assumed to be a step loading
(zero rise time) to a constant value. If either ir or p is zero, the equations reduce to the proper
pressure or impulsive asymptote, respectively.

Each equation is based upon an assumed shape for the final deformed state of the struc-
tural elements. The deformation patterns used are given in the table. For some elements,
solutions are given for more than one deformed shape. This is true for a beam with clamped

ends which experiences bending deformations only. The first solution used a parabola as the
deformed shape, and the second solution uses a higher order polynomial. Deformations pre-
dicted by the first equation compare favorably to experiment(t ); however, bending strains
in the beam associated with a parabolic deformed shape are constant. The second equation
has net been compared to expeiiment, bvt the strain distributions produced by the deformed
shapes are more representative of true beam behavior. A third solution is also given whicil is

based upon the siatic deformed shape. Notice that the constants in the equations derived for
the polynomial and for the static deformed shape differ only slightly.

Parameters which enter the equations in Table IV are defined in Table V. Also, the
geometry of the element is sketched in Table IV for additional clarification. because the
equations are nondimensional in their present form, any consistent set of units is permissible.
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TARLE V. DFFINITION OF SYMBOLS USED IN TABLE IV

Symbol Definition

A beam cross-sectional area

AR ring cross-sectional nrea

b loaded width of beam

CSBR circumferential beam spacing in the I-beam cylinder measured at RR

E material elastic modulus

h thickness of plate, or shell

ir specific reflected impulse from Initial blast wave, plus reflections
if applicable

L length of beam for which the deformation is being determined;
length of cylinder

LI, loaded length of the cylinder supported by a single ring

ma mass per unit area of any additional material (non load bearing)
which is attached to the sphere or dome

MT total mass supported by a ring (includes the ring mass)

Mp beam plastic moment

N factor in the beam equation; N = I for simple support, N = 2 for
clamped support

p quasi-static pressure

SPy axial yield force of the heam

r radius to arbitrary point on a circular plate

R mean radius of a sphere or cylinder, radius of a circular plate

RL loaded radius in the cylindrical shield

RR mean radius of the ring

AR radial expansion of the ring, dome, or cylinder
w lateral deflection of a beam or plate at point x, or r, respectively

WO center deflection of a beam or plate

x distance along the beam or plate, normally measured from the center

X short semi-span of the plate

y distance along plate center line normally measured from the plate center

Y long semi-span of the plate

p material density

oy yield strength of the material

v Poisson's ratio
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IV. CATEGORY I 1/4-SCALE STRAIN DATA ANALYSIS
N

Measurements of strain in the beams, rings, foundation, aad roof of the Category I
lI4-scale model were made. by Schumacher, et al.."' 2) in tests conducted at the BRL.6 Model dimension. and strain gage locations are shown in Figures 5 and 6. Structural
details are given in the Corps of Engineers' drawing No. 6003, "Suppressive Shield, Quarter
Scale Model, Category I." One of the principal objectives of the tests was to determine the
structural adequacy of the shield and to evaluate the analytical methods used to support
the shield design.

SwRI was assigned the task of analyzing strain data recorded on the beams and rings.
Data were provided by BRL in the form of computer-generated plots. The plots were re-
viewed and peak strains were extracted from records which appeared to be consistent from
test to test and with gages at similar locations. These peak values were then compared
with analytical predictions. The comparisons allowed us to draw some conclusions about
the strains and analysis methods which are covered at the end of this chapter.

A. Review and Summary of Experimental Data

A brief description of each test conducted on the model is given below. All charges
were spherical Pentolite, centrally located. Closure strips and liners referred to in the test
descriptions are shown in Figure 5.

Test 191: 8.3-lb charge- 1/4-scale model without closure strips or liner

Test 192: Same as Test 191, but with a charge of 19.3 lb

Test 193. 19.3-lb charge-closure strips added to cover the spaces between every
second pair of inside beams

Test 194: 19.3-lb charge--all spaces between the inside beams covered with closure
strips

Test 195: 45.7-lb charge-same configuration as for Test 194 except that additional
weld bead was added along the sides of the closure strips, and shims were
added to eliminate free travel by the beam before contact with the ring
was made.

Test 196: 45.7-lb charge-weld repairs were made and a 24-gage corrugated steel
liner was added inside the closure strips to seal the shield.

Test 197: 45.1-lb charge-ring repairs were made, and two 22-gage corrugated steel
liners were added inside the closure strips to seal the shield.

We limited our comparisons between analysis and experiment to those tests with all
closure strips installed. Thus, comparisons were made with data from Tests 194 through
197 and include comparisons for both the 19.3-lb and 45.7-lb charge weights.

Figures 7 and 8 are typical of the strain plots received from BRL. Bending strains at
the base of column II 2 (see Figure 6) are given in Figure 7 for Test 192 and Tests 194
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through 197. The effect of progressive scaling of the shield is apparent from the reduced
decay rates. The character of Test 195 is noticeably different from the others because it

) decays sooner than expected and has a negative value late in time. Shims were inserted be-
tween the beams and the rings before this test, and the change in response character can be
attributed to the change in support. Figure 8 gives the history of the principal strain com-
puted from rosette No. 85, which is located at the top of column 259. From these records

it appears that slight yielding in shear occurred even in the early tests. Reasons for the pro-
nounced increase in shearing strain between Tests 195 and 196 are not clear, Again, it may
have been caused by firmer beam support after the beams were shimmed against the rings.
The principal shearing strain for Test 197 (not shown) may have been caused by firmer beamn
support after the beams were shimmed against the rings. The principal shearing strain for
Test 197 (not shown) was slightly higher than for Test 196. A more detailed interpretatioa
of the strain records is given by Schumacher, et al." t 2)

Feak strains read from the graphs of Figures 7 and 8 and from other graphs provided by
BRL are listed in Tables VI, VII, and VIII. Table VI contains the bending strains reduced
from gage pairs on the inside and outside flanges of the beams. Location of the gages above
the top surface of the foundation is included ii- .he table, and the placement of the gages on
the beam is shown in Figure 6. Principal shearing strains in the beams are given in Table VII
and peak tensile strains in the rings are given in Table VIII. In all cases, the strain data for
Test 191 (the 8.3-lb test) and for Test i 93 (the 19.3-lb test with only half of the closure
strips installed) have been omitted. Test 192 was included to indicate the effect which the
closure strips have on the peak strains. No consistent difference is apparent in th'. beam
strains. Ring strains are increased slightly.

TABLE VI, MAXIMUM PENDING STRAINS* OBTAINED FROM URL RECOADS
OF CATEGORY I 1/4-SCALE MODEL TESTS

Locationt Gage 19.3-lb Charge 45.7-lb Chr•i V
(in.) Nos. Test 192 Test 194 Test 195 Test 196 Test 197

6-3/8 50-51 1050 840 700 1 I(u 1250
56-57 1175 1200 - 815 -

66-67 - - -

72-73 ....

34.1/2 58-59 -975 -1000 -1450

45 60-61 -1850 - -.
74.75 - -. 1350 -1165 - -1600
68-69 .....

55-1/2 62-63 -1000 -1000 -900 -1450

1t3.5/8 54-55 1300 1225 1090 1155 1135
64-65 1100 1240 1150t: -

70.71 - -.
76-77 1350 1450 -- 1150

*Strains are In Mmn/in.; (+) rcpreueints tension on inside iudg, of the beam.
"tMmzared irom top of floor slab (we Figure 6).
jEstitmatrd from one gage only.
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TABLE VII. MAXIMUM SHEAR STRAIN* OBTAINED FROM BRL RECORDSS~ OF CATEGORY I 1/4-SCALE MODEL TESTS

/'Louationt Rosette 19.3-lb Charge 4.-bCharge-

(ill.) No. Test 192 'Test 194 Test 195 -- 'e-st 1-96 Test 197

34-1/2 78 1700 2650 3250 -

8 1 - --.

113-5/8 80 ....- -.

83 2150 2000 2500 7500 -

84 -- 1550 2400 - -
85 2800 2350 7000 14000 14810

*Strains are in lin/in.
tMeasured fromr top of flhor slab (see Figure 6).

TABLE VIII. MAXIMUM RING STRAINS OBTAINED FROM BRL RECORDS
OF CATEGORY I 1/4-SCALE MODEL TESTS

Gage 19.3-lb Charge 45.7-lb Charge

-Lncationt No. Test 192 Test 194 Test 195 Test 196 Test 197

Top Ring 90 -- 1060 2580 2400 2200
91 -1430 -- 3100 2400 4200

Middle 92 1450 1600 - 3300 3400
Ritng 93 1150 2300 2800 2100 3100

"Strain. are in ti/lhin.

tSe. Figure 6.

B Cornparisons with Analytical Predictions

For comparison with the measured strains of Tables Vi, VII, and V1I1, strains in the
beams and rings were computed usiio, both the approximate energy procedures described
in Section ii and finite-element methods. Application of the eniergy inethods to compute
structural response has been reported in References 1, 4, 7, 9, and 10, and in earlier chapters
of this report, so these energy methods will be used here with a minimum of explanation.

:1 Application of the finite element program to compute structural response will be described
more thoroughly.

I. Predictions Using Approximate Energy Methods

a. Uncoupled Solution

The blast loads associated with a confined explosion as in a suppressive struc-
ture are not the same as the blast loads associated with an unconfined explosioll. Initially in
a confined explosion, a shocK wave is propagated out away from a source; however, because
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of the walls in the container, this initial shock is reflected many times until through various
dissipation mechanisms, the air is heated and a static pressure buildup of very long duration
results. In the suppressive structures program, this multiple loading mechanism was mathe-
matically modeled by treating the initial shock wave as a delta function (as an impulse) and
the long duration buildup of internal pressure as a constant static pressure.

The generalized solution for the response of a beam in bending to this type of
loading is given in Figure 4 of Chapter Hl. As in all solutions for structural elements: ideal
boundary conditions are assumed, and coupling between the element and its supporting
structure are neglected. For the Category I model, the assumption of clamped-clamped
boundaries for the beams is most appropriate.

Beams in the model are S3 X 5.7. Properties of the beam cross-section are
obtained from the Steel Construction Handbook and the remainder of the beam geometry
from Figure 5. Loads on the beam are produced by the initial reflected blast wave mad by
the subsequent quasi-static pressure. Impulse in the blast wave is obtained from the data
presented by Baker! . 3) The quasi-static pressure is determined using the procedure developed
by Baker, et al./ ) Compiling the input data for Figure 4 from the above hources, we have

Geomctry:

A = 1.67 in. 2 (area of the beam)

b = 1.43 in. (loaded width-less than flange width because of overlap)

H = 3.0 in, (beam depth)

z = 1.95 in.3 (beam plastic section modulus)

1= 1.65 in.4 (beam elastic section modulus)

ay = 45,000 psi (material yield strength)

E = 30 X 106 psi (elastic modulus)

p = 7.33 X 10- lb-sec 2 /'n.4 (material density)

Loading Parameters:

19.3-lb Charge 45.7-lb Charge

Reflected impulse, 1, = 0.20 psi-sec 0.48 psi-see

Quasi-static pressure, P., = 73 psi 190 psi

A yield strength greater than the minimum guaranteed for the material was chosen because
limited measurement on structural steel conducted during the suppressive structures program
showed yield values between 40.000 psi and 50,000 psi.

Maximum ueam strain for the 45.7-lb charge weight was computed in Chapter
11, Part D, as an example for the use of Figure 4. The calculated strains given in Table IX were
obtained using the same procedure for the loading produced by the 19.3-lb charge.
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TABLE IX. COMPARISON OF PEAK BEAM BENDING STRAINS:
EXPERIMWNT TO UNCOUPLED ENERGY SOLUTIONS

Charge Weight Calculated Measured
(lb) Wde) (e)

19.3 3,730 1450

45.7 32,700 1600

For the 19.3-lb charge, data from Test 194 rather than Tlest 192 were used. The peak strain
occurred at the top of an inside beam. For the 45.7-lb charge, the maximum measured strain
was midway between two supports (two rings) on the same beam. The gages which recorded
the maximum strain for the 19.3-lb charge were no longer operative for the tests with the
45.7-lb charge, so bending strains at the top of the beam might have been greater. Even if
this were so, it is apparent that the predicted strains are much larger than measured values.
This is particularly true for the 45.7-lb charge.

The predictions of Table IX were obtained by, in effect, treating 'he rings as
rigid and aborbing al! of the energy produced by the blast in the beams only. Obviously,
these predictions ate much too constrvative to be of practical use in shield design. Similarly,
ring response, computed for the assumption of rigid beams, is much tco great. Thus, the
energy absorbed must be properly divided betweLn the beams and the rings, and this requires
a coupled solution,

b. Coupled Solution

A solution for the coupled response of two structural components, one sup-
ported by the other, is described in Chapter I! and Reference l0. It assumes rigid-plastic
behavior with loads applied to the supported structure only. The loading is comprised of
an initial impulse and a quasi-static pressure as for the uncoupled solution described previously.
For beanms supported by rings (hoops) as in the Category I shield, the response of the system
is given by Eq. (64) of Chapter 1I. This equation, repeated here for convenience, gives the
motion of the center of the beam, w0 , relative to the rings.II

I-.ub 
-

-,.
1 pb2a NpbAb? \ohAhA -a IpbAbQ 1 

_ohAh__ 1

pbA/jUbZWt N~b2 41rph AR h 2rb ] + 2N rq42uhh~l [1 ojhZR ,
L J

(64)

Once wo is found, Eq. (59), also taker. from Chapter I, gives the total radial
motion, AR, of the ring in terms of w0.

pJAhR p&,rQ
___ N b 2oh,, (59)
AR Nbz

2 63 -liIi IA aAh Q
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Based on the maximum deflections, wo ard AR of the beam and ring respectively, the residual
strains aie computed from Eqs. (65a) and (65b).

AR
, -(65a)R

7r 2 IV,/Eb = f- (65b)

To compute residual strains in the Category I 1/4-scale model using these

equations, the following parameters are required:

ab = oh = 45,000 psi (material yield strength)

Pb = ph = 7.33 X 10-' lb-sec2 /in. 4 (material density)

Ab = 1.67 in.2 (beam cross-section area)

z = 1.95 in.2 (beam plastic section modulus)

N = 296 (no. of beams supported by the rings)

b = 1.43 in. (beam loaded width-less than fiange width because of overlap)

R = 30 in. (beam length)

H = 3.0 in. (beam depth)

Ah = 5.625 in.2 (one-half of the ring area)

R = 72.25 in. (radius to center of the ring)

r = 67.25 in. (internal radius of:the shield)

Blast loads are the same as listed on page 62.

Results obtained with the coupled solution are compared to the experiment
in Table X. Both beam and ring strains are included. Calculated strains are residual, whereas
the measured strains, are peak. It is not appropriate to simply add the elastic strain at yield
(ey = y/IE = 1550 m/in./i) to the residual strain, but the peak strain would lie between the
residual strain, e,, and the residual plus elastic strain (6r + ec). With this in mind, the agree-
ment between the calculated and measured strains is good. Very little yielding, if any,
occurred in the beams, and this is predicted by the analysis. Predicted ring strains are higher
than measured for the 45.7-lb charge. One reason for this may be that the nine individual
bands from which the ring was assembled were not in good contact. This means that higher
strains occurred in the inner bands than in the outer bands where the measurements were
made. Also, many rings broke near the welds, which may indicate an embrittlement problem.
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TABLE X. COMPARISON Or BEAM AND RING STRAINS:
EXPERIMENT TO COUPLED ENERGY SOLUTIONS

19.3-lb Charge 45.7-lb Charge
Structural Calculated Measured Calculated Measured

Component Residual Wpe) Residual (Oe)
_(•e) (te)

Beams 200 1450 390 1600
Rings 975 2300 6,880 4200

As can be seen by comparing the results in Tables IX and X, the use of coupling
is to greatly reduce the calculated estimates. Although the estimates are still not in perfect
agreement, the coupled predictions are much closer to measured values than are the uncoupled
predictions. Even better prediction should be achieved with finite element methods.

2. Predictions by Finite Element Methods

In addition to the energy solutions, a small two-dimensional (2-D) finite element
computer program, developed specifically for the dynamic-transient analysis of beams to
blast loading, was used to predict structural response of the Catego,'y I 1/4-scale model. The
equations of motion art cast in finite difference form and integrated step-wLe in time using
a predictor-corrector method. The program treats material behavior as bilinear with hysteretic
recovery, including the effects of strain rate and strain hardening. Calculations of the response
were made with and without strain rate to show the significant effect strain rate has on dis-
placements and strains. Strain hardening effects were found to be negligible and are not dis-
cussed further.

The finite element model used for the calculations is shown in Figurk; 9. It is drawn
schematically alongside one of the beams from the cylinder. The structure is idealized by
assuming axial symmetry and symmetry about a horizontal plane through the center of the
shield. This amounts to neglecting the presence of the door on the response of the beams
away from its immediate vicinity, and neglecting axial loading and response. Although there
is some connection between the beams through the closure strips, which are tack welded to
the face of the inner beam and to the studs on the outer beam (see Figure 5), the beams are

p assumed to respond individually. Thus, only the lower half of one beam is represented in
the model.

Bilinear springs have been used to model the rings and radial flexibility in the
foundation. The resistance of the rings is divided into two parts to spread the support over
the ring width. Guided end conditions permit lateral displacements, but no rotation, and
the first beam element above the foundation has been sized to represent the combined bending
stiffness of the slab foundation and the bolted connection. Although the closure strips may
contribute to the beam stiffness, they are not welded continuously to the beams, and so this
contribution is ignored; however, mass of the closure strips and the liners is added to the
beam mass.
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As for the energy solutions, the pressure loading was assumed to be uniformly dis-
tributed over the beam. The loading is composed of an initial Impulse and near constant
(quasi-static) pressure. Two load cases were analyzed. They are the same as listed on page

19.3-lb charge: ir = 0.20 psi-sec

Pqs = 73 psi

45.7-lb charge: I, = 0.48 psi-see

Pqs = 190 psi

Basic beam and ring parameters used in computing input for the program are:

* S3 X 5.7 beam geometry

* mass per unit length (including closure strips and liners),
A = 1.46 X 10-3 lb-sec/in.2

* foundation effective modulus, E, = 4.5 X 106 psi

* beam plastic moment, My = 87.750 in./Ilb

* beam elastic modulus, E = 29 X 106 psi

a beam plastic modulus 1% of elastic modulus

* beam loaded width, b 1.43 in.

Although the details will not be given, stiffness of the reinforcing gussets at the foundation
and of the spacers at the rings was added to the beam. Also, estimates were made of the
bending stiffness of the beam attachment to the foundation. Strain rate effects are based
on the well known relationshipC141 for mild steel given in Eq. (153)

where Od is the dynamic yield stress, and • is the strain rate.

Results for the 19.3-lb charge are given in Figure 10. Strain rate effects are included.
This figure shows the distribution of maximum values of displacement, bending strain, and
shear stress along the beam. The shear stress is based on the shear reactions in the beam rather
than on shearing strains, and is computed as

V
(154)

where V is the shear reaction in the beam, d is the beam depth, and t" is the beam web thick-
ness. Data points are shown as circles. Three observations can be made from this comparison:

(I) The distribution of peak strains in the beam is irregular and not what one
would expect if only a section of the beam between two rings were analyzed.
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(2) Computed results for bending strains underestimate the measured values for
this charge weight (at the measurement location).

(3) If the computed distribution of strain is accurate, the measurement point
may not have recorded the maximum values.

Figure I I gives similar results for the 45.7-lb charge. The same observations can
be made for this case as were made for the smaller charge excepi that, in thi3 instance, the
computed strains are higher than measured valves. Also, for this charge weight the shearing
stresses exceed the shear yield stress of the material at many points along the beam. We
estimate that the allowable shear stress values for the material are:

y --21,600-27,000 psi

a = 34,800-49,800 psi

These compare to peak calculated values; of 44,000 psi, which indicates that substantial
yielding of the beam in shear should 1, ave occurred, and perhaps the beam was near shear
failure.

Although strain comparisons cannot be made because shearing strains were not
computed by the program, Table XI lists measured .hear strains versus the computed stress.
The measured results confirm that substantiz] yielding occurred in shear for the 45.7-lb
charge. Shear strains slightly beyond yield were also recorded for the 19.3-lb test. These
results, plus the results in Figure 1 1, indicate that the beam is not properly proportioned
for I :.;hly impulsive short duration loading. Higher shear area relative to bending stiffness
is needed to bring the sheariig and bending strains into better balance. This observation is
true for almost all commercially available beams b.•:cause they have been designed for high
ef .iency under static loads.

TABLE XI. BLAM SHEAR DATA

19.3-lb 4,,.7.lb
Meas. Cale. Calc.

Location Mtas. Stres Measured Strain Stres
Strain Stress Stress

Test 194 F.E. Prog Test 195 Test J96 Test i97 FE. Prog

Outer beam 34-1/2"
from foundation 2,650* 18,00ot 3,250 .... 35,000

"Outer beam 6-1/4"

from roof 1,550 20,000 2,400 .... 44,000

Inner beam 6-I/4"
from roof 2,000 20,000 2,500 7,500 .- 44,000

Inner beam 6-1/4"

from roof 2,350 20,000 7,000 14,000 14,800 44,00(C

*Strain in./in. !
', - tStrcss psi. _
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Only results which included strain rate effects were presented in Figures 10 and I .
The effects of strain rate on the overall structural response are best demonstrated by the variation
in ring strains. Measured ard calculated strains are given in Table XII. Calculated values include
those obtained by energy formulas as well as by the finite element program. For the energy
solutions, both coupled and uncoupled results are included. The coupled solution was obtained
from Eqs. (59) and (64); the equation for uncoupled response is given in Table IV of Chapter III.

TABLE XII, MEASURED AND CALCULATED STRAINS IN THE RINGS

19.3 lb 45.7 lb
Test 194 Test Test 196 Test 197

Top Ping
Measured

Gage 90* 11001. 2200 2400 2200
Gage 91 -- .,I00 2400 4200

F.E.f Solution
No S.R.** 5315 13630

With S.R. 1840 5110 1

Energy Formulas
No coupling 3100 18490
With coupling 2460 6320

Center Ring
Measured

Gage 92 1600 3300 3400
Gage 93 2300 2100 3100

F.E. Solution
No S.R. 10360 21530
With S.R. 3000 9740

Energy Formulas
No coupling 3100 18490
With couphing 2490 6824

"Rkefer to Flguw - 7 for gage locations.
+Stralr.s are in p in./in.
:Finite element 2-D proglmf.
"*Strain rate effects.

The most obvious conclusion to be reached from the results in Table XII is that
the calculated values overestimate measured ring response in every cese. For the two com-
parisons available, it appears that the difference between computed and mneasured values
increa•ses as charge weight increases: hence, the analytical results should always be conservative.
The effects of strain rate and coupling are pronounced, reducing calculated values by approxi-
mately a factor of three for the large charge weight. Still, the calculated values aie far above
measured values. It should be noted that the energy solution does not include strain rate or
strain hardening effects and yet gives a result which is the same order of magnitude as the
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-~ more rigorous finite element method. One reason for thls is that the ene~rgy solution forces
plastic deformation in the beams, whereas the finite element solution does not. It is apparent
from Figure I I that predicted plastic straining In the beams was minimal so that energy absorp-
tion by the beams was small.

Reasons for. the disagreement between predictions and measurements of ring
response are rnot clea,. -However, two factors may have affected tile rc`Lrlts:

(1) YThe closure strips shown in Figure 5 were tack welded to the inner beams and
provided some circumferential restraint. Thus, the closure strips acted in a
manner similar to rings, but were distributed over the full height of the shield.
This effect was neglected in the response calculations.

(2) Properties of the rings material were never measured. It proved to be a brittle

material because fractures were noted during the testing. The calculatior~s
were performed Lassuming a mild steel, which may not represent true ring

properties.

One final comparison of measured and calculated results is given in Table X1II. It
compares peak meastired strains in the beam to strains and shearing stresses computed by
both the energy and tinite element methods. From this comparison, it is obvious that both
the finite element solution with strain rate effects and the coupled energy solution give results
which are cutisistent with the measured values. Additionally, the finite element method pro-
vides useful information on shear in beams by providing shear reactions which predict the
presence of lirge shearing strains. From the finite element solution, it is also apparent that
stiairi rate effects play little part in the beam bending response. By stiffening tnc ring, how-
ever, strain rate does cause higher shear stresses. This stiffening of the ring was demonstrated
in Table XII by the sharp reduction in the ring strain.

TABLE XIII. COMPARISON OF PEAK VALUES IN THE BEAMS

19.3l1b ch rge 45.7 lb charge_____
Bending Shear Shear Bending Shear Shear
Strain Strain Stress Strain Strain Stress
ju in./in pi in./in. psi y in./in. p in./in. psi

Measured 1450 2650 1600 14,800

F.E. Method
No SR **.3010 36,900
With SR 1400 20,000 3000 44,000

Enorgy Solution

Uncoupled 3730 12700
Coupled 2 00 390
(Residual) ________________________ ____________
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C. Conclusions from the Strain Data Analysis

The conclusions drawn troam these comparisons of analysis and experiment are:

(1) Strain data, provided by BRL in the form of computer generated plots, appear to
be good. '[he data lire surprisingly consistent from test to test for a structure which
was being altered continuously. and undergoing.pla-'tic strains. Exceptions occur,
and these can usually be explained by major alterations to the structure, such as
shimming the beams prior to Test 195.

(2) Measured beam bending strains are lower than expected and did not increase sig-
Swficantly with an increase in charge weight.

(3) Shear strains in the beam web were high. Yielding occurred as predictud by high
shear forces which were calculated for the beams.

(4) Ring strains were much lower than predicted, particularly for the large charge
weight.

(5) The comparisons show that the energy solution for coupled responsý carn give
reasonable answers, which, if in error, tend to overestimate the strains.

(6) The finite element computer solutions show that strain ral.e should not be ignored
in structural componenis which respond primarily in a stretching mode, such as for
the rirgs. If these effects are ignored, the solution is an upper bound, but it is too
conservative to be useful if reasonably accurate predictions are desired.

V. PRESSURES FROM BURNING PROPELLANT
W IN VENTED CHAMBERS.

The thrust of this effort was to determine theoretically the peak quasi-static pressure
• "produced by burning M 10 propellant in closed and vented chambers. Combustion equations

were written to define the heat generation and products of the burning propellant which act
to increase the pressure in the shield. Temperature and pressure increases in the shield pro- '1
duced by burning the propellant are offset by radiation to the shield Walls and gas flow from
the shield through the vented panels, The equations describing these processes were coded
into a computer program called GASSS which performed the calculations for MIO propellant
burned in a Category V shield. "

A. Combustion Equations

M 10 propellant is 98, nitrocellulose with 13.15% nitration. Other major constituents

are potassium sulfate and diphtnylamine. Since nitrocellulose is the most active element in
this propellant and since most of the propellant is nitrocellulose, the program assumes that
MI0 is all nitrocellulose. Thus, our calculations for energy produced from burning the pro-
pellant will be an upper limit. Based on 13.15% nitration of nitrocellulose and information
in the literature on its products of combustion,"t 5) the reaction equations for burning nitro-
cellulose in the absence of air are:
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C6H7(NO2 i;. 6 3 05 -1.556CO + 4.407 CO + 1.001 H2 + 1.297 N2 +2.6221 H20

+ 265.0 kilocalories (155)

Secondary reactions involving the combustion of CO and H2 in air are:

CO + l/202 -'CO2 + 67.63 kilocalories (156)

and

H2 + 1/202-HaO + 57.80 kilocalories (157)

The program was written so thai during each time step, the products and energy of the
reaction are calculated first without the presence of oxygen. Then, a calculation is performed
to determine the amount of oxygen available. If there is sufficient oxygen present, the secon-
dary reactions take place. When the ow:ygen in the chamber is depleted, only the primary
reaction takes place. In vented and closed chambers, it is assumed that no oxygen enters
from outside the structure due to positive pressure inside the chamber. The computer pro-
gram also records the quantity of different gases present in the chamber at all times.

B. Gas Flow Equations

Determination of the pressure histoy for venting in a supprossive structure was accom-
plished by assuming quasi-steady, isentropic flow of a perfect gas. A check on the reliability
of the perfect gas assumption was made by assuming complete combustion in an unvented
chamber with no energy loss, and thermal equilibrium in the gases. Pressure was calculated
using the ideal gas law and also using Van der Waals equations for non-ideal gases, and the
results were compared. For the pressures and n.olecular quantities involved, the ideal gas
law was found to be quite accurate.

For the calculated pressure dissipation, the suppressive structure was idealized as two
compartments separated by some vent area. If the ratio of atmospheric pressure to chamber
pressure is less than

then supersonic flow equations are used. Otherwise, subsonic flow equations are utilized.
The program causes the gas to vent proportionally to the quantity of each gas present.

If the flow is supersonic, the mass flow rate is determined by• 16)

At R1 T1 /g 7+

A CjAP 1,1 [ 2y(587)
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where

A = vent area of passage out of chamber

CD = discharge coefficient of area A

P, = compartment pressure

R = universal gas constant

T = gas temperature

g = gravity constant

- = ratio of specific heats

If the flow is subsonic, then

Amt"=CD I "[g F~a,,2/,y [at (,Y+1),

-- C- A 2g- -T•P i'" ) t P2,, (159)

where

P, density of gas in the chamber

P 2  pressure outside the chamber

The rate of temperature change is given by

. Tlt(7 1 )- flt , (160)
= 1 M,(,t

"where

m = mass of the gas in the compartment, and the rate of pressure change is given by

RT 1 .rt, r1  P,
P1, V - '- - +P -2  T (161)

,V TIj

where

I' = volume of the compartment. I
P: Pressure and temperature in the initial compartment at t :t + At will then be

•" Pitr + at I ýPiAt +P1' I

L (162)

ST1j • at ij + A•At + T1,t

Pressure and temperature coutside the chamber were assumed to remain at ambient values.
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C. Effects of Burning Rates and Radiant Heat Loss

Insufficient data were available to determine accurately the burning rates of piles of M 10
propellant. A telephone conversation with Mr. William Seals,(17) of Picatinny Arsenal, pro-
duced the following results for M10:

Burning Rate (in./&ec)

Pressure (psi) Single Perforation Multi-perforation

5,000 1.49 1.38
9,000 2.24 2.07

11,000 2.58 2.18

These burning rates are obviously appropriate for interior gun ballistics, but are not appropriate
for our purposes because the pressures in the suppressive structure for the worst case (no energy
loss and instantaneous burning) are much smaller than the pressures in the table above. Measure-
ments that Dr. Gary McKown€ 18 ) had taken when burning large quantities (500-1000 lb) of
smoke mixes indicated burning rates of about 10 lb/sec. Measurements which he had taken
while burning 10- and 50-lb quantities of magnesium and sodium nitrate illuminant produced
burning rates varying from 4 to 100 lb/sec, depending on the quantity burned and the degree
of confinement.

In view of this uncertainty in the burning rate, various rates were used in the calculations
to show their influence on peak pressures in the Category V shield. Initially, burning rate was
defined in units of lb/sec, and the pressure histories in the shield were computed using various
quantities of propellant, several different burning rates, and various effective vent areas. The
resulting pressures seemed to be unrealistically high, and this approach appeared to be inaccurate
since the burning rate should depend on surface area and ambient pressure, and there should be
radiant energy loss depending on the burning surface temperature and area. Thus, the computer
program was modified to incorporate a linear burning rate and radiant heat loss. Because of the
relatively low peak pressures, we neglected pressure dependency of the burning rate.

To convert a linear burning rate to a mass burning rate and burning surface area required
that a burning geometry be assumed. Further, it was necessary that the burning surface be
small initially and increase with burning time, which is characteristic of point ignition. The
simplest geometry which could be assumed was a sphere with point ignition at the center. To
permit radiation the sphere was treated as two hemisplieres. For this geometry the effective
increase in surface area with time is equal to that of a radially expanding sphere. The largest
burning surface obtained in using this procedure is nearly identical to that of a cube of pro-
pellant of equal weight with one face unexposed; that is, on the floor. For example, equating
volumes of the sphere and cube:

4.R3 =(163)3

where R = radius of sphere (maximum)
9 = edge of cube
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Solving Eq. (163) for R, one has

R 3 1/3 (164)

The maximum surface area of the sphere Is

Oirr= ~41r (i 9/ 2  ~4.84R2 (165)

which is nearly the area of the five exposed sides of a cube of identical weight.

The above assumptions on bulk propellant burning and increase in burning surface were
made to simplify a very complex burning process and provide for a reprasentative increase in
burning surface area and attendant increasing radiation losses after ignition. The u'se of a
spherical geometry to describe the burning process offers the advantage of simplicity. !t also
allows for point ignition and growth in burning surface to a final value which is ntarly the
same in area as the exposed surfaces of a cube of equivalent weight. Thus, the simplified
spherical geometry very nearly approximates the characteristics of the ictual burning process.

The computer program was changed to incorporate a radial burning rate (utmits of in./sec)
for the bulk propellant. By assuming negligib!e pressure dependency (relatively low peak
pressures) and spherical geometries, burning rates of 10 lb/sec translates to 3.41 in./sec,*
7 lb/sec to 3.03 in./sec, and 4 lb/sec to 2.51 in./sec. The comp-:-ter program was also modified
to allow for radiant heat loss from the burning propellant and radiation loss from the gas in
the chamber. Summaries of the output from these various techniques are contained in the
tables that follow. The basic assumptions, in addition to the combus t ion and gas flow equations,
are contained at the top of each table. We feel that the most accurate results are those which
allow for radial burning rates (especially 3.40 in./sec) and at least some radiant energy loss.
We estimate that the Category V shield has an effective vent. area of 7.785 sq ft when vented.
The effective vent area was determined by combining the vent areas of each component inside
the side and roof panels by the equation

I =i+ I+..+1 (166)
Ntff til Or'2 an

where

Nff = effective vent area

(1 , a2 ... an = vent area of each componert

*Time for burning various quantities (assuming spherical geometries) can be calculated from

(3 A 113

IT Gs. 0.0602 lb/in.')
r

where M Is the mass of the propellant In pounds, and r is the burning rate in inches/scond. For 3.41 In/nc burning rate,
one can calculate that 10 lb burn- In 1.00 socond. 100 lb in 2.15 weconds,-and 1000 lb in 4.64 seconds.
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The side panel consists of

0 a layer of angle irons with a vent area of 273 in.2 ,
V a

0 a layer of angle irons with a vent area of 485 in. 2 ,

0 three perforated plates with each plate having a vent area of 1410 in. 2 ,

* four layers of aluminum mesh with each layer having a vent area of 3089 in.'.

Thus, from Eq. (166), the effective vent area of a side panel is

1i 1 1 1

A V panel 273 485 1410 3089

side panel = 109 in, 2

where A v side panel ie the effective vent area of a side panel.

The roof panel consists of

• a layer of angle irons with a vent area of 154 in. 2 ,

* a layer of angle irons with a vent area of 273 in.2 ,

0 three perforated plates with each plate having a vent area of 795 in. 2 ,

0 four layers of aluminum mesh with each layer having a vent area of 1742 in. 2 .

Thus, from Eq. (166), the effective vent area of a roof panel is

I 1 1 3 4
A V roofpanel 154 273 795 1742

Avroof panel 61.6 in .2

where A Vroof panel is the effective vent area of a roof panel.i,

Accounting for eight side panels and four roof panels, the total effective vent area of the
Category V shield is

(8)(109.3) + (4)(61.63) " .785 ft2
A V T 144

Figure 12 was taken from the numerical results contained in Table XIV and contains
plots of peak pressure versus vent area for a burning rate of 150 lb/sec, no radiation loss, and
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TABLE XIV. MIO PROPELLANT IN VENTED CHAMBER WITH
NO RADIATION LOSS

SAssumptions: Ambient Pressure = 14.7 psi
Initial Ratio of Specific Heats w 1.4
Ambient Temperature = 77 0F
Chamber Volume = 919.6 cu ft
No radiation loss
Constant mass/time burning rate

Run Effective Burning Quantity Peak
Rn. AT(sec) Vent Area Rate Pressure Remarks
No. (sq ft) (lbs/sec) (Ibs) (psi)

1 0.001 -0- 150 10 86 @ 0.067 sec
2 0.001 -0- 150 50 372 @ O.100 se
3 0.001 .0- 150 100 535 @0.334 sec
4 0.001 0.006 50 10 86 @ 0.200 sec
5 0.001 0.006 50 30 235 @ 0.600 sec
6 0.001 0.006 50 50 >368 max. not reached
7 0.001 0.006 50 100 >368 max. not reached
8 0.001 0.006 100 30 236 @ 0.300 sec
9 0.001 0.006 150 10 86 @0.067 sec

10 0.001 0.006 ISO 30 236 @ 0.200 sec
11 0.001 0.006 150 50 371 @ 0.334, sec
12 0.001 0.006 150 100 530 @0.667 sec
13 0.001 0,006 300 30 237 @0.I00 sec
14 0.001 0.18 7 10 48 max. not reached
15 0.001 0.18 10 10 67 max. not reached
16 0.001 1.2 150 10 77 @ 0.067 sec
17 0.001 1.2 150 50 173 @ 0.255 sec
18 0.001 1.2 150 100 173 @0.255 sec
19 0.001 2.4 150 10 69 @ 0.067 sec
20 0.001 2.4 150 50 108 @ 0.203 sec
21 0.001 2.4 150 100 108 @0.203 sec
22 0.001 4.71 10 10 3 @0.120 sec
23 0.001 4.71 10 50 3 @0.120 sec
24 0.001 4.71 10 100 3 @0.l 20 sec
25 0.001 4.71 50 10 24 @ 0.136 saec
26 0.001 4.71 50 30 24 @ 0.I 36 sec
27 0.001 4.71 50 50 24 @0.136 sec
28 0.001 4.71 50 100 24 @0.136 sec
29 0.001 4.71 100 10 44 @ 0.100 sec
30 0.001 4.71 100 30 45 @0.121 sec
31 0.001 4.71 100 50 45 @0.121 sec
32 0.001 4.71 100 100 45 @0.121 sec
33 0.0005 4.71 124.4 10 51 @ 0.080 sec
34 0.001 4.71 124.4 10 51 @ 0.080 sec
35 0.005 4.71 124.4 10 49 @ 0.080 sec
36 0.01 4.71 124.4 10 46 @ 0.080 sec
37 0.001 4.71 124.4 50 54 @0. 117 sec
38 0.001 4.71 124.4 100 54 @0.117 sec
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TABLE XIV. MIO PROPELLANT IN VENTED CHAMBER WITH
NO RADIATION LOSS (Cont'd)

Run Effective BuminP Quant rsur Peak
No, .AT(sec) Vent Area Rate (bs) Pressure Remarks

(sq ft) (Ibs/sec) (psi)

39 0.001 4.71 150 10 55 C' 0.06b sec
40 0.001 4.71 150 30 63 @ 0. 113 sec
41 0.001 4.71 150 50 63 Ca' 0.I13 sect
42 0.001 4.71 ISO 100 63 (d 0.113 sec
43 0.001 4.71 300 10 69 @ 0.033 see
44 0.001 4.71 300 30 108 @ 0.100 see
45 0.001 4.71 300 50 108 @ 0.103 sec
46 0.001 4.71 300 100 108 @0.103 sec
47 0.001 7.2 150 10 43 @ 0.066 sec
48 0.001 7.2 150 50 44 @ 0.079 sec
49 0.001 7.2 150 100 44 @0.0 7 9 sec

10-, 50-, and 100-lb quantities. Figure 13 was taken from the numerical results contained in

Table XV and contains a plot of peak pressure versus vent area for a radial burning rate of

3.41 in./sec and radiation loss from the burning surface and surrounding gas. Figure 13 is

for I 0-lb quantities and probably predicts peak overpressure more accurately than Figure 1 2.

Note that in the tables and figures, pressure is in units of psig; that is, pressure above atmos-

pheric pressure,

TABLE XV. MI0 PROPELLANT IN VENTED CHAMBER
WITH RADIATION LOSS

Assumptions: Ambient Pressure = 14.7 psi
Initial Ratio of Specific Heats = 1-4

SAmbient Temperature = 770F
Chamber Volume = 919.6 cu ft
Radiation from produced gas and surrounding gas
Constant Radid Burrdng Rate

Effective Burning Quatity Peak
AT (sec) Vent Area Rate Pressure Remarks

No. (sq ft) (ln./sec) (psi)

1 0.005 0.18 3.41 10 60 @ 1.00 see
2 0.01 0.18 3.03 10 57 @ 1.13 se
3 0.01 0.18 2.51 10 53 @ 1.36 sec
4 0.01 0.3 3.41 10 55 @ 1.00 sec
5 0.01 0.6 3.41 10 43 .@ 1.00 see

6 0.01 0.6 2.51 10 33 @ 1.36 see
7 0.01 1.2 3.41 10 25 @ 1.00 sec
8 0.01 1.2 2.51 10 16 @ 1.36 sec

9 0.01 2.0 3.41 10 12 @ 0.90 sec
10 0.01 4.0 3.41 10 2 @ 0.73 see
I 1 0.01 4.71 3.41 10 1.4 @ 0.70 sec
12 0.01 4.71 3.41 50 1.4 @ 0.70 sec

13 0.01 4.71 3.41 100 1.4 @ 0.70 see
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D. Comparison with Experimental Results

Several tests have been conducted at NSTL where M I0 propellant has been ignited inside
a Category V suppressive structure. Although a written report has not yet been published
Dr. Gary McKown of NSTL has revealed to us in a telephone conversation 18) that uncon-
fined MI0 propellant is a slow burner. During the Category V tests, 100-, 250-, and 600-lb
quantities of M 10 were burned inside the structure. The propellant was in cardboard boxes
no more than a foot tall and was ignited from the top. The material burned like a "slow
candle," with a burning time of approximately two or three seconds, depending on the
weight of the propellant. It also appeared that the burning rate varied linearly with the
mass of propellant.

During the tests there were large fireballs, no detonations, and very low quasi-static
pressures inside the structure. From the films of the event, it appeared as if either the pro-
pellant or partially combusted products of the reaction had gotten outside the suppressive
structure and ignited, thus contributing to the enormous fireball. Also, during the tests,
all of the aluminum screening inside the structure and portions of other aluminum components
were burned out or deteriorated, possibly due to the intense heat of the reaction. For one
experiment, the top of the structure was covered with a piece of steel to control the vertical
flow of the fireball. This steel roof had a hole burned through it by the end of the tests.
The maximum pressure recorded during the tests was approximately 0.2 psig. Most of the
time, however, pressure was so small that it was difficult to record.

As noted above, we suggested that Figure 13, with a radial burning rate of 3.41 in./sec
which reduces to 100 lb burned in 2.15 seconds, 250 lb burned in 2.92 seconds, and 600 lb
burned in 3.92 seconds, was the best figure to use to determine peak quasi-static pressure.
From Table XV and Figure 13, for an effective vent area of 4.71 square feet and either 10,
50, or 100 lb of M10 propellant, one can see that the peak pressure is 1.4 psig. The initial
Category V suppressive structure has an estimated effective vent area of 7.785 square feet.
Since the interior alumin-im baffles deteriorated after a few tests, the effective vent area
increased 16.5% to 9.069 ft2 . This new effective vent area was determined by eliminating
the last term in the equations used to calculate the effective vent areas of the side panels
and roof panels. When one considers the effect of this additional vent area and the effect
of energy losses due to burning of propellant outside the chamber, one would expect that
the curve in Figure 13 is an upper limit conservative calculation. If these other terms, that
is, additional vent area and radiant heat loss, were introduced into the computer program,
lower and more accurate predictions would undoubtedly have been produced.

VI. DISCUSSION

Suppressive shielding was developed to house hazardous operations at explosives
processing facilities. Should an accidental explosion occur, the shield is designed to contain
or sharply reduce the blast overpressures,thermal effects, and fragment hazards produced.
Nearby operations are thus shielded from the detrimental effects of the accident.

To properly design a shield to attenuate or completely contain the products of the
explosion requires a knowledge of several complicated phenomena. These include:
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I. overpressures inside and outside a vented enclosure producu by the detonation of
high explosive charges or by the burning of propellants,

2. fragments generated by the accident,

3. thermal environment produced by the accident,

4. transient loading on the structural compon-nts of the shield produced by the
overpressures, fragments, andt thermal environment.

5. elastic-plastic response of the shield to the transient loading,

6. resistance of the shield to fragment penetration, and

7. attenuation of thermal effects by the shield.

Other aspects of the design include problems of entry and exit (for per.onnel, explosives,
and utilities), cleanup, weatherproofing, lighting, air conditioning, and economy.

All of these problems have been addressed during the suppressive structures program,
but not all of them have been satisfactorily resolved. Prediction of the thermal environment
ind its attenuation by the shild has received the Ilast emphasis. Most other aspects of the
!esign have been investigated in some detail, and procedures suitable for sh eld design have
Deen developed: however, alraost all aspects of the design can benefit from additional research.

The work documented in this report addresses principally items 1,4, and 5. This work
has included further devclooments in the application of energy methods for the analysis of
structural response to blast loading, comparisons between predictions of structural response
and test results, and predictions of pressure-time histories inside vented enclosures produced
by burning propellant. The procedures developed for predicting pressures inside venied
enclosures produced by a burning propellant are applicable to the design of Category V
shields. Formulas and graphical solutions for structural analysis are applicable to the limit
design of all shield groups.

Comparisons between analysis and experiment, which are described in this report and
in earlier workt 1.4,61 have shown that approximate energy methods pro"de 63od estimates
for the elastic and elastic-plastic behavior of simple structural elements subjected to blast
loading. This report contains a comprehensive summary of solutions developed during the
suppressive stru, lures program for the analysis of a large number of different structural
elements. The comparisons also show that solutions for simple structural elements are not
always suitable for the analysis of complex structures. Coupling, which can occur between
structural components, can greatly attenuate the response of each component treated
separately. However, even in this case we have shown that approximate energy solutions
can give good revults, but with some increase in complexity. Energy methods also lend then.-
selves to graphical solutior.s which greatly simplify the complexity and labor involved in tht
solution process.
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Although substantial progress has been made in the development of analytical pxccedures
to support the design of suppressive shields additional work is needed in several areas. These
include:

I definition of the thermal environment produced by the detonation of a high
explosive or by the burning of propellant,

2. methods to predict the thermal environment outside of a suppressive shield,

3. comparisons between measured and predicted pressures produced by burning
propellants in vented enclosures,

4. failure criteria for dynamically loaded commercially available structural components.
Cumm'ercially available components have been designed for optimum efficiency
under static loading. A better understanding of their behavior when loaded by
short duration high intensity loads is needed. This is particularly true for the
failure-of wide-flange beams in shear.

"= i
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