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MECHANICS OF ROLLER INSTABILITY
IN ROLLER BEARING S

by

Pradeep K. Gupta

ABSTRACT

An analytical formulation for the roller motion in a cylindrical roller

bearing is presented in terms of the classical differential equations of

motion. Roller-race interaction is analyzed in detail and the resulting

force and moment vectors are determined. Formulation for the roller end

and race flange interaction during skewing of the roller is also considered.

Elastohydrodynamic traction models for the turbo-33 type oil, 5P4E polyphenyl

ether , and the KIL-L-7808. oil are sunisarized for the purpose of computing

roller/race traction. The natUre of the general motion of the roller is

- 
investigated by integrating the equations of motion for a typical roller

beariflg. It is found that very high frequency vibrations in the roller

motion result from the roller/race contact resonance.

ii

~~~~~—--- - - -~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~. . — ~- .-



F- 
- anm9~. —tr~rr ‘m —

TABLE OF CONTENTS
PT

Section Page

REPORT DOCUMENTATION  —iii—

[ ABSTRACT . . . . . . . . . . . . . .  . .  .  .  .
LIST OF FIGURE S —vii i—

— 

FOREWORD — ix—

LIST OF SYMBOLS . • •  . •  • • .   —xi-

1. I INTRODUCTION . .  .  .  .   I—i

- II GENERALIZED EQUATIONS OF ROLLER MOTION Il-i

III ROLLER—RAC E INTERACTIONS . •  111—1

IV ROLLER END—RAC E FLANGE INTERACTION .  IV—l

V ELASTOHYDRODYNAMI C TRACTION MODELS V-I.

VI ROLLER MOTION RESULTS . . . . . . . .  . .  .  .   VI—1

- 
r- VII SUMMARY . . . • • • • • • • • • . a • • • V11 1

VIII RECOMME NDATIONS FOR FUTURE RESEARCH . . . . . . . . .  VIII—l

IX R E F E R E N C E S . . . . . . . . . .  IX—l

1~
1~1 _
I.. 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-vii- . ~~~~~~~ 
-
~~~~

-“ 
--

I - I PI~EOZD1ZG P~~~ 
si.~~~~ I

S _
___________________________ —— ~~~ — - - — — - ~~~~ - - _________ 

.- -~-~-----~ —-



LIST OF FIGURES

Number P~ g~

11—1 Coordinate Frames for  Roller Motion 11—2

11— 2 Transformations From The Inertial Frame (X ,Y ,Z) to Any Other
Mov ing Frame (

~~~
,y b , zb) 11— 5

111—1 Exaggerated View of Roller—Race Interaction 111—2

111— 6 Roller—Race Contact Geometry 111—6

IV— l Sign Convention for Race Flange Angles IV—3

IV—2 Exaggerated View of Roller Corner and Race Flange Interaction  IV—4

V—i Hypothetical Traction Slip Relationship V—2

V— 2 Coordinate System in the Contact Ellipse V—lO

V— 3 Comparison of Actual and Simplified Traction Models at Low
Temperature V— 16

V— 4 Comparison of Actual and Simplified Traction Models at  Hi gh
Temperature V— 17

VI—l Exaggerated View of the Bearing Model Used to Study the Roller
Motion V 1—3

V 1— 2 Roller/Race Contract Load Variation as the Roller Travels
Thi - ~,h the Load Zone V I— 4

VI — 3 Typ ical Roller Acceleration Profi les  as it Travels Through the
Load Zone V 1—5

VI— 4 Roller/Race Slip and Traction Variations VI — 7

—vi i i— I 
- 

- 

~~~ - - - --~~~~~~~~~~
-— —---

~~~ - - - -~ - -- ---~~~~~~~~ -- —- -~~~~- -~~~~ --~~ ---. . ~~~~~- -~~—-



T~’~~~~’ ’~ ~~~~~~ ~~~~~~~~~~~~~~~~~~ 

- 
~~~~~~~~~~~ ~~~—.-.~----~~.--- •-

FOREWORD

The work described herein was supported by the U.S. Army Research Office

under Contract No. DAAG29-77-C-0014 with the directions of Dr. Edward

Saibel of ARO , Durham, North Carolina, and Mr. Allen Royal of the U.S.
Army Air Mobility R&D Lab, Ft. Eustis , Virginia.

- ix-

- - ---- - — -.- ---. - ------



— -~~-~ ~~~~~~~~~~~~~~ 
-- -- 

~~~~~~~~~~~~~~~~~~~~~~ 
- - - . - -.-

LIST OF SYMBOLS

a,b contact half widths

[B] matrix defined by Equation (11.13)

r - d roller diameter

I - E Modulus of Elasticity

applied force vector

normal force vector
n

Ft tractive force vector

C Elasticity Parameter

G15 G2, G3 Traction Parameters

C applied moment vector

moment about the roller mass center
moment about the race mass center

angular momenttnn vector of the roller

unit vectors
(T ,

~
,1) unit vectors

11,12, 13 
principal moment of inertia for the roller

£ length coordinate along the roller length

m roller mass

}Lertzian Contact Pressure

Q normal contact load

Qm Thermal. Parameter

r relative radial disp lacement of inner race
position vectors

position vector locating the ball mass center in space
b

position vector locating the ball geometric center relative to
bg its mass center

tbr position vector locating the ball geometric center relative to
the race land center

position vector locating the roller geometric center relative
g 

to the race geometric center

position vector locating the race groove curvature center
relative to the race geometric center

~ r 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-xi—

PHEC~~~DI1G P~~I ~‘,A)~ 

. -- ---- . ~~~~~~~~~~~~~~~~~ --
~~~

-
~~~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—---- -— 

- -



~ -- ----. _—- —•--—--——-.—-. .-..- -

posi t ion  vector loca t ing  a point in the contact zone re la t ive
to the roller geometric center

pos ition vec tor loca ting the race mass cen ter in space

r rg posi t ion vecto r locat ing the race geometric center r e l a t i ve
to it s  mass center

R radius of the locus of rol ler  corner centers of curvature

R crown radius
C

Rce ro l ler  corner radius

ra dius of the c i rc le  representing the locus of race land centers
(raJius of race)

C time

T0 inlet tempe rature

[T Jk] t ransformat ion matrix from frame j to frame k

transpose of [T .k]

u slip velocity

U speed parameter

roller velocity at any point in the contact ellipse

race velocity at any point in the contact ellipse

slip velocity at any point in the contact zone

v rolling velocity

translational velocity of roller mass center

Vr 
translational velocity of race mass center

w load per uni t length

W load parameter

x axial coordinate -

(x ,y , z) race fixed coordinate frame

(x 1 ,y ’,z’) flange frame

(x ,y, Z) azimuth frame

body fixed coordinate frame

~~~~~ contact frame

(x,y,z) roller f ixed coordinate frame

(X,Y,Z) space fixed or inertial coordinate frame

a pressure viscosity coefficient

apparent pressure—viscosity coefficient

8 temperature viscosity coefficient

8* apparent temperature viscosity coefficient

-xii-
I -



-~~~
“I,

~ 
—;

~~~~~~~~~~~~~~~~~~
---;

~~-~~~~~
-- 

‘
~~~~~~ 

-
~r-

- • -

~~~~~~~~

-- --- -
.:—

~~~~~

- -  

~W - -~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

y race flange angle

contac t deflection

~~~~~~ ) transformation angle

0 orbital coordinate

K traction coefficient

viscosity

apparent viscosity coefficient

• relative race misalignment

$ azimuth angle locating the ball center relative of the moving
inner race center

x notation used for vector cross product

roller azimuth angle

roller angular velocity

angular velocity of a coordinate frame

race angular velocity

v Poisson ’s Ratio

—xiii—



-
~~~~~~~~~~~

- ‘
~~
--

~~~~~~~~~~~~ 
---- -——--~~~~~ 

- 
~

. . - - - - -~~~- .

1.~

SECTION I

INTRODUCTION

Practical rotor systems subjected to relatively larg. radial loads are often

supported by roller bearings primarily due to the large load support and stiff-

ness characteristics of such bearing. A dominant radial load , howeve r, causes

a nunber of rollers to be completely unloaded as they travel in orbit. Thus,

each roller is subjected to large Load variations and, therefore , the resulting

motion is somewhat complicated. Other factors such as irregular traction charac-

teristics , roller—cage interactions, rela tive race misalignment, etc., further
complicat. the roller motion and sometimes lead to Instabilities termed as “skid—
ding” and “skewing”. Skidding normally represents large sliding be tween the

roller and the race, while skewing denotes rotation of the roller about its trans-

verse axes. The primary objective of a bearing system design is to reduce or

eliminate such instabilities under the prescribed operating condition.. A realistic

design tool must simulate the roller motion with adequate generality in order to

provid, the required design guidelines . Th. development of such an analytical tool

is the primary objective of the present investigation.

Most of the analytical simulations of roller bearing performance available to date

have been restricted to quasi—static type of force balance models. It is clear

- - that although such models will give adequate information about the overall load

distribution and bearing fatigue Life, they fail to provide any insight into the

general motion of the roller and th. resulting dynamic behavior of the bearing.

For the simulation of even some of the simplest forms of roller motions, it is

necessary that the general differential equations of motion be formulated and in—

t.grat.d in time, with prescribed initial conditions. The external forces on the

roller are determined by the applied loads on the bearing , roller—race interaction

models , lubricant traction behavior , roller—cage interactions and soms other

factors such as lubricant drag and churning.

This report contain , the analysis relevant to th. above general interaction s in the

case of a cylindrical roller bearing . The work is somewhat similar to an earlier

investigation (reference 2) for th. case of ba l l .  bearings . The motion of the cage .

wh ich is a cruc ial element for both ball and roller bearings , has also been

1—1
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formulated in an earlier report. Thus, this report is the third part of a con-

tinuing project with the ultimate objective of developing generalized computer

simulation models for the dynamic performance of both ball and roller bearings

The next forthcoming part, IV , will contain details about the traction models,

churning losses and related factors. Some results of parametric studies will be

described in Part V and Parts VI and VII will respectively be the user ’s manual
and compilation listing of the computer program.

The generalized equations of motion for a cylindrical roller are described in

the next section of this report. Sections III and IV are devoted to roller—race

interactions and the race flange and roller end interaction. Simply for the put—

pose of computing the initial conditions for the general equations of motions,

the static and quasi—static equilibrium equations are contained in Sections V

and VI, respectively.

I
~
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SECTION II

- GENER.ALIZED EQUATIONS OF ROLLER MOTION

A .

- 
Similar to a ball bearing, the motion of a roller in a generalized simulation of

the dynamic performance of a roller bearing can be considered in two parts:

(1) Motion of the roller mass center in an inertial reference frame.

(2) Rotational motion of the roller about its mass center.

A formulation of both the above parts of roller motion and a definition of the

relevant coordinate frames will be the basic objectives of this section.

- 

Motion of Ball Mass Center

- 
As shown in Figure lI—i, the translational motion of the roller center is best

- 
considered in a cylindrical coordinate frame, which is fixed in space and it,
therefore, represents the inertial frame of reference. The classical differential

- 

equations of motion are written as

x F/ mx
•2

r — r e  •F/mr

r~ + 2~Ô F9/m

* - where (F
X~
Fr~

FO) are components of the net applied forces on the roller and in

- - is the mass of the roller.

• For a given position of the roller mass center and all translational and angular

velocities, the applied forces are calculated from the various interactions in

- 
the bearing, such as:

- • Roller—race interaction

- • Ro ller end — race flange interaction

• Roller—cage interaction

. Lubricant drag, churning or other interactions.

The mechanics of the roller—cage interaction have been formulated in (reference
1). The details of roller-~race contact and the roller end — race flange interaction

- 

lI—i
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Figure Il-i. Coordinate Frame s for Roller Motion
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will be considered in the next two sections of this report and other possible
interactions will be undertaken as a part of future development.

Once the applied forces are known , the differential equations (11.1) of motion

can be readily integrated to obtain the time dependent motion of the roller mass
center.

Rotational Motion of the Roller

If the roller is considered to rotate about a fixed point , 0, with angular

velocity and the triad, formed by unit vectors t, 3, i~ along the principal

- 

axes of inertia at 0, rotates with an angular velocity ~~~, then the classical

differential equation of motion is written as (reference 7).

- + ah -). -4 -~h — -
~~~~~ + ~ x 

h — G (11.2)

where i~ is the roller angular momentum, is the applied moment vector and

dw dw
— I —1t~~~

’2 dt (11.3) I 
-

l d t
C .

- where Il~ 
12, and 13 are the principal moments of inertia of the roller

• - 
Some straightforward algebraic mani~ulation can show that equations (11.2) and

- (11.3) can be combined to give the following component equations: ~
- -

I~~~ - I2w 2~~ + I3w 3~ 2 01

- 
- 12w 2 — I3w3~2] + I1w1S23 G2 (11.4) 

- 
-

13w3 
— I1w1

Q
2 + I2w 2~ 1 03

In case of a “perfectly” cylindrical roller , the transverse moment of inertia —

- 

- 

‘ I~ will be equal. However, this symmetry does not simplify the situation 
—

to any great extent since the polar axis has to be fixed in the roller. It will,

therefore, be convenient to consider the roller angular motion in a roller fixed

frame and preserve all generalities. A roller fixed frame will essentially mean

that the triad of unit vectors t, 3, i~, of equation (11.3) is fixed in the roller.

1.

• 11—3
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Thus, ~ — and equations (11.4) reduce to the classical Euler equations of

motion

11w1 — (12 — 1
3

)w
2
w
3 

— 01

— (13 — 1
1

)w
3
w
1 

— 02 (11.5)

I3~ 3 — (I~ — I 2)w 1c~2 — 03

-PClearly, the components of the moment vector C will now be in the body fixed

reference frame.

-P
The applied moment vector C is once again determined from the various inter-

actions mentioned in the case of roller mass center motion. It is easy to

understand that while the normal contact forces at each interaction dominate the

mass center motion , the angular motion is dependent on the moments which result
from the tractive forces at the various interactions.

Since the applied moments are conveniently expressed in the inertial coordinate
frame , it will be necessary to define a law of transformation between the inertial

and body fixed frames . Although such trans formations have been defined In
(reference 1) in case of the cage motion and in (reference 2) for ball motion ,
they will be repeated here for completeness .

Coordinate Transformations

As shown in Figure (1 1—2) let (X ,Y ,Z) be the inertial frame and (xl,,yb .zb) denote

the body fixed frame . The required trans formation is obtained in terms of three
angles T-

~~, ~~~, and y by the following three successive rotations:

(I) nt; (ii) B3~ (i ii) yi~

-P -P -P -P -P +
where I,J,K,i,j,k, etc. are unit vec tors along the corresponding X,Y,Z, and x ,y, z
axes.

The relevant transformation from (X,Y,Z) to (x%O,yb,%) frame may be written as

— (T ib(n,B,1)] ~ (11.6)

11—4
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r

where

cos8 cos t cosn sinT sinn siny .
+sinri sin8 cosy —cogn sinB cosy

(T ib
( r 1, B ,y) ] — —co aB siny cosn cosy sinn cosy (II 7)— sj nr~ sInB siny +cosn sinB siny

sinB — sinn cos8 cosn cosB

It may be noted that the transformation angles n, 8, and y ,  are quite similar

to the conventional Euler angles. It can also be readily shown that the above
transformation matrix is orthogonal and hence the inverse is readily determined

by the transpose.

In order to complete the formulation it is now necessary to e?tablish the rela-

tionship between the angular velocity and the time rate of the transformation

angles n, 8, and y. Let be the angular vector in the body fixed reference

frame (x .D ,y b ,% ) or (ib,jb,k.). In accordance with the law of transformation

defined earlier , the incremental vector rotation is written as

— + + ~~~~ (11.8)

where

— siny + cosy rb
and 

- COS~ t + sinS (II 9)
— cosS (cos y tb — siny rb ) + SiflS ç

A combination of the ab ove two equations results in tFa  expression for re-
quired angular velocities

— (AncosBeosy + A8ainy)t~ + (~~~cos$siny + ~8COSY)rb +
(~~sin3 +~y)

11—6
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or

~1
b 

J cosS cosy siny 0 (r~ )
~2

b )
~ 

—coaB siny cosy 0 (11.10)

j 5 m B  0 1 L~ J

It may be noted that the matrix in Equation (11.10) is not orthogonal.
However, the computation of the inverse is rather straightforward and some
algebraic manipulation will show that

cosy sin-1 I . b• I ~ I cos8 
— 

CO8~ 
0

~ ~~
_ siny cosy ~~b (11.11)

L ‘~J —tan8 cosy tan8 sixty i.

The accelerations may be written by a straightforward differentiation of the

above equation

{} - 
___  

+ CE] 

[
~~} 

(11.12)

- . - where

I i .
cosy ~~~~~ 0cos8 cosB

• - 
[3~ sixty cosy 0 (11.13)

• —tan8 cosy tan8 sixty 1

11—7
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~~~

and it may be shown that

—~~ sixty sec8 —~~ cosy sec8
+~ cosy secS tans —~~ sixty secS tanS

MB] y cos’y —y siny 0 (11.14)

‘
~ sixty tanS 2 

‘
~ cosy tanS 2

— 

—
~~ cosy see 3 +5 siny sec S 

-

For prescribed initial conditions the above formulation may be readily used
to obtain the real time simulation of the ball motion. The initial conditions

will consist of ball position and velocities. Thus , the mass center position ,
(x ,r,3), mass center velocity , ~~~~~ angular position , (n , 8 ,y )  are prescribed
at any instan t of time. Sometimes ~ may be known instead of ~~~~ in

such a case equation (11.11) will provide the necessary relationship. With
these given position and velocity components the force and moment vectors ,

and ~ respectively , are computed from the models for the various inter-
actions . Both these vectors will generally be determined in the inertial
frame. The mass center accelerations are given by equation (11.1). For the

angular acceleration the moment vector will have to be transformed in

the roller fixed frame using equation (11.7) and (11.8) . This transformed
moment vector can then be substituted, along with the known angular
velocities, in equations (11.4) and can be determined. Equation (11.12)

is now used to compute ~ and ~. A].1 the acceleration components are
finally integrated numerically to obtain the required time dependent
motion.

11—8 
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SECTION III -

ROLLER—RACE INTERACTIONS

The normal and tractive forces at the roller—race contact constitute the domi-
nant forces on the roller. The interaction is very similar to that in case of

a ball—race contact (reference 2). It is first necessary to compute the geo-

metrical interaction between the roller and a raceway. This geometrical inter-
action will define the elastic deflection, if a contact exists, which in turn

will give the no rmal contact load , using a given load—deflection relationship.
Once the contact geome try and load are determined , the local slip velocities in
the contact zone may be determined from the prescribed velocities of the roller
and race. A suitable traction model for a given lubricant and operating condi—
tions is then used to compute the tractive force. A discussion of all these
factors is the objective of this section.

Geometrical Considerations —

Figure (111—1) schematically describes an exaggerated view of the geometrical

interactions between the roller an... a race. For simplicity, the diagram is
drawn in the x—z plane and y axis is normal to the plane of the diagram. The

position vector locates the mass center of the race , R.~, relative to the
inertial frame (X,Y,Z). Vector rg locates the race geometric center , R0, rela—
tive to the mass center and vector r locates the center of race land RI
relative to the race geometri c center , RG. Similarly the mass center of the roller ,

is located by 
b relative to the inertial frame and 

~bg locates the roller geo-
metric center relative to the ma—s center. The vectors rg and rbg will generally
be prescribed respectively in the race fixed frame (x,y, z) and the roller fixed frame

~~~~~~~~~~~~~~ 
Also, the relevant transformations will be:

Transformation from inertial to race frame: [T
ir(n r~

Br
,y
r
)]

Transformation from inertial to roller frame:

In addition to the above it will be convenient to define an azimuth frame
(Xa~Ya~

Za) such that Z
a 
is parallel to the radial component of 

~b’ 
X is parallel

to the inertial X axis and 
~a 

is determined by the right—hand screw rule. Since

the diagram in Figure (lIt— i) is drawn in the x—z plane , this coordinate frame is

It’—’
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not shown in the figure. However, the transformation will depend only on the

race azimuth angle ~, and it may be defined as

Transformation from inertial to roller azimuth frame: [TiaCV~
O
~
O)]

In order to make the entire analysis applicable to both the outer and inner race
contacts, it will be convenient to introduce a transformation from the azimuth

to contact frame.

Transformation from azimuth to contact frame: (T (O,ci,O)]

where ~ — 0 fcr outer race and ~ for inner race.

- I t may be no ted that for most practical problems the mass and geometric centers

may be coincident and this could simplify the geometry to some extent. The

purpose of defining the geometric center different from the mass center is just

to preserve the generality and capability of simulating some advanced config-

urations in the future .

Now the interaction between the roller and the race will be determined by

locating the geometric center of the roller EG, relative to the race lend center ,
R~ . Let us denote this vec tor by rbr and it will be given by the equation

~~ .4.i -~b Li -pr - .r
— rb + (Tj b ]r bg 

— 

~
t
~r 
+ (T in ~~rg + rgc} (111.1)

It may be noted that every thing on the right—hand side of the above equation

is known except for the vector tgc~ It will be necessary to determine a race
azimuth angle ~~

‘ , measured in the race fixed coordinate frame such that BG, R~
,

and R~ , all lie in one plane . The vector locating 
~~~~~~~ 

relative to RG, brg is

written as

_P i -P i .~ b -~~irbrg rb + (T ib lr bg 
— (r r + (Tj n ]r rg ) (111.2)

When rbrg is in the inertial frame, an angle • may be defined such that it

denotes the angle between the inertial z axis and the plane containing vector

Tbrg and a line passing through RG and parallel to the inertial X axis.

111— 3
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Symbolically

L ii—n
I bn g 2‘V — aretan (III.3a)

b rg 3

If the race is ass~~ed to be syim~etric about the x axis, then the race fixed
coordinate frame may not be necessary and ~~~ ‘ 1’. However, if the generalities

mentioned above are preserved, then t~’ , is determined in the race fixed frame
such that gc and brg lie in the same plane . Now if R . is the radius of the
circle representing the locus of the race land centers, then

(0 , —R.sin~’, ~cos’~}

In order that 
~gc and 

~brg are coplaner, the y—component of the following vector
must vanish

( T ( ~~,O ,O) ]  (T ir ’]

(III .3b )
T2or ~~~

‘ — arctan
22

where T 22 and T 23 are the relevant components of the matrix obt~ ired by the
product (T(~,O,O)] (Ti ’].

Once $‘ is known, br may be determined in the inertial frame using equation
(111.1) and it may be referenced in the race azimuth frame as

(111.4)

and in the contac t fram e

a (T ad l ~br
a (111.5)

where the matrix [ TI  has alre.idy been defined above.

The computation of the roller azimuth ~~, is quite straightforward once the

i~: r—~ 
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orbital position, 0, locating the roller mass center is known from prescribed

! (x ,r,O) in cylindrical coordinate..

—r,
— 8 — arctan —

~~ (111.6)
V

3

where r 2 and are the y and z component , of the vector (T Ib’I
b$•

Once the geometric center ~f the roller is located re lative to the race land
center , it will be necessary to examine every point on the ro ller for  possible
interaction. Hence , the introduction of th. roller geometry becomes essential

:lt th is point .  Figure 111—2 shows this geometry for a typical roller in a

cyl indrica l roller bear ing.  The interaction between the roller and race will be

restricted to the central flat land and the crowned areas at this point. Later

in the next section the interact ion between the roller and and race flange will

be considered.

Now ~ point of the roller surface is best described in the roller frame by the

position vector

c 1
— ~_ R 

~tnD~ (111.7)

L 
a ooss3

Where 4’ is the angular position about the X axis, I is the length coordinate
along the X axis and R is the effective radius. For the geome t ry shown in

Figure 111—2 , w ill depend on I

. dR •
~~~~; - -v’ ~
d 

L — I ~ L2and R • — —L~ I — —
~
- and —i- ‘C ‘

where R is th e crown radius as shown in Figure 111—2.

The vector can be expressed in the contact tr am. as

— ( T I  ( T I  (T
1 J (Tib ] r - (111.8)

- --
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For the point to be in the contact plane the y component of must vanish

and ~ ~s condition will determine the relevant 4’. Since the rotation of the

roll about the Y and Z axes will be in general small, it will only be neces-
sary to compute 4’ for the roller center, hence

T
$ a arctan (111.9)

22

where T23 and T22 are the corresponding elements in a matrix obtained by the
product of matrices shown in equation (111.8).

The deflection at any point on the roller surface is now given as

(r + r ) (111.10)r 3

A negative value of ~ will mean no contact.

In order to determine the effective contact length, when the roller is crowned,

the length coordinate Z in equation (111.10) will be determined by standard

bisection techniques. In other words, the value of 9. for d — 0 will determine

the contact length. Clearly, these will be two such roots and they both have

to be determined separately since in general the roots may not be sysmietric.

For the purpose of computing the total interaction, it will be convenient to

divide the contact length into a finite number of elements as shown in Figure

111—2 and compute the normal and tractive loads for each element. A proper

sumeation will then give the total required load . Thus, the analysis presented

below for the normal and tractive load will apply to each element in the contact

zone.

Normal Contact Load

The load deflection relation for a line contact is not uniquely defined, as in

case of point contact. The deflection can be computed only in terms of strains

corresponding to finite lengths in the two interacting bodies. (Reference 3)

sugges ts a relationship of the form

~ 
[i_v~

2 {
~ 

- 2(1_v~)} 
+ 
‘
~~2 - 2(I_v2)}] 

(111.11)
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where the contact half width
2 2 2

1—v 1—v
b — 

4Q 1 
+ 

2 
(111.12)

1

v1, E1, v
2
, E~, are the Poisson’s ratio and elastic modulus for the two inter—

acting bodies, Zp is the sum of the principal curvatures, Q is the normal
contact load , and 9.. is the contact length .

The determination of lengths d1 and d2 is rather arbitrary and , hence , application

of (111.11) becomes a little difficult.

In view of this difficulty, Lundberg (reference 4) -has determined an empirical

equation based on actual load deflection measurements in line contact. This

relation is

~ 
[ i_ ~~~~~~

2 

+ ~ ] [ in + 1.1932 (111.13)

where the contact half width b is given by equation (111.12) .

It is clear that for a given Q, the computation of 6 is straightforward from

equation (111.13) . However , when 6 is prescribed , some type of iterative pro-

cedure will be necessary to order to compute Q.

Palmgren (reference 5) gives a relation which is free of the above difficulty.

2 2 0.90
4( 1—v 1 ) 4( 1—v 2 ) ~O.9O

0.39 E + 
E 0 80 

- 

(111.14)
1 2 %-~~

In terms of results, the above two relations are fairly close , Hence , if

equation (111.13) is to be used , then the initial guess in the iterative scheme
can be derived from equation (111.14) and under such conditions the iteration

will converge rather rapidly.

Tractive Forces and Moments

For the purpose of computing the traction, i t  will be necessary to define the

111—8
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position vector locating the center of the elementary strip in the contact zone,

relative to the roller mass center and the local slip velocities. If we assume
that both roller and race deform equally, which is quite reasonable, then the
required position vector may be written as

1 -1
r a 

~—(R—6/2)s in$ ) (111.15)p 
L(R—6/2)cos+J

In order to compute the local slip velocities, let the race have a translation

velocity r and an angular velocity ~~ 
Likewise, let the roller have a trans-

lational velocity V
b 

and an angular velocity ~ . Generally, the angular

velocities are specified in the body fixed frames while the translational veloc—
ities are measured in the inertial frame. Furthermore, the roller velocity is

conveniently measured in the cylindrical coordinate frame in terms of components
x, i~, and Ô. In terms of these components , the local slip velocity 

~~ 
of the

race relative to the roller at point P (see Figure 111—2) is given in the contact

frame in terms of the race and roller velocities , 
~r and ~~ respectively as

a (T ac ] [T ia ] 
( r ~ 

+ {[Tj ] r
r - X {~~i + [T~~l;rg

r}~
) 

(111.16)

~ : : 

~~~~~~~~~ 

+ [ri ] ~ (T j~ ]~ b
b 

~ {[T i~ I [T a~ ];p
c 
+ rT1~1;bS

b }~

where the vector 
~~~~

, which locates the center of elementary strip with respect

to the race mass center , is computed as

- 
- — + rbg + rb — (r r + rrg) (111.19)

The components uC and uC in the contact frame will result in traction, uC
cbeing along the rolling direction and U
5 

being normal to it.

In case of a roller bearing the slip will be primarily in the y direction and,

hence, the tractive force will act along the y axis. The relevan t traction

coefficient, ç will be determined by the appropriate traction model , which will

111-9
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be described in Section V , for the present it may be denoted as: ’-

K — K
2

(U
2

) (111.20)

where the subscript 2 is used to denote the y direction.

The tractive force, Ft, 
is now defined as

— (111.21)

where Q is the already known normal load on the elementary strip.

Both the normal and tractive forces, acting on the roller can be combined in

a general force vector, written conveniently in the contact frame as

r o l-PcF

L~J

The force on the race will just be —~ , while the moments on the roller and

race are defined as

G~ - ( r + r b~
) X~~

and G: (R; + ~~~~~~~~~~ x

All vectors must be transformed to appropriate coordinate frames. It is con-

venient to compute the forces in the Initial frame and the moments in a body fixed

frame.

It should be remembered that all the above forces and moments will be on a given

elementary strip in the contact zone and a suiir~ation over the contact zone will

give the total force and moment vectors.

111—10
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SECTION IV

ROLLER END-RAC.E FLANGE INTERACTION

In a roller bearing subjected to a slight misalignment , the loads between the
roller and raceways may be somewhat nonsymmetric and, hence , the resulting
tractions develop a moment about the transverse axis of the roller. Such a
moment will lead to angular rotation of the roller about its transverse axis
and this type of motion, which is highly undesirable, is generally called
skewing. It is quite easy to understand that when the roller skews, the corners
of the roller could interaction with the cage and the flanges on the race .
Generally, the axial clearance between the roller end and cage is quite large
compared to that between the roller end and race flange. Hence, the cage inter-

action can be neglected , but it is essential that the roller end and race flange

interaction be modelled in a realistic fashion in order to treat the roller skew—

jug with adequate justice . Unfortunately, the local geometry and the kinematics
greatly complicate the problem and the development of a realistic model becomes

extremely difficult. It should be remembered that a realistic model should not

only simulate the problem correctly, but it should also be simple enough to be
rapidly executable of a digital computer , since computer time is a key factor

in sophisticated programs, such as the one under consideration.

With the above difficulties in view, a first order interaction model for the

roller end and race flange contac t is derived on the basis of the following two
assumptions:

(1) If the roller end is not contacting the race flange, there is no
contact force. In other words, any hydrodynamic action is neglected.

(2) When the race flange is contacting the roller corner , which will have

a finite radius of curvature, the contact load is approximated by an

effective Hertzian type contact model and the tractive force is deter—

mined by a prescribed traction—slip relation.

It is, therefore , clear that the objective is to treat metal to metal contact only .
There will basically be two parts to such a treatment, e.g., the contact geometry

and the load deflection relationship. Both of these parts will be discussed in

this section.

IV—l 
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Geometrical Cons iderat ion

The roller geometric center was located with respect to the race geometric center

in the pre~seding center. In case of.the roller corner and flange interaction,
it will, be necessary to locate the center of curvature of the roller corner with

respect to a point on the race flange . Thus , an additional transformation from
the race azimuth to flange frame is introduced .

Transformation from race azimuth to race flange frame: (Trf (O ,y,O)] where the
angle y will depend on the particular flange under consideration as shown, in an
exaggerated fashion, in Figure IV—1.

~~~~~~~LLER
It should also be noted that the race azimuth angle will now be defined by the

relevant center of curvature of the roller corner and not by the center of roller.

Let us consider a point, 0, on the locus of the center of curvatures of the roller
corner , as shown in Figure IV—2. It is clear that the locus will be a circle and

the position vector locating 0, with respect to the roller geometric center in

roller frame, is given as

re 
— ~—Rsin$ 

— (-IV.l)

LRCOS

where $ is just angular coordinate about the X axis in the roller fixed frame.

It will be necessary to write r in the race frame , and ultimately in the flange
frame, and, hence, we recall the transformation from the roller to race frame from
the preceeding section

— (T in (T i~ J ( IV.2)

Also , a vector rbr; locating the roller geometric center with respect to the

race geometric center can be written in terms of the various vectors introduced

in Figure 111—1 in the preceeding section.

a (T~~ J + [T
1~] 

~— b ~ — ~ T~~ 1 ~~ (P1.3)

IV-2
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Nov for any selected value of ~ in (IV.l), the race azimuth angle ~ti is defined,

such that the vec tor
-~~~~~ -~~~~r a r  + ren e brg

when written in the race azimuth frame has only X and Z components. Hence,

—‘r —‘rr — r  +{T }ren brg br e

r al (IV.4)
er~

and r -‘a 
=

en ‘
~

J r  a
L~~3

where

a r a [~~~r 2 2r — r and r — j  (r ) + (r )en1 en 1, en3 / er 2 en 3

It should be remembered the r locates the roller corner curvature center wither
respect to the race geometric center. If we define the point 0’ as a reference

point on the flange, then the roller curvature center can be referenced relative
to 0’ as

— 
—‘a — [5, (Iv. 5)

where S is the race half width and R. is the radius of the race land.

When the above is written in the flange frame

— —‘f —‘aref (T
f] ref (IV .6

Clearly, the point of maximum interaction will be determined by maximizing the
Z component of ~~~ In fac t, the Z component will define the elastic deflection
if it is positive, and greater than the corner radius, Rce~

It may be recalled that all of the above is carried out for a preselected value

‘v—s
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of ~ in equation (IV.1). Thus, (r is maximized by varying t’. Hence,e 3

.
~~~~

- (r~~) — O

After  carrying out some routine algebra , it may be shown that the above equation

may be written as

T 
~ 

(_ Tb K cos~ 
— T

b 
R sin~ Jr 31 r12 r13

Trf 3
+ ~ (r r + Tbr 1. — Tb R sin~ + Tbr K cost)

r Li=2 i ii i2 i3en
3

x (_Tbr R cos~ — Tb R sin~~~ - 0 (IV .7)
12 13 J

The above is solved for  ~ by standard bisection. Not e that there will be two
possible roots , one denoting the maximum and the other defining a minimum. The

interest here is, of course , in the maximum.

As discussed above , the elastic deflection will be defined by the (r e~ ) when
3 maxit is positive .

5 — (r ) — R when >0 (1V.8)ef ce
3 max

If S is negative , then there will be no interaction between the roller corner
and the race flange.

Normal Contact Load

If the contact between the roller corner and race flange exists, then the contact
load can be determined by using the classical point contact }Iertzian solution

described earlier (reference 2). Clearly, the deflection S is computed as
described above, the material properties are prescribed and the only additional

parameters needed are the effect ive radii of curvature of the interac ting bodies ,

IV-6
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which may be defined as follows,

cR -
~~~~Race flange 

K

R -K
Roller corner 1 ce

R2 — (Rce + R)/cose9

where is the skew angle . This angle is included in the transformation Tib
used above and in the preceeding section.

It should be noted that when is zero, the above model will not be valid,

since the entire end face of the roller will interact (for a flat  end) and the

contact is no longer Hertzian. Such a contact will only exists when there is a

dominant thrust load on the bearing, which is never the case in cylindrical roller
bearing .

An alternate way to compute the normal load will be similar to the one described

for roller—cage and ball—cage interactions in (reference 1). A certain stress

level f or the computed deflection is prescribed and the contact area is just com—

puted by the geometry of interaction.

Tractive Forces and Moments

The computation of tractive force will be very similar to the procedure described

for the roller—race interaction presented in the preceeding section. The contact

point is located relative to the roller and race mass centers and the slip

velocities are computed. So, if r defines the contact point relative to the

roller mass center , and R ’ defines it relative to the race mass center , it willp
be straightforward to show that

r~~ “(T u ](T r 11’b + ~~~~~ +bg Rce (IV.9)

and — + + (Trf ) E~
Tra J ~~~ (IV .lO)

where ( TI  is the transformation from the race frame to the race azimuth

frame.

IV-7 
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The local velocities at the contact point are clearly

—u — V + t ~) x Rr r r p

Effect ive slip u9 — (u — 
) (I V . ll)r 2 2

and the traction coefficient < =  ~ ( u )  ~_! (IV.l2)
si

The total force acting on the roller is now defined in the flange frame as

- (Iv.13)

where Q is the normal contact load , discussed above.

The load of the race will just  be

(IV.14)
r b

and the moments on the roller and raceway will be

a 
~~~~~~~ 

+ ‘) (IV.l5)

a (1’ + (IV.l6)

It must be remembered that all vectors must be transformed in appropriate

coordinate frame. Generally, the forces will be computed in the inertial frame

and the moments in the body fixed frame of reference .

IV—8
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SECTION V

ELASTOHYDRODYN ANIC TRACTION MODELS

Several approaches to a realistic model of the traction slip relationship of
a given lubricant may be considered . The simples t approach will be to test
the lubrican t at the prescribed operating condition and derive a hypothetical

- • model by curve fitting the experimental data. A somewhat more realistic

approach will be to per form a two—fold elastohydrodynamic analysis where the
first part will determine the nominal film thickness and the second part will

evaluate the effective values of the coefficients in the pressure—temperature—

viscosity relation by curve fitting the experimental traction data. A discussion

of these different approaches is the primary objective of this section.

A Hypothetical Model

Most of the available experimental data shows a general trend demonstrated in

Figure Il—i . Traction initially increases with increasing slip , reaches a
maximum value at some slip velocity, and finally reduces to some asymptotic

value as the slip continues to increase further. Such a qualitative trend

n ay  be simulated by an expression of the form (reference 8)

K - + u) exp (-~‘3 u) + (V .1 )

where K is the traction coeff ic ient  and u is the slip velocity .

4 In general, the coefficients 
~~~~ 

~
i 2, p 3, and will be a function of the

operating conditions and the lubricant properties . However , if it is
postulated that the model is valid for a given lubricant at prescribed oper—

ating conditions, then the values of the coefficients may be derived from

the various parameters shown in Figure V-I , which can be expressed as

u — 0 , K K
o (V.2a)

u — ~~ K — K (V .2b )  4

U — U ‘~~ K ‘c m ’ 5 — 0 (V .2c )

v-i
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Combining (V.1), (V.2a), and (V.2b) gives

— K
0 

K,, (V.3)

— K,, (V.4)

_ Also, from equations (V.1) and (V.2c)

~
‘3 ~~~~~~~ 

+ ‘
~
‘2 u) + ~2 

— 0 (V.5)

and

~~~~~~~ 

+ 
~2 

um) exp (—~
p
3 
u) + — <

a

which form the two simultaneous equations for determining ‘
~
‘2 and

Eliminating p
3 in equations 

(V.5) will give a nonlinear equation in

r 
~• 2 m

— 

K — K  +~~~i u j
~ 

— K
m

_ K m (V.6)
- a — 2 m j

which is solved by standard bisection methods. Hence, all the four coeff icients
can be computed from the prescribed conditions shown in Figure V-I.

It is clear that the above model is very simple in that it does not allow

- 
- 

- any variation in the parameter as a function of local variations in rolling
. speed, Hertz stresses , etc. In order to allow for these variations, a some—

- what more sophisticated elastohydrodynainic model will be required. The first

step in such a model is the computation of the nominal film thickness , whichj will be discussed below.

Nominal Film Thickness Computation

- 
The computation of film thickness is one of the most fundamental steps in

- 
simulating the behavior of a concentrated elastohydrodynamic contact in

rolling bearings. Most of the available analysis first determines the film

thickness under isothermal conditions and the computed value is later modified

by a thermal reduction factor in order to accommodate the thermal effects.

Some of the formulae and computational procedures are discussed below.

V-3

~~~-~- ‘------, ~~~~~~~ •—~~— -- --- -~- -•- - •• — —--—--——~~~~~~~~~~~~~~ -- — — ~---



--—-~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

Grubin Formula: This is perhaps one of the first relations which appeared

in the literature (reference 9) for the computation of the isothermal film

thickness h, in a line contact configuration

h a 8/11
— 1.95 ~ (V . 7)

where

R
1

R
2R R ‘R the effective radius in rolling direction

l 2

G — aE’ , the elasticity parameter

~ 1 l v1~ + 
1 - v 2

E ’ 2 [E 1 E2

1.1
0 U

U — E’R , the speed parameter

— 4 (v1 + v2), the rolling speed

W , the load parameter

v , E, 
~~~~~~

‘ 
a, and w are respectively the Poisson ’s ratio , elastic modulus ,

inlet viscosity, pressure viscosity coefficient , and applied load per unit

length.

Dowson—Higginson ’s Formula: A similar relation is put forth by Dowson and
Higginson (reference 9)

O .6 O ~~~ O .7O
— 2

0 

V 8K
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The various parameters are the same as these described in the case of the

• Grubin’s formula.

Thermal Reduction Factor: The isothermal film thickness computed by any of

the above expressions must be modified by a thermal reduction factor in

order to allow for appropriate thermal effects. Cheng (reference 10) has

summarized the results of a thermal analysis and the required thermal
reduction factor can be computed by interpolating the results. Primarily

• ‘ for completeness , these results are reproduced here from reference 10.

The thermal reduction factor, is expressed in terms of the following
- 

parameters - -

2 _ 2
- - 

~~~~ ~~1~
’2
) 2~o U

• - 
2 K  T K Tf o f o

—

a’ —
T

0

V -v2 1
S * V2

and —
~~~~~ , the ditaensionless Hertzian pressure.

i 

.

Kf. 8, and T are the thermal conductivity, temperature viscos ity coeff icient,
and inlet temperature , respectively. All other parameters are the same as

discussed earlier.

The solutions of q, indicate that the most influential parameters are the
T

viscous heating parameter 
~m

• The other four parameters, a*, 8’ , —j
~
-, and ~

all play secondary roles in governing the thermal reduction factor. In

V-s
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particular , the influence of the slip ratio is very mild. A review of these

curves shows that within the range of the parameters investigated, the thermal
reduction factor can be represented by

— f1 
(1 — 0.1 s) ( l  — f2 —

~~
-
~~
) (V .9 )

where f
1 and f2 are numerical functions of ~m’ 

ct*, B’ , and are tabulated in
Tables V-i and V-2 .

Side Leakage Factor: Cheng (reference 10) has also present~-a a side leakage

factor, 
~~~~

, to modify the line contact film thickness in the case of ellipti—

cal contacts which may be relevant of crowned rollers. The dimensionless

film thickness for an elliptic contact is expressed as

h r~~~aU~~ n r~ i n
0 1 0  i i i  H z i 2
~~~~ i (~ 

)i i(-
~~r)j‘ L’ ~ (V .10)

where C , n1, and n 2 are numerical functions of 
a/b. These values are shown

in Table V—3.

Assuming that the film thickness at k = a/b — 5 approaches that of a line

contact, then the side leakage reduction factor becomes

— ~ 
[ii0Uct][ni — (nl)k.S] ~ ‘~~1[n2 

— 
~~2~k=5] (V .11)

k— 5

The effective film thickness can now be expressed as

h = h
i90 ~~T ~~S (V .12)

V-6
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TABLE V-I- 
VARIATIONS OF f

1 WITH RESPECT TO

c,*, ~~~~, and

• 
(ct * — a . . l0~~, ~ t / a * — ~~. 

1

- -  
a 

T—  .10
- o2

15.71 15.71 15 .71 23.564 23.564 23.56 31.419 31.419 31.419

0.35 0.5 0.75 0.35 0.5 0.75 0.35 0.5 0.75

• 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.01 .99 .98 .99 .99 .97 .97 .98 .98 .98

- 

0.02 .98 .96 .98 .98 .95 .94 .96 .95 .94
1 .

0.05 .96 .94 .93 .95 .92 .90 .93 .90 .89

. 0.1 .93 .9 .89 .9 .87 .84 .90 .85 .82

- 0.2 .89 .86 .81 .86 .81 .76 .84 .78 .74

-- 
0.5 .8 .78 .66 .77 .7 .62 .75 .66 .59

1.0 . ‘2 .65 .56 .67 .6 .50 .66 .56 .46

2.0 .62 .53 .44 .57 .47 .36 .56 .45 .35

• 5.0 .47 .37 .3 .44 .32 .24 .43 .31 .23

• . 10.0 .36 .27 • .22 .34 .22 .17 .34 .21 .15

v-i

~ ~~i~~~~~ - -~ -—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~
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TABLE V-2

VARIATION OF f
3 

WITH RESPECT TO

a*, B?/a*, and

(cz* a . l0~~, 3 1/a* — 

a T - ~~~~ lO~

15.71 15.71 15.71 23.56 23.56 23.56 31.42 31.42 31.42

0.35 0.5 0.75 0.35 0.5 0.75 0.35 0.5 0.75

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5 0.0 3.6 3.95 0.0 3.78 4.34 0.0 8.3 4.6

1.0 0.0 12.8 12.4 0.0 11.4 8.2 4.1 12.4 12.0

5.0 47.5 48.8 40.7 26.5 17.6 30.1 12.9 13.75 19.4

10.0 107.8 75.6 51.4 52.9 26.5 25.6 25.6 20.9 19.5

TABLE V-3

NUMERICAL FUNCTIONS OF C , n1, AND n2

k a/b C n1 n 2

5 1.625 0.74 —0.22

2 1.56 0.736 —0 .209

1 1.415 0.725 —0.174

0.5 1.132 0.688 —0 .066

v—R

~ 
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The Turbo—33 Oil Model

Based on the experimental data (reference 11) on the Shell turbo-33 type oil ,

a traction model has been presented in reference 10. It is shown that the

traction coefficient < 2’ in the rolling direction is dependent on three param—
eters

_____ 

81u0u2
2

G1 PHh 
02 

— 
8Kf 

C3 
— apR (V.13)

where is the lubricant viscosity at an inlet temperature of T0
; Kf is

the thermal conductivity of the lubricant; h is the film thickness; u2 is the

slip velocity in the rolling direction; is the maximum Hertz pressure; and

the coefficients a and 8
1 are obtained from the viscosity—pressure—temperature

model of the form

u ( p , T) * exp rap — 81(T - T
0
i) (V .14)

The relationship between G1, G 2, C 3, and the traction coefficient is

represented graphically (reference 10) by a series of graphs and this data
is basically stored in a computer data file for real applications. The

film thickness h is computed by the methods described above.

With the assumptions of a narrow contact ellipse this model is directly

applicable to a crowned roller contact. In equation (V .13),  is replaced b y

the pressure as a function of ~

- P}j / (

~~

)

2

and u2 is clearly a func tion of ~~, the coordinate along the major axis of

the contact ellipse (see Figure V-2). Thus,,~ is obtained as a function

of t.

I

V-9
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Figure V—2 Coordinate System in the Contact Ellipse
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The 5P4E Polyphenyl Ether Model

Smith, at al (reference 12) have proposed a traction model based on the experi-
mental data obtained by them for polyphenyl. ether. It is shown that the shear

• stress in the lubricant is best correlated by an expression

~0u2 sin —l 
[* exp (at p 12)] exp ( * p /2)

— 

2 
(V.15)

h q ,  ~~~~ exp(cztP)

where

*

— U
2 J
”
~

••

~~~

•

p is the local pressure obtained by Herezian pressure distribution, ~~~~~~~ is
a coordinate system in the contact ellipse along the major and minor axes (see

• Figure 11—2), and other parameters are the same as defined earlier. The

three empirical constants , ~~~~~~ a~ , B~ denote the coeff icients in a modified
pressure—temperature—viscosity relation

— exp tcs*p + 8* (T — T
0

)} (V.16)

and the value of these constants are determined by correlating the experi-
mental data.

With the assumption of narrow ellipse equation (V.15) may be integrated with

respect to ~ to obtain a tractive force per unit length along the major axis

E . If this force is divided by the normal force per unit length, a traction
coefficient <2 is the rolling direction determined. Some straightforward

algebraic manipulation will show that

4 P
0

U
2

— 
iT 2:1 h 4i

V-il
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where

- ~ (~~~~~~~~ ) ~n ~~~~~~~ 
+ / 1 + ,2 

~~~~~~ d~ (V.17)

/1 + ~2 ~~~~

— ~i exp 2

and

b~ - b /1 -

Generally the constants a* and B~ are independent of rolling speed, while
is allowed to vary slightly with the rolling speed in order to allow for

the variation in traction as a result of short—time effects on lubricant

viscosity or the inlet zone heating effects (reference 12). It is found

(reference 12) that the values for the three coefficients which fit the experi-

mental data are

— 1.4 x lO~~ lbf—sec/in2, for rolling speed , U ~ 900 in/sec

= 1.4 x lO~~~ exp {_0.3olll (
~~~ 

— 

1)] 
lbf—~~c > 900 in/sec

3.77 x 10~~~ in2 /lbf

and

8
* 

~ 0.046 1/°R

V-12
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It should be noted that relation (V.16) is valid only f or the computation

of traction. For determining the film thickness a relationship of the form

M exp + (8 + YP) — ~—)J (V. 18)

is used, in which a, 8, and y are the conventional pressure—viscosity temperature—
viscosity, and pressure—temperature—viscosity coeffieicnts. For 5P4E poly—

phenyl ether, these constants have the following values.

T — 630 °R p — 4.7489 lbf—sec/in2

a — 1.1597 x lO~~ in
2/].bf B — 6.5042 °R

y — 0.18305 °R lbf/ in 2

Using the above values , the inlet viscosity at any temperature can be deter—
mined. An additional property required in computing the thermal reduction

factor is the thermal conductivity which is found to be 1.205 x lO
_2 

lbf/ sec/°F.

The MIL—L—7808 Model

Similar to the polyphenyl ether model, Walowit and Smith (reference 13) have
investigated the behavior of the MIL—L—7808 oil and have presented a traction

model based on the experimental data. It is shown that the viscosity pressure

temperature relationship, in the high pressure zone, for the purpose of com—
puting traction is

p - 1q45 x 1O~~ x (U) exp + 524~~~~ 10~ -

4•l8935 x lO~~~ —5 1
2 + 3’60 x 10 P( (V .19)

(T—345)

where -

x(U) — 1 for U, the rolling speed ~ 900 in/sec

- exp [=0. 70320 
~~~~ 

- > 900 in/sec

and T and p are, respectively, the temperature (°R) and pressure (lbf/in
2).

V—13 
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Using the above equation, traction is determined by simultaneously integrating
the Newtonian shear and the energy equation through the film when the required

boundary conditions are determined by the prescribed surface temperature and

the rolling speed.

It turns out that such an integration has to be performed numerically and ,
hence, the model becomes somewhat time consuming. In view of this difficulty ,

equation (V.19) is further expanded to make it similar to (V.16), and

coefficients similar to 

~“ 
&~, and 8* are derived. These coefficients will

now , of course , be functions of temperature and some straightforward algebra

will show that the required expressions are

r 3 5)
* 

— — 12 5.24719 x 10 4~ l8935 x 10 lbf—sec
= x(U) 6~92743 x 10 exp — 2 2o 

- ~ (T — 345) (T — 345) ~ in

* 5 24719 x 1O 3 8~ 3787l x 10~B — 
2 

— 1/ R (V .20)
(T — 345) (T — 345)

* — 3.6 x l0~~ lbf / in2

~
(U) is the same as that described above in equation (V.19), and T will be

the inlet temperature (°R).

If the above values are used, then the 7808 model becomes identical to the
* *polyphenyl ether model , except that the apparent coefficients , , a , and

are temperature dependent. The differences between such a simplified

model and the actual model (reference 13) are shown in Figures V-3 and V-4

for some extreme cases. It is clear from these comparisons that the above

apj’roximacions are quite reasonable.

This simplified approach also suggests that the general analytical approach

can be used somewhat universally for any lubricant. It will be necessary to
derive an equation similar to (V.19) and then, depending on the actual form

of the equation, appropriate expansions may be substituted and relevant expres-

sions for the apparent coefficients, similar to equations (V.20), may be
derived. Once these coefficients are determined, the remaining analysis will

be identical to that described in the case of the polyphenyl ether model.

V—14
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Once again the pressure—temperature—viscosity relation of the form (V.18)
is used for the computation of the film thickness. The low pressure viscosity

data for the 7808 oil has been found to fit the following expressions

(reference 14).

- 1.45 x 10~~ exp 1exp (-3.7048 In T + 24.394) - 0.87} lbf-Bec
— ° 

L 

° 

J in ’

j — 
3 l n u  

—• 
3 (l/T)

~ çp.jIexp (—3.7048 In to + 24.394)1 exp (3. 7048 In T~ + 24.394) 3.7048 T~
exp rexp (—3.7048 in To + 24.394)] — 0.87

(V.21)

• 5 . 2 27  x io_ 6 + O~013332
T0 — 388 

I
-

when T0 is the reference temperature (°R ) .

Thermal conductivity of the MIL—L—7808 is found to be 1.2062 x 10~~ lbf/sec/°F.

i
i

.
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SECTION VI

- ROLLER W)TION RESULTS

The analysis presented in the preceding section forms a basis for a roller
a bearing performance simulation computer program. This can be seen by

- - examining some results for the roller motion in a typical high-speed roller

t 
bearing. Some geometrical details for the particular bearing are as follows:

4 . Bore 6.49606 in.
-- Outside Diameter 8.858 in.

Roller Diameter 0.6299 in.

Roller Length 0.6299 in.

* Central Flat Land 0.20 in.

Crown Radius 17.0 in.

- Number of Rollers 32
- Pitch Diameter 7.75 in.

- Diametral Clearance 5.8 x 10
3
in.

Roller Corner Radius 0.050 in.

• - All the details about the cage geometry have been omitted since the emphasis

is only on the roller motion in the present investigation.

The operating conditions assumed to be imposed on the bearing are:

Radial Load 1465 lbf
- Inner Race Speed 13230 rpm

Outer Race Speed 0.

Inner Race Temperature 650°R

Outer Race Temperature 610°R

Lubricant MIL-L- 7808

In order to study the motion of a roller under the above condition, a simple

VI— l
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quasi-static type computation is first performed to determine the relative

position of the races. As shown in Figure VI-l, the races are then held

in this eccentric position and all the rollers are removed from the bearing.

One roller is placed just before the start of the load zone with conditions

identical to those in the full bearing. Using these conditions as initial

conditions , the differential equations of roller motion are then integrated

to simulate the general motion. Since such an integration is performed

numerically, the equations are properly dimensionalized and the scales for

the fundamental quantities are derived from the bearing geometry and applied

conditions.

Force = Applied Load 1465 lbf.

Length = Roller Radius 0.3149 in.

Time = = 1.7495 x 10 sec.

where m is the mass of the roller , r is the roller radius, and Q is the
applied load.

The above quantities will also be used in dimensionalizing most of the

results discussed below.

With reference to Figure Vt-i, initially due to the centrifugal force, the

roller is in contact with the outer race only. As it moves in the load zone,

it comes in contact with the inner race and the load variation as the roller

moves through the load zone is shown in Figure VI-2. The roller will

experience radial accelerations due to this load cycle and also the resulting

tractive forces will contribute to the orbital and angular accelerations of

the roller. The general patterns of these accelerations are shown in Figure

VI-3. The high frequency variations in the radial and orbital accelerations

correspond to the roller/race contact spring resonance. In the load zone these

will be both inner and outer race contact springs in parallel while only the

outer race spring is relevant in the unloaded zone. Hence, the natural

VI-2
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Figure VI-2. Roller/Race Contact Load Variation as the Roller
Travels Through the Load Zone.
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frequency will be somewhat higher in the load zone. These frequencies are

similar to the ones identified by Gupta, et.al. [15] for ball bearings.

In general, the contact resonance frequency is somewhat dependent on load.
Hence, the frequency in the load zone is not constant in Figure IV-3.

However, since the centrifugal force is fairly constant, the resonance

frequency is constant in the unloaded zone. On an average, the load and

no load zone frequencies in Figure VI-3 are approximately 24 and 17 kHz,
respectively.

!~To skew type motion of the roller is observed in the present example , since

the races are perfectly aligned and the system is free of any imposed moments

about the transverse axis o~ the roller. En a real bearing with misalignment

or some geometrical deviations will result in roller skew. Skidding of the

roller primarily means relative sliding between the roller and the races.

Figure VI-4 shows the roller/race slip velocities and the resulting traction

coefficients for both the outer and inner race contacts. It is seen that the

roller starts out with a zero slip (the selected initial condition) and it

experiences a slip cyc le as it travels through the load zone. Since the

magnitude of slip is quite small, the traction curve is almost linear with

slip and , therefore, the traction coefficients in Figure VI-4 appear to be

almost proportional to slip.

These general results primarily summarize the practical significance of the

roller motion analysis, presented in earlier sections, in simulating the

dynamic performance of a roller bearing. In a complete bearing such an

analysis will be per~ormed for every roller and also a treatment of

roller/cage and race/cage interactions will be included.

VI-6
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SECTION VII

SUMMARY

A generalized formulation of the differential equations of motion of a roller

in a radially loaded cylindrical roller bearing is presented. The motion is

considered in two parts, e.g., motion of the roller mass center in an inertial

frame of reference and the angular motion about the roller mass center in a

roller fixed coordinate frame. The formulation, therefore, has the complete

six degrees of freedom and it has the capabilities of treating roller skew and
other complicated, and often undesirable, motion. Also, the geometric formu—

lation takes full account of any misalignment of the races.

Analytical frame work for the computation of applied forces and moments at the
roller—race interaction is described. The normal contact force is primarily
determined by locating the geometric center of the roller with respect to the

interacting surface of the roller and, therefore, by computing the elastic deflec-

tion at the contact point. Knowing the deflection, the normal contact load is

determined by the most commonly used Paluigren or Lundberg type of load deflection
relation for a line contact. The tractive forces and momenta are computed by
first determining the local slip velocities in the contact zone and then esti-

mating the traction coefficient from the given traction—slip model. The total

contact zone is divided into several elements and the forces and moments are
computed for each element and a proper suimnation is used to compute the total

interaction. Thus, a full account for the local geometry, such as partial crowns,

• - is taken.

In the case of roller skew the interaction between the roller corner and the

race flange is considered. The general appro*ch is very similar to that for the

roller and race interaction described above. The position of the roller is

located with respect to the race flange and the elastic deflection is determined
by the geometric interaction. When no contact between the roller and flange
exists, any hydrodynamic interaction is neglected, hence, only metal to metal
contact is considered. The tractive forces and moments are determined by first
computing the slip velocity and then using a specified traction slip relation.
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Elastohydrodynamic traction models for three lubricants, the Shell turbo—33

oil, 5P4E polyphenyl ether, and the MIL—L—7808 oil, are presented in a form

which is readily adaptable in the computerized simulations. All models are

semi—empirical in nature and the characteristic coef’icients are derived by
curve fitting actual traction data obtained for a wide range of operating

conditions. For bearings which have limited lubricant, relationships to

modify the film thickness for starved conditions are presented and, hence,the
the influence of starvation on the traction characteristics, and ultimately

the bearing dynamic behavior, is treated to a first approximation.

For a typical bearing the equations of motion are numerically integrated in

order to examine the general nature of roller motion. It is shown that the

radial acceleration of the roller mass center demonstrate the presence of a
roller/race elastic contact resonance. This high frequency vibration results
in variations in normal contact load; it also leads to corresponding variations

in the -tractive forces and, hence, the orbital accelerations. The general

nature of roller/race slip variations, and the resulting traction coefficients,

as the roller travels through the load zone is also simulated.
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SECT ION VIII

RECOMMENDATIONS FOR FUTURE RESEARCH

One of the primary findings of the present research has been that the

- - roller is subjected to a high frequency motion resulting from roller/race

- 
resonance. Such a behavior should be confirmed experimentally. It is

expected that these high frequencies will generally cause “ringing” of the

outer race and, hence, their presence can be detected by picking up

- acceleration signals from the stationary race.

Roller skew and bearing misalignment are important subjects which can be

studied by using the computer programs developed on the basis of the general

- roller motion presented in this report. Such a parametric study will be of

a great practical and design significance.
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