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1. INTRODUCTION

L
When a random signal is sampled and digitally analyzed,

the results of the analysis are estimates of the true parameters
or statistics describing the random signal. In many cases there
exists difficulty in assigning a level of confidence to such an
estimate. That is, the estimate can never be said to equal the
true parameter value, but can be said to lie within specified
confidence limits, or error bars, with a given probability. The
confidence limits are highly dependent upon the characteristics
of the particular random signal being analyzed and the parameter
being estimated. —-

The most important single characteristic is the number
of independent éamples available from the random signal. For a
random signal which contains both amplitude and phase information,

the number of independent samples available is

N; = 2 BT (amplitude and phase samples)
where.

is the number of independent samples;

w =
=4
'

= is the bandwidth of the random signal; and

=3
'

is the signal duration, (the length of the
sampled function).

In a random process which contains only amplitude information,
such as at the output of a detector-averager, half the independent
samples have been destroyed,

N; = BT (amplitude or phase samples).
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This memorandum contains the necessary procedures for
determining confidence intervals for several types of estimates
that occur frequently in sonar signal analysis. Covered in
Section 2 are confidence intervals for the sample mean and sample
variance from a normal population. Section 3 contains a descrip-
tion of the chi-square goodness-of-fit test, used to test the
equivalence of a measured probability density function for sampled
data to some hypothesized density function. Section 4 describes the
Kolmogorov (K) statistic, used to set a confidence band about an
entire probability distribution function; and a binomial statistic,

used to set confidence limits about each point on an empirical

distribution function. References are listed in Section 5.
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2. PARAMETER ESTIMATION
2.1 SAMPLE MEAN

The sample mean of a random signal is defined as

-
X N Z X,
where
X - is the sample mean;
N - is the number of samples analyzed; and 3

th

X; - is the value of the i sample.

Note that the x; are random variables described by some type of
statistics. The sample mean is formed by a linear combination of
the x;, thus X is also a random variable and may only be considered

as an estimate of the true mean, My that is,

%= f,
where the "A'" denotes 'estimate."

A confidence interval for the mean value estimate is then
some interval about the sample mean within which the true mean
value lies with a given probability, on the average. For the
wirposes of Section 2 of this memorandum, the Xg will be assumed
to be samples of a normal random variable. A confidence interval

for the sample mean of a normal population is then [1, page 140]
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e

(1-0-) = Prob{(x-stn .a:z\)S ux < %-ﬁ- Stn ca/2)(?

é /Ny /Ny
% where
| (1-a) - is the probability that u_will lie within
the confidence interval;
s - is the unbiased sample standard deviation
defined in Section 2.1;
NI - is the number of independent samples;
n - is the number of degrees of freedom, (n=NI-1
for the sample mean); and
tn; e/2 " is the value of the variable, t , in Student's

t distribution with n degrees of freedom, such
that Prob(tn > tn;a/Z) = a/2. (The Student t

density is symmetric about t = 0.)

g(t,)
/—\Jwﬁm/ma =
5 t

(0} tn;a/z n

Tables of the Student t distribution may be used to
calculate this interval, or the curves in Fig. 1 may be used.

t .
These curves are plots of-—94—212 versus n for different values of
I :
a. It should be emphasized at this point that the number of

independent samples NI’ is necessary for this calculation no matter
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how great the sampling rate. The curves in Fig. 1 arise from the

assumption that the samples x; are from a normal population,
however, for NI > 10 the sampling distribution for X approaches a 4
normal distribution [1, page 136]. ’
i 2.2 SAMPLE VARIANCE

The sample variance of a random signal is defined as

N N
2 [ %Y 3
s =(N -1) LG )

where 2 ;
s© - is the sample variance (unbiased estimate);

; N; - is the number of independent samples;
N - is the number of samples analyzed;

£ sample; and

xy = 1s the value 6f the i
o & is the true variance.
. This definition of the sample variance arises from the unbiased
estimate in which only independent samples are taken [lpages 125,126].
Again, assuming that the x; are samples from a normal -
1 population, a confidence interval for the sample variance may be

defined as [1 page 140],
2 n52

E
2 3 2
} . (1-a) = Prob [—-5‘-5— D, €& =)

2
X n;a/2 Xn;1-a/2 :
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where

X %. 8 is the value of the chi-square variable with n
b

degrees of freedom, Xﬁ’ such that
2 2 B
Prob {x ey Xn;ﬁ} = B; and

n = (NI - 1) for the sample variance.

Tables of the chi-square distribution function may be

used to calculate the above interval, or the curves in Figs. 2 :
n

2
*n;a/2

and 3 may be used. These curves are plots of and

BTt s et el oo e il i Rt 5

‘, 3 n versus n for several values of a. Table I includes ;
f Xn;1-a/2 '
i values of o from Fig. 3 for 1 s n < 5, since some

Xn31-a/2

values were too large to be conveniently plotted.

% Once again it is emphasized that the above confidence
interval depends upon the number of degrees of freedom, n, no
matter how great the sampling rate. A high sampling rate allows
easier and more detailed practical reconstruction of the original
analog waveform but does not effect theoretically the confidence

limits.
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ROUGH DRAFT

TABLE 1 NORMALIZED UPPER CONFIDENCE LIMITS
FOR GAUSSIAN SAMPLE VARIANCE, (1 s ns5).

n n
?§§Z§§;,°ﬁ Xn;0.90 x:21;0.95
1 63.82 257.21
2 9.49 19.50
3 5.13 8.53
4 3.76 5.63
5 3.11 4.36

EXAMPLE

n

2
Xn:0.975

1018. 26
39.50
13.90

8.26
6.02

Consider a random time function described by Gaussian

statistics which has a duration of one second with a known band-

width of 100 Hz. The sample mean is found to be 1.0, and the

sample variance is found to be 4.0, that is

X = 1.0 and
82 = 4.0.
The number of independent samples, Ny is

NI = 2 BT
= 2(100) (1)
Ry ™ 200 independent samples.

Determine a 90% confidence interval for the true mean value My

and the true variance oi.

10
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For the mean value confidence interval, we have the

relationship on page 4, which gives

0.9 = Prob 1.0-2.o(t199; 0.45) < u < 1.0-2.0(*199; 0.45)
V200 J200

Thus, given n = NI-l = 199 degrees of freedom, the appropriate

tn; a/2 value comes from the ordinate of the 90% curve at

Ji;
abscissa n = 199. This value is approximately 0.117. Thus a

90% confidence statement about the true mean value is

0.9 Prob{I.O-(Z.O)(O.ll?) sy s 1.0 + (2.0)(0.117;2

0.9

Prob{6.766 ST 1.234 :}

That is, there is 907 confidence that the true mean o will lie
between 0.766 and 1.234 when X = 1.0, 32 = 4.0, and N; = 200.
For the variance confidence interval, we have the

relationship on page 6, which gives

0.9 = Prob (-zl&—) (4.0) < o2 s(lzl” \ (4.0)

*199;0.05 199; 0.95 )

Thus for n = 199 degrees of freedom and a 90% confidence interval,

Figure 2 gives 199 as approximately 0.86, and Figure 3
ik
*199; 0.05
gives 199 as approximately 1.2. Thus a 907 confidence
GG

X
199; 0.95

11
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statement for the true variance is

0.9 = Probl (0.86)(4.0) < oi < (1.2)(4.0{}
2
0.9 = Prob{3.44 s o2 = 4.8} .

That is, there is 90% confidence that the true variance will lie

2 o 4.0 and N. = 200.

between 3.44 and 4.8 when s 1

12
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3. SAMPLED DATA PROBABILITY DENSITY FUNCTION

This section discusses a method by which one may test
the equivalence of a measured probability density function for
sampled data to some hypothesized probability density function.
The method is known as the chi-square gocdness-of-fit test [1
pages 146, 147]. Once a hypothetical density function is chosen,
this test can be used to determine whether the overall measured
sampled-data density function approaches the hypothetical density.

The general procedure of the chi-square goodness-of-fit
test involves the use of a statistic with an approximate chi-
square distribution as a measure of discrepency between the
observed and hypothetical densities. Consider a series of
samples {xi},i = 1, N taken from a random function, in which there
are NIindependent samples. Group the samples into K bins to form
a frequency histogram or discrete observed density function.

Denote the number of independent samples falling within
the ith bin as fi' Calculate the number of independent samples
expected to fall within the i™® bin if indeed the hypothetical

density were correct, and denote this number by Fy» given by

M+l
F; = N; xI PR di,
i
where
NI - is the number of independent samples
from the random function;
P, (V) - is the hypothetical probability density

function; and

(\{sAg41) - is the interval describing the i*P bin.
13
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The discrepancy between observed frequency and expected frequency

for the irh bin is then (fi - Fi)’ which may be used to find a

2

sample statistic X, given by

k (£, - F;)*
o okt
i=1 T3

x2

The distribution for X2 is approximately the same as a %
chi-square (xﬁ ) distribution, where n, the number of degrees of
freedom is equal to K minus the number of independent restrictions

on the observations. In general, [2, page 177],

n = K-1-b ,

where b is the number of parameters in the population description
determined from the random sample. The normal distribution is

completely characterized by the mean and standard deviation, so
3 n = K-3 (Normal Distribution).

For Rayleigh statistics only one parameter is necessary,
E so
n = K-2 (Rayleigh Distribution).

Once the quantity x2 has been computed it may be tested

for goodness-of-fit. The region of acceptance is such that

2 2
X an;a

.
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chi-square variate, then the probability is at least (1l-a) that the
samples under consideration are described by the assumed theoretical
density. Or, conversely the probability of a sample deviating
from the assumed density is a.

In order to apply the chi-square goodness-of-fit test,
the number of bins, K must be chosen with care [1 page 147].
Table II describes the minimum number of bins for N independent

samples and a = 0.05.

TABLE II MINIMUM OPTIMUM NUMBER OF BINS (K) FOR NI
INDEPENDENT SAMPLES AND a = 0.05.

Ny 200 400 600 800 1000 1500 2000
K 16 20 24 27 30 35 39

In addition to the stipulation in Table II, the chi-
square goodness-of-fit test works best when NI is large enough to
assure that at least 10 samples fall into each bin, especially
near the tails of the population density.

The following procedure is a summary of the chi-square
goodness-of-fit test for the case when the population distribution
is not known and the number of independent samples and bins have

been chosen correctly.

15

That is, if the value of x? is less than or equal to the appropriate.
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1. Hypothesis H: The data [xi] are a sample of a
{ random variable with density ph(k).

2. Purpose of test: To determine whether the data
| [xi] may be considered as consistent with hypothesis H.

l 3. Steps in test: 2
| 5 oR e By

=1 Fy '

(b) Determine the number of degrees of freedom n.

(a) Form the statistic X

T T —————

(d) From tables of the xi distribution determine
2 2 ~
xtz‘.a such that Prob(x , 2 Xn; a) = a.

b

(e) If the test statistic X
2
xn;a,
5 the a level of significance.

(£) 1If the test statistic x2

x2

2 is greater than

then the hypothesis H is rejected at

is such that
£ %noas then the sample function may be
b}
v considered as consistent with hypothesis H.
f It should be observed at this point that for n > 30,
the Xt21 distribution may be approximated by a normal distribution

with mean n and standard deviation /2n. Also, the variable

/2)(2n is approximately normally distribution with mean /2n-1 and

unit standard deviation.

16

(c) Select a level of significance a = 0.01, 0.05,...
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4. SAMPLED DATA PROBABILITY DISTRIBUTION FUNCTION
4.1 KOLMOGOROV_STATISTIC

Often it is necessary or more convenient to obtain a

probability distribution function estimate for sampled random
data. The method of obtaining a confidence level described in

this section allows a confidence band to be placed on such a

distribution estimate. The method, known as the Kolmogorov (K)

statistic [3 page 452], is an alternative to the chi-square test

described in Section 3. The chi-square goodness-of-fit test f
gives a general idea about the variation of a sampled-data
density function varies about a hypothetical density. The K
statistic allows one to determine a confidence band about the
distribution function estimate so that a confidence statement can
be made associated with a given probability.

In order to use the K statistic, the actual distribution
function describing the observed random process must be continuous.

Actual expressions for the K statistic are quite complicated,

however, asymptotic approximations are available and are listed
in Table III. The approximations are conservative for all values
of NI and satisfactory for Ny 2 80. The approximations are
asymptotic in that they approach asymptotically the true K statistic
as NI increases.

Let ;(x) be the estimate of the true probability distri-

bution function F(x). Then F(x) may be assigned the confidence

interval

17
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Prob (ﬁ(x) - dﬂ) < F(x) s a(x) + dB] = g

for all x, where B is the desired confidence level and (xd8) is
the interval about Ekx) within which F(x) will £all 100 B% of the
time, on the average. For example using Table III, if NI = 100,
then for any x, F(x) will be between (§2x) - 0.13581) and

(F(x) + 0.13581) 95% of the time, on the average.

TABLE I1II
KOLMOGOROV CONFIDENCE INTERVAL

Confidence Level, B Confidence Interval, dB
rges 1.3581
0.99 1.6276

d

4.2 BINOMIAL STATISTIC

The K statistic just described gives a uniform bound on
the probability distribution function which may.make the confidence
interval somewhat wide in some cases. An alternative is to make
the confidence limits dependent upon the observed distribution.

This may be accomplished by setting a threshold for the input random
signal and counting the number of samples falling above and below
this threshold. It is here that the binomial distribution is intro-
duced. Note that this is essentially the same as the sorting
procedure used to find a sampled data probability distribution
function.

18
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The probability that a sample will fall below a
threshold x is F(xo), while the sorting procedure yields %(xo).
Using the binomial distribution, it is possible to set confidence
intervals about F(xo). Mathematical details of this process will
be the subject of a forthcoming memorandum.

The results of this method are given in Figs. 4 through
17. Each figure includes curves for a given N; and several
confidence levels. For each level, confidence limits are
plotted for g(x) in terms of the true value F(x). The curves
may be utilized in the following manner. For a value of F(x)
obtained with N; independent samples, choose the proper figure and
confidence level. Draw a line parallel to the abscissa (F(x)),
with ordinate (?(x)). This line will intersect the proper curves
for the chosen level of confidence. The values of F(x) at which
the straight line intersects the proper curves give the interval
about s(x) within which F(x) will lie with the given confidence.
For N; 2 20, logarithmic curves are presented to give more

detail about the tails of the distributions. Note the symmetry

present in the curves.

19
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NUMBER OF INDEPENDENT SAMPLES = 1000
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