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FOREWOR D

This memorandum represents a portion of work being done
in support of SF 101 03 16, Task 8132 NUWC Problem Number
Elli by the Sonar Signal Recognition Division.

The information contained is considered useful to those
groups engaged in analysis and simulation using wideband signals .

Appendix A was developed by L. R. Weill and was previously
presented with experimental verifi cation in “Analysis of Active—
Sonar Signals (U) ,” NUWC TP 7 , Sept 1967 , CONFIDENTIAL by
D.G. Olson and L.R. Weill.

Only limited distribution is contemplated.
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INT ODUCTION
many circumstances an investigator wishes to use digital

computers for simulating sonar receivers . Quite often the pro-
posed implementation of beam-formers or matched-filter re-
ceivers will differ from analytically-derived filter characteristics.
In order to evaluate different implementations of receivers with
respect to each other and the theoretically ideal version , an
investigator must use a valid representation of a sonar transmit
signal in the computer simulation.

Several references .~4.=..4?1ave described some of the differ-
ences between narrowband signal representation and wideband
signal representation. However , much of the signal processing
literature is directed to the radar problem which is usually a
narrowband signal case . Therefore , this paper will collect the
comments of several authors to demonstrate the differences of
narrowband and wideband assumptions and their effects on the
concepts of complex signal notation , complex modulation , and
signal envelope.

REAL SIGNAL fl~~~R ESENTA TION

• Any transmittable radar or sonar signal belongs to a class
of functions describable as

s(t ) a(t ) cos [2rr f0 t + (1)

Whether this equation provides a particularly useful representa-
tion , however , depends on the problem . In equation (1) a ( t )  is an
amplitud e modulation function , f0 is a carrier frequency and ~~t)  is
a time—varying phase modulation function. The argument of the
cosine is the signal phase and the derivative of the signal phase is
defined as the instantaneous frequency

1 dp(t.)
f 1 = f 0 4~~— —

~~~~
-— (2)

For a ~~ven real signal s ( t ) , the choice of f0 is arbitrary since a
suitable ~~t)  can be chosen to yield the given value of s t ) . There
is , however , a physically meaningful way of defining the carrier
frequency of a modulated signal.

Before proceeding, the use of the Fourier transform should
be introduced where
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s(t ) = S(f) e~
2
~~ df signal (3)

S( f) = s(t ) e i2~~t dt frequency (4)
spec trum

and E [s(t) ]2 dt =f ~ 
IS(f) 1 2 df signal energy (5)

The frequency spectrum given by the Fourier integral is a corn-
plex function of f , and extends over all positive and negative fre-
quencies . Since the transmitted signal s(t ) is real , s(t ) = s * (t )
and S(—f) = S * (f) , where the asterisk indicates the complex
c’ ~jugate . Now the carrier frequency f~ can be defined as the
first moment of one-half the ene rgy spectrum

~° S(f)2f0 =f ~~~~~ df 
(6)

Since S(f)extends over positive and negative frequencies , it is
called the “double-sided” spectrum . The spectrum of a real
signal is even in amplitude and odd in phase.

where S(f) = S(f) I 0 j 0 ( f )  (7)

• with IS(f)j amplitude of the frequency spectrum (8)

and 0 (f) ph ase of the frequency spectrum (9)

Because one-half the energy is contained in the positive spectrum ,
the carrier frequency was defined using E . 2  in equation (6) . A
pictorial representation of a narrowband signal is given in figure 1.
While the first signal amplitude spectrum in figure 1 represents a

• narrowband signal with no frequencies from the right—half of the
amplitud e spectrum spilling over into the negative frequency por-
tion , the second amplitude spectrum represents the wide band case.
All of the previous equations apply for either narrowban d or wide-
band signals. Now the following approximations will show the
utility of equation (1) for representing narrowband signals. Using
equation (5) with (1) gives

E ~a( t ) ct~ s t p ( t ) P 2 dt.

~ 2 ( t )  ilt + -~-f a 2 U) cos 2 [2 ir f0 t •  p (01 di (10)
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I S(f) I

Amplitude Spectra vs Frequency For a Narrowband Signal

I S(OI

Amp litude Spectra vs Frequency For a Wideb and Signal

Figure L 
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In the case of a narrowband signal , both a(t ) and p (t ) vary
slowly in comparison to cos 2v f0 t . The second integral on the
right hand side of (10) has a product term formed from the two
functions as shown in figure 2 such that the integral of the product
is virtuall y zero. Thus , as a consequence of narrow bandwidth

1 a2 (t ) dt (11)

This approximation greatl y simplifies calculations as it permits
the substitution of the amplitude modulation fun ction for the signal.

COMPLEX SIGNAL R EPRESENTATION

As a further simplification for theoretical analysis involving
linear operations , the real signal is often expressed as the real
part of a complex waveform ~ (t )

s(t ) = Re ~ç.~’( t)~ (12)

where Re I means the real part of 1 1. The anal yst rep laces s ( t)
with ç~ 

(t ) for these linear operations and then takes the real part
of the calculation for his answer . First , rewrite equation (3) as

s(t) =f ~ 
S(f) e j2 ~~~t df 4 f0  S( f) ~~~~~ df (13)

and using S(-f) = S * (F) for real signals

s(t ) S( f) e j2 ~~~ df S * ( f )  e~~
2
~~~ df 

- 

(14)

which becomes

s(t ) = 2 Re S( f) e i2~~~ df (15)
Jo

Since the negative frequencies simply mirror the positive fre—
quencies 111 complex conjugate form for real signals , the negative
frequencies can be omitted . l~quat .ion (16) shows that s( t ) can  be
regarded as the real part of a complex signal whose frequency
spectrum is twice that of the real signal for positive frequencies
and zero for negative frccjuencies. Therefore , using q ’(~~as the
complex signal frequency Spectrum 

-

‘I’ (f) 2 S ( t )  f >  0 (16)
0 f ( )  
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a2 (t)
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cos 2 [2rr f0t -i- p(t )]
~~ -‘ I- •‘ -‘ -‘

0 -

J • —

a 2 (t) cos 2 [2irf 0t + p(t)]

o~~ftJ[~~~~~i~~i

Figure 2. The integral of the product a 2(t) cos 2 [2rr f0 t p(t)] for a slowl y vary~
- ing 0(t) and p(t) w i l l  nearl y equa l zero as the contribution s above and below the

axis wi ll practica ll y cance l each other.
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and Lp (f)can be called a “single-sided” spectrum.

CONSTRUCTING THE ANALYTIC SIGNAL- or COMPLEX
WAVEFOR M

While the frequency spectrum of the desired complex signal ,
‘p (f) , has been stated , an analyst still needs to find a suitable ~i ( t )

corresponding to a given s(t ) . Consider now the characteristics
of the Hu bert transform defined as

-. 1 ‘°° s(T )
s(t ) I — dT (17)

ir 
~~~ 

( t — T )

where the principal value is intended , and s(t ) is a real-valued
function on -

~~~ < t < ±
~~~. References (5-6) show several character-

istics of this transform. From equation (17) the Hu bert transform
is seen to be a convolution of s(t )with the function .(Tr t) 1 

, written
as s(t ) * (-rrt) 1. Remembering the property of the Fourier traiis-
form where

g( t) * h (t) 
~~~~~~ 

G(f) 11(f) (18)

or convolution in the time domain transforms to multiplication in
the frequency domain, and using the Fourier transform of ( T r t ) 1

as —j sgn f , the spectrum of ~(t ) is -

—j S(f) f > 0
0 f Ø  (19)
jS ( f )  f < 0

If we choose ç, (t as the pro-envelope discussed in reference (6)
where

~~i ( t )  = s(t) + j~ (t ) (20)

the Fourier transform

—jS(f) f > O
q’(n=S (f)~ j 0 f= O

jS(f) f< 0
(2 1)

25(f) f > 0
= S(f) f = 0

0 f < 0

Thus , by f ind ing ~~
( t )  from s ( t )  and writing

4
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s(t ) j~ (t ) (20)

a complex signal can be formed fro m a real signal with the fre-
quency domain behavior shown in equation (16) .

Now the Hu bert transform of Cost is sin t .  Reference (5)
lists other transform pairs , but defines the Hilbert transform as

(°~ s(-r )
• s(t ) 4~ J — di (22)

-o~

which is the negative of equation (17). Therefore, the transforms
and formulas in reference (5) must be multip lied by (-1) for equiva-
lence with the expressions in this paper. Thus , considering a
narrowband signal with a slowly varying phase modulation function

~~Hj ~cos [2 r r f0 t + p (t ) I1 s in [ 2 r r f0 t p (t ) 1 (23)

where I indicates the Hu bert transformation. For this narrow-
band case the complex waveform corresponding to s(t ) becomes to a
close approximation

~s (0 a(t) cos 12 -rr f0 t + p (t ) ] + j a(t ) sin [2 Tr f
0

t p U)] (24)

Stating equation (24) as an equality and simplif ying the notation by
use of the exponential , we get

j [ 2 n f 0 t +
ç~t (t )  = a(t ) e

(2 5)
= u(t) e i2~T f o t

where u( 1 is a complex modulation term

u(t )  = a(t ) e j~~
( t )  (2 6)

consisting of the real amplitude modulation function and a complex
phase function. The evelope of the signal is

k~’ 
(t )~ = ~~~~~~~~~~~~ + ~2 (t )  (27)

whiôh gives t.~i ( t ) ~ = a ( t )  (28)

for this narrowband case. While equations (20) and (27) are per-
fectly general and follow refe rence (6) , the results ShOwn in equ a-
tions (25 ) and (28) are valid approximations onl y for narrowband
signals.
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While

ff111 Icos (2 Tr f0t + p I = sin (2 Tr f0t + (29)

• for a particular value of p,

~m I cos [2T rf 0t + p (tfl ~ sin [ 2Tr f0t + pU) ] (30)

in general and the approximation of equation (23) only holds in the
narrowbanci case. For wideband signals the Hu bert transform
could be obtained by exp ressing

.s(t) = a(t ) cos 12 irf 0t + p(t ) I (1)

as a Fourier series and then transforming each term by the
additi on theorem [reference (5) ]

~ H j  l h(t),+ g ( t ) I  = 
~~~ 

l h ( t ) }+ ~f H . l g ( t ) I  (31)

In summ ary , the representation of any sonar or radar tran s-
mit waveform by the real signal

s(t) a(t) cos t2~ f0t + p U ) ] (1)

is completely general. In the case of narrowband signals - which
• Implies a slowly varying a (t )  and 9 (t )  — the complex signal ~ ( t )  can

be readily written as

ç~’ 
(t ) u ( t) e~

2
~~

o’ (25)

and the evelope as

a(t ) 
(28)

which is the ampl i tude  modulation function. In the wideband case ,
fi nding the h u b e r t  t ransform s ( t )  may be more difficult than simply
using the real signal representation of equation (1) for anal ysis
purposes. For computer simulation purposes which use time—
series samples of the sonar signal , the re is no need to consider
the complex signal fo rm anyway. Appendix A will outline a direct
computational metho d of reconstructing the envelope defined as

R U ) -  42 o ~~ ( t )  (32)

from time—series samp les of the real wavefo rm s( t )

6
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USING COMPLEX NOTATION FOR WIDEBAND SIGNALS

The preceding section discussed the difficulties of finding a
complex signal corresponding to a particular wideband real signal
specified in the time domain. If an analyst wishes to study the
sonar problem in the frequency domain , however , he can define
the transmi t signal as a modulated carrier. The approach is dis-
cussed in references (3) and (4).

Using the Fourier transform relations of equations (3) and
(4) and the consequence of s(t ) being real as shown in equation (15) ,
we can wr tc

s( t ) = 2Re r S(f) e i 2lT ftdf }
.- 

Jo
-- (33)

= 2 Re I& 2
~c t J S(f ~ ~ f) e i 2 l T f t d fj

fo

If we define a function

• V(t) = 2 J S(f 0 + f) e i2~~tdf 
(34

we can then express the real signal as

s(t) =2 Re IV (t )  e j 2~~o t I  (35)

which consists of a complex modulation function and the c~ rrier
f requency term in the exponential. The carrier frequency term
is arbitrary, bu t the function VU ) becomes unique once f0 is
chosen . Naturall y, f~ can be chosen as shown in equation (6) .

To further examine the properties of V(t ) , consider the
absolute value after a change of variable

f~ + f = f  (36)

• d f = d f ’  (37)

such that VU) = 2 S(f )e J2~~~~~~o )t df (38)

• 

= 2e~~t 21T co tf  S(f ’)e i2~’~’df (39)

so

V (t ) 2 S( f ’ ) c ~
2
~ 

f 1t di’ (40)

_ _  _ _  
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Now consider the method of computing the envelope using the Hu bert
transform where

= l s(t ) ± j~ t) (41)

Using the addition theorems of the Fourier and Hu bert
transformations

= ~~~ I S(f) I j~~~
1 I—jsgn 1S(f)~

= 11: S( F ) e )2~~tdf ~ 
~~~
f:  _js ~ i~~(f) e i2~ ht df ’~

= S(f) eY2 ~~t df ± 10 S f )  e i2lTf t df

± S(f) e j 2~~t d f _  S(f) e i2~~t df ~

= 2 
f 

S(f) e i2~T f t df ~ (42)

where~f ’I- ’jsg nf S(f)I = it ) , since —jsg nfS ( f ) is the Fourior transform of

~(t) as discussed previously . Clearly, equations (40) and (42) are
equivalent. Therefo re , V ( t )~ represents the envelope of the signal
and

= s(t ) 4. j~(t)~ (43)

Thus , if an investigator wishes to express a wideband signal as a
modulated carrier , he must first select a carrier frequency f~
and then compute

V (t ) *2 f S(f 0 f ) e~2~~’df (34)

which is related to the real sigi~al as

s(t ) 2 Re IV ( t )  e i2 ~~~o t l  (35)

This process (loGs not require the use of the Flilbert transform of
the real signal. Onl y the investigator with a particular problem
can s~kct the most advantageous wideband signal representation

s( t )  . a ( t )  (. 0+ L 2Tr f~t ~
. p ( t ) l (1)

8
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or

s(t) = 2Re IV (t )  e i21~~otI (36)

In general , the relationships cannot be easily converted , although
the past development shows their equivalence.
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APPENDIX

If a real analog signal is properly sampled, the signal
waveform can be reconstructed. If the transmitted signal s(t ) is a
real function ’clefi ned on -~~~ < t < ‘o and

(1) s(t ) has a Fourier transform S(f) such that
s u p l f l S ( f ) / O I = f H

is fmmte

(2) the sequence of sample values

f(—n A t) , --- , f (— A t ) , f( 0) , f( A t) , —-- f(nA 0

is known for all integers n

1
• (3) .

then s(t) can be determined exactly from the sample values alone
at all t where f is continuous. Specifically, the reconstructed
signal ~(t )  = s(t )

when 
= s(nA t) 

iT (_
~ 

— n) (A— i)

~r ( ~~~~
_ _ n )

where ~~~~~~~~~~~ 
~~~~~~~~ 

~ 

(A-2)

iT(~~~~~_11)

(A—3)
At

This theorem is proven in reference (7). This treats the base band
signal , or a signal where the highes t frequency f’~ is known rather

• than the actual signal bandwidth w - f11 — 
~~L ’ The choice of sampling

interval At when both f11 and f1 are known , and when the first two
conditions leading to (A—i) are satisfied in addition to the conditions

S(f)~~O(1) mnf N f >O  L-~
’L~~~

0

(2) the sampling interval A t satisfies one of the following:

A-i

_ _ _ _ _ _ _ _ _ _ _ _  __ -
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K-i K
— < A t  <

K-2 K-I
2f 1

< A t

10 < A t < —
2f 11

for K the largest intege r such that K <
—

then~ (t) = s(t)where

sin 2 rr f H ( t — n A t )  sin 2 ir f1 (t-- nAt )
~~(t )  = At ~~~s(n A t) 2

~~H 2 iTf11(t -  nAt ) 2
~~L 2 i Tf

L 
(t ~~~ nA t )  (A- 4)

as shown in reference (8).
Now consider the Hu bert transform of ~~(t ) . The Hilbert

transform of

cos x-.l
sin x ~~ — by equation (22)

or .,.> 
1—cos X by equation (17)

since

2 sI~ 2(~~)1—cos x 
=

~~~~~~ 

2 
(A—5)

we can write the Hilbert tran sform of the two reconstruction form-
ulas as

2 sin 2 
[~~~~ 

(L _ n) 1
~(t ) s ( nA t )  2 At 

(A—C)
~~~~~~~~~~ _ n )

and .
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sin 2[iif11 (t—nAt)}
~~ (t )  At 

~~~~~~~~ 
-1f ~ 2 T1f 11 

( t -  nAt )

sin 2 [iT f ( t - n A t ) ]
L (A—?)— L 2 rr f 1 ( t — n A t )

Using a sampling interval (a) such that

t = g a , g = 0 , l , 2 , - - - , N-1

a simplified expression for computing the envelope

R(ga) = I S( ga)

I n 1  2 sin 2(~~(g_n)~l 
2

= ~~~s2 (ga) + j ~~~ s(na)  
~~g- ii ) I

n = 1  2 (A—8)

~~~~~~~ { 
~~~~~~ ~~

f~~~ r 0 ( g — n ) evensin 2 I— (g — n )  I = for
1 2 i 1 (g— n ) odd

and for the other case of known bandwidth

I sin 2 iT (At f11
) ( g—n )

R(ga) = / s2( ga) 
[
At~~ s(na )  2f 11 

~ (At f 11
) 

~~~ - i i )

\ I - 2f 
sin 2 (A t 

~~~~~ 
(g ~ 

2 

(A-9)
V L i r ( A t  f~~) ( g — n )


