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FOREWORD

This technical note suggests methods for incorporation of automatic

and semi—automatic target classification techniques into the design of
advanced active sonar systems. The discussion results in a proposed de—

sign for a classification subsystem that is computationafly fast ,
adaptive , and provides operationally meaningful information to sonar ,
fire control , and command and control personnel.

The work represented herein was done from June 1967 through December

1968 under direction of NUC personnel now associated with NUC Code 603 ,
Simulation, Analysis and Applications Division. It was sponsored by
NAVSRIPSYSCOM (Code 00V2) through the Conformal/Planar Array Program
Project Office and the New Submarine Sonar/Fire Control System Project
Office. Technical assistance was obtained from Computer Applications,
Incorporated (CAl) , under Contract Nl23(953)57400A.

Only a portion of the total ef for t  expended is reported in this
technical note . An alternative nonstatistical approach was also Pursued ç /
The results of this latter work are documented in NUC Technical Note 543 1

The guidance and technical contributions of R. P. Schindler , now of

the Naval Electronics Laboratory Center , are gratefully acknowledged , as

well as the programming support provided by Mrs . J. Sentovic and R. T.

Napier , also of that Center , and by M. Einhorn of Computer Sciences

Corporation.

1
Superscript numbers denote references at end of report, preceding
the appendices.
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AN APPROACH TO

TARGET CLASSIFICATION BY COMPUTER

IN ADVANCED ACTIVE SONAR SYSTEMS

I. \. INTRODUCTION

~Traditionally , and to a large extent today, the responsibility for making

a classification decision on a detected target rests with the sonar operator.

It is his task to review all target—related information received through the

various inputs available to him. From these sources he must extract only the

information he considers pertinent and then correlate this information before

arriving at a classification decision.

The need is great for the generation of automated techniques to assist

the sonar operator in selecting , extracting and correlating pertinent data.

This need will become more acute in the complex advanced sonar systems which

are currently under development.

The present investigation included four kinds of overlapping activities:

(1) a search of current literature for applicable techniques, (2) development

of new analytical techniques to augment existing ones, (3) generation of

computer programs to implement and evaluate these techniques, and (4) develop—

• ment of a design for a complete semi—automatic classification subsystem.

The general classification problem is formidable, and despite the fact that

the approach in this inves tigation was res tricted to methods realizable in a

real—time system, the results are necessarily partial and the recommendations

tentative. Nevertheless , essential ground has been covered , and it is believed-- — -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .±. ..-~~~~~~~~~~--.,.
.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- the observations made here will remain valid until the next major theoretical

- advances in classification techniques are achieved. Also,many of the topics

discussed in this note may be of interest to those concerned with applications

of general computerized learning and classification methods to areas beyond

- 

the domain of advanced digital sonar systems.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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II • CLASSIFICATION TN ADVANCED ACTIVE SONAR SYSTEMS -

A. The Classification Subsystem. Advanced submarine and surface ship 1 ’

sonar systems now under Navy developnent are being designed to incorporate

• computerized data processing complexes (DPC) . The DPC will digitally correlate

the inputs from the active and passive sonar sensors and combine them with

• external inputs such as environmental data , own—ship ’s status , and intelligence

information. High—speed digital processing of this information will allow the

system to carry out, with varying degrees of operator assistance, the functions

of target detection, tracking, classification, and threat evaluation, and will

automatically provide fire control solutions and weapon settings. In addition,

the DPC will generate graphic and digital display format,a for sonar, fire con-

trol, and command and control personnel.

This technical note deals with the portion of the DPC that performs the

target classification function utilizing the active sonar returns . It is

considered a subsystem of the DPC , and is subject to normal system constraints .

For instance , the classification subsystem must be real—time in the sense that it

must rapidly process its external inputs and output results before data from

the nex t ping arrive. Since a digital computer is the h eart of the DPC , the

classification computer programs must be designed to respond first to inputs of

high priority to the exclusion or deferment of lower priority functions . Time—

consuming operations and those not requiring fas t response cannot be permitted

to interfere, and are accordingly relegated to ~Ibackground w processing . In

addition to the design considerations peculiar to a real—time system, this

subsystem shares the constraint of any complex computational system of prog rams —

that a subprogram may not consume operating time or core memory space which is

out of proportion to its importance.

3
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B. Probabilities of Class Membership. The computational power

available in the DPC permits the application of statistical decision theory

to the problem of either automatic or semi—automatic (operator— assisted)

target classification. Desirable simplifications can be made in the statistical

theory if we ignore a priori probabilities and cost functions. This can be

done because there is no risk involved in ranking targets by probability

scalars, as opposed to deciding that they belong to class 0j ,  
~2’

The classification subsystem outputs are in the form of likelihood ratios

or probabilities and associated confidence levels. The likelihood ratios

can be expressed as

tic 
P (X I ®i ,~) (1)
l— P ( X l ek)

where P(XIOk) is the probability of event X occurring given that it is a

member of class °k~ 
To convey information to an operator in a more meaningful

fashion, these probabilities can be expressed directly :

• P ( XI O  )P(o )
P(® ~, j X ) — - ( 2 )

all
~ P(X ~O~ )
k—i

where X is the unknown observation and P(XlOk) is the conditional probability

density for the kth class. Restated in these terms, the classification

problem becomes one of computing P(OkIX) from the estimated conditional

probability densities P(XjOk). To obtain acceptable estimates of these

probability densities, we should observe as many samples from each target

class as possible. This is extremely difficult , especially in the case of

obtaining samples of actual hostile vessels and weapons.



TTT~~~~~~IT~~~ 
- 

~~~TTI~~

It is clear, however, that the computer must hav e some estimate of each

of these probability densities to make a classification. These estimates

can and should be improved as more observations are made. The initial densities

used will be based on simulated data , the generation of which is a difficult

problem in itself . Ideally, the ineluence of the simulated data will gradually

diminish as real sample. become available , but there is little assurance that

real sample. would occur frequently enough or over a sufficiently representative

range to obviate the simulated data totpli~e1y .

• — - .------ —.--
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C. Learning. The procedure which forms a representative conditional

probability density function P(X
~
O
k
) for a class of objects from past obser—

vations of samples is referred to as “learning”. The most thoroughly analyzed

and tractable application of statistical learning is for multivariate normal

distributions (MND) . Learning, for the MND , is the computation of the sample

coI~ariance matrix , U , and the sample mean , X , as estimates of the parameters

of the sample’s parent distribution (E ,ii). This exemplifies “parametric

learning” where the form of the underlying distribution is assumed and its

c1~aracteristic parameters are estimated with diminishing erro r as the number

of samples increases .

Conversely ,  non—parametric or distribution free learning assumes nothing

about the form of the distribution , but responds directly to the samples as

does a his togram . The single outstanding non—parametric multivariate method

existent is the Polynomial DL~~ rimlnant Method (PDM) ~2 The relative merits

of the parametr c and non—parametric methods will be discussed in Section III.

The major d i f f icul ty  in applying the learning procedures to sonar is

that of obtaining usable quantities of representative data over the range of

circumstances in which the target types of interest occur. For submarine

targets ,for example , these data include pertinen t combinations of range ,

speed , depth , and aspect angle for surface, bottom bounce, and convergence

zone modes of transmission .

~ 

___ __ ___ ____
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D. ~~~~~~~~~~ Adapt~tjoj~~~ iuter~~sim4 U the process of modif y ing,

th, originally learned probability density functions in response to the

reception of additional samples of known target classes. These samples have

previously been classified by an external source. If the new samples

are weighted the same as samples originally learned , the final result

will be the sai.& at if all the samples had arrived at the same time. Such

an elementary scheme is appropriate only to data that are time—invariant,

and is a special case of adaptation. The im portance of adaptation is apparent

from the following comments on the characteristics of certain target types:

1. Submarines will provide comparatively few samples . It would

therefore be necessary to remain sensitive to new samples while retaining

all of the older learned information . Also , the real—tim. bI~tvsen observations

of submarine targets ordinarily would be great , suggesting that time—weighting

should be discounted for submarine samples.

2. Noi.e, in contrast to submarines, would provide a far more

continual supply of representative target samples which might vary gradually

with time and location . Here , a straightforward time—weighting scheme

would cause the influence of older samples to fade and be supplanted by the

newer inf ormation . The rate at which the weight would diminish with age would

be controlled by a parameter chosen empirically. The relative stability of

most classes of targets would permit adaptation computations to take place

on an infrequent background basis .

3. Other target sources such as sea mounts , schools of fish , whales .

etc.,  fall between submarines and noise in the rate at which samples will be

7
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available, and it is another problem how to merge these sources for learning .

- The point here is that the method of adaptation has to be consistent

- with our model of the processes we are studying; i. e., are they stationary,

highly unpredictable, etc.? From the point of view of simplicity, we would

like the adaptation algorithm to be in parametric form and not involve

elaborate computations .

8
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E. Classification. The act of making a target classification decision

is too crucial and the cost of a false alarm too high to permit this - function

to b~ 
completely automatic. The operator with the responsibility of making a

target classification decision will have to act on his own judgment, based on

the automatic estimates of the target class probabilities and tempered by

all available active and passive tracking data.

For each ping ’s worth of new data, the classification subsystem will

automatically assign class probabilities,P(O~~X), for newly detected targets

and for those which are currently being actively or passively tracked.

Ideally , the classification subsystem would unerringly label each target

with the correct Realistically , the best that can be done is to estimate

the likelihood that the unknown target is from and also estimate a conf i—

dance level for the likelihood ratio. These variables may be used conveniently

to rank the relative importance of each target as suggested by Table 1.

TABLE 1. TARGET RELATIVE IMPORTANCE AS A FUNCTION OF
HOSTILE TARGET LIKELIHOOD RATIO AND CONFIDENCE
IN LIKELIHOOD RATIO

Hostile Target Confidence in Target Relative
Likelihood Ratio 

, 
Likelihood Ratio Importance

- Low High 
• Least importan t

Low Low Important

High Low Important

Righ Righ Most Important

Appendix A discusses a procedure which could be used to evaluate relative

target importance as suggested by Table 1.

I
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Classif ication, in this context, involves the evaluation of all the

P(XIO~~s for some selected number of targets each ping , and then , from

Equation 2 , computing the desired scalar class membership probabilities,
• 

~P(OklX) , for these targets. The classification subsystem, therefore, serves

primarily to give a ranking, in terms of a scalar quantity, P(OklX) which

may be used to assist the operator in making his classification decision or

may be thresholded to provide an automatic alarm. The latter approaches a

totally automatic classification subsystem.

The classification function exemplifies a foreground, priority function

of a real—time data processing system due to the frequency of its operation

and to the fact that the sonar platftrm may well be in a race with a hostile

computer to establish a fire control solution.

10
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III. TECHNICAL DISCUSSION

A. Vector Representation, the Meas’mrenm en t ~~~ce. For each ping ’s worth

of available information , target observations are made which consist of extract-

ing d ordered measurements. These measurements can be represented by d ordered

real numbers (x1, x2, . . . ,x~ , . . . ,x
d
) corresponding to d—dimensional

vectors , X, or points in Euclidean d—space which we will refer to as the

-‘!measurement” space. This representation is necessary for a mathematical treat-

ment and is merely an extension of the familiar Cartesian Coordinates.

Suppose that in active sonar - -echoes from a target are observed and three

measurements are taken from each echo: Range (R), amplitude (A), and doppler

(D). Table 2 illustrates both a descriptive notation and the generalized nota-

tion which will be used throughout the remainder of this note.

TABLE 2. VECTOR NOTAT ION

Descriptive Notation Generalized Notation

R I A  I D  i

OBSERV AT IO N Dimension 
________ ______ _______

11~st 2nd d
th 

1 2 3(—d)

at k k k
- 1 R1 A1 D1 1 x11 x12 x13

nd k k k2 A2 02 2 x21 x
22 

x23

th k k k
j R~ A~ D~ 

_____ 

Xjl Xj 2 xj3

th k k km R A • D in x x x
in in in ml m2 ad

R--— range , A — amplitude , D — 4 ~,pl.r

11



Each set of d—ordered measurements from a target source is stored as

a row vector in an ui x d matrix . Each row vector is denoted by

— (x~1
k
, xj2

C
,;. ~~~~~~~ ..,xjd

k
) where the superscript indicates that the

vector is known to be from the k-~~ class. The absence of a spperscript means

that the source is a target of unknown class. Sets of known vectors are

denoted by brackets; e. g., a set of ~
( known noise vectors is [Xj

°J$n •

-7
-

12
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B. Discr~~ 4~-~”t Fwtctions. The possibility of using multiple linear

surfaces (discriminant funottons) to compartmentalize the measurement space

was considered but found to be an unsuitable approach for the following

reasonh i

1. Specifically separating surfaces are sensitive only to the

available known samples and are susceptible to error when used to classify

unknowns .

2. The problem does not call for classification decisions, but

for relative estimates that an unknown target is a submarine, torpedo , etc.

3. The direct use of separating surfaces does not provide a plausible

mechanism for estimating the desired likelihood ratios and confidence levels.

Of course , artificial measures of the likelihood ratios and conf idence levels

could always be defined in terms of distances from surfaces in an arbitrary ,

artificial fashion.

4. Finally, surfaces determined from a statistical foundation can be

made to class fy at least as well as those from class~-separating algorithms

by comparing the likelihood :atio with a constant (C) . For example (and

ignoring considerations of costs and a priori probabilities) , decide:

P (x I e 1)
XE.O if

- 1 P (X 102)

Or from equation 2 decide:

X CEI if p(4~~) > 
C (4)

(C + l)

S.lflce th. fumett~~ P(XIO1) and P(X102) are unrestricted, the resulting

decision regions can become very complex . It should be pointed out that

overly complex surface structures are not only hard to use , but may well

give results inferior to those obtained with simpler surfaces.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-— - - -~~~~- - -  ~- - - -~~~~~~~ —— ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~
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C. Clusters and the Shape of Sample Distributions. In the statis-

tical approach selected for this analysis , known vectors can be considered

as samples from unknown parent distributions. These samples may be visual—

• ized as comprising clusters of points in the familiar three—dimensional

space of our experience . Thus , sample population s from a g iven source

- 
class may be described in general qualitative terms such as sparse, dense,

locally dense , e].lipsoidally symmet r ic , homog eneous , etc. More complicated

cluster configurations are more difficult to describe verbally or in terms

of mathematical parameters . The problem of eff ic ient  description of an

• entire sample set can be greatly alleviated if the data are divided into

easily describable subsets. Such attempts are discussed l iter in this section.

L
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D. Sample Representation. If a large number of sample observations

have been taken on a target, it would not be practical to store all the samples

explicitly for later reference. One method of alleviating this problem would

be to decimate the data, but this could lead to an undesirable loss of infor—

mnation in cases where the residual samples are not representative of the

discarded samples. Also, the data that can be discarded without undue com-

promise depends upon the quality and amount of the data. Therefore, the

motivation to reduce the requirement for reference data must be subordinate

to the problem of faithfully representing the “shape” of any clusters contained

in the data. In this wte all numerical attempts at data representation are

be referred to as “cluster analysis” .

The literature on cluster analysis is extensive, but very little is

applicable to cluster analysis in sonar classification. The be8t computer—

oriented cluster finding technique uncovered in the literature seems to be

ISODATA.3 Successful experiments have been carried out at this Center with the

ISODATA technique. However, existing cluster analysis methods appeared to

have too many inherent risks and deficiencies. For example, methods which

introduce the data sequentially are sensitive to the order in which the

data are introduced. Also, the picture can change precipitously when certain

parameters are marginal; e. g., the parameter that governs whether two or

more clusters should be combined into one cluster. The validity of some

other methods depends upon the shape of clusters. For instance, the histogram

method of C. Sebestyen favors ellipsoidal shapes.4

These shortcomings were deemed unacceptable. because of our i~v~rall

15
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objective of recommending techniques which would perf orm reasonably well

over a broad range of cluster configurations. Accordingly, a method which

would regard all data simultaneously and fix the number of clusters as

unequivocably as possible was sought. A vector field approach of considerable

promise was developed and its feasibility was verified graphically by programs

using the CALCOMP plotter and a computer—driven display.5

The evaluation of the efficacy of a cluster—seeking method should not

be merely subjective. A step toward more objective co ’iparisons has already

been made in the *eneration of a few “standard” sets of data. We

feel that these clearly useful attempts are nevertheless incapable of meeting

an essential objection: a truly general cluster analysis technique must

demonstrate itself over the applicable range of 3ample sizes, dimensions, and,

most important of all, data configurations. We approached this problem by

using Monte Carlo techniques where the data sets were generated randomly.

Because this implied a lack of complete control over the test data, an auto-

matic and objective way of measuring cluster finding performance was called

for. Appendix B contains suggestions for objectively measuring this perform-

ance.

It should be emphasized that a rigorous test of a cluster analysis

technique is necessary before it can be considered ready for operational use.

The test data should be designed to produce significant problems in contrast

to the well—separated clusters often used to illustrate techniques. As a step

toward the generation of test data, a program was written which makes use of

randomly generated covariance matrices. This program implements suggestions

16
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of T. P. Norris (NUC) and G.A. Butler (CAl) and carries out the following

steps :

1. Randomly selects d real vectors of d components each. These

are a basis if they are chosen to be linearly independent.

2. Does a Gram—Schmidt orthogonalization process using those

d vectors. The resulting orthonormal set is then arrayed in the d x d matrix , W.

3. A scalar matrix , S with diagonal elements X
1
,X2 

. . X~~, all

treater than zero , is chosen randomly.

4. The desired covariance matrix is then computed by the similari ty

trans formation

U = W ~~SW (5)

where U is a positive definite matrix with a determinant equal to i~ l A 1.

If U corresponds to a d—variate normal distribution , we could say the

A ’s determine its shape and spread , and W determines its orientation. The idea

is that test clusters of samples generated by the distribution would tend to

have the same shape and orientation. Another program, TDATA ,* generates a

specified number of samples from U with an assumed mean of zero. We have

the ability to produce random cluster systems by generating the union of a

number of more or less ellipsoidal clusters whose means would be chosen to

ensure overlap . The overlap in turn gives rise to larger clusters of more

complex shapes which cluster analysis techniques would have to resolve into

their simpler components.

*TDTA was borrowed from L. Traister of CAl, and modified by R. Napter
and 3. Roese of NUC.

~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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E. Measurement Selection. We have not attempted to resolve the d i f f i —

cult question of how many measurements should be taken on a detected target.

It is true that the amount of classification information does not decrease

when new measurements are added and are not found to he helpful. However ,

if it cannot be shown that each new measurement is independent of all the

others , it is a costly effort to find out just how much information it is

contributing.6 Aside from the theoretical arugument against too many measure-

ments, the fact is inescapable that an increase in dimensionality will mean

non—linear increases in oomputer storage and processing time. At this point

we can only suggest that measurements be chosen which we know to be most

relevant to the physics of the situation . This suggests that each mode of

active sonar transmission (surface duct , bottom bounce, convergence zone)

should have its own set of measurements.

18
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F. Statistical Learning. Learning, in the context of this problem,

means the estimation of all of the conditional probability density functions

P(XIG
k
) of the 0

k 
target classes. It will have to be assumed that the sample

data from which the system learns is representative; that is, that the rela—

tive number of samples in a unit volume of the measurement space is suggestive

of the probability density there. As was indicated earlier, it is extremely

unlikely that there will ever be enough real samples to meet this requirement;

therefore, the use of simulated data from elaborate models is almost inevitable.

By breaking up the available samples into clusters of more or less convex shape,

it is assumed tha t each cluster consists of samples from a local d—variate

normal distribution. Learning is then reduced to computing the sample mean

vector, R~, and sample covariance matrix, u
k, for each cluster. By definition

these computations are as follc~s:

Mk kE x—Ic j—l j
— (6)

--k --k --k --kx 
~~
(xl , x2 , . . ., xd ]

usr
’~ — ure

k 
— ~k ( xjr

k 
— 

r
k ) ~ - ~5

k 
~~, 

M.~ ~ d (8)

(uri
k) (9)

19 
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For the purpose of efficient computation , the means of the measurements

would be computed first; then the elements of the sample covariance matrix

can be computed quickly using Equation 10:

Mk k kE x xk j l  Ir 18 (10)rs — k — k• )t - x  x
• K r a

It should be noted that the simple computations of Equations (6) and (10)

are all that is needed to estimate the parameters of the d—variate normal

distribution which has the form of Equation (11):

P(xIOk
) - ~~~~~~~~~~~~~~~~~~~~~~ - ~k ) Uk (X - ~k)

T
] (11)

The circumflex reminds us that Equation (11) is an approximation to some

underlying probability density whose form we have not literally assumed,

but which we hope is not too unlike the normal case.

• The symmetrical nature of the quadratic form in the exponent of

Equation (11) permits a computational shortcut with significant savings

as shown below.

Let

Qk 
— (X - j~k) u~ (x — jEk) T (12)

4—i d —k -k
— U ( X  — X ) (x — x )

r 1  s r+1 8

u (x ~~k)
2 (13)

r 1 rr r r

20
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The derivation of the multivariate normal distribution and the optimality

of the sample mean and sample covariance matrix estimators are thoroughly

developed in the literature.7’8

The computation of the likelihood ratio also has desirable simplicity.

If the likelihood ratio, ~~, is concerned with class h versus class k, then

P(x~O )
— (14)

P(xf °
k~ 

,uh ,~
. 2exp (_l/2Qk)

It is more convenient to deal instead with the natural logarithm of 1.

which is, of course, monotonic with respect to £.

lOBe
P — l/2(~og ukl — Q

h 
— lOBe I1~l + Qk) (15)

log
~
& (log~~U~ — log 11111 + Qk — Q

h) (16)

• The last equation shows that the evaluation of quadratic forms is all that

is required to determine L , since the logarithm of the deteiminants would

be stored as slow—changing parameters. The above equations have been

programmed at this Center and successfully evaluated for two—dimensional

sets of data.

A serious practical problem arises when the observed unknown has one

or more missing or very noisy measurements. Some effort was expended on an

analytical solution to this problem, and this appears in Appendix C. It

has been suggested that the best that can be done is to ignore the missing

21
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dimension entirely; that is, deal with a subapace. For the sake of practicality,

we suggest that the unacceptable measure, xi, be replaced by the following

weighted interpolation:

- 
(u
ii
k
)j

h 
+ (uj j

h)
i
k 

(17)

(u~1 
) + (u11 ~

This interpolation is an attempt to force x
i into a position between the means

of the classes k and h so as not to bias the quadratic form toward one class

or the other. All of the parameters of Equation (17) are readily available from

the sample means and sample covariance matrices.

22
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C. Confidence. It is important, for operational purposes , to have

some measure of the level of confidence in the likelihood estimate based

on an unknown X. This is a very difficult task which has never been done,

to our knowledge, even for the case where the multivariate normal assumption

is made. There is no way of knowing, or expressing, the condition where

the probability estimates are in error due to learning data which is not

completely representative; i. e., does not exist in all regions of the

space in which unknowns might occur . For this reason the statistical

confidence measures described here are simply a function of the number of

available samples. Statistical confidence is expressed as the probability

that a sample from a random variable falls within a given range of the random

variable. It was not possible to give a complete analytical expression of

statistical confidence without making strong simplifying assumptions about

the forms of the probability density functions of the active sonar targets

of interest; even then, the analytical problems were severe.

We took two approaches to estimating confidence levels: 0-) Monte

Carlo techniques,and(2) intuitive technique with some analytical basis. • 
-

The Monte Carlo approach chosen was based upon the d—variate normal fit

• method of probability density estimation using clusters of more or less

describable shapes (ellipsoidal and rectangular). The validity of this

error analysis therefore applies only to cluster analysis methods which

control the shape of the resulting clusters. Where the cluster shapes

are not controlled or are only partially controlled , the idea of a confidence

measure for the d—variate normal fit becomes meaningless; i.e., our
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confidence would always be very low. The Monte Carlo attempt was not completed

due to time restrictions; however, the following procedure for analyzing the

problem was defined:

1. Randomly choose a covariance matrix,Z~ ~ d

2. Randomly generate a number of samples, 14, from (0,E) using

the TDATA Program.

3. Compute a sample covariance matrix, U, and sample mean X

from the M samples.

4. Using Equation (11), compute P(X) for a variety of points {X}.

5. Using E (the “true” covariance matrix) and a mean of zero

(the “true” mean) , use Equation (11) to get the “true” p(X) values.

6. Compute the relative error (P(X)—P(X)~P(X) and other error

functions for each X.

7. Record: d, 14, Ju f , Q, and the error functions.
8. Repeat Steps 2-7 some number of times and then go back to

Step 1.

The approach here was to treat the relative error as a random variable

which was a function of the other random variables d, M, ui , and Q. A

• FORTRAN program was written to carry out these steps, but was never completely

debugged. The ultimate intent was to fit the surfaces of relative error

and other error descriptions as a function of d, M, UI, Q. This would have

allowed an error and confidence level approximation for each X with some

experimental justification. Similarly, a Monte Carlo error analysis could

also be made when the cluster samples are used to generate amy other

probability density function under evaluation. • 
-

24

_ _ _ _  - - - • -—-~~~~~~~~—-
-——••-—- ----• - •— •~~~~~~- •• •



::~~~~~~~~~~~~~
-- 

~- - • .~~~~~~~~~~~~~
• •~~T~~T L.i --:

~~~~~~~~~~~~~~~~~~~~~~~~

--- 

~~

—-- 
.

_

~~~~ 
-. - -

~~~~~

In the case of PDM the polynomials would be prechosen as the source

• probability density functions. Confidence in this case could be defined

as a function of the number of learning samples, the degree of the polynomial,

and tbe number of dim~nsions.

The second approach was to view the problem in a stylized way so that

some helpful analysis might be applied. We made an assumption that the multi-

variate normal function represented the shape of the “true” probability density

function well enough (most samples in the cluster near ~~~ mean , diminishing

to a very few at the edges). The second assumption was that the only error

was in the location of the unknown, X, with respect to X. In this case,

the relative error can be approximated by

relative error AX . grad P(X) (18)
P (X)

where AX denotes an error in the distance to the mean. The derivation

of the gradient is given in Appendix D. To estimate AX, one may make use

of the fact that the variance of the sample mean of a normal population is

l/M of the population variance. This allows the following extension:

d 1/2
AX — (lUi/M ) (19)

where fu f is the determinant of the sample covariance matrix of M samples

in d—dimensions. Once again, there was insufficient time to test the

feasibility of this approximation on the computer, and IL 4.~~ included here

as being suggestive of a possible direction for future work.
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H. Number of Parameters. The parameters that the system has to

learn using a gaussian fit for each cluster in a measurement space of d-

dimensions are the d—compo nents of the sample mean, the d—variance elements,

and the d(d — 1)/2 covariance elements of the sample covariance matrix. This

is a total of (d2 + 3d)/2 parameters that would have to be retained for each

cluster. Table 3 shows the number of parameters for a range of dimensions

(d) and number of clusters (n) .

Note that the tabulated values are equal to n(d2 + 3d)/2.

TABLE 3

NUMBER OF MULTIVARIATE NORMAL LEARNING PAR AMETERS

Number of Clusters (a)

1 2 3 4 5 6 7
5 20 40 60 80 100 120 140

6 27 54 81 108 135 162 189

7 35 70 105 140 175 210 245
Number 8 44 88 132 176 220 264 308of _________________________________________________ ____________

• Dimen— 9 54 108 162 216 270 324 378sions _______________________________________________________________

(d) 10 67 130 195 280 320 390 455

11 77 154 231 308 385 462 539

12 90 180 270 
— 

360 450 540 630

13 104 208 312 416 520 624 728

14 119 238 357 476 595 714 833

15 135 270 405 540 675 810 945

16 152 304 456 608 760 912 1064

26 
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1. The Polynomial Discriminant Method (PDM). The Polynomial Discriminant

Method is introduced here as the exemplar of the non—parametric statistical

approaches to classification. It was planned earlier in this project to compare

the PDM with the cluster analysis/multivariate normal fit 4~ètMHFt~. approach

discussed in preceding sections. As with certain other portions of the

investigation , there was insufficient time to implement PDM on a computer

and carry out such a comparison.

The following paraphrases the important features of PD)! and compares it

with the cluster analysis/multivariate normal fit approach. In the PD)!, the

approach is to view each sample as independently representing a local parent

density whose form is a spherically symmetrical normal function. The overall

parent density is just the averaged sum of these functions expanded principally

as a polynomial. The spread of each individual contribution, o, can be adjusted

to compensate fot Ithe ~bumpy” density which arises from small numbers of samples.

The PD!.! workd roughly as follows:

1. The learning algorithm requires that each sample be used one

• at a time, so there is no need to store each sample after it has been observed.

The same is true of CA/MNF, inasmuch as nothing nore than averaging is involved.

2. The algorithms for calculating the polynomial coefficients are

fairly simple, as is also the case with calculating sample means and sample

covariance matrices.

3. The shape of the polynomial density function can be made as

complex or simple as desired by adjusting a , the spread parameter. With

CA/MNF, the density function is a union of ellipsoidal shapes. While the

27
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latter can get complex when there are many clusters, it is restricted as

compared to the PDM.

4. When the PDM is used for classification, the surfaces of equal

likelihood can be strictly linear or highly non—linear, depending on a.

• Such surfaces are always second degree for CA/MNF.

5. The PDM will work with only one sample. It is necessary to

have at least d samples to calculate a non—singular d x d sample covariance

matrix.

6. Theoretically, the PDM does not require any preliminary cluster

analysis. The CA/MN F has no meaning for unclustered data, and may

still work poorly unless the cluster is more or less convex.

7. The number of polynomial coefficients required increases

geometrically with the sum of the degree and number of dimensions (variables).

The basis for a comparison of the number of PDM coefficients with the

number of CA/MNF parameters is important enough to be developed in the

following section.
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J. Comparison of Number of Learning Parameters. In the case where

each cluster in a sample set corresponds to a mode in the parent density,

the degree of the polynomial necessary to represent the parent density

must be at least one greater than the number of modes. Where r is the degree

of the polynomial, n is the number of modes, and d is the number of dimensions,

the number of terms in the polynomial is:

number of terms — _(r + d)! (20)
rt d!

— ( n + l + d )  
(21)

(n + l) ~~~

Table 4 gives the number of terms for a range of a and d for comparison

with Table 3. The proper interpretation of the tables is not that the number

of terms in PDM i~ prohibitively large, as one might be tempted to think .

Note that for the case where there is only one mode, the number of parameters

is virtually the same as for the CA/MNF. : We feel that it vould’ be

possible to get the best results by combining cluster analysis with PDM ; 
-

•

• i. e., fit polynomial density functions to clusters rather than attempt to

use the entire set of learning data to generate a single polynomial.

29
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TABLE 4

MAXIMUM NUMBER OF POLYNOMIA L TERMS

Number of Modes , n

1 2 3 4 5 6 7

5 21. 56 126 252 462 792 1287

6 28 84 210 462 924 1716 3003 
—

7 36 120 330 792 1716 3432 6435 - 

-

Number 8 45 165 495 1287 3003 6435 12,870
of

Dimen— 9 55 220 715 2002 5005 11,440 24 ,310
sions,

d 10 66 286 1001 3003 8008 19,448 43,758

11 78 364 1365 4368 12,376 31,824 75,582

12 91 455 1820 6188 18,564 50,388 125,970

13 105 560 2380 8568 27 , 132 77 ,520 203 ,490

14 120 680 3060 11,628 38,760 116,280 319,770

15 136 816 3876 15,504 54 ,264 170 ,544 490,314

16 153 969 4845 20,349 74 ,613 245 ,157 735,471

30 
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IV. TARGET CLASSIFICATION SUBSYSTEM DESIQ~

Figure 1, a functional block diagram, depicts the principal elements

of a target classification subsystem as it might be implemented within the

data processing and display complex of an advanced active sonar system. This

subsystem design incorporates the ideas and techniques which appear to be

most promising, and at the same time are compatible’ wi th  total system

constraints. For convenience, the elements of the target classification sub-

system are grouped into the three subfunctions of preprocessing , learning.

and adaptation, and classification. These subfunctions are discussed in order.

A. Preprocessing. The preprocessing subfunction embraces the

digital processes that reduce the inputs from the target detection and tracking

programs to vector representations useful to the other subfunctions. The

measurement extraction programs produce a finite set of target measurements

for each new look at a target. Varying degrees of extraction and processing

will be required to obtain this set of measurements. For example, target

speed will be available directly from the tracking program,whereas target

aspect angle and depth will require some computations. The measurement

extraction program is designed to reduce the quantity of target data avail-

able and represent these data in a manner which emphasizes the features

that distinguish targets of interest.

When the desired measurements are extracted they will, in general,

be in different units. Normalization of the measurements can be accomplished

by dividing by their respective standard deviations, a procedure which- is

equivalent to a ecalar transformation. After scaling, it may be desirable

31
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ei ther to transform these vectors into a more prop itious coordinate system

by performing an eigenvalue analysis, or to reduce the dimensionality by

doing a suitable mapping. The procedures which take the extracted norma-

lized measurements and produce the vectors (x } to be learned or classified

are termed “vector transformations” in the figure .

B. Learning and Adapeation. Learning (Swithh B “UP” o f Fig . 1)

occu rs wh en the subsystem is exposed either to ar t i f ic ial  data (Switch A “UP)

or to real sonar data (Switch A “DOWN”) .  In either case , when a vector is

presented fo r learning, its class membership must also be given. This new

vector is included in the data base for known vectors prior to re—ini t ia l iza t ion

of the cluster analysis routines wh ich recompute (learn) new parameter values

or adapt existing ones . Note that the idea of adaptation also includes the

special case of one—shot learning; this is essentially adaptation from a

state of complete ignorance. In this sense, “learning” and “adaptation” can

be used interchangeably .

The elemen t referred to in Fig. 1 as Parameter Learning and Adaptation is

completely gemeral because the learned parameters could be coefficients of

a polynomial, the parameters of a d—variate normal distribution , or the

parameters of any other function that describes class probability densities .

Whatever their form, the most up—to—date values for the parameters are stored

in high—speed core memorylor immediate use in evaluating the likelihood

ratios and confidence levels for unknown vectors.

The function of storing a data base of known vectors is important as

it retains the information required to perform meaningful cluster analysis

33
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on a background basis . Also , vectors from tracks that are as yet unclassified

must be ret&ined until the operator classifies them. These vectors could

be stored temporarily in the data base as unknowns. The allocation of space

for these vectors would depend on operational data rates and the amount of

storage available.

c. Classification. In a completely automatic classification subsystem ,

the conditional probability of membership in the~’several classes could be

estimated using the current parameter values and then perhaps combining

with cost functions and a priori probabilities to produce a classification

decision. The absence of reliable cost and a priori information in actual

operational situations are among the reasons why the ultimate responsibility

for target classification still remains with the sonar operator. In Figure 1

the automatic output of the classification subfunction is depicted as an

independent Input to the sonar operator. This operator must continually exercise

his own j udgment based on the total of the information received from the target

classification subsystem, 1t~.1~X), 
the processed outputs from the passive sensors,

passive and active track histories, intelligence information, environmental

data, add system performance level for the sonar unit. The classification

decisions of the sonar operator are then sent to the personnel responsible for

fire control and command and control decisions.

When an operator classifies an active track, all samples from that

track will be fed back automatically to the target classification subsystem

and used to improve the previously learned parameter values by the adaptation

process. This will be done as background processing and will be effected only

when all immediate operational needs have been met. 

---- - - --~~ •-- - --- - -  
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V. RECOMMENDATIONS

During the course of this investigation, certain additional approaches

of considerable promise were isolated but were not completely evaluated

due to lack of time. If further work of an exploratory nature is contemplated

for automatic classification, the authc a feel that the following recommended

approaches should be given consideration:

1. The Polynomial Discriminant Method of Dr . Donald F , Specht (Stanford

Electronics Laboratories) appears to have several strong points in its favor.

We feel that Dr. Spech t should be contacted to learn the current status of ¶
his work on the PDM. Some of his work was done under Navy contract on the POSEIDON

project and should be available to the Center. Also , it would be worth—while

to know of improvements to his PDM and of any differences between theory and

the computer implementation. Dr. Specht’s investigation has been in progress

for several years and the programs developed in its course undoubtedly reflect

considerable refinement. It would seem desirable to acquire these programs

directly and convert them for use on the Center’s computers.

2, Work should be continued on cluster analysis until a method

emerges that is significantly superior and more reliable than the other leading

contenders. What is needed is not an “ultimate “ method but the best among

at least three promising methods. Those which currently appear most promising are:

a. Gradient Method

b. ISODATA

c. An adaptation of “hill climbing procedur~s” to find the maxima of

a POM polynomial.
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3. An effort should be made to introduce man—machine interaction .

into the development and evaluation of classification methods. This could

be accomplished by direct CRT display of data such as is done In the PROMENADE

system.9 Or the dynamic results of cluster isolation, learning, and

adaptation procedures could be displayed on specialized formats. Ideally,

the investigator would be able to modify the controlling parameters of these

procedures on—line by console operator inputs. The programming of these

procedures would be for the general d—dimensional data with the display

representing a transformation into two dimensions or a two-dimensional subspace.

There are three important advantages that would be derived from the

development of this on—line display system: ~l) the development, debugging,

and evaluation of learning, adaptation, and probability estimation procedures

would be greatly speeded up , (2) real data could be examined in detail and at

• length to determine which combinations of measurements are most valuable for

distinguishing the important active sonar targets, and~3) the display would

provide the means to demonstrate visually the strongly intuitive concepts

of automatic classification. The display would serve to reduce the handicaps

of technical terminology and multi—dimensionality by providing a dynamic

representative of the classification procedures.

4. The prototype classification subsystem described in Section

IV of this nate should be implemented in FORTRAN and perhaps JOVIAL. The

choice of these particular languages would facilitate a comparison with

other attempts at automatic classification subsystems designed under

Government and military auspices.
S
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5. A method is needed for expressing confidence levels in a • -
manner which is both easy to compute and meaningful in an operationa l situation.

This means the development of a method which provides acceptable results

but does not consume computational time or space out of proportion to its

usefulness. The following is a recommended approach for developing such a

measure of confidence:

a. Generate data which will be representative of the operat-

ional situation. This data would be generated by a statistical model where

the parent distributions, P(X)’s, would be known.

b. Reduce the data by the cluster analysis method chosen for

operational implementation.

c. For each cluster estimate the probability density,P(X) ,
of the parent distribution.

d. Compute the error E — P(X) — P(X) and chosen functions
2

of the error such as E ,IEI , etc., over a range of points in the data space.

e. Analyze the results of the error computations from

several trials over a wide range of the independent variables such as

• number of samples , number of dimensions , parameters of the parent probability

function, etc.

f. Relate the error functions to the independent variables.

A preliminary approach would be to plot the error functions as contours for

pairwise combinations of independent variables. It may be possible from this

analysis to eliminate the least sensitive variables.

• g. Formulate the relationship between error and the selected

independent variables in terms of a measure of confidence level.

• 
37
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VI. CONCLUSIONS

The conclusions which can be drawn from the work expended on this task

may be stated briefly as follows:

1. Existing statistical techniques or extensions of these techniques are -

presently available and applicable to the problem of automatic target classifi—

cation by computer in active sonar systems.

2. Implementation of these techniques into a workable target classifi-

cation subsystem such as that described in Section IV does appear to be

— feasible in view of operational and system constraints.

3. An effort should be initiated to refine the available classification

• techniques further and to incorporate them into an operating subsystem which

is capable of demonstrating active sonar target classification on a real—

time basis.
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APPENDIX A

A MEASURE OF TARGET EI~LATIVE IMPORTAN CE

• Suppose that we obtain a single ping estimate of the probability that

a target belongs to a hostile class , P(e.5
) ,  and a normalized measure of

confidence in that probability estimate, 0 ~ C i 1. We would like to define

a function, G [P(O
h
),C] , to evaluate the “importance” of the target that

satisfieS - the following criteria:

1. When C = 0 , G[P( O
h

) , Cl = k. When we have no confidence in the

probability estimate, all targets are equally important.

2. When C — 1 and 
~~~~~ 

— 1, C is a maximum. The most important

• target is the one that we are positively sure is hostile.

3. When C — 1 and 
~~~~ 

— 0, G is a minimum. The least important

target is the one that we are positively sure in not hostile.

A function which satisfies the above requirements is

G— k + ( P — k)C, O < k < 1

Criterion G 
• 

P C 
-

1 k any 0

2 max 1 1

3 mm 0 1

The choice of k determines how important the lack of confidence really is.

This would suggest that k could be adjusted dynamically; that is, be kept

small if C is frequently small. The objective here would be to make C

sensitive to either P or C depending upon which variable is better suited

to enable targets to be ranked according to their importance.

~~~~~~
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APPENDIX B

MEASURES OF CLUSTER—SEEICING PERFORMANCE

Well Separated Clusters. In the case where there are N well—separated or

“true” clusters C1,C2,. . .,C1,.. .,CN which are discerned as M “apparent”

clusters 1(l,...,Kl,...,KM,the number of samples associated with the jth true

cluster and the 1
th apparent cluster , f~~, can be recorded in a frequency

matrix F — ( f ~~ )N x M. The mutual information, 1, has a maximum value in

this application when all samples are correctly associated with the original

N clusters, and it is zero when the apparent clusters are totally confused;
M

i. e., when Z f14 is pror~r~ional to the number of samples in each C~.
j—l ~

I = H(C) + H(K) — H( C~~ J~~ (B—i)

N M
H(C) E F ln F~ ; F , E

1—1 ~ j—l (B—2)

H N
H(t) — E F4 in F4 ; F~ — Z f14 (B—3)

j—l ‘ ‘ ‘ i—i .‘

N M
H(C * K) — E E f l n f

i—i j—l (B—4)

The purpose of using H(C) in the denominator is to normalize

0 j  I ~ 1. A cluster—seeking method should score close to L if its logic has

been programsed correctly and its gic is correct to begin with.
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In the general case, randomly generated clusters will overlap in varying

degrees so that the system of apparent clusters may not always be compared to

the true clusters as in the veil—separated case. Therefore, an additional

effort would have to be made to reward the resolution of overlapping clusters

and take for granted the discernment of isolated clusters. A convenient

measure of the separation between two clusters is Sebestyen ’s interset distance,

S (Cx 
~~~, (‘~ )

~], a mean squared distance computed as below :

— 

j~ l k~l 1il 
(x
iJ
_Y
ik)

2 

(B—5)

nm 
_______  ________  

m.n
d 2 

d 
2 d

— t x
1 + E 

~~ 
— 2 E

i—l i—i i—l

We may now def ine a normalized measure of the “resemblance” R between two

clusters:

R a 8 
; 0 ~~~ R .~~. 1 ; a > 0 (B—6)

Designating the average resemblance of the ith true cluster to the other

true clusters by R
1~, 

we can define a measure of significant performance

N M
I — E 

~ 
f 11 R~1 

; 0 £ I ~ 1 (B—i)
i—i i—i

T
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where T is the total number of samples. This function is not at all similar

to the I suggested for the veil—separated case. Here, the apparent clusters

may agree with the true clusters perfectly, but achieve I — 0 if the true

clusters are trivially well separated. High scores can only be achieved

when ovarlapping true clusters are correctly identified. The indicated use

of this general measure is to compare two methods, perhaps by a scatter

diagram as illustrated below.

‘/

t,

I
Method B

1/

I Method A
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APPENDIX C

MISSING MEASUREMENTS

In the case where all d—dimensions are observed use is made of a stored

• determinant of the sample covariance matrix and its inverse to compute

P(x) 1 1 exp (- 
~ i~l j~ l 

x
i
x
j
u
ii
) (C-i)

(2,,)~~
’2 

jU~
112

-i thwhere u
~ 

is an element of U and x~ is distance of the I measurement

• with respect to the 1th sample mean . However , if measurements are missing,

they can be ignored in the computation of the exponent; namely , the program

will otlit terms for which I or j corresponds to a missing measurement.

The term (2~)
d/2 can simply be obtained from a table indexed by d.

The new determinant, however, does present a ovm~itational problem. There

appear to be theee possible approaches:

• 1. Compute the determinant of the remaining matrix when the rows

and columns corresponding to the missing measures are removed. This is

straightforward , but time—consuming and potentially redundant.

2. Reduce the rfill” determinant by making use of stered minors.

This works well for one missing measure, but becomes awkward thereafter.

It may still be the most expedient approach in the last analysis.

If k is the only missing measure , the desired determinant is

~i.7

-: 
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minor of ‘
~kk — cofactor “kk (C-3)

(-1) k+k

— cofactor u.~

d
J u l — S u. cofactoracj kj (C—3)

j~ k 
~~ cofactor

kl 
+ ‘ kk cofactor~~

minor of ‘1kk = cofactor u.~~ JU( — (S u.~ cofactor
kl
)

(ukk) 
(C—4)

The terms in parentheses could easily be stored for each measure.

3. Estimate the new determinant as a function of Ju J and correlations

ai~~ng the variables. This approach has not been explored, but appears

to be promising.
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APPENDIX D

GRADIENT OF MULTIVARI ATE NORMAL DISTRIBUTION

With sample size and number of dimensions held constant, it is reasonable

to assume that the error in the estimated probability will be proportional to

‘ the gradient at the point X = (x
l,...,xd

), that is, the maximum rate at which

P(X) is changing at X.

d d
P(X) 1 1 exp (— ~ S x1~x Uj  

)
2 i—l ju. ’i I I

(~~)d/ 2  
~~ 

1/2

= C e x p (-
~~~

Q) 

-

thTo differentiate with respect to the k variable (regarding the remaining

d—l variables as constant), Q can be rewritten as

Q 2x.K 
j ~k 

x
j ~~ 

+ 

~~k + 
~~k j�k 

xixj 
u
ij (D-2)

The partial derivative with respect to is obtained in the following

steps:

dPQ~) — — . c exp (— .
~Q) (D—3)
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— ~~~~~ + 2 
j~k 

x
l
u.
KI 

(D-4)

dP(X) 
= 

dP(X) 
~~~ (D—5)

dx
~K dQ 

~~
dxk

= _C(ukkxk + 

~ft 
Xf1~~~~~ ) exp 

~~
— Q)

-C( S x u.K 
) exp 

~
- ~~ 

Q)
~~

Finally,  the absolute value of the gradient is the root of the sum of the

squares of the d partial derivatives.

tdxk ~ 
— C exp ~~~ j~l 

J
u
ki (n4)

d ~2 d /d

~ 
dp(X

1 c2 exp (—Q) S S x4~~4 / (1~—7 )
k—i ~~~ k—i j.l -~

— exp (—Q) E X
j
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4 2 /d \ 1/2 (D—8)

• Grad — C exp (— -
~
) S x ( ~i—i. ~ \k—i ~

= P (X) x
j
2 (‘~ 

ukj~~

The gradient is therefore the product of two terms, one of which is P(X).

The gradient thus goes to zero as P(X) goes to zero. The gradient is also

zero when X = 0. It can be verified that the gradient is at a maximum at

one standard deviation from the mean in any direction.
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