-~

ADAO0OS1583

-

____-—-‘f

.

-hd NO.
B0G FILE COPYZ

(AD ]

EDGEWOOD ARSENAL CONTRACTOR REPORT
ARc<4 KBERL-CR-77028 ’
Report No. 10

Final Technicul Report Q

~ -

ANALYSIS AND EVALUATION OF
SUPPRESSIVE SHIELDS

\ by\_
e P. A. Cox
' P. 5. Westine

o \ J. J. Kulesz
i \ E. D. Espuarza

January 1978

SOUTHWEST RESEARCH INSTITUTE
Post Office Drawer 28510, 6220 Culebra Road D D c
San Antonio, Yexas 78284

MAR 21 1978

Contract No. DAAA15-75-C-0083 — ]
UG

DEPARTMENT OF THE ARMY
Headquarters, Edgewood Arsenal
Aberdeen Praving Ground, Maryland 21010




THIS DOCUMENT s

BEST

 QUALITY AVAILABLE. TH

COPY

- FURNIS! DTO DTIC CONTAH\I-' )

A SIGNIFTCANT NUM

PAGES WHICH DO

REPRODUC‘E LEGIBLY.

ER OF o

NOT

~ REPRODUCEDFROM
BESTAVAILABLE COPY



T e RS RS E L e

¢
’
Disclaimer
The findings in this report are nct to be construed as an official Department of the Army
position unless so designated by other authorized documents,
Disposition
Destroy this report when it is no longer needed. Do not return it to the originator.
1
]
1
s
.
{
|

A




_\\' - . o
G%/M/mssmeo @ o o

- - ) -
SECURITY B4 FICATION OF THIS PAGE (When Date Entered, SW R @ .Q_ %L o

P

REPORT DOCUMENTATION PAGE | neriaee coMbtomma rorm

“2 Ili " EER] HASER 12. GoVT Acczssnon? By lyyt R FAQ ) |
RERLUR-77928 ! q Ty 2le = Tiun SN
A, TITLE (and Subdiley— \:1 o P .

/ - . , s - Final Technical Report,

( (, | ANALYSIS AND EVALUATION OF SUPPRESSIVE SHIELDSJL June 1976 - June 1977,

PERFORMMNG QRG—REPORT-NUMBER

U Report No. 10¥02-4164

7. AUTHOR(L e 8. CONTRACT GR GRANT NUMBER(s)

"=
( (] ] P- AfCox, p. 8 [Westine. J. 3 [Kulesz p8) E. DJEsparza / @f&'DAAAlS-?S_—QﬂS}/

P
— e IR

9. PERFORMING ORGANIZATIUN RAME AND ADDRESS 10. :g&ﬁ“ﬁAgOERLKE{‘)EINTT'NPUHMOBJERCJ. TASK
Southwest Research Institute/ : N
P.O. Dvawer 28510 PA, A\/ﬂ75 12¢4
San Antonio, Texas 78284 N s
11. CONTROLLING OFFICE NAME AND ADDRESS I” 4
Commander, Edgewood Arsenal Junighllg77
Attn: SAREA-TS-R S —NOWTER-O+ P AGES
Aberdeen Proving Ground, Maryland 21010 9

S
V4, MONITORING AGENCY NAME & ADODRESS(/t dliferent (rom Conirolling Oflice) 16. SECURIT
Commandecr, Edgewood Arscnal /

S.
(CPO Mr. Bruce W. Jezek, 671-2661) @4 ol “‘f UNCLA 5/ 8 Sp.
’ E

Attn: SAREA-MT-H Be. gg’%ﬁimc;mou/ DOWNGRADING

Aberdeen Proving Ground, Maryland 21010 N/A

16. DISTRIBUTION STATUMENT (af this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, I difierent lrom Report)

18. SUPPLEMENTARY NQTES

19. KEY WORDS (Continue on reverae side If necessary and identily by block number)

Suppressive shielding Test data
Structural response Propellant burning
Encrgy methods Vented enclosures
Elastic-plastic Pressure history
Strain rate
20. ABSTRACY (Coutinue ar. reverse aslde i neceveary eud identify by block manber)

- This report docuri-nts work performed for the Edgewood Arsenal Suppressive Structures program =,
e from January 1976 through June 1977.@5&@@@&%& the developmient of approximate

bl energy solutions for the response of structures to blast loading, the analysis of strain data from the

Category [ 1/4-scale model tests, and calculations of pressure-time histories for the burning of M10

prope’lants in the Category V shield.
328 28 M,

DD [ WMI3  Eormon oF 1Hov e IS Ofouerz UNCLASSIFIED /

SECURMTY CLASSIFICATION OF YHIS PAGE (When Da‘s Entered)




SECURITY CLASSIFICATION OF THIS PAGE(When Deala Bntered)

[
»
'y
T
I
i
1
‘ ;
! i
! “
|
E i
i H
i
ll SECURITY CLASBIFICATION OF THIS PAGE(When Data Entered)
{
{
v A g s e — P
. ! - L i i R
i . s




- ;ﬁ;___ AT

SUMMARY

This report documents work performed for the Edgewood Arsenal Suppressive Structures
program from January 1976 through June 1977. Included in this work was the development
of approximate energy solutions for the response of structures to blast loading, the analysis
of strain data from the Category I 1/4-scale model tests, and calculation of pressure-time
histories for the burning of M10 propellants in the Cutegory V shield.

PREFACE

The investigation described in this report was authorized under PA, A4932, Project
5751264. The work was performed at Southwest Research Institute under Contract DAAA1S-
75-C-0083.

The use of trade names in this report does not constitute an official endorsement or
approval of the use of such commercial hardware or software. This report may not be cited
for purposes of advertisement.

The information in this document has been cleared for release to the general public.
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ANALYSIS AND EVALUATION OF SUPPRESSIVE SHIELDS

. INTRODUCTION

This final technical report documents work performed under Contract DAAA1S5-75-C-0083
for Edgewood Arsenal in support of the suppressive structures program. Principally. it includes
work performed during the time period of January 1976 through June 1977; however, some
carlier work has been included in summary form. Also, some work performed during this
time period and documented in separate letter reports has not been included. Work performed
prior to January 1976 is documented in References | through 9.

Contents of this report cover three different aspects of the work:
®  The use of energy methods to predict deformations in olast-loaded structures,
®  Strain data analysis for the Category 1 1/4-scale model tests, and

®  Calculation of pressure-time histories produced by burning propellant in
vented enclosures.

Chapter Il contains recent work on the development of energy solutions for structural
response, This recent work includes a study of the influence of ine deformed shape on
the accuracy of the solution obtained, energy solutions for coupled response, energy solu-
tions for combined elastic-plastic behavior of beams and strings and the construction of
general graphical solutions for blast-loaded beams. Chapter I1 contains a summary of
solutions which have been developed over the total contract period.

Analysis of strain data from the Category | 1/4-scale model tests is covered in Chapter
IV. Comparisons are made between measured strains and strains predicted by the approxi-
mate energy methods and by finite-element methods. Chapter V describes the calculation
procedures and gives results for M10 propellant burning in vented enclosures.

It. ADDITIONAL SOLUTIONS WITH ENERGY METHODS

A. Importance of the Assumed Deformed Shape

In using energy solutions to compute maximum deformations or strains in blast loaded
structural components, we select a deformed shape with appropriate boundary conditions.
Usually, this assumed deformed shape is either the first mode from an infinite series of modes,
or the static deformed shape carried over to a dynamic analysis. We will demonstrate that
either assumption can give excellent predictions of strains or deflections using either assumed
deformed shape. This generalization pertains for both elastic and plastic response of struc-
tural components, and is true for both quasi-static and impulsive transient loads.
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1. Influcnce of Higher Mades

A general deformed shape for a simply-supported elastic beam loaded with a
uniform quasi-static puise is given by Eq. (1).

X Nnx
yEw, 2., Ay sin— )
N=1,3,5 £

The even modes are missing because of symmetry, and cosine contributions are missing be-
cause of simplysupported boundary conditions. For bending only, the strain in the beam is

¢y nmlw,h (S Nmx
=—h—S=—F N2Ay sin — 2
) dx? @ N=Zl:.3,5 MR @
In a rectangular beam, t- e is given by:
Hi2 e/2
Vol. = 4b dh dx (3)
fo]
The strain energy U is:
E
U=f e dV, (4a)
y 2
or:
H/2 oo 2/2
208 Ewlb N
U= l;}v—"— [ wan X N4y S sin? (—?)dx (4b)
0 N=1,3,5 0

The cross-products associated with squaring the strain integrate to zero in the preceding
equation because of orthogonality of the mode shapes. Performing the required double
integration gives for the strain energy:

_n*EwlbH?

48 Q° ~
N=1,3,5

N*AY (5)

Next we compute the maximur possible worl: imparted to the structure with the deformed
shape of Eq. (1). This work equals:




- /2
N
wh=2pbw, 2, Aw f sin—%d\: (6)
N=1.,3,5 0

Or, after integrating:

_ 2pbw,? f Ay

k — 7
v m N "

The Rayleigh-Ritz method can be used to obtain the relative amplitudes of the different
modes. This is accomplished by subtracting the work from the strain energy,

o0 oo
T Ew2 bH3 2pbw, L Ay
U—-wk)s —————— NAAL — = - 8
W -why=— = X e I D (8)
N=1,3,5 N=1,3,5
and differentiating with respect to Ay so the energy difference is minimized. This procedure
yields: .
U —wk) 7o EW2bH? 2pbwot |
= NiAy ~————=0 9
3N 2493 v T N ®
or:
48 pR? 1
Ay =\—77—"—=) — 1
N (wszson’) NS (10)

If one substitutes Ay from Eq. (10) back into the preceding equations, a series
solution for the deformed shape is obtained. The influence of higher modes can be obtained
by dividing An by the amplitude of the first mode. This step yields

]
== an

For a three-mode solution, the deformed snape will equal:

a12)

oy 1 . 3mx 1 Sux
R 243 2 3125 '

Y= mw, [sir. ~—+ —sin ——+ ———sin —

The parameter m equals 1.0038 if p is to equal w, at mid-span (at x/2 to 0.5). Substituting
tor m, differentiating Eq. (12) twice, and multiplying by —h gives the strain.

7wy h

QZ

3mx 1 wa]
e -

X 1
1.0038 M —_— + —_— .—-—~+ ..—__S . ——
( ) [sm Ty sin Y in ? 13)

E : 13

’ R TuLi
|
i




From Ey. (4a),

i 02 . '
L} 2 . 1 1 5 2
U=I.OO76<2L£22’-9) J wan f [sin’-'i+——sin3—"5+——sinl’5]dx(14)
0 0

Performing the double integration gives for the strain energy:

U=1.053 ( (15)

7' Ebwi H?
48¢°
The factor 1.053 has been separated from the other terms in the precedir - ~quation,
as this 5.3 percent increase in the strain energy U is the effect of adding the third and fifth
mode contributions to the first mode estimate. A similar procedure will be followed in
presenting the influence of high modes in subsequent relationships.

The work which must be equated to this strain energy is given by:

' 2/2
mX 1 3mx ] Sax
k=2pb{l. in — + —— sin — + ——sin — 16
w pb{1.0038w,) {[sm 2 243sm 2 31255m J,z]dx (16)
or, after integrating:
wk = 1.00524 [——2” b"w"ﬂ] a7

The influence of higher modes on the work is less than a | percent increase.
Equating the work to the strain energy and solving for a nondimensionalized mid-span
deformation, w, H/R?, yields:

2
wol _ 9546 [:6” . ] (18)

This equation implies that the actual deformation will be less than that estimated with the
one mode approximation, but the difference is less than § percent. The maximum strains
can also be estimated. Substituting H/2 for h, Eq. (18) into Eq. (13), and £/2 for x gives
for the maximum strain:

_ 48pQ? ] )
€max = 0.9304 [m_, | (9

Equation (19) shows that the one mode approximation also overest’'mates the strain in this
illustration, but that this error is less than 7 percent.

14
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We present one more illustration to show that these same conclusions can be
reached for plastic as well as elastic response, and for extensional as well as bending behavior.
As the second illustration, consider a string® with the deformed shape given by Eq. (1). The
string has a different shape from a beam; hovsever, this difference is reflected in the Ay
coefficients. In a string,

€= % (%) ’ | (20a)
or
e = TNE zeo N AR cost MR (20b)
2w 'N=l.3.5 : ¢ |

. )
The plastic strain energy equals the yield force times the strain integrated over the length:

72 Fywi = &2 Nrx
U=—2— L M4 ) cosZ(—Q—-)dx (21)
N=1,3,5 0
or, after integrating:
, mF, w2 5 -
U= ——2——42 > N4} (22)

N=1,3,5

If the loading is a quasi-static pressure of intensity p, then the work is given by the
previously obtained Eq. (7). We again use tne Rayleigh-Ritz method to obtain amplitudes of
the different modes. Although our system is not conservative, it is linear because we have

chosen to consider rigid-perfectly plastic mateiial behavior over the full range of deformation.

Proceeding as before by taking the difference in the strain energy and work, we have

oo o0
TFE, Wi 2pbw, 2
(U—wk)= T hyWo z NZAIZV _ POWox E 4.1_V. (23)
44 w N
N=1,3,5 N=1,3,5

Differentiating with respect to Ay and setting the result equal to zero yields for Ay :

apb? \ 1
Ay = —
N (n’Fy wo) N3 24)

*A string is defined here as an element with negligible bending stiffness.

15
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Hence, the amplitude of various modes relative to the first one is

Ay 1

A : 25).

A, N

If we now proceed with a dynamic solution, the deformed shape for a three mode
solution is given by:

™ X
y=mw0[sin 2 + —sin =— + — sin —— (26)

The parameter m equals 1.0299 because y is equal tc w, at mid-span. Substltutmg into .
Eq. (20a) nges as an approximation for the strain:

2 1 3 1 Smx 2 i
] [COSH'F_ cos —Ln-c+ ~ COS$ —”—5] Q27

e=1 0607[22,

The plastic strain energy is
U=2 [ Fyedx (284)

or

R/2

1IE, w2 13 1 ax 12 '
U=1.0607 [’»’—é—‘"—“—] f [cos%c-nL— cos—-"f+~cos—”-] dr  (28b) -
0

Performing the desired integration yields:

2
=1 221[——4-‘9121"-‘1] (29)

The work which must be equated to this strain energy is given by:

e/2

1 3nx 1 Swx
k —— + — 01 — + —— H prning
wk = 2pb(1.0299w, ) f |}.m o+ 57 sn T Tor sin T ]dx (30)
or, after integrating,
wk = 1.0443 [—2” b:' "Q] @31

16
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Equating the work to the strain energv and solving for a nondimensionalized mid-span defor-

mation, w, /4, gives:
8pbl
Yo . 3
0 0.8553 [31«“] (32)

This plastic extensional solution is not as exact using only one mode as the elastic

‘bending solution. Nevertheless, the deformation is predicted to within 15 percent, and the

single mode does overestimate the deformation. The maximum strains can also be compared.
This maximum occurs at x = 0. Substxtutmg Eq. (32) into Eq.:(27) and setting x = 0 gives
for the maximum strains:

. © [aprp2g2
€max = 1.0282 ( pd?;"lﬁ )

(33)

As is seen in Eq. (33), the strain is predicted fairly accurately using a one mode
approximation. The difference between a one mode (the first) and a three mode approxi-
mation is less than 3 percent. Considering the mathematical complexities which are intro-
duced by adding more modes, the additional effort is probably not worth it.

2. Influence of Other Shapes

To illustrate the influence of assumed deformed shape on results, we analyzed
elastic bending and plastic bending of simply-supported beams loaded with a uniform impulse.
Examples of these solutions are given in Part C of this section and will not be repeated here.
Equations are summarized in Chapter 111.

Foran claitic analysis, we evaluate computed results for three different deformed
shapes. The first shape is a parabola, the second is the first mode sine wave, and the third
shape is the static one for a uniformly applied load. Because each of these deformation
patterns must satisfy-the essential boundary conditions of a simply-supported beam, they
will be similar in shape. Nevertheless they represent three distinct deformation patterns.

All threc solutions give similar results for the strain energy I/, the maximum defor-
mation w,, and the maximum strain €,,,x, as can be observed in Table I. The results in Table
I have been nondimensionalized so numerical coefficients can be compared directly. Only the
numerical coefficient differs slightly in all of these solutions. Both the first mode and static
deformsd shape approximations yield the same answer to within a few percent.

The second groub of illustrations includes plastic bending in a beam loaded
dynamically with a uniform impulse. One more deformed shape will be added to the resuits

for the three elastic shapes. The fourth shape is a static hinge yielding plastically in the center

of the beam while the rest of the beam remains rigid. ‘This deformed shape is a common one
in civil engineering applications. Whereas the other three deformed shapes dxstnbute the
deformation, the stationary hinge concentrates the deformation. Table 11 compares non-
dimensionalized numerical coefficients for strain energy, maximum plastic deformation,
and maximum plastic strain for these four different deformed shapes.




TABLE |. IMPULSIVE BENDING SOLUTION FOR A SIMPLY-SUM'YORTED ELASTIC BEAM

Deformed Parabola First Mode Static Deformed
Shupe Shape
2
\‘ ; 4(:5) sin(ﬁ) 1607« N /xn e
R AENGEONG
Wo s\ ¢ g
Parameter
Strain 43
et 2.666 2.029 2.048
Energy Ebstg .
w, pE H?
Deformation —i‘—_; = 0.4330 0.4964 0.4941
i
enux VOE H
Strain xR - 1.732 2.449 2372
i

TABLE II. IMPULSIVE BENDING SOLUTION FOR A SIMPLY-SUPPORTED PLASTIC BEAM

Deformed Parabola First Static Deformed Stationary
Shape a Mode Shape Hinge
y x\ 2 16 [/ x x\ * [x\* x x |
= 4= my | —H-)]—2{-) +|-— 2{—~)for0€— <~
Wy Q sin 'y 5 \® ] L R L 2
Parameter
Strain w0
Energy oy wobif* 2.00 1.571 1.60 1.00
_ WopoyH’ ‘
Deforination T = 0.250 03183 0.3125 0.50U
i
'-’mmd-""!”z .
Strain i = 1.00 1.571 1.500 No Meaning

a deformation. Distributed deformed shapes are much closer t

In the piastic beam, the first mode and static deformed shape give deformations and
strains which are close to one another. The stationary hinge yields no rational estimate for
strain because there is:no gauge length associated with a concentrated hinge. The deformation
is also much larger for a stationary hinge than comparable deformations from distributed
deformed shapes. A concentrated hinge yields much too small a strain ensrgv and too large

predictions.

o reality and give more accurate

CLw =R L

N R A

e




As these illustrations show, either a first mode approximation or.a static deformed
shape is u good approximation. We would recommend a first mode approximation for sym-
metric deformations. as in simply-supported and clamped-clamped beams, because the resulting
algebra is slightiy easier. For nonsymmetric responses, as in a sitaply-supporied clamped beam,
the static deformed shape should be used. 1f the static deformed shape is not used in non-
synumetric cases, uncertainty will otherwisc exist.

_Inall of the illustrations, the assumed deformed shape being applied to a solution
is of less importance to the resulting deformations and strains than the effects of coupling.
Supporting u flexible structural component on a flexible foundation has a much greater
influence on structural response than the assumed deformed shape, as the next part of this
‘section shows.

B. = Energy Solutions for Coupled Rigid-Plastic Systems

In the suppressive structures program, energy solutions have been difficult to apply be-
cause the actual structure is 4 combination of plates and beams or a combination of [-beams
and hoops, rather than a simple beam, plate. or membranc configuration. Although energy

. solutions developed to date in the Suppressive Structures Program (see Refs. 1, 4, 6, and 9)
apply for simple structural clements, structural configurations which are combinations of
clements can also be solved using this approach; however, to complete such g solution, one
more equation is needed to couple deformation in the first structural element with defor-
mation in the second. For a rigid-plastic svstem, derivation of the required relationship is
straightforward.

Coupled plastic systers can be visualized by a rigid-plastic,

" rheological model as in Figure 1. In Figure 1, the yield force f,

. must exceed the yield force f,, and the quasi-static force P must be
less than both f, and f; : otherwise, the system will not act asa
“coupled systemn. The relative residual deformation (X, — X;) is
related to the residual deformation X, through an impedance match
involving the parameters m, , m, . f,, f;, and P. Equation (34) is
this coupling rclationship.

, —,\’,)'= my(fy — P)
__Xz my(f, "_fz)

(34)

N IR e

To complete an energy selution, one now only has to equate the
kinetic energy to the strain energy or the maximum possible work to
the strain encrgy.to.obtain estimates for the deformation in a dynami-
cally loaded suppressive shield. In a coupled system as.in Figure 1, the
strain energy is given by: C '

i
}
FIGURE 1. RIGID-PLASTIC B o - ;
RIEOLOGICAL MODEL . SE.=fi(X, —X3) +f1(Xy) o (35) - 3

Because two equations now exist for X, and X, they can b:e-solved-simpltaneously. We will
proceed by developing Eq. (34) and illustrating its use in two éxample problems. -

19




1. Development of the Coupling Equation

Assume m, is hit simultaneously with an impulse / and a quasi-static force £ Then
the two equations of motion are:* ' -

mx,+f, =P ) (36a)
maky +fy =1 (36b)

For no initial displacement, no initial velocity for m,, and an initial velocity of I/m, for m,,
we obtain by direct integration:

H_pit, e

L .
*1 my 2m; 2m, (37a)
_—— r?
X3 it £V 2"{’) - (37b)
2

Coupled motion continues until (x, — x,) equals zero, -

/ .
(gx_l_%)=o.-.—-- (-'!—‘-+—f:'—)t'+£3-r'+-f—t' (38)
de dt m, m; m;, my m,

or unti! time r’ given by

mzl
' = 39)
[my + my)fy —mfr —m,P) (
At this time, the new initial conditions for m, are:
' my(fy — f)P
X4 = 40a
P 2[0my + my)fy, —myfy —my PP (40a)
dx, -
dx; _ Uy — ) (40b)

d; [(m,+mz)f|—m|f;"m§l’]
The relative motion (x; — x;) equals the maximum relative residual motion (X, — b ¢ )

= my? .
2my [(m, +_m1)_fl =~mqfy = m,P)

(Xl _Xz) “41)

After elem_ent f1 “locks upf’ at time ¢’ , motion continues as an unéoupled system.
The equation of motion in this second phase is given by:

*Note that / is roral impulse with dimensions of FT, rather than specific blast impulse { with dimenslons of F7/L2.
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, ' (ny +my)xX, +f3=P (42)

By establishing a new time zero ut the instunt r* when the motion becomes uncoupled, using
the initial conditions given by Eqs. (40), and integrating, we obtain as the equation for dis-
placement in the second phase:

-y = P)? .(fn ~ /) my(fy =S
= + + 3
? iy +my) {ony Fm) =m0 200y +my)fy —mf;)? (43)
All motion stops at time ¢7 given by:
= (my, +m)fy — 3 (44)

, —;;)[km, +m)fi —mf, —myP]

Substituting 1§ inio Eq. (43) and gathering terms gives the maximum residual deformation,
X, , tor element .

_ 12
X, = _ ¢y —f31) (45)
20~ P)my + my)fy —mfy —my Pl
Finally, dividing Eq. (41) by Eq. (45) gives the relative displacement coupling equation
already presented as Eq. (34).
(Xl _.¥2)= "12("2 _'P) (34)

X2 m(fy —f2)

F This equation is the key coupling relationship which will be used in all calculations. Use of

: the equation is best illustrated by some example problems. Calculation of the mass m for a

B structural component is no problem; however, the effective force f requires assumptions when
calculated for a beam or plate element. We will calculate the force f by assuming a deformed
shape for a structural componcnt, calculating the strain energy stored in that deformed shape,
determining the average deformation for a given deformed shape, and finally dividing the
strain energy by the average deformation. Once this procedure is complete, the coupling

Eq. (34) and energy relationships permit structural deformations and strains to be deter-
mined in a procedure similar to that used in any uncoupled structural analysis.

e P e

2. Application to the Category I Shield .

The Category 1 shield is used as the approximate iliustrative example because it
-was the first to draw our attention to the need for a coupled solution. Here we will derive
the equations for coupled response of the beams and rings. In Chapter IV, comparisons

with data from the Category I |/4-scale model demonstrate the validity of the coupled
energy solution. .

P RN

_ Basically, this shield is a barrel as shown in Figure 5 (page 52). External circular
lhoops provide restraint for longitudinal [-beams. The I-beams represent the m, — f; structure,
and the hoops are the my — f; structure. We will treat the I-beams as clamped-clamped

. : beams. An assumed defornation pattern for this structural component is given by:
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2mx
(l + cos T) ' (46)

where
we = maximum mid-span deformation relative to the supports
2 = total span
x = coordinate system with origin at mid-span
y = deformation at some value of x

Differentiating Eq. (46) twice gives:

cos —— a7
The strain Energy S.E.® is given by the integral

/2
d2
SEq =2 f M, aj{dx (45)
0

where
M, = plastic yield moment

Substituting Eq. (47) into Eq. (48) and comp,léting’ the desired integration gives:
SE.q = 22 (49)

The average deformation y syg must be calculated next. It is obtained by the integral

2/2

_ Wo L
(Rlyave =2 [ = (l+cos QI)dx (50)
0
or
w
yave =77 o (51)

The force £} in one beam equals S.E.® divided by the éverage da'formétion, or:

8nM '
fi= -%—f (52)
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The mass m, equals:
my = ppApt (53)
where
pp = mass density of a beam
Ay = cross-sectional area of a beam
Next. f3 and m, must be calculated for the hoops. If we assume hoops of equal

effective cross-sectional area, Ay, on each end, the deformation will be a symmetric change
in radius AR. The strain ¢nergy for both hoops is:

AR
S.E.® =(2ay) (-R‘) (2nRA,) (54a)
or
S.E.® = 4noy Ay AR (54b)

The average deflection in a hoop is the deflection AR. This means that the force f, is given
by:

f2=8.E. /AR (55a)
or
Ja=47m0,4, (55b)
The mass m1, equals twice the hass density times the area times the circumference, or:
my = (2pn (A4 )27R) : (56a)
or
my = dupp AR (56b)

The quasi-static force P equals the pressure p times the internal circumference times the
length, or:

P=(p)2mr)R) , (57a)
p=2nrlp (57b)

Now the coupling equation can be used to relate the average deformation in the
beams (w, /2) to the deformation in the hoops AR. Substituting for m,, m,, fy,f,,and
P then yields:
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- @rpnAp R) (4o Ap ) — 21rp)
87Nuoyz
(NppApR) ( - 47"0hAh>

(58)

o]

The parameter N stands for the number of beams. The mass of the beams and force equals
N times m; or f,, respectively, for a single beam in Eq. (58). In addition, the yield stress
0p times the plastic section modulus z was substituted for the yield moment in the beam
force equation, Eq. (52). Reducing Eq. (58) algebraically gives the ratio for the maximum
deformation in the beams relative to the change in hoop radius.

8 PrAxR ) (] __pn
Wo NppApt 204 Ay

AR 5 Nopz - 69
onApR

The salution proceeds by writing the strain energy S.E. for the entire system.
This energy equals the sum of Eqs. (49) and (54), or:

_4rNayzw,
Q

S.E. + 4mop Ay AR (60)

Substituting Eq. (59) for AR in Eq. (60) gives:
S [ (Na,,z)_J
_4nNopzw, + NppAponw, onApf

S.E.
2 204R | - pri )
( 204 Ap

(61)

Next the energy imparted to the structure must be estimated. This energy comes
from the kinetic energy imparted through blast waves and the work fro:m the quasi-static
pressure buildup within a suppressive shield. Algebraically, this energy Ey equals Eq. (62)
with loads imparted to the beams.

2

NI
Ey = om. F OO AvG + AR) (62)
iy

where
b =loaded width of the beams.

S_ubstituting forl,my, yavc, and Eq. (59) for AR vyields, after collecting terms:
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Ay e ms G, ey

(?Nabz _ l)
1.0 + NppApR \0pAxR
4npp AR <|— pre >
20,An

_Nidbie  pbiw,

63
QpbAb 2 ©3

Finally, equating Ey , Eq. (63), to S.E., Eq. (61), and gathering terms yields an equation
which can be solved for w,,, the maximum deflection in the beams.

o] )

i’b2g? + phe? ‘ NppAp? \onAxl - +0;,pbAsz opAnf

ppApapzw,  Nopz dnppAnR (l—-—-ﬂ-) oppnzR (l~ pre )
. ZOhAh 20,’,14;,

(64)
Equation (64) yields w,, , the maximum beam deformation relative to the rings,
and subsequent substitution in Fq. (59) yields AR, the change in hoop radius. Strains can
also be estimated. The residual hoop strain equals AR/R as in Eq. (45a), and the maximum
residual bending strain in the beams equals half the beam depth A/2 tines the maximum beam
curvature as given by Eq. (47). Equation (65b) is the maximum residual strain in the beams.

AR
€hoop = 'R— (65a)
wiwoH
€beams = on _ (65b)

Refer to Chapter IV for calculations based on these equations 1or the 1/4-scale model of the
Category I shield. :

3. Application to the Category 11l Shield

The second example will be that of a rectangular membrane, suppcrted rigidly
along two opposite edges and by flexible clamped-clamped beams along the other two
edges. This configuration might be representative of the original Category Ill containment
structure!' ?) which was replaced by the 1/4-scale Category | shield. We begin by assuming
a deformed shape for the membrane, Eq. (66).

nx Ty
= B e S 66
W = W, COS T C08 (60)

In a membrane the straing are calculated from the first derivatives of the slope by:

1 fow\? x%wd . X ny . :
exx =5 (a-;) = ax? sin? <§) cos? (2—}’ (67a)
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1 faw\ ? w*wd o fmx ) LY
Eyy =5 ._a_,v,) =37 cos (2)() sin (2]’) (67b)
‘ aw ) 3,2 7 K
ow {ow miwi . [ax ny
= =) {=)= =) sin {2 67
v (ax (6)/) rexy " (x) o (Y) (67

In a structure under a biaxial state of stress, the strain energy per unit volume is given by
the integral: :

%%-@ =J [a,,,r dexy + 205, dexy + 0y, deyy] (68)
If we assume a rigid-plastic material with a yield point in the plate 0,,, then 0xx = 0, = 0,
and oxy = 0p A/ 3 according to the distortion energy yield theory. Substitution of constant
stresses into Eq. (68), integrating Eq. (68) for strains, substituting the strains from Eqs. (67)
into Eq. (68), and expressing the volume of the membrane through the thickness times a
double integral yields:

2

X Y
~ wiwi mX ny
S'E'CD =4 f dx { dy Eﬁ,hg}; sin? (TX) cos? (5;)

0
+2agh miwl in X o (1ry +aehw"’wé (69)
- g - S -
V3 texy M \x) \Yy

8y?

nx ny
X 2 _— ind .
Cos ( > sin (2}') ]

Performing the required double integration gives:

2 2(
seg <Y L e ]
The average plate deformation must be calculated next by double integration.
X . X m
@XVwpve =4 [ ax [ dyw, cos T cos T 1)
0 0
or:
Wavg = (72)
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The force £, in a plate cquals S.E.@ divided by wayg . o

o hw, | Y 16 X
e B2 D 73y
Y [x T Y] 73
The mess m | equals:
my =4p,hXY (74)

Next, f; and m, must be calculated; however, this has already been done in the
first example. Because there are two beams, the quantity f; equals twice fin Eq. (52), and
the mass m, cquals twice i in Eq. (§3). These results are summarized as Eqs. (75).

167M
) = ~—%—l (75a)
my = 2ppAQ (75b)

The average deflection of the beams is still w, /2, and the quasi-static force is given by Eq. (76).
P=4pXY (76)

We are now prepared to substitute into Eq. (34). Saubstituting for m,, m,, fy, f,,and P
yields the coupling equation for deflections.

8wp _ . _ 32mppyMyA — Bppp XY AR -
wy o hw, \ Y 16 X 167M ]

Ap hXY | —E—2 { = 4 =4 =} ———2L

Po [ 32 i)(’ NELE Yz L

or:

T pp0ph?XYwi Y 16 +£\’}; %_EthXYwE

32 pyim, A } + /3 ™ ppAR

| — pXYR
aM,
The solution proceeds by writing the sirain energy S.E. for the entire system. This energy is
two times Eq. (49) Jor the strain energy in one beam plus Eq. (70).

Wy =

(78)

SE = 8mMywp | w0, hw} [Y 16 X ]

=+ += 79
L 8 X 3 v 79
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Substituting Eq. (78) for wp und collecting terms yields:

SE = nlao,hwd - 20, X Yh _— Y 16 . X
8 AR l_p)H’Q X /3In Y
Pe aM,
’ (80)
_ 1280y M, XYhw,
: pXYR
AR {1 ———
ee ( an, )
The kinetic energy from the blast wave wl.ich is imparted to the system equals:
_4XxY): a*Xy 81
24p,XYh)  pph
The work from the quasi-static pressure loading equals:
4 1
WK = p(4XY) ("—;wp + Ew;,) (82)
Or after substituting Eq. (78) for wy:
v Y 16 X
nppoph’,m YWp (} +\/3"2 —};)
WK =2pXYw,| 5 +
. 2 pXYL
I20,M, A {1~ M
g (83)
16p,h XY
pXY
2 AQ —_———
e ( aM,

Equating WK + KE to S.E. gives the final solution. In nondimensional format this solution

18:

0.3927m,m,m, 13 6.4847,7,,|

m +m, |0.81061, + =0.6169
% [ ¥ @ =mmy) (4—-m,1rp)J
(84a)
am m,m
X 4 —2 3 - 81.48 ———A—
[ (4—1ra1rp):|"y"w T (4 —memy)
where '
_P XYh : : .
, J’——-—pr . (84b)
8
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WX

2
- _oph*®
M,
. < PRXY
14 OPh2
B [2 »
.S ; (84b)
pp0ph (Concl)
Yy, e X
TExTYm Y
w
'”w = _hz

_ Equation (84) is a quadratic equation that must be soived for o, orwp. After wy is ob-
tained, w, i obtained from Eq. (78), which in nondimensional format is:

wp _ 0.39271,mymy 1, — 6.484m, 85)
Wp (4 —mgmp)

To comuvlete this illustration, let us apply Egs. (84) and (85) to the Category Ill
shield. We will assume parameters as follows;

p = 66 psi

i =0.179 psi-sec

X=126.5in.

Y =56.5in.

7 = 1.033 in. (this is an .effective-thicknéss)

2
op = pp = 7.33 X 10-¢ 22E

in.4
op = ap = 48,000 psi
4 - 61.71 in.?
g =113in.

M, =1.21X10"" in-lb
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Substitution of these parameters into the 7 terms gives:

7, =0.2218
m, =0.4783
M, =1929
n =1.197
7, =3.537

Substituting into Eq. (84) gives a positive root for m, of 3.953; hence, w, = 4.083 inches.
Finally, substitution into Eq. (85) gives wp = —1.135 inches. This negative sign associated
with wp is not a mistake. 1t means that the plate and beam systems are not coupled as has
been assumed; hence, this analysis is not appropriate for the parameters substituted into it.
In this particula, sclution, f; is greater than f;. This means ihere is no plastic deformation
in the second element, and the particular systcim under investigation is uncoupled. Appro-
priate answers can be obtained by using uncoupled techniques which have already been
preseited. The purpose of this second illustration was to emphasize the meaning of a
negative sign when it is encountered in this type of analysis.

4. Importance of Treating Coupled Response

We have shown that enexigy solutions are possible for coupled perfectly plastic
systemns. For two members in a colpled system, one additional equation is needed to relate

" deflections in the first member to deflections in the second member. Equation (34) is

presented as a relationship for coupling the deflections. With the assistance of this one
extrz equation, energy solutions oan be develaped as in any rigid-plastic coupled system.

In Chapter IV we will siiow that the effect of coupling is very important for pre-
dicting response in ihe Category [ shield. On the other hand, the example above shows
that coupling is unimportant for predicting membrane deformations in the Category II1
shield. While these solutions are more complicated than uncoupled solutions, residual
deflections and strains for coupled systems can be predicted with closed-form algebraic
solutions, and the usefulness of the approximate energy methods for predicting response
to blast or impact loading is greatly enharced.

C. Elastic-Plastic Energy Solutions for Beams

In the design of suppressive shields we are usually interested in predicting onset of
failure, and hence maximum strain or maximum stress. In most problems, a beam has
segments which remain elastic and segments which go plastic. The assumptions of total
elasticity or total plasticity throughout a!l clements in a structural component, or concen-
trated plasticity in a hinge, are approximations. To obtain an idea of how elastic-plastic
soluiions could be presented to designers, and to see how combined solutions might be
obtained from simple elastic and/or simple piastic solutions, two elastic-plastic solutions
have been developed for a simply-supported beam and a string.
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. The constitutive relationship used or both sdlutipns is given by Eq. (86).
Ee '
¢ =0y tanh~—. . (86)
SOy o
This is an excellent approximation to an elastic- plastlc material. For small strnins. Eefo, <
0.5. the stress-strain curve is a linear one with ¢ = £e; and, for large strains, Eelay, > 2.0,
the stress-strain curve is a perfectly plastic one, with o = 0,,. :

1. Solution for a Simply~Supporred Beum

In any structural element under a uniaxial state of stress, the strain energy per
unit volume is given by: -

= fade 7 87)

If we substitute Eq. (86) for o and integrate from a strain of zero to the maximum strain e,
we obtain:

U Ee
—_— h{=—)d 8
Vol. {oy tan (oy> ¢ (88
Or:
U o,? Ee
. . ==
Vol. E tn Losh(@) (89)

Equation (89) is then applied to any bending or extensional solution by substituting the
strain and integrating over the volume. If we use the assumed deformed shape for a simply-
supported beam given by the first term of Eqy. (1), the strain € for a differentizl element in
bendingis: -

€= —h —> = ——— gin — (90)

H[2 R/2
"~ Vol.=4b dh dx 1)

Substituting the expression for ¢ and the volume mtegral into Eq (89) gives the fouowing
double integration for the strain‘energy U. .

Hiz w2 | Ehi. X |
U—-—-—f f fn cosh( 2o in—)dhdx 92)
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or

1w '
4q? Y : .
U= ...‘.’.!;t.’f!_g _ f f n cosh [("w"HE) Bsin a] dgda (93a)
- E ok
o 0
where _
a=nwx/Qand B=nwh/H , (93b)
Next we assume that the loading is a umformly applied impulse, giving for the kinetic
energy: :
| P
= —_— - ' 4
KE 2 20H 94)

Equating the kinetic energy to the strain energy and rearranging yields the dimensionless
equation:

"212 2o i
spo, H>= f f 2n cosh,( ) B sin a] dBda (95)
This equation can be written as:
/2 w/2 .
C= J; J; i cosh [Dp sin a] df der - (96a)
w_here
C= (PP E/8pol ) and D = (rwoHE/oy @) - (96b)

A computer program was required to numerically perform the double integration. Results
of this program are represented by the solid continuous line in Figure 2. Dashed lines in
the figure are the asymptotes for completely elastic or fully plastic behavior. Note that the

elastic-plastic solution correctly approaches the elastic asymptote for small deformations
and the plastic asymptote for large deformations.

2. String Solution

The string solution uses the same strain energy per unit volume equation, Eq. (89),
as the beam solution. These solutions differ in the equations relating strain to deformation.
In an extensional element the strain is given by Eq. (20a). Substituting the first term of

Eq. (1) for the assumed deformed shape in Eq. (20a) gives Eq. (97).

_miw,? X _ .
€ 201 cns? ('2 ) 97
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The volume for an extensional element equals

¢/2 .
Vol. = 24 f dv S (9%)
u o

where A4 is the Cross-scciionnl area.

. Subsmutmg Eqgs. (97) and (98) into Eq. (89) gives the following integral equahon for the

strain energy U.

: 1 2 e 1, 2 : -
U=_L-"E...’1 J wcosn [(ﬂw‘:"; —)l.-051 ("Tx)]dx o (99)
. ) ' . A y .
g ] . [

or. using Eq. (93b),
o -
20,248 " 1 :
_J___ —_ ) 2 :
f fn cosh [( T > cus a] da o (100)
The kiretic energy imparted to a string equals:

1?2 i*h?y
KI:.—--=—-— 101
2m - 2pA ( )

Equatlng the kinetic energy to the strain energy and rearmngmg yields the nondimensional

equation:
, /2
wih2E " mw,lE
(4po,’;;) = { £n cosh [(Elz—ov— cos? o da A (102)

This equation can be written as:

w/2
F= f n cosh [G cos? a) da (103a)
A .

where

F=(ni*bE[/4poiA?) and G = (n*w3E/2R%0) (103b)

Numerical integration of Eq. {103) yields the solid line in Figure 3. As for the beam solution,
the dushed lines in Figure 3 represent the asymptotes for fully elastic or fully plastic behavior,
and the-inset is o nondimensional plot of Eq. (86).
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Although the elastic-plastic solutions given in Figures 2 and 3 are extreinely useful . -
for designers, they are somewhat difficult to derive because numerical integration is required. o i
We will now show that the numerical solution can be approximated to within one or two per- o
cent by properly combining the elastic and plastic asymptotes. The asymptotes are easily
derived.

32 Limiting Elastic and Plastic Cases
Before an approximate elastic-plastic solution can be found, the asymptotes are
required. Although these limiting cases have been derived many times before (see Refs. 1,
4, 6. and 9), we will rederive them here for completeness.

In elastic problems, the strain energy per unit volume, Eq. (87) becomes:

v _E,
— 1
Vol. 2 ¢ (104)

In plastic problems, the strain energy per unit volume, Eq. (87) becomes:

Vo—l—zaye (105)

Of course, these equations apply to either the beam or string solution.
For the beam solution, both elastic and plastic strains are given by Eq. (90),

and the volume equals the double integial given by Eq. (91). Substituting these two equations
into Eq. (104) for the elastic case or Eq. (105) for the plastic case gives:

elastic: : ' .
. H/2 2
2 4Ew,?
U=—"—!;!°—-e [ [ nsin? (%) dh dx (106)
0 o
rigid-plastic:
dr?g Wob e X i
U= f [ n sin(-;z-)dhdx . (107

0 0 . Py
. - \ .
Or, after completing the required double integrations:

elastic:

7 Ew, 2 bH?
o W _ZWo D11

48¢° (108)

36

——— e o e e e e e e



ESY

g

P o T N

7T

rigid-plastic:

2 |
U= Tt ‘;;w (109)

Now, by equating Eq. (108) to Eq. (94) and Eq. (109) to Ea. (94). the elastic and plastic
asymptotes, réspectively, of Figure 2 are obtained. These are given by Eqs. (110) and (111).

(elastic beam)

e o

—— e e 1
pEw,2H® 24 (110

and
(rigid-plastic beam)

1222
paywoﬂz_

a1

For the string solution, both elastic and plastic strains are given by Eq. (97), and
the volume is given by the integral in Eq. (98). Substituting these two equations into Eq.
(104) for the elastic string or Eq. (105) for the plastic string pives:

elastic:
’ £f2
7 Ew,* A X :
U=-*4-Q;—-—f cos* (-E‘> dx (112)
0
rigid-plastic:
Q2
n? 24
U= cost (’-’5’5) dx (113)
0
Or, after completing the required integrations:
“elastic:
IntEAw,*
U= 114
6403 (4
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rigid-plastic:

: 2 o
¢/=!~Eﬁ%!2~ (115)

The elastic and plastic asymptotes for the string solution are abtained by equating Eqgs. (114)
and (115), respectively, to the kinetic energy given by Eq. (101). Equations (116} and (117)
obtained in this way are the asymptotes of Figure 3.

(elastic string)

2p2¢0  3x

pEATwe* 32 (116)
and
(rigid-plastic string)
12 b2 22 2
' T a1

poyAiw,? D)
The approximate elastic-plastic solutions can now be derived.
4. ‘Lpproximate Elastic-Plastic Solutions

» The elastic-plastic solutions in Figures 2 and 3 are very closely approximated by
Eq. (118) where Y is the ordinate, X is the abscissa, and coefficients A and B are constants.

Y = A tanh? (BX)' /1 (118)
The elastic asymptote for Eq. (118) is:

(elastic asymptcte)

S [
i

(48) . (119a)

And the plastic asymptote is:
(plastic asymptore) |
Y=(A) (119b) |
These equations have the same form as the asymptotes for the beam and the string. Thus,

for the simply supported beam the terms in Eqs. (119) are defined by comparison with
Eqs. (110) and (111). We tind: '

38




i il

i e R N R T

Y=m (120a)
Y 12es
}=;Ewo YT (120b)
A=1n (120¢)
-
AB=-2—4~ (120d)

Solving for X and B and substituting into Eq. (} 1 8) gives an accurate approximation to the
elastic-plastic bending solution without encountering the inconvenience of a numerical
integration of a complicated function.

292 EHWO> uz]
=3 1416 tanh® | 1.1366{ —~ 121
puywol? an [ ( 0, €2 azn
To compare with Figure 2, this solution can be recast in the format:
nitE WEWoH [ (frEon) 1/ 2]
=1.234 {————| tanh? | 0.64 . 122
[:8ay2H’] [ o 2 ] anh® | 0.641 T (122a)
or
- C=1.234 D tanh? (0.641 D'’ 2) (122b)

Either of the preceeding formats is acceptable for the elastic-plastic beam solution,
The advantage to the format given by Eq. (122) is that the deformation w, is isolated on one
side rather than appearing on both sides. Desigriers would prefer to isolate w, in this manner
because this deformation also directly determines the maximum strain. Equation (122)is not
the computed line appearing in Figure 2; however, it is very difficult to detect differences in
Eq. (122) and the computer solution.

Equation (118) and its asymptotes can also be used to obtain an accurate approxi-
mation to the string solution. The elastic and plastic string solutions are given by Egs. (116)
and (117). Comparing Eqs. (119) to these equations, we have:

Y Py

}.= pwEA’wo“ (123a)

?bhR?

= 123b
poyA*wy? (1230)

(123¢)
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- 123
> (123d)

Solving for B and X and substituting into Eq. (118) yields:

2pig2 2 Ew.2\ 172 ’
m= 12‘ tanh? [2.356 (:Mig‘;) ] (124)
Y o Y

Or after modifying the format to isolate ter:ns containing w, on one side and using Eq. (103b),
it Eb? m? Ew,? T Ew, 2\ '/?
———I= 0,7854 | ——2~ [tanh? |0.6124 | ——%- 125
[4,00,*,4’] {2oy92 ] ! [ ( 20,8} ) ] (125

F=0.7854 G tanh? (0.6124 G' ' ?) (125b)

or

This solution also approximates the more detailed elastic-plastic solution with the
same degree of accuracy as the bending beam analysis. Philosophically, one should not be
disturbed by the use of the hyperbolic tangent squared as a function for combining elastic
and plastic solutions. After all, any solution requires an approximate stress-strain curve.

No approximation to a stress-strain curve uniformly matches all materials. Instead of
approximating the stress-strain curve, one can elect to approximate the strain energy trans-
ition from elastic to plastic as we have done.

D. Graphical Solutions for Baams

The procedures developed in the preceding section can be used to derive general graphicu!
solutions for blast loaded structural elements. These graphs are attractive because they permit
rapid solutions to difficult problems without recourse to complicated mathematical procedures.
In fact, as we will demonstrate, the graphical solutions are self-contained and can be easily
applied.

Our example for these solutions will be beams loaded in the same manner as those in
the case of the Category 1 shicld. These beams are subjected to an initial impulse produced
by the shock wave, plus a long duration quasi-static pressure produced principally by the
heating of air in a confined space. Because the blast wavc part of the loading is described
only by an initial impulse (not a pressure and itnpulse or pressure and time), this solution is
suitable only when the duration of the overpressure in the blast wave is less than one-quarter
of the fundamenta! period of the beams. The pressure, p, in this solution refers to the quasi-
static pressure, not the blast wave overpressuse. '

In response to these loads, the beams undergo elastic and plastic deformations. For

this example, coupling between the beams and rings is neglected, but different end conditions,
i.e., simply-supported, claraped or a comoination of the two, are included.
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The solution to this problem is similar to the impulsively-loaded beam solved in Section
C except that an additional term is required to define the energy produced by the action of
the quasi-static pressure. p, on the beam as it displaces. With the addition of this term called
the work. WK, the energy balance is written as

KE + WK =U (126)

KE is the kinetic energy produced by the initial impulse. and U is the strain energy (elastic
and plastic) stored or absorbed by the beam.

Kinetic energy is the same for each heam regardless of the support condition and is
given by Eq. (94), derived previously. The work and kinetic 2nergy depend upon the mode
shapes assumed, and this will differ for each support condition. For these calculations, we
have assumed that the deformed shape under dynamic loading is the same as the static
deformed shape. The calculations are illustrated in detail for a simply-supported beam.

The static deformed shape fcr a uniformly-loaded, simply-supported beam is given by
Eq. (127)

16w,
Sk4

y = (x? — 28x? + P3x) (127

where w, is the center deflection (x = 2/2). We can now detive the work from the quasi-
static pyessure p as

']
WK = j‘pbydx (128)

where b is the beam loaded width and € is its length. Substituting Eq. (127) into (128) and
performing the required integration, the work is found to be

16
WK = < pbRw, (129)

As shown in Eq. (90), the strain in a beam cross-section at a distance 2 above or below
the neutral axis is

€=—h—= (130)

Again using the deformed shape of Eq. (127), we have

16w,

504

€= —h (12c2 — 122x) (131)
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The strain cllcrgy' cun now be computed from Eq. (89): hdwev'er. the solution can be made more

genera! if we reformulate the strain energy in terms of gross cross section properties of the

beam. This can be don= by replacing the stress-strain constitutive relationship given in Eq. (80)

by an approximation for the moment-curvature relationship. Such a relationship is given by

Eq. (132)

where 3" is the second derivative of the beam displacement with respect to x (curvature), and

EI}"”

M =M, tanh ——
p tan M

r

(132)

M, is the fully plastic moment of the beams. Notice that Eq. (132) has exactly the form of
Eq. (82). It was not derived from Eq. (82) and represents a slightly different approximation
to the stress-strain behavior. - In fact. the stress-strain behavior will differ slightly for beams

of different cross-sections.

The strain ¢nergy per unit length for a teain in bending can be written as '

v
|
0

' Ely" M2
M, tanh <—2—)dv" =~F gn cosh

My

' El

1t is convenient to nondimensionalize thie integral by letting

With thesc substitutions wa have

(

Ely"
My
Fer the tetal strain energy, Eq. (133) is integrated over the beam length, £, to obtain:
R I - %
U= Qn cosh [ —— ] dx
o Ei '!. Mp )

Substituting for v" from Eq. (127) gives

-

13
M: [/En,\ 192
::—-2 N e —_— 2
U I f Ln LOShL\MpQ°) p (x Ex.)J dx.
: 0
x .
= Qo dA - QdE
: i
M3ie Elw,\ 192
[ Jad . 9 275 rp2
v==L { tn poshK Mﬂ’) palt E)] d¢

(133)

(134)

(135)

(136)

(137
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Now substituting Eqgs. (94), (129), and (137) into Eq. (126), we obtain Eq. (138). which
relates the deforination of a simply-supported bean: to its basic properties and the blast

loading parameters;
Elw,\ 192
an cosh [(M,,Q’) . 22“‘5)} dk

Equation (138) is nondimensionalized by dividing each side by the coefficient of the integral,
or:

l’b’ll 16
204 2

— pblw, = (138)

l’b’El 16pbEIw, Elwo\ 192 .
WMzA oM f n cosh [(M,,k’) N E)] ¢ 4
In nondimensional pi terms, the equation is:
y 192
Ty, = f 2n cosh [1r3 (—g—) ¢? --E)] d§ (140)
0

A more convenient relationship is obtained if w, is eliminated from all but one group. This
is accomplished by rewriting w, as the product of 73 and a new group 3.

. {16pb2*\ {Elw,
T27 72 T =\ 2sm, | \ M,

(141)

" Also, if one wishes to limit the maximum strain in the beam rather than the meximum

deformation, w, can be replaced by €n,x in 73 using Eq. (131). For a simply-supported

beam, €nmax occurs at x = £/2 and A = H/2. Thus,

O 24Hw,
Cmay < 502 (142)
With this substituticn, 73 becomes-
SElemax
= ——mak 143
T 2amH S (143)
Now Eq. (139) becomes:
1
1 (15@ )’ + (bel’ ) Elemu \ _ f on cosh (g_l_em.x :
2 \Mp\/pA WMp/ \aMph. A . MpH _
(144)

§

e T e = 4 nrsLeman e



where the constants in 73 and 7, have been replaced by o, and a,, respectively.

Similar equations car, also be derived for clamped-clamped and clamped-simply-supported
beams. If we again use the static deformed shape under uniforn loading, the following
equations are obtained.

Deformed Shape

cc: y= 16w, (x* — 203 + 2x?)

94
. ,
css: y = _Z_f}‘g_ («* ~3 3+ 1 23x)
. Q- 2 2
Strain Equation
32
cc €=—h dd

e (6x7 — 6 + £7)

17
cssi €= —h= (127 — 98)

Maximum Strain

16Hw,
. ¢-c. Gm" = _2—2'
11.55Hw,
! OI5: emax =T

The deformed shapes are substituted into Eq. (128) to compute the work, and the strain
expressions are substituted into Eq. (134) to compute the strain energy. These expressions
are then combineu with the kinetic-energy [Eq. (94)] according to Eq. (126) to obtain ex-
pressions similar to Eq. (138). Performing the manipulations described for simply-supported
beams and generalizing the results, an equation can be obtained which applies to all three
[ boundary conditions. It is given by Eq. (145).

1

1 ( M) :, (‘pbﬂz ) ( El€ s ) . { o coch [fem

2 \M,/pA a .M, ) \ oM, H
(145)

X(CiE* +Cat+ Ca):l dk
Note that the only difference between Eqs. (145) and (144) is in the description of the

nondimensional deformed shape. The proper equation for each beam boundary condition
is obtained by substitution of the appropriate constants as defined in Table I11: '
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TABLE 111, CONSTANTS FOR EQUATION (141)°

ap a, C, o G
clamped (c-¢) 1.875 16 192 -192 +32
clamped-simply supported (c-ss): 1.732 11.55 924 ~ 63.3 0

simply supported (ss-ss): 1.5625 4.8 38.4 - 384 0

Equation (145) was numerically integr.ated for each beam boundary condition to obtain
the graphical solution of Figure 4. To better understand the information presented in the
figure, rewrite Eq. (145) in the following form:

1 ' '
=n} +mymy =1 (146)

L]

where / is the value of the integral. Note that if the applied pressure, p, is zero, then the
dimensionless group 73 is zero, and Eq. (146) becomes

1 ' ’ '
;ﬂ}=1 ) (147

This equation yields the asymptote for impulsive loading, or
A,=1r,|p,0=\/’2T _ (148)
Likewise, fori =0, m; = 0, and the asymptote for pressure loading becomes

L

A1=7r’,l,_0="3 . (149)

Equation (146) can be written in terms of these asymptotes if it is multiplied by 1//. This
gives : :

(\%—7) 2'+1—/";53-_=1 ’ . S asow
or
(ﬂ)2 + T . (150b)
4,) *a, . a
or
7%+";,=' ' - (1500)

This is the general form plotted in Figure 4. Because the integral [ depends-upon w, and

the beam boundary conditions, the asymptotes 4, and A, are given in the inset as a function
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FIGURE 4. .D:SIGNVCHART FOR CLASTIC-PLASTIC BEAMS SUBJECTED TO
INITIAL IMPULSE PLUS A QUASI-STATIC PRESSURE
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of 7, and the beam boundary conditions. One difference in the graphical solution and the
form given by Eq. (145) is the absence of the constants o, and a,. Because separate curves
are plotted tor the different boundary conditions, these constants could be eliminated. For
example. to climinate &, the 73 asymptote, A5, was simply multiplied by the constant
given for ay, in Table 111 for the appropriate boundary condition.

Observe that the solution for either impulsive loading only or for pressure loading only is
given directly. This is clear from Eq. (150b) and from Figure 4. If p = 0, for example, then
my = 0 and we have

o o INET
A] LB oyzpm (lSl)

Thus, if the beam properties and the impulse are known, 4; can be computed and 7, read
directly from the appropriate curve in Figure 4. Alternately, if one wished to know what
impulse would produce a prescribed strain in a beam, 7, could be evaluated A, read from
the graph, and / computed from Eq. (151).

A similar approach holds for pressure loading only; however, for the case of an initial
impulse plus a quasi-static pressure, an iterative approach is required. Consider as an example
the beums in the cage of the Category 1 1/4-scale model. Beam properties and the loading
parameters are listed below. (Refer also to Chapter 1V.)

Beam Properties: Loading:
A=167in? ' i = 0.48 psi-sec
I=252in4 p =190 psi

zp=1.95in.3

b= 1.43 in. (loaded width)
H-=30in.

£= 30in.
o, = 45,000 psi

E= 30 X 108 psi

p = 0.000733 Ib-sec? /in.*

With these values, 7, and 7y can be computed.
ﬂ Zp\/ 2

b 2 .
) -——” = 2787
Oyzp.

To find the maximum strain in the beams, first c.ompute the v.nlues for pressure and impulse
separately.

Impulsc only: 4, =7, = 1.944
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/ . From Figure 4 for a clamped (c-c) beam:

i, = Elemx _ 3.2
3= = J.
oy zpH

€max = 0.01114
Pressure only: 4, =u} = 2.787
' - From Figure 4, ’ .

_ Eleyax

=0.2
oyt = 0238

LE

€max = 0.000818
The beam is more sensitive to the impulse than the pressure. Also, the maximum strain for
the combined loading will be larger than the sum of the strains computed separately. There- :
fore, try : )
€max = 1.1(0.011 14 + 0.000818) = 0.01196

For this strain, 7, is: g ' . i

7y = 3.434

and from Figure 4,
A, =202 A4,=179

A, and A, must satisfy Eq. (150b) (or the curve in Figure 4), which for this problem tecomes

2
(1.944) . <2.787 > -1
A, A,
Substituting A, and 4, gives -

3 _ 1944\ 2 [2.787
‘) . s 4+ | — = 1.
N ( 2.02 ) ( 17.9 ) 1.082

For a closer result, try

1.944

A =0995 —— = 2.1

, 2.787
10 17.9
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From Figure 4, the corfesponding values of 4, and rrs are
A, =181
3= 3.65

Now check Eq. (150b) again.

C/1.948\ ¥ 2787
( > +28--1.01a1

2.1 18.1

N

This result is close enough. Therefore, the maximum strain for the $3 X 5.7 beams in the

‘Category | 1/4-scale model for clamped ends and rigid support is predicted to be

s 100 H 3
€max = 3.65 ¢ ~‘—I§-—=001271 12,710ue

&

Also note that, with the asymptotes 4, and A, determined, the entire p-i diagram, for a
maximum strain of 12,710ue in the beam, can be established from Eq. (150b) o. from Fig-
ure 4: So, what we have really obtained is a general solution for the beam ard not just the
solution for one set of loading parameters.

If one wishes to compute maximum defiection in the beams, the relationship between
maximum strain and the deflection can be used. For a simply-supported beam, this relation-
ship is given by Eq. (142), and, for the other boundary cor-dmons, by the expressions on
page 44. Generalizing, we can write

Qzemax
W, = 152
o H L ( )

where o, is given in Table III.
- Thus, we have obtained a general graphical solution which includes:

beams of different boundary condltxons (with rigid support)
elastic-plastic beam behavior

_predictions of maximum strains and deflections

beam response predictions for any combination of an initial unpulse i,ar J
quasi-static pressure, p.

Such a solution provides a convenient tool for preliminary design of beams subjected to this
particular type of loading. For final design, a more rigorous approach is usually required,
which incluiles the effects of support flexibility, etc. The need for a more rigorous analysis
will be demonstrated by the comparisons in Chapter [V between measured and predicted
struins for the Category 1 1/4-scale model. -
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i11. EQUATIONS FOR RESPONSE OF STRUCTURAL
ELEMENTS TO BLAST LOADING

Numerous equations for estimating the response of structural components to tlast
loading have been developed during the Suppressive Structures Program. Derivations of
these equations have been reported by Baker, et al..(!) by Westine and Baker,‘¢) and by
Westine and Cox.®) A partial summary was included in the report by Beker, et al.(3)
Herc, a final summary is made which collects the equations reported in References 1, 4,
and 6, plus othei equations that have not previously been reported. Equations presented
are tor the response cf individual structural elements. Rigid behavior of the component

which loads the element or the support for the element is assumed. Equations for coupled

responae have been developed for a few cases, but these are included separately in Chapter
1. Chapter 11 also includes graphical solutions for selected components

This summary, given in Table IV, is an expansion of Table B-1 in Reference 9. Cor-
rections to equations have been made, as required, and both elastic, elastic-plastic and rigid-
plastic solutions are included. Structural elements covered include beams, rings, membranes,
plates, cylinders, and spheres.

Equations in Table IV relate the peak deformation in the structural element, usually

designated as w,, to the element’s material and geometric properties and to the applied loading.

The applied loading is treated as the simultaneous application of an impulse, i,, and a quasi-
static pressure, p. This loading is representative of that on suppressive structures produced

by the internal detonation of a high explosive. The blast wave from the detonation is of

short duration relative to structural frequenc_ics (and so can be treated as an impulse), and
heating of the air in the structure produces a pressure buildup of much longer duration.
Simultaneous application of the impulse and quasi-static pressure is supported by pressure
measurement from the 1/16-scale venting tests reported by Schumacher and Ewing!! 1) a:d

by pressure data from the Category 1 1/4-scalc model tests reported by Schumacher, et al.t! 2
For purposes of deriving the equations, the quasi-static pressure is assumed to be a step loading
(zero rise time) to a constant value. If either i, or p is zero, the equations reduce to the proper
pressure or impulsive asymptote, respectively.

Each equation is based upon an assumed shape for the final deformed state of the struc-
tural elements. The deformation patterns used are given in the table. For some elements,
solutions are given for more than one deformed shape. This is true tfor a beam with clamped
ends which experiences bending deformations only. The first solution used a parakola as the
deformed shape, and the second solution uses a higher order polynomial. Deforinations pre-
dicted by the first equation compare favorably to experiment!!?; kowever, bendiag strains
in the beam associated with a parabolic deformed shape are constant. The second equation .
has ncot been compared to experiment, but the strain distributions produced by the deformed
shapes are more represeitative of true beam behavior. A third solution is also given whici is
based upon the siatic deformed shape. Notice that the constants in the equations derived for
the polynomial and for the static deformed shape diffe: only slightly.

Parameters which enter the equations inn Tuble 1V are defined in Table V. Als9, the

geometry of the element is sketched in Table 1V for additional clarification. Because the
equations are nondimensional in theii present form, any consistent set of u:its is permissible.
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TABLE V. DEFINITION OF SYMBOLS USED IN TABLE IV

Definition

besm cross-sectional area

ring cross-sectional ares

loaded width of beam

circumferential beam spacing in the I-beam cylinder measured at Rg
material clastic modulus

thickness of plate, or shell

specific reflected impulse from Initial blast wave, plus reflections
if applicable

length of beam for which the deformation s being determined;
length of cylinder

loaded length of the cylinder supported by a single ring

mass per unit area of any additional material (non load bearing)
which is attached to the sphere or dome

total mass supported by a ring (includes the ring mass)
beam plastic moment

factor in the beam equation; VN = | for simple support, N = 2 for
clamped support

quasi-static pressure

axial yield force of the heam

radius to arbitrary point on a circular plate

mean radius of a sphere or cylinder, radius of a circular plate

loaded radius in the cylindrical shield

mean radius of the ring

radial expansion of the ring, dome, or cylinder ]
lateral deflection of a beam or plate at point x, or r, respectively
center deflection of a beam or plate

distance along the beam or plate, normally measured from the center
short semi-span of the plate

distance along plate center line normally measured from the platc center
long semi-span of the plate

material density

yield strength of the material

Polisson’s ratio
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IV. CATEGORY | 1/4-SCALE STRAIN DATA ANALYSIS

Mcasurements of strain in the beams, rings. foundation, and roof of the Category |
1/4-scale model were made by Schumacher, et al,7! 20 in tests conducted at the BRL.
Model dimensions and strain gage lovations are shown in Figures 5 and 6. Structural
details are given in the Corps of Engineers’ drawing No. 6003, "*Suppressive Shield, Quarter
Scale Model, Category 1. One of the principal objectives of the tests was to determine the
structural adequacy of the shield and to evaluate the analytical methods used to support
the shield design.

SwRI! waus assigned the task of analyzing strain data recorded on the beains and rings.
Duata were provided by BRL in the form of computer-generated plots. The plots were re-
viewed and peak strains were extracted from records which appeared to be consistent from
test to test and with gages at similar locations. These peak values were then compared
with analytical predictions. The comparisons allowed us to draw some conclusions about
the strains and analysis methods which are covered at the end of this chapter.

A. Review and Summary of Experimental Data

A brief description of each test conducted on the model is given below. All charges
were spherical Pentolite, centrally located. Closure strips and liners referred to in the test
descriptions are shown in Figure 5.

Test 191:  8.3-1b charge—1/4-scale model without closure strips or liner
Test 192:  Same as Test 191, but with a charge of 19.31b

Test 193, . 19.3-1b charge—closure strips added to cover the spaces between every -
second. pair of inside beams

Test 194:  19.3-1b charge--all spaces between the inside beams covered with closure
strips

Test 195:  45.7-1b charge—same configuration as for Test 194 except that additional
weld bead was added along the sides of the closure strips, and shims were
added to eliminate free travel by the beam before contact with the ring
was made.

Test 196:  45.7-1b charge—weld repairs were made and a 24-gage corrugated steel
liner was added inside the closure strips to seal the shield.

Test 197:  45.1-b charge—ring repairs were made, and two 22-guge corrugated steel
liners were added inside the closure strips to seal the shield.

We limited our comparisons between analysis and experiment to those tests with all :
closure strips installed. Thus, comparisons were made with data from Tests 194 through i
197 and include comparisons for both the 19.3-1b and 45.7-1b charge weights.

Figures 7 and 8 are typical of the strain plots received from BRL. Bending strains at
the base of column 112 (see Figure 6) are given in Figure 7 for Test 192 and Tests 194
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FIGURE 5. DIMENSIONS AND DETAILS OF THE'
CATEGORY I 1/4-SCALE MODEL
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through 197. The effect of progressive sealing of the shield is apparent from the reduced
decay rates. The character of Test 195 is noticeably different from the others because it
decuys sooner than expected and has a negative value late in time. Shims were inserted be-
tween the beams and the rings before this test, and the change in response character can be
attributed to the change in support. Figure 8 gives the history of the principal strain com-
puted from rosette No. 85, which is located at the top of column 259. From these records
i* appears that slight yielding in shear occurred even in the early tests. Reasons for the pro-
nounced increase in shearing strain between Tests 195 and 196 are not clear. Again, it may
have been caused by firmer beam support after the beams were shimmed against the rings.
The principal shearing strain for Test 197 (not shown) may have been caused by firmer beam
support after the beams were shimmed against the rings. The principal shearing strain for
Test 197 (not shown) was slightly higher than for Test 196. A more detailed interpretatlon
of the strain records is given by Schumacher, et al. (12)

Feak strains read from the graphs of Figures 7 and 8 and from other graphs provided by
BRL are listed in Tables VI, VII, and VIII. Table VI contains the bending strains reduced
from gage pairs on the inside and outside flanges of the beams. Location of the gages above
the top surface of the foundation is included iii the table, and the placement of the gages on
the beam is shown in Figure 6. Principal shearing strains in the beams are given in Table VII

"and peak tensile strains in the rings are given in Table VIII. In all cases, the strain data for

Test 191 (the 8.3-lb test) and for Test 193 (the 19.3-1b test with only half of the closure
strins installed) have been omitted. Test 192 was included to indicate the effect which the
closure strips have on the peak strains. No consistent difference is apparent in the beam
strains. Ring strains are increased slightly.

TABLE VI. MAXIMUM RENDING STRAINS®* OBTAINED FRGM BRL RECORDS
OF CATEGORY 1 1/4-SCALE MODEL TESTS

Locationt - Gage 19.3-1b Charge 45.7-1b Charge ]
(in.) Nos. Test 192 Test 194 Test 195 Test 196 Test 197

6-3/8 50-51 1050 840 700 110u 1250
56-57 1175 1200 - 815 -
66-67 - - - - -
72-73 - - - - -

34.1/2 58-59 -975 ~1000 ~1450 - -

4s  60-61 ~1850 - - - -
74.75 - -1350 —1165 - -1600
68-69 - - ~ - -

55-1/2 6263 . ~1000 -1000 -900 - —1450

113-5/8 54.55 1300 1225 1090 1155 1135
64-65 1100 1240 - 1150% -
70.71 - - - - -
76-77 1350 1450 - 1150 -

*Strains are in pin/in.: (+) represents tension on inside vdgo of the beam.

tM=asured irom top of floor slab (see Figure 6). '

tEstimated from one gage only.
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TABLE VH. MAXIMUM SHEAR STRAIN® OBTAINED FROM BRL RECORDS
OF CATEGORY 1 1/4-SCALE MODEL TESTS

Locationt Rosette - 19.3-b Charge 45.7-1b Charge
(in.) No. Test 192 Test 194 Test 195 Test 196 Test 197

34172 78 1700 2650 3250 - -

81 - - - - -
113-5/8 80 - - - -

83 2150 - 2000 2500 - 7500 -

84 -- 1550 2400 - -

85 2800 2350 7000 14000 14810
*Strains are in winfin.
1Measured from top of floor slab (sec Figure 6).

TABLE VIII. MAXIMUM RING STRAINS* OBTAINED FROM BRL RECORDS
OF CATEGORY.1 1/4-SCALE MODEL TESTS

Gage 19.3-1b Charge 45.7-1b Charge
Locationf No. Test 192 Test 194 Test 195 Test 196 Test 197
Top Ring 90 -- 1060 2580 2400 2200
9} -1430 - 3100 2400 4200
Middle 92 1450 1600 — 3300 3400
Ring . 93 1150 2300 2800 2100 3100
[ * Strains are in uinfin.
tSee Figure 6.

B8  Comparisons with Analytical Predictions

For compurison with the measured strains of Tables VI, VIJ, and VIII, strains in the
heams and rings were computed usiita both the approximate energy procedures described
in Section 11 and finite-element methods. Application of the energy mnethods to compute
structural response has been reported in References 1,4, 7,9, and 10, and in earlier chapters
of this report, so these energy methods will be used here with a minimum of explanation.
Application of the finite element program to compute structural response will be described
more thoroughly. ' ‘

1. Predictions Using Approximate Energy Merhods"
a.  Uncoupled Solution
The blast loads associated with a confined explosion as in a suppressive struc-

ture are not the sume as the blast loads associated with an unconfined explosion. Initially in
a confined explosion, a shock wave is propagated out away fror a source; hovsever, because i

6l




- ) of the walls in the container, this initial shock is reflected many timnes until through various i
) dissipation mechanisms, the air is heated and a static pressure buildup of very long duration :
results. In the suppressive structures program, this multiple loading mechanism was mathe-
matically modeled by treating the initial shock wave as a delta function (as an impulse) and
the long duration buildup of internal pressure as a constant static pressure.

The generalized solution for the response of a beam in bending to this type of
loading is given in Figure 4 of Chapter II. As in all solutions for structural elements. ideal
boundary conditions are assumed, and coupling between the element and its supporting
structure are neglected. For the Category I model, the assumption of clamped-clamped . ;
boundaries for the beams is most appropriate. '

Beams in the model are 83 X 5.7. Properties of the beam cross-section are
obtained from the Steel Construction Handbook and the remainder of the beam geometry
from Figure S. Loads on the beam are produced by the initial reflected blast wave and by :
the subsequent quasi-static pressure. Impulse in the blast wave is obtained from the data i
presented by Baker.'' 3) The quasi-static pressure is determined using the procedure developed '
by Baker, et al.'!? Compiling the input data for Figure 4 from the above sources, we have

H Geometry:

A =1.67 in.? (area of the beam)
b = 1.43 in. (loaded width—less than flange width because of overlap)
H=3.0in. (beam depth) ‘ o

z=1.95 in.? (beam plastic section modulus)

g R

1= 1.65 in.4 (beam elastic section modulus) | ,
a, = 45,000 psi (material yield strength) o
E = 30 X 10¢ psi (elastic modulus) '
p=17.33X10"% Ibsec? /in.? (material density)

| ] Loading Parameters:

; , _ 19.31b Charge  45.7-Ib Charge

] Reflected impulse, i, = 0.20 psi-sec 0.48 psi-sec
Quasi-static pressure, pgs = 73 psi 190 psi
A yield stréngth greater than the minimum guaranteed for the material was chosen because '

P limited measurement on structural steel conducted during the suppressive structures program
showed yield values between 40,000 psi and 50,000 psi.

o Maximum veam strain for the 45.7-1b charge weight was computed in Chapter
! 11, Part D, as an example for the use of Figure 4. The calculated strains given in Table 1X were
! obtained using the same procedure for the loading produced by the 19.3-1b charge.
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TADLE IX. COMPARISON OF PEAK BEAM BENDING STRAINS:
’ EXPERIMENT TO UNCOUPLED ENERGY SOLUTIONS

Churge Weight : Calculated Measured
~(b) (ie) (ue)
19.3 ) 3,730 - 1450
45.7 12,700 1600

For the 19.3-lb charge, data from Test 194 rather than Test 192 were used. The peak strain
occurred at the top of an inside beam. For the 45.7-1b churge, the maximum measured strain
was midway between two supports (two rings) on the same beam. The gages which recorded
the maximum strain for the 19.3-1b charge were no longer operative for the tests with the
45.7-1b charge, so bending strains at the top of the bzam might have been greater. Even if
this were so, it is apparent that the predicted strains are much larger than measured values.
This is particularly true for the 45.7-1b charge.

The predictions of Table IX were ottained by, in effect, treating the rings as
rigid and absorbing al! of the energy produced by the blast in the beams only. Obviously,
thesz predictions are much too conscrvative to be of praciical use in shield design. Similarly,
ring response, computed for the assumption of rigid beams, is much tco great. Thus, the
energy absorbed must be properly divided betwecn the beams and the rings, and this requires
a coupled solution.

b. Coupled Solution

A solution for the coupled response of two structural components, one sup-
ported by the other, is described in Chapter II and Reference 10. 1t assumes rigid-plastic
behavior with loads applied to the supported structure only. The loading is comprised of
an initial impulse and a quasi-static pressure as for the uncoupled solution described previously.
For beams supported by rings (hoops) as in the Cutegory I shield, the response of the system
is given by Eq. (64) of Chapter [1. This equation, repeated herc for convenience, gives the
motion of the center of the beam, w,, relative to the rings.

- )] el

i2h203 + pb2? + NppApR \opAnt = 8y Onps ApR? \opA,2
ppApopzw,  Nopz dnpu AR /l__'_ll_'g___> '  OpPnzR (lﬁ__effl_) )
2opAp 2nAn/)

(64)

Once w, is found, Eq. (59), also taker from Chapter il, gives the total radia
motion, AR, of the ring in terms of w,,. g

gy [ L2ARR [ - Peer? Y.
Wy Npy Ayl 2008}

AR 5 Nob; N
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- -‘ . Based on the mn)zimum deflections, w, and AR of the heam and ring respectively, the residual '
/ strains are computed from Eqgs. (65s) and (65b). : ]

AR
€ = -E- | (65a) ‘

ntw,H ' ,
@="n (65b) R

: "To compute residual strains in the Category I 1/4-scale model using these '
cquations, the following paramsters are required: ;
ap = oy = 45,000 psi (1naterial yield strength)
b = pp = 7.33 X 107% Ib-sec?/in.* (material density) !
Ap = 1.67 in.? (beam cross-section area)
2=1.95 in.? (beam plastic section modulus)
N = 296 (no. of beams supported by the rings)
b = 1.43 in. (beam loaded width—less than fiange width because of overlap)
£ =30 in. (beam length)
H = 3.0in. (beam depth)
Ap =5.625 in.? (one-half of the ring area)
R =72.25 in. (radius to center of the ring) v 7 |

r=67.25 in. (internal radius of ‘the shield)
! . Blast loads are the same as listed on page 62. _ '

Resulis obtained with the coupled solution are compared to the experiment , !
in Table X. Both beam and ring strains are included. Calculated strains are residual, whereas i
the measured strains are peak. It is not appropriate to simply add the elastic strain at yield
~ (ey =0y /E= 1550 uin./in.) to the residual strain, but the peak strain would lie between the
Coh residual strain, €,, and the residual plus elastic strain (¢, + €,). With this in mind, the agree-
‘ _ ment between the calculated and measured strains is good. Very little yielding, if any,
P : occurred in the beams, and this is predicted by the analysis. Predicted ring strains are higher
than measured for the 45.7-1b charge. One reason for this may be that the nine individual
bands from which the ring was assembled were not in good contact. This means that higher
strains occurred in the inner bands than in the outer bands where the measurements were
i made. Also, many rings broke near the welds, which may indicate an embrittlement problern.
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TABLE X. COMPARISON OF BEAM AND RING STRAINS:

EXPERIMENT TO COUPLED ENERGY SOLUTIONS

19.3-lb Charge 435.7-lb Charge
Structural Culeulated Measured Calculated Measured
Component Residual (ue) Residual (ue)
(ue) (ue)
Beams 200 1450 390 1600
Rings - 975 2300 6,880 4200

As can be seen by comparing the results in Tables [X and X, the use of coupling
is to greatly reduce the calculated estimates. Although the estimates are still not in perfect
agreement, the coupled predictions are much closer to measured values than are the uncoupled
predictions. Even better prediction should be achieved with finite element methods.

2. Predictions by Finite Element Methods

In addition to the energy solutions, a small two-diniensional (2-D) finitc element
computer program, developed specifically for the dynamic-transient analysis of beams to
blast loading, was used to predict structural response of the Catego.y ! 1 /4-scale model. The
equations of motion ar= cast in finite difference form and integrated step-wi.2 in time using
a predictor-corrector method. The program treats material behavior as bilinear with hysteretic
recovery, including the effects of strain rate and strain hardening. Calculations of the response
were tnade with and without strain rate to show the significant effect strain rate has on dis-
placements and strains. Strain hardening effects were found to be negligible and are not dis-
cussed further. :

The finite element model used for the calculations is shewn in Figurc 9. It isdrawn
schematically alongside one of the beams from the cylinder. The structure is idealized by
assuming axial symmetry and symmetry about a horizontal plane through the center of the
shield. This amounts to neglecting the presence of the door on the respnnse of the beams
away from its immediate vicinity, and neglecting axial loading and response. Although there
is some connection between the beams through the closure strips, which are tack welded to
the face of the inner beam and to the studs on the outer beam (see Figure 5), the beams are
assumed to respond individually. Thus, only the jower halfl of one beam is represented in
the model. ,

Bilinear springs have been used to model the rings and radial fiexibility in the
foundation. The resistance of the rings is divided into two parts to spread the support over
the ring width. Guided end conditions permit lateral displacements, but no rotation, and
the first beam element above the foundation has been sized to represent the combined bending
stiffness of the slab foundation and the bolted connection. Although the closure strips may
contribute to the beam stiffness, they are not welded continuously to the beams, and so this

contribution is ignored; however, mass of the closure strips and the liners is added to the
beam mass.

65

i N U b DAL s -

e

-




[ N ]

‘ﬁfﬁ_‘_‘q——. Guided End
Center I I Shield G, _ Condition (typ)

Beam Element

Bi-linsar !
Spring

Lowdér ) 4
Ring .

/' Lumped Mase

L ]

Lj_..a Hm—

Foundation ‘; _ \

FIGURE 9. SCHEMATIC OF THE FINITE ELEMENT
MODEL OF THE STRUCTURE

66




£
£
H
5
e
H
£
B

T U

As for the energy solutions, the pressure loading was assumed to be uniformly dis-
tributed over the beam. The loading is composed of an initial impulse and near constant
(quasi-static) pressure. Two load cases were analyzed. They are the same as listed on page

19.3-Ib charge: i, =0.20 psi-sec
Pqs =73 psi

45.7-]b charge: iy =0.48 psi-sec
Pqs = 190 psi

Basic beam and ring parameters used in computing input for the program are:

® S3 X 5.7 beam geometry

®  mass per unit length (including closure strips and liners),
A =1.46 X 1073 Ib-sec/in.?

®  foundation effective modulus, £, = 4.5 X 108 psi
®  beam plastic moment, M,, = 87.750 in./lb

®  beam elastic modulus, E =29 X 10° psi

®  beam plastic modulus = 1% of elastic modulus

®  beam loaded width, b = 1.43 in.
Although the details will not be given, stiffness of the reinforcing gussets at the foundation
and of the spacers at the rings was added to the beam. Also, estimates were made of the

bending stiffness of the beam attachment to the foundation. Strain rate effects are based
on the well known relationship{!4) for mild steel given in Eq. (153)

od=oy.[1+(zé’§)°'2] (153)

where o4 is the dynamic yield stress, and € is the strain rate.

Results for the 19.3-1b charge are given in Figure 10. Strain rate effects are included.

This figure shows the distribution of maximum values of displacement, bending strain, and
shear stress along the beam. The shear stress is based on the shear reactions in the beam rather
than on shearing strains, and is computed as

0= - (154)
't _

where V is the shear reaction in the beam, d is the beam depth, and ¢t,, is the beam web thick-
ness. Data points are shown as circles. Three observations can be made from this comparison:

(1) The distribution of peak strains in the beam is irregular and not what one
would expect if only a section of the beam between two rings were analyzed.
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Computed results for bending strains underestimate the measured values for
- this charge weight (at the measurement location).

Z (3) If the computed distribution of strain is accurate, the measurement point
4 may not have recorded the maximum values,

) Figure 11 gives similar results for the 45.7-1b charge. The same observations can
] ' be made for this case as were made for the smaller charge excepi that, in this instance, the

' ' computed strains are higher than measured valves. Also, for this charge weight the sheariug
stresses exceed the shear yield stress of the material at many points along the beam. We
estimate that the allowable shear stress values for the material are:

o 0y = 21,600-27,000 psi

oy = 34,800~49,800 psi

T

These compare to peak caiculated values of 44,000 psi, which indicates that substantial
yielding of the beam in shear should have occurred, and perhaps the beam was near shear
failure.

e e Bl

: Although strain comparisons cannot be made because shearing strains were not
computed by the program, Table XI lists measured shear strains versus the computed stress.
The measured results confirm that substantial yielding occurred in shear for the 45.7-1b

i charge. Shear strains slightly beyond yield were also recorded for the 19.3-1b test. These
results, plus the results in Figure 11, indicate that the beam is not properly proportioned
for 1 ..hly impulsive short duration loading. Higher shear area relative to bending stiffncss
is needed to bring the shearing and bending strains into better balauce. This observaiion is -
true for almost all commercially available beams b.cause they have been designed for high
ef “ciency nnder static loads. '

TABLE X1. BLAM SHEAR DATA

e e e - o el - A e e e = e

W T B 0B ]t 0D 3 ol b

19.3-1b 45.7.1b
. Meas. Calc. . Cale.
Location Strain Stress Measured Strain Stress
Test 194 F.E. Prog Test 195 Test 196 Test i97 F.E. Prog

, Quter beam 34-1/2"

: from foundation 2,650* 18,000t 3,250 - 35,000
v Outer beam 6-1/4"

o from roof 1,550 20,000 2,400 44,000
- Inner beam 6-1/4"
o from roof 2,000 20,000 2,500 7,500 44,009
- i Inner beam 6-1/4"
: § from roof 2,350 20,000 7,000 14,000 14,800 44,00(

)
.8 *Strain u in./in. i

S t5tress psi. i
1
E .
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Only results which included strain rate effects were presented in Figures 10 and 1 1.
The effects of strain rate on the overall structural response are best demonstrated by the variation |
in ring strains. Measured and calculated strains are given in Table XII. Calculated values include |
those obtained by energy formulas as well as by the finite element program. For the energy !
solutions, both coupled and uncoupled results are included. The coupled solution was obtained
from Eqs. (59) and (64); the equation for uncoupled response is given in Table 1V of Chapter III.

TABLE XIl. MEASURED AND CALCULATED STRAINS IN THE RINGS
19.31b 45.71b
Test 194 Test 195 Test 196 Test 197
Top Ring ;
Measured _ 1
Gage 90* 1100t - 2200 2400 2200

Gage 91 - 5100 2400 4200 3

F.E.1 Solution :

No S.R.** 5315 ‘ 13630
With S.R. 1840 5110 1.

Energy Formulas ‘:

No coupling 3100 18490 .

With coupling 2460 6320 i

Center Ring j

Measured _ ;

Gage 92 1600 - 3300 3400 %

B Gage 93 2300 e 2100 3100 i
g

. F.E. Solution %

Cod No S.R. 10360 21530 §
! With S.R. 3000 . i 9740 E
Energy Formulas . g
f No coupling 3100 18450 z
o With coupling 2490 - T 6824 3
*Kefer to Figuis 7 for guge locations. g

: +Strairs are in uin/in, 3

: . tFinite element 2-D progrum.

f ’ **Struin rate effects. =

The most obvious conclusion to be reached from the results in Table XII is that
the calculated values overcstimate measured ring response in every cese. For the two com-
parisons available, it appears that the difference between computed and ineasured values
ol increases as chiarge weight increases: hence, the analytical results should always be conservative.
i The effects of strain rate and coupling are pronounced, reducing calculated values by approxi-
mately a factor of three for the large charge weight. Still, the calculated values are far above
measured values. It should be noted that the energy solution does not include strain rate or
. strain hardening effects and yet gives a result which is the same order of magnitude as the

-




more rigorous finite element method. One reason for this is that the energy solution forces
plastic deformation in the beams, whereas the finite element solution does not. It 1s apparent
from Figure 11 that predicted plastic strammg in the beams was minimal so that energy absorp-
tion by the beams was small. ‘

Reasons for the disugreement between predictions and measurements of ring
response are not clear. However, two factors may have affected the results:

(1) The closure strips shown in Figure 5 were tack welded to the inner beams and
provided some circumferential restraint. Thus, the closure strips acted in a
manner similar to rings, but were distributed over the full height of the shield.
This effect was neglected in the response calculations.

(2) Properties of the rings material were never measured. It proved to be a brittle
material because fractures were noted duting the testing. The calculatiors
were performed ussuming a mi'd stecl, which may not represent true ring
properties.

One final comparison of measured and calculated results is given in Table XII1. It
compares peak meastired strains in the beam to strains and shearing stresses computed by
both the energy and tinite element methods. From this comparison, it is obvious that both
the finite element solution with strain rate effects and the coupled energy solution give results
which are counsistent with the measured values. Additionally, the finite element method pro-
vides useful information on shear in beams by providing shear reactions which predict the
presence of lurge shearing strains. From the finite element solution, it is also apparent that
stiain rate effects play little part in the beam bending response. By stiffening the ring, how-
ever, strain rate does cause higher shear stresses. This stiffening of the ring was demonstraled
in Table Xil by the sharp reduction in the ring strain.

TABLE X1lI.. COMPARISON OF PEAK VALUFS IN THE BEAMS

19.3 1b charge " 45.71b charge
Bending Shear Shear Bending Shear Shear
Strain Strain Stress Strain Strain Stress
®in/in M in./in. pdl uin.fin. #in.fin. psi
Measured 1450 2650 1600 14,800
F.L. Method
No SR - - 3010 36,900
With SR 1400 20,000 3000 44,000
Encrgy Solution
Uncoupled 3730 12700
Coupled 200 390
(Residual) :
72
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Conclusions from the Strain Data Analysis

The conclusions drawn frora these comparivons of enalysis and experiment are:

1)

re)
3
)
)

(6)

Strain data, provided by BRL. in the form of computer generated plots, appear to
be good. The data are surprisingly consistent from test to test for a structure which
was being altered- continuously: and undergoing plautic strains. Exceptions occur,
and these can usually be explalned by major alterations to the structure, such as
shiniming the beams prior to Test 195.

Measured beam bendmg strains are lower than expected and did not mcrease sig-
mficantly with an increase in charge Welgh( -

Shear strains in the beam web ware htgh Yxeldmg occurred as predic.tcd by high .
shear forces which were calculated for the beams.

Ring strains were much lower than predicted, part:cularly for the larbe uharge
weight.

The comparisons show that the energy solution for coupled response can give
reasonable answers, which, if in error, tend to overestimate the strains.

The finite elemment computer solutions show that strain rate should not be lgnored
in structural componenis which respond primarily in a stretching mode, such as for
the virgs. If these effects are ignored, the solution is an upper bound, but it is tco
conservative to be useful if reasonably accurate predictions are desired.

V. PRESSURES FROM BURNING PROPELLANT
IN VENTED CHAMBERS - ~

The thrust of this effort was to determine theoretically the peak quasi-static pressure
produced by burning M10 propellant in closed and vented chambers. Combustion equations
were written to define the heat generation and products of the burning propellant which act
10 increase the pressure in the shield. Temperature and pressure increases in the shield pro-
duced by burning the propellant are offset by radiation to the shield walls and gas flow from
tiie shield through the vented pancls. The equations describing these processes were coded
into a computer program calléd GASSS which performed the calculations for M10 propellant
burned in a Category V shield.

A. Combustion Equations

M10 propetlant is 98'% nitrocellulose with 13. 15% nitration. Other major constituents
are potassium sulfate and diphznylamine. Since nitrocellulose is the most active element in
this propellant and since most of the propellant is nitrocellulose, the program assumes that
M10 is all nitrocellulose. Thus, our calculations for energy produced from burning the pro-
pellant will be an upper limit. Based on 13.15% nitration of nitrocellulose and information -
in the literature on its products of combustion, !5} the reaction equations for burning nitro-
cellulose in the absence of air are:
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CoHy(NOy 13,45 Os=1.556 CO, + 4.407 CO + 1,001 H, + 1.295 N, +2.622 H,0

4+ 2685.0 kilocalories (155)

Secondary reactions involving the combustion of CO and H, in air are:

CO + 1/20,—+C0O, + 67.63 kilocalories (156)

and

H; + 1/20,-H,0 + 57.80 kilocalories (157)

The program was written so thav during each time step, the products and energy of the
reaction are calculated first without the presence of oxygen. Then, a calculation is performed
to determine the amount of oxygen available. If there is sufficient oxygen present, the secon-
dary reactions take place. When the orygen in the chamber is depleted, only the primary
reaction takes place. In vented and closed chambers, it is assumed that no oxygen enters
from outside the structure due to positive pressure inside the chamber. The computer pro-
gram also records the quantity of different gases present in the chamber at all times.

B. Gas Flow Equations

Determination of the pressure histocy for venting in a suppressive structure was accoms-
plished by assuming quasi-steady, isentropic flow of a perfect gas. A check on the reliability
of the perfect gas assumption was made by assuming complete combustion in an unvented
chamber with no energy loss, and thermal equilibrium in the gases. Pressure was calculated
using the ideal gas law and also using Van der Waal's equations for non-ideal gases, and the

results were compared. For the pressures and n.olecular quantities involved, the ideal gas
law was found to be quite accurate.

For the calculated pressure dissipation, the suppressive structure was idealized as two

compartments separated by some vent area. If the ratio of atmospheric pressure to chamber
pressure is less than

)

thea supersonic flow equations are used. Otherwise, subsonic flow equations are utilized.
The program causes the gas to vent proportionally to the quantity of each gas present.

If the flow is supersonic, the mass flow rate is determined by‘!6)

Am,,  CpAP,, [ 2y 2 \Veo-D (158)
ai \/EI.ITI.I/gl \/’Y+l v+ 1 :
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-y where ? |
A = vent area of passage out of chamber ' !
. Cp = discharge coefficient of area A4
I ' P, = compartment pressure -:
R = universal gas constant i
.. T = gas temperature )
¢ g = gravity constant |
§ 4
i v = ratio of specific heats i
k]
1
!‘ If the flow is subsonic, then ]
: {
) Am 2 P 2y P (y+ Dir 12 |
ool WY N pA ___lg_mphlp"' [(__’_L — .3..’.) (159) i
At (r—n Py Py : i
]
where _ :
P, = density of gas in the chamber
P, = pressure outside the chamber
I :
oo The rate of temperature change is given by ]
- i
. . iy ,‘
i Ty =Ty~ D—= (160) r
é ok L
| 3 !
& where { ,
' m = mass of the gas in the compartment, and the rate of pressure change is given by
by b '
i s _RTy iy, Py :
CE Pi:= e =T (161)
- g Vl Tl ! .
i! 3 t
% where '
P e ' )
% ¥ = volume of the compartment.
i | ,
l E Pressure and temperature in the initial compartment at ¢ =t + At will then be i

P:.r+m”"3|.tAf+P|.: -
. (162) .;
Tiiw ae=Ty 04 arbst + Ty _ N

el

! _ Pressure and témperature chntside the chamber were assumed to remain at ambient values. I
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C. Effects of Burning Rates and Radiant Heat Loss

Insufficient data were avallable to determine accurately the burning rates of piles of M10
propellant. A telephone conversation with Mr. William Seals,!7) of Picatinny Arsenal, pro-
duced the following results for M10:

Burning Rate (in./sac)
Multi-perforation

Pressure (psi) . Single Perforation A

5,000 1.49 1.38
9,000 2.24 2.07
11,000 2,58 2.18

These burning rates are obviously appropriate for interior gun ballistics, but are not appropriate
for our purposes because the pressures in the suppressive structure for the worst case (no energy
loss and instantaneous burning) are much smaller than the pressures in the table above. Measure-
ments that Dr. Gary McKown!8) had taken when burning large quantities (500-1000 1b) of
smoke mixes indicated burning rates of about 10 Ib/sec. Measurements which he had taken
while burning 10- and 50-1b quantities of magnesium and sodiuin nitrate illuminant produced
burning rates varying from 4 to 100 Ib/sec, depending on the quantity burned and the degree

of confinement.

In view of this uncertainty in the burning rate, various rates were used in the calculations
to show their influence on peak pressures in the Category V shield. Initiaily, burning rate was
defined in units of 1b/sec, and the pressure histories in the shield were computed using various
quantities of propellant, several different burning rates, and various effective vent areas. The
resulting pressures seemed to be unrealistically high, and this approach appeared to be inaccurate
since the burning rate should depend on surface area and ambient pressure, and there should be
radiant energy loss depending on the burning surface temperature and area. Thus, the computer
program was modified to incorporate a linear burning rate and radiant heat loss. Because of the
relatively low peak pressures, we neglected pressure dependency of the burning rate.

To convert a linear burning rate to a mass burning rate and burning surface area required
that a burning geometry be assumed. Further, it was necessary that the burning surface be
small initially and increase with burning time, which is characteristic of point ignition. The
simplest geometry which could be assumed was a sphere with point ignition at the center. To
; permit radiation the sphere was treated as two hemispheres. For this geometry the effective
. increase in surface area with time is equal to that of a radially expanding sphere. The largest

burning surface obtained in using this procedure is nearly identical to that of a cube of pro-
pellant of equal weight with one face unexposed; that is, on the floor. For example, equating
volumes of the sphere and cube:

4
_ﬂRa =Qs

3 (163)

where R = radius of sphere (maximum)
£ = edge of cube
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Solving Eq. (163) for R, one has
3\ 11 V
R= (-—) L ' i . (164)

The maximum surface area of the sphere is
3\ 23 - ’
4nr? = 4y (:1—1;) 23 = 4,844 : (165)

which is nearly the area of the five exposed sides of a cube of identical weight.

The above assumptions on bulk propellant burning and incregsé in burning surface were
made to simplify a very complex burning process and provide for a representative increase in
burning surface area and attendant increasing radiation losses after ignition. The use of a
spherical geometry to describe the burning process offers the advantage of simplicity. !t aiso
allows for point ignition and growth in burning surface to a final value which is ncarly the
same in area as the exposed surfaces of a cube of equivalent weight. Thus, the simplified
spherical geometry very nearly approximates the characteristics of the actual burning process.

The computer program was changed to incorporate a radial burning rate (uuits of in./sec)
for the bulk propellant. By assumning negligible pressure dependency (relatively low peak
pressures) and spherical geometries, burning rates of 10 Ib/sec translates to 3.41 in./sec,*

7 Ib/sec to 3.03 in./sec, and 4 Ib/sec to 2.51 in./sec. The comp::ter program was aiso modified
to aliow for radiant heat loss from the burning propellant and radiation loss from the gas in

the chamber. Summaries of the output from these various techniques are contained in the

tables that follow. The basic assumptions, ir addition to the combustion and gas flow equations,
are contained at the top of each table. We feel that the most accurate results are those which
allow for radial burning rates (especially 3.40 in./s¢c) and at least some radiant energy loss.

We estimate that the Caiegory V shield has an effective vent area of 7.785 sq ft when vented.
The effective vent area was determined by combining the vent areas of each component inside
the side and roof panels by the equation

1 1 1
-—-—=——+—l—+...+—-— (166)
Oeff O; O3 &y
where
Ot = effective vent area

wy, g . . .0y = vent area of each componert

*Time Vor burning various quantities (assuming spherical geometrics) can be calculated from

(i M ) 1/3
7= 4x 06,0602 ib/in.?

r

wherc M is the mass of the propellant in pounds, and 7 is the burning rats in inches/second. For 3.41 in./sec burning rate,

one can calculate that 10 1b burnein 1.00 second, 100 1b in 2.15 seconds,-and 1000 Ib in 4.64 seconds.
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The side panel consists of
®  glayer of angle irons with a vent area of 273 in.2,

®  alayer of angle irons with a vent area of 485 in.?,

® three perforated plates with each plate having a vent area of 1410in.2,

e four layers of aluminum mesh with each layer having a vent area of 3089 in.2.

Thus, from Eq. (166), the effective vent area of a side panel is

ANV SR VIS IS I
AV ide punat 273 485 1410 " 3089
A"llde pane! =109 in.?

where Ay .. panel ic the effective vent area of a side panel.

The roof panel consists of
® g layer of angle irons with a vent area of 154 in.?,

®  galaver of angle irons with a vent area of 273 in.2,

®  three perforated plates with each plate having a vent area of 795 in.?,

@ four layers of aluminum mesh with each layer having a vent area of 1742 in.?.

Thus, from Eq. (166), the effective vent area of a roof panel is

P 1 13 4

=R — —— ——— —

Ayrool‘pmel 154 273 795 1742

A"rouf panel =61.6in.?

where Ay ¢ 0.0 is the effective vent area of a roof panel.

Accounting for eight side panels and four roof panels, the total effective vent area of the

Category V shield is

_ (8)(109.3) + (4)(61.63)
144

Ay, = 7.785 ft?

Figure 12 was taken from the numerical results contained in Table XIV and contains
plots of peak pressure versus vent area for a burning rate of 150 Ib/sec, no radiation loss, and
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TABLE XIV. M10 PROPELLANT IN VENTED CHAMBER WITH
NO RADIATION LOSS

Assumptions: Ambient Pressure = 14.7 psi
Initial Ratio of Specific Heats = 14
Ambient Temperature = 71°F
Chamber Volume =919.6 cu f1
No radiation loss
Constant mass/time burning rate
. Effective Burning Peak
l;\:)n AT (sec) Vent Area Rate Qu(:;g:;ty Pressure Remarks
' (sq ft) (Ibs/sec) (pst)
! 0.001 -0- 150 10 . 86 @ 0.067 sec
2 0.001 -0- 150 50 in @ 0.100 sec
3 0.001 -0- 150 100 535 @ 0.334 sec
4 0.001 0.0 50 10 86 @ 0.200 sec
S 0.001 0.006 50 30 238 @ 0.600 sec
6 0.001 0.006 50 S0 >368 max. not reached
7 0.001 0.006 50 100 >368 max. not reached
8 0.001 0.006 100 30 236 @ 0.300 sec
9 0.001 0.006 150 10 86 @ 0.067 sec
10 0.001 0.006 150 30 236 @ 0.200 sec
11 0.001 0.006 150 50 371 @ 0.334 sec
12 0.001 0.006 150 100 530 @ 0.667 sec
13 0.001 0.006 300 30 237 @ 0.100 sec
14 0.001 0.18 7 10 48 max. not reached
15 0.001 0.18 10 10 67 max. not reached
16 0.001 1.2 150 10 77 @ 0.067 sec
17 0.001 1.2 150 50 173 @ 0.255 sec
18 0.001 1.2 150 100 173 @0.255 sec
19 0.001 24 150 10 69 @ 0.067 sec
20 0.001 24 150 S0 108 @0.203 sec
21 0.001 2.4 150 100 108 @ 0.203 sec
22 0.001 4.1 10 10 3 @0.120 sec
23 0.001 4.71 10 50 3 @ 0.120 sec
24 0.001 4.71 10 100 3 @ 0.120 sec
25 0.0014 4.1 50 10 24 @0.136 sec
26 0.001 4.71 50 30 24 @0.136 sec
27 0.001 4.71 50 S0 24 @0.136 sec
28 0.001 4.71 50 100 24 @0.136 sec
29 0.001 4.71 100 10 44 @ 0.100 sec
30 0.001 4.7 100 30 45 @0.121 sec
31 0.001 471 100 50 45 @0.121 sec
32 0.001 471 100 100 45 @0.121 sec
33 0.0005 4.71 124.4 10 51 @ 0.080 sec
34 0.001 4.71 1244 10 51 @ 0.080 sec
35 0.008 4.71 1244 10 49 @ 0.080 sec
36 0.01 4.1 124.4 10 46 @ 0.080 sec
37 0.001 4.71 1244 50 54 @0.117 sec
38 0.001 4.71 1244 100 54 @0.117 sec
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TABLE XIV. M10 PROPELLANT IN VENTED CHAMBER WITH
NO RADIATION LOSS (Cont'd)

Run Effective Bumine Quantity Peak

No AT (sec) Vent Area Rate (Ibs) ’ Pressure Remarks
o (sq ft) (Ibs/sec) (psi)

39 0.00} 4.71 150 10 55 @ 0.0606 sec
40 0.00! 4,71 150 30 63 @0.113 sec
41 0.00] 4.71 150 50 63 @0.113 sec
42 0.001 4.71 150 100 63 @ 0.113 sec
43 0.001 4,71 300 10 69 @0.033 sec
44 0.00! 4.71 300 30 108 @0.100 sec
45 0.001 4.7} 300 50 108 @ 0.103 se
46 0.001 4.71 300 100 108 @0.103 sec
47 0.001 7.2 150 10 43 @ 0.066 sec
48 0.00} 7.2 150 50 44 @0.079 sec
4y 0.001 7.2 150 100 44 @0.079 sec

o 4 e st

Sl

10-, 50-, and 100-Ib quantities. Figure 13 was taken from the numerical results contained in
Table XV and contains a plot of peak pressure versus vent area for a radial burning rate of
3.41 in./sec and radiation loss from the burning surface and surrounding gas. Figure 13 is
for 10-1b quantities and probably predicts peak overpressure more accurately than Figure 12.
Note that in the tables and figures, pressure is in units of psig; that is, pressure above atmos-
pheric pressure.

TABLE XV. M10PROPELLANT IN VENTED CHAMBER
WITH RADIATION LOSS

ol g N s Wl e

R A S

e Assumptions: Ambient Pressure 14.7 psi
; : Initial Ratio of Specific Heats = 14
e . Ambient Temperature = 71°F
: Chamber Volume =919.6 cu ft
: Radiation from produced gas and surrounding gas
; Constant Radi Burning Rate
) Effective Burning Peak
: l}:: AT (sec) Vent Area Rate .QlE;i:s‘)“y Pressure Remarks
2 ’ (sq ft) {In.[sec) (psi)
%) 1 0.005 0.18 341 10 60 @ 1.00 sec
2 0.01 0.18 3.03 10 57 @ 1.13 sec
PE 3 0.01 0.18 2.51 10 $3 @ 1.36 sec
r 4 0.01 0.3 3.41 10 55 @ 1.00 sec
5 0.01 0.6 341 10 43 @ 1.00 sec
6 0.01 0.6 2.51 10 33 @ 1.36 sec
,g 7 0.01 1.2 341 10 25 @ 1.00 sec
3 8 0.01 1.2 2.51 10 16 @ 1.36 sec
9 0.01 2.0 341 10 12 @ 0.90 sec
10 0.01 4.0 3.41 10 2 @0.73 sec
. ' 3 11 0.01 4.71 341 10 14 @ 0.70 sec
.y 12 0.01 4.71 341 50 14 @ 0.70 sec
! * i3 - 0.01 4.71 3.41 100 14 @ 0.70 sec
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D. Comparison with Experimental Results .

Several tests have been conducted at NSTL wheré M10 propellant has been ignited inside
a Category V suppressive structure. Although a written report has not yet been published
Dr. Gary McKown of NSTL has revealed to us in a telephone conversation!!®) that uncon-

fined M10 propellant is a slow burner. During the Category V tests, 100-, 250-, and 600-Ib

yuantities of M10 were burned inside the structure. The propellant was in cardboard boxes
no more than a foot tall and was ignited from the top. The material bumed like a *‘slow
candle,” with a burning time of approximately two or three seconds, depending on the
weight of the propellant. It also appeared that the burning rate varied linearly with the
mass of propellant.

During the tests there were large fireballs, no detonations, and very low quasi-static
pressures inside the structure. From the films of the event, it appcared as if either the pro-
pellant or partially combusted products of the reaction had gotten outside the suppressive
structure and ignited, thus contributing to the enormous fireball. Also, during the tests,
all of the aluminum screening inside the structure and portions of other aluminum components
were burned out or deteriorated, possibly due to the intense heat of the reaction. For one-
experiment, the top of the structure was covered with a piece of steel to control the vertical
flow of the fireball, This steel roof had a hole burned through it by the end of the tests.

The maximum pressure recorded during the tests was approximately 0.2 psig. Most of the
time, however, pressure was so small that it was difficult to record.

As noted above, we suggested that Figure 13, with a radial burning rate of 3.41 in./sec
which reduces to 100 1b burned in 2.15 seconds, 250 1b burned in 2.92 seconds, and 600 Ib
burned in 3.92 seconds, was the best figure to use to determine peak quasi-static pressure.
From Table XV and Figure 13, for an effective vent area of 4.71 square feet and either 10,
50, or 100 1b of M10 propellant, one can see that the peak pressure is 1.4 psig. The initial
Category V suppressive structure has an estimated effective vent area of 7.785 square feet.
Since the interior aluminum baffles deteriorated after a few tests, the effective vent area
increased 16.5% to 9.069 ft?. This new effective vent area was determined by eliminating
the last term in the equations used to calculate the effective vent areas of the side panels
and roof panels. When one considers the effect of this additional vent area and the effect
of energy losses due to burning of propcllant outside the chamber, one would expect that
the curve in Figure 13 is an upper limit conservative calculation. If these other terms, that
is, additional vent area and radiant heat loss, were introduced into the computer program,
lower and more accurate predictions would undoubtedly have been produced.

VI. DISCUSSION
Suppressive shielding was developed to house hazardous operations at explosives
processing facilities. Should an accidental explosion occur, the shield is designed to contain
or sharply reduce the blast overpressures,thermal effects, and fragment hazards produced.

Nearby operations are thus shielded from the detrimental effects of the accident.

To propeily design a shield to attenuate or completely contain the products of the
explosion requires a knowledge of several complicated phenomena. These include:
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1. overpressures inside and outside a vented enclosure produceu by the detonation of
high explosive charges or by the burning of propellants,

2. fragments generated by the accident,
3. thermal environment produced by the accident,

4. transient loading on the structural compon=nts of the shield produced by the
overpressures, fragments, and thermal environment.

S.  elastic-plastic response of the shield to the transient loading,
6. resistance of the shield to fragment penctration, and
7. attenuation of thermal effects by the shield.

Other aspects of the design include problems of entry and exit (for per:onnel, explosives,
and utilities), cleanup, weatherproofing, lighting, air conditioning, and economy.

All of these problems have been addressed during the suppressive structures program,
but not all of them have been satisfactorily resolved. Prediction of the thermal environment
and its attenvation by the shi=ld has received the l2ast emphasts. Most other aspects of the
lesign have been investigated in some detail, and procedures suitable for sh eld design bave
oecn developed: however, almgst all aspects of the design can benefit from additional research.

The work documented in this report addresses principally items 1, 4, and 5. This work
has included further devclooments in the application of energy methods for the analysis of
structural response to blast loading, comparisons between predictions of structural responsz
and test results, and predictions of pressure-time histories inside vented enclosures produced
by burning propellant. The proczdures developed for predicting pressures inside venied
enclosures produced by a burning propellant are applicable to the design of Category V
shields. Formulas and graphicai solutions for structural analysis are applicable to the limit
design of all shield groups.

Comparisons between analysis and experiment, which are described in this report and
in earlier work! 148" have shown that approximate energy methods pro-ide ood estimates
for the elastic und elastic-plastic behavior of simple structural elements subjected to blast
loading. This report contains a comprehensive summary of solutions developed during the
supptessive structures program for the analysis of a large number of different structural
elements. The comparisons also show that solutions for simple structural elements are not
always suitable for the analysis of complex structures. Coupling, which can occur between
structural components, can greatly attenuate the response of cach component treated
separately. However, even in this case we have shown that appruximate energy solutions
can give good results, but with some increase in complexity. Energy methods also lend then.-
selves to graphical solutions which greatly simplify the complexity and labor involved in the
solution process. i
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Although substantial progress has been made in the development of analytical prccedures
)A to support the design of suppressive shields additional work is needed in several areas. These
: include: ‘

Y B0 il 1) 110

1. definition of the thermal environment produced by the detonation of a high
explosive or by the burning of propellant,

T

e Al

2.  methods to predict the thermal environment outside of a suppressive shield,

3. comparisons between measured and predicted pressures produced by burning
propellants in vented enclosures,

4. failure criteria for dynamically loaded commercially available structural components.
Commiercially available components have been designed for optimum efficiency
under static loading. A better understanding of their behavior when loaded by
short duration high intensity loads is needed. This is particularly true for the
failure.of wide-flange beams in shear.
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