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FOREWORD

This memorandum represents a portion of work being done
in support of SF 101 03 16, Task 8132 NUWC Problem Number
E111 by the Sonar Signal Recognition Division.

The information contained is considered useful to those
groups engaged in analysis and simulation using wideband signals.

Appendix A was developed by L.R. Weill and was previously
presented with experimental verification in "Analysis of Active-
Sonar Signals (U)," NUWC TP 7, Sept 1967, CONFIDENTIAL by
D.G. Olson and L.R. Weill.

Only limited distribution is contemplated.
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INTRODUCTION
§ “NIn many circumstances an investigator wishes to use digital
3 computers for simulating sonar receivers. Quite often the pro-

posed implementation of heam-formers or matched-filter re-
ceivers will differ from analytically-derived filter characteristics.
In order to evaluate different implementations of receivers with
respect to each other and the theoretically ideal version, an
investigator must use a valid representation of a sonar transmit
signal in the computer simulation.

Several references {1= ave described some of the differ-
t _ ences between narrowband signal representation and wideband
: signal representation. However, much of the signal processing
literature is directed to the radar problem which is usually a
narrowband signal case. Therefore, this paper will collect the
comments of several authors to demonstrate the differences of
narrowband and wideband assumptions and their effects on the
concepts of complex signal notation, complex modulation, and
signal envelope.

N

REAL SIGNAL REP{{ESENTATION

Any transmittable radar or sonar signal belongs to a class
of functions describable as

s(t) = a(t) cos [21Tfot + o(t)] (1)

Whether this equation provides a particularly useful representa-
tion, however, depends on the problem. In equation (1)a(t)is an
amplitude modulation function, f, is a carrier frequency and;(t)is
a time-varying phase modulation function. The argument of the
cosine is the signal phase and the derivative of the signal phase is
defined as the instantaneous frequency

)
) fi = fo - 2—1" (‘{% (2)
- For a given real signal s(t), the choice of f; is arbitrary since a
suitable ¢(t) can be chosen to yield the given value of s(t). There
is, however, a physically meaningful way of defining the carrier
frequency of a modulated signal.
Before proceeding, the use of the Fourier transform should
be introduced where




8(b) = f“’ S(f) ei2mft gy = signal (3)
S(p :f“’ s(b) e-i2mft g = frequency (4)
e spectrum
and E =‘/_m [s(©)]2 dt =fm IS(f)|2 df = signal energy (5)

The frequency spectrum given by the Fourier integral is a com-
plex function of f, and extends over all positive and negative fre-
quencies. Since the transmitted signal s(t) is real, s(t) = s * (t)
and S(-f) =S * (f) , where the asterisk indicates the complex
cr.jugate. Now the carrier frequency f;, can be defined as the
first moment of one-half the energy spectrum

56 2
:[ ¢ S(f) dr
0 E (6)

2
Since S(f)extends over positive and negative frequencies, it is
called the ""double-sided" spectrum. The spectrum of a real
signal is even in amplitude and odd in phase.

fO_

where S(f) = |S(f)] ei®D (N
with [S(f)| = amplitude of the frequency spectrum (8)
and 8(f) = phase of the frequency spectrum (9)

Because one-half the energy is contained in the positive spectrum,
the carrier frequency was defined using E/2 in equation (6). A
pictorial representation of a narrowband signal is given in figure 1.
While the first signal amplitude spectrum in figure 1 represents a

' narrowband signal with no frequencies from the right-half of the
amplitude spectrum spilling over into the negative frequency por-
tion, the second amplitude spectrum represents the wide band case.
All of the previous equations apply for either narrowband or wide-
band signals. Now the following approximations will show the
utility of equation (1) for representing narrowband signals. Using
equation (5) with (1) gives

E :z[m falt) cos (2 f t + p (O} dt

~ . 1 ~ !
= %‘fm a2 (t) dt + -.)-[ . a2 (1) cos 22 fo t+ 9] dt (10)




SRR e PN WENPY SN Gty " i po?

[seh)]
Al
L ; .
R ' T
, -fo 0 fo f —
| Amplitude Spectra vs Frequency For a Narrowband Signal
i
| seh
E
i
i
" ! \ 1
: 1 T
5 - fo 0 fo f——
Amplitude Spectra vs Frequency For a Wideband Signal
:
. Figure 1.
¥
!
-5




—

I

In the case of a narrowband signal, both a(t) and ¢ (t) vary
slowly in comparison to cos 2w f;t. The second integral on the
right hand side of (10) has a product term formed from the two
functions as shown in figure 2 such that the integral of the product
is virtually zero. Thus, as a consequence of narrow bandwidth

1 )
E =—§]'_w a2 (1) dt (11)

This approximation greatly simplifies calculations as it permits
the substitution of the amplitude modulation function for the signal.

COMPLEX SIGNAL REPRESENTATION

As a further simplification for theoretical analysis involving
linear operations, the real signal is often expressed as the real
part of a complex waveform ¢ (t)

s(t) = Re {y(t)} (12)

where Re! } means the real part of ! ). The analyst replaces s(t)
with ¢ (t) for these linear operations and then takes the real part
of the calculation for his answer. First, rewrite equation (3) as

s(t) :f: S(f) ei2mft de.fO S(f) ei2mft g (13)

and using S(-f) = S*(f) for real signals

s(t) :ﬁ:’ S(f) ei2mit dr+[°° S * (f) e-i2mft gy I
0

which becomes

8(t) = 2 Rolj;“ S(f) ei2mft g¢ (15)

Since the negative frequencies simply mirror the positive fre-
quencies in complex conjugate form for real signals, the negative
frequencies can be omitted. Equation (16) shows that s(t)can be
regarded as the real part of a complex signal whose frequency
spectrum is twice that of the real signal for positive frequencies
and zero for negative frequencies. Therefore, using ¥ (f) as the
complex signal frequency spectrum

Y {f) = 28 i ) (16)
0 f<0




cos 2 [2nfyt+ o(1)]
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Figure 2. The integral of the product a2(t) cos 2 [2nfot co(1)] for a siowly vary-

ing a(t) and (1) will nearly equal zero as the contributions above and below the
axis will practically cancel each other.
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and ¥ (f)can be called a "single-sided’’ spectrum.

CONSTRUCTING THE ANALYTIC SIGNAL- or COMPLEX
WAVEFORM '

While the frequency spectrum of the desired complex signal,
¥ (f), has been stated, an analyst still needs to find a suitable y (t)
corresponding to a given s(t). Consider now the characteristics
of the Hilbert transform defined as

= L f” B 17

iy o (t-T)

where the principal value is intended, and s(t)is a real-valued
function on -~ <t < +~. References (5-6) show several character-
istics of this transform. From equation (17) the Hilbert transform
is seen to be a convolution of s(t)with the function .(wt)-!, written
as s(t) * (wt)-!. Remembering the property of the Fourier trans-
form where

g * h(t) <> G(N H(f) (18)

or convolution in the time domain transforms to multiplication in
the frequency domain, and using the Fourier transform of (mwt)-!
as -jsgnf,the spectrum of s(t) is

-jiStH  £>0
0 f=0 . (19)
S t<D

If we choose ¢ (t)as the pre-envelope discussed in reference (6)
where

¢ () = s(t) + js(t) (20)

the Fourier transform

St £>0
YD =S+ j {0 f=0

L iS() £f<0

21
25(f) f>0
= S(f) f=0

0 f<0

Thus, by finding s(t) from s(t) and writing




Y () = s(t) + js(b) (20)

a complex signal can be formed from a real signal with the fre-
quency domain behavior shown in equation (16).

Now the Hilbert transform of costis sin t. Reference (5)
lists other transform pairs, but defines the Hilbert transform as

= o~ s(T1)
g = 22
) "/_m = & (22)
which is the negative of equation (17). Therefore, the transforms
and formulas in reference (5) must be multiplied by (-1) for equiva-
lence with the expressions in this paper. Thus, considering a
narrowband signal with a slowly varying phase modulation function
o(t),

?Hi{COS[21Tf0t+q>(t)]}=Sin[21rf0t+¢p(t)] (23)

where Sfmz }indicates the Hilbert transformation. For this narrow-
band case the complex waveform corresponding to s(t) becomes to a
close approximation

Yt = alt) cos [27 fot + o(O)] + ja(t) sin [2 iyt + @(t)] (24)

Stating equation (24) as an equality and simplifying the notation by
use of the exponential, we get

¢ (t) = a(t) ej[ZTTfot i

. (25)
= u(t) ei2mfot
where u(t) is a complex modulation term
u(t) = a(t) e’ot) (26)

consisting of the real amplitude modulation function and a complex
phase function. The evelope of the signal is

I ] = 20 + 521) @7

which gives ()] = alt) (28)

for this narrowband case. While equations (20) and (27) are per-
fectly general and follow reference (6), the results shown in equa-
tions (25) and (28) are valid approximations only for narrowband
signals.
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Fii teos @mfyt + 94 = sin @mfyt + ) (29)

for a particular value of o,
Fyiteos [2wft + )] # sin [2mft + p(t)] (30)

in general and the approximation of equation (23) only holds in the
narrowband case. For wideband signals the Hilbert transform
could be obtained by expressing

s(b) = a(b) cos [2nfyt + p(b))] (1)

as a Fourier series and then transforming each term by the
addition theorem [reference (5)]

ffm thit)+ gt)} = & tht)+Fp, te (31)

In summary, the representation of any sonar or radar trans-
mit waveform by the real signal

s(t) = a(t) cos [2fit + o(t)] (1)

is completely general. In the case of narrowband signals - which
implies a slowly varying a(t) and ¢(t) - the complex signal v (t)can
be readily written as

Y () = u(t)ei2mfot (25)

and the evelope as

I @) = alt) @9

which is the amplitude modulation function. In the wideband case,
finding the Hilbert transform s(t) may be more difficult than simply
using the real signal representation of equation (1) for analysis
purposes. For computer simulation purposes which use time-
series samples of the sonar signal, there is no need to consider
the complex signal form anyway. Appendix A will outline a direct
computational method of reconstructing the envelope defined as

RD - s2t) . 82(t) (32)

from time-series samples of the real waveform s(t)
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USING COMPLEX NOTATION FOR WIDEBAND SIGNALS

The preceding section discussed the difficulties of finding a
complex signal corresponding to a particular wideband real signal
specified in the time domain. If an analyst wishes to study the
sonar problem in the frequency domain, however, he can define
the transmit signal as a modulated carrier. The approach is dis-
cussed in references (3) and (4).

Using the Fourier transform relations of equations (3) and
q (4) and the consequence of s(t) being real as shown in equation (15),

r Z we can write
s =2Re| [~ 50 ei2ntigr|
0 i
: . : (33) )
a =2 Re es‘-’ﬂfot'[f S(fg + f>e12"ftdr|
4 Ay : .
1 | é
b

If we define a function E
| Vi =2 [T s, + 0 ei2nitds %
I | = + e (3
] . f~r0 - (34 :
L we can then express the real signal as

s(t) =2 Re{V(t) ei2mfot} (35)

which consists of a complex modulation function and the cerrier
: frequency term in the exponential. The carrier frequency term fo
i is arbitrary, but the function V(t) becomes unique once f, is
chosen. Naturally, f, can be chosen as shown in equation (6).
To further examine the properties of V(t), consider the
absolute value after a change of variable

£+ f=f &5
df = df 37)
such that Vit) = 2 fm S(f1yei2m ' =fodt g (38)
0
g 20'j2"fot[m S(fei2n g (39)
0

SO

vl =2 [T soeiznfgp (40)
O
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Now consider the method of computing the envelope using the Hilbert

transform where

()] = [s) + jSb)| (41)

Using the addition theorems of the Fourier and Hilbert
transformations

)] = 1F1S) + i F~1i—jsgnfS(HH]

"

l[” S(P) ei2mtdr jf‘” —jsg,mf‘S(f)ej?-““df|
- U'N S(f) el2T ity 4 fO” S(f) ei2Titde
0

0 iz .
+f S(f>e12"ftdf-f° S(f) ei2mftdf

—00

i ¥t ,j2Tft
Izﬁ) S e dfl .

where F—1-jsgnfS(f)} = §(t‘), since —jsgnfS(fis the Fourior transform of
st as discussed previously. Clearly, equations (40) and (42) are

equivalent. Therefore, [V(t)] represents the envelope of the signal
and

V@) = [s(t) + jS)] (43)
Thus, if an investigator wishes to express a wideband signal as a

modulated carrier, he must first select a carrier frequency fy
and then compute

1) = - L) ai2mit
\(t)_zjifosn"o,ne dr 34

which is related to the real signal as

s(t) = 2Re }V(t) ei2m ot} (35)

This process does not require the use of the Hilbert transform of
the real signal. Only the investigator with a particular problem
can seleet the most advantageous wideband signal representation

s(t) = alt) cos [2rfyt + p(t)] (1

PR AT TR YV  FrI N o YL T A1 Y




s(t) = 2RelVit) ei2mhay (36)

In general, the relationships cannot be easily converted, although
the past development shows their equivalence.
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APPENDIX

If a real analog signal is properly sampled, the signal
waveform can be reconstructed. If the transmitted signal s(t) is a
real function'defined on-~<t <~ and

. (1) s(t) has a Fourier transform S(f) such that

sup t f[S(D) # 0} = fy
is finite
(2) the sequence of sample values
.

---fl-nAt), -, f-At), £(0), f(At), --- f(nAt)

is known for all integers n

1
3 g A==
3) 2 fyy

then s(t) can be determined exactly from the sample values alone
at all t where f is continuous. Specifically, the reconstructed

signal 50 = s(p)
h = sinﬁ(ftt = n) Aoy
b () = Z stna ) ————— (A-1)
n=reo 'n’(A—t e n)
where sinn(—L —n) (A-2)
G
——
TT(At -—n)
if it (A-3)
At

This theorem is proven in reference (7). This treats the base band
signal, or a signal where the highest frequency f;; is known rather
than the actual signal bandwidth W = f;; - f; . The choice of sampling
interval At when both f; and f; are known, and when the first two

conditions leading to (A-1) are satisfied in addition to the conditions
: (f) == 0
(1) inf l f o

£f>0 l.—;fL‘:»O

(2) the sampling interval At satisfies one of the following:
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1
0 <At < —
2fy

fL

for K the largest integer such that K < M
HiT L
thens(t) = s(tywhere

= sin 2mf, (t-nAt) sin 2wfy (t-nAt)
g (A-9)

5 =a (nAY) i
g ; z ey Zwfy(t-nAt) 2, Zwfy, (t-nAt)
n=-—oco

as shown in reference (8).

Now consider the Hilbert transform of §(t). The Hilbert
transform of

sin x = c—(-)%l— by equation (22)
or o l-cos x by equation (17)

X

since

1-cos x . 2Sillz<%) (A-5)

X X

we can write the Hilbert transform of the two reconstruction form-
ulas as

; - e fa gt )]
. 2 sin [2 (At n
s(t) = E s(nAt)

' ‘ s (—t- —n) : (A-6)

n=-o

and




T

o

. sin2[nf“ (t-nAt)]
3 = at Z stav | af,

2wfy (t-nAD)

n=-—o
sin? [wf ('t—nAt)]‘

g 2nfy, (t-nav) |

Using a sampling interval (a) such that
t=ga,g=0,1,2, ---, N-1
a simplified expression for computing the envelope
R(ga) = | S(ga) |

n-1 25i112l§(g—n)] 2
s2(ga) + 2 s(na) =

w(g-n)

"

n=0

2

it

n=1
e n) e
e ZS('“’) =
w2 (g-n) 2
n=0

X
1 (g-n) odd

and for the other case of known bandwidth

: -n)
ain2 [_TzL (g—n)' lO for (g-n) even

n-1

sinZ m(At fy) (g-n)
Riga) = [s2(ga) + Atz stna) { 2f,,
n-0

m(At fi)) (g-n)

- 2fy,

sinZ (At f;) (g-n) ]2

(At f; ) (g-n)

(A-T)

(A-8)

(A-9)




