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SECTION I

INTRODUCTION

Practical rotor aystems subjected to relatively large radial loads are often
supported by roller bearings primarily due to the large load support and stiff-
ness characteristics of such bearing. A dominant radial load, however, causes

a number of rollers to be completely unloaded as they travel in orbit. Thus,

each roller is subjected to large load variations and, therefore, the resulting
motion is somewhat complicated. Other factors auch as irregular traction charac~
teristics, roller-cage interactions, relative race misalignment, etc., further
complicate the roller motion and sometimes lead to instabilities termed as ''skid~
ding" and "skewing'". Skidding normally represents large sliding between the

roller and the race, while skewing denotes rotation of the roller about itstrans-
verse axes. The primary objective of a bearing system design is to reduce or
eliminate such instabilities under the prescribed operating conditions. A realistic
design tool must simulate the roller motion with adequate generality in order to
provide the required design guidelines. The development of such an analytical tool
{s the primary objective of the present investigation.

Most of the analytical simulations of roller bearing performance available to date
have been restricted to quasi-static type of force balance models. It is clear
that although such models will give adequate information about the overall load
distribution and bearing fatigue life, they fail to provide any insight into the
general motion of the roller and the resulting dynamic behavior of the bearing.
For the simulation of even some of the simplest forms of roller motions, it {s
necessary that the general differential equations of motion be formulated and in-
tegrated in time, with prescribed initial conditions. The external forces on the
roller are determined by the applied loads on the bearing, roller-race interaction
models, lubricant traction behavior, roller-cage interactions and some other

factors such as lubricant drag and churning.

This report contains the analysis relevant to the above general interactions in the
case of a cylindrical roller bearing. The work is somewhat similar to an earlier
investigation (reference 2) for the case of ball bearings. The motion of the cage,

which 18 a crucial element for both ball and roller bearings, has also been

1-1
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formulated in an earlier report. Thus, this report is the third part of a con-
tinuing project with the ultimate objective of developing generalized computer
simulation models for the dynamic performance of both ball and roller'bearings
The next forthcoming part, IV, will contain details about the traction models,
churning losses and related factors. Some results of parametric studies will be
described in Part V and Parts VI and VII will respectively be the user's manual
and compilation listing of the computer program.

The generalized equations of motion for a cylindrical roller are described in

the next section of this report. Sections III and IV are devoted to roller-race
interactions and the race flange and roller end interaction. Simply for the pur-
pose of computing the initial conditions for the general equations of motionms,
the static and quasi-static equilibrium equations are contained in Sectioms V

and VI, respectively.
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SECTION II

GENERALIZED EQUATIONS OF ROLLER MOTION

Similar to a ball bearing, the motion of a roller in a generalized simulation of
the dynamic performance of a roller bearing can be considered in two parts:

(1) Motion of the roller mass center in an inertial reference frame.

(2) Rotational motion of the roller about its mass center.

A formulation of both the above parts of roller motion and a definition of the

relevant coordinate frames will be the basic objectives of this section.

Motion of Ball Mass Center

As shown in Figure II-1l, the translational motion of the roller center is best %
considered in a cylindrical coordinate frame, which is fixed in space and it, ‘
therefore, represents the inertial frame of reference. The classical differential
equations of motion are written as
x = Fx/m
r - réz =F /m
r

8 + 218 = Fe/m

where (Fx,Fr,Fe) are components of the net applied forces on the roller and m

is the mass of the roller.

For a given position of the roller mass center and all translational and angular
velocities, the applied forces are calculated from the various interactions in

the bearing, such as:

Roller-race interaction
Roller end — race flange interaction

Roller-cage interaction

Lubricant drag, churning or other interactions.

The mechanics of the roller-cage interaction have been formulated in (reference
1). The details of roller-race contact and the roller end - race flange interaction

I1I-1
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Figure II-1. Coordinate Frames for Roller Motion
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will be considered in the next two sections of this report and other possible

interactions will be undertaken as a part of future development.

Once the applied forces are known, the differential equations (II.1l) of motion

can be readily integrated to obtain the time dependent motion of the roller mass

center.

Rotational Motion of the Roller

If the roller is considered to rotate about a fixed point, 0, with angular
velocity ® and the triad, formed by unit vectors I, I, k along the principal
axes of inertia at 0, rotates with an angular velocity 5. then the classical

differential equation of motion is written as (reference 7).

£ - S,z xh =28 (11.2)

dw dw
> dw 2 > 3 >
6}; & 11 d:l 1 + 12 it i+ 13 o k (I1.3) |

where Il’ 12, and 13 are the principal moments of inertia of the roller . é

Some straightforward algebraic manipulation can show that equations (II.2) and

(II.3) can be combined to give the following component equations:

e e oo TR

Ilwl- ;
I,.0, - Iw. 9, + I.w,Q, = G

20p = Iju48y + T w0, (11.4)

2

I3w3 - Ilwlﬂz + Izwzﬂl = G3

In case of a "perfectly” cylindrical roller, the transverse moment of inertia
i ¢

o 3
to any great extent since the polar axis has to be fixed in the roller. It will, j

will be equal. However, this symmetry does not simplify the situation

therefore, be convenient to consider the roller angular motion in a roller fixed i1 9
frame and preserve all generalities. A roller fixed frame will essentially mean
that the triad of unit vectors I, 3, f, of equation (II.3) is fixed in the roller.

11-3




Thus, =0 and equations (II.4) reduce to the classical Euler equations of
motion

Ilwl - (I2 - 13)w2w3 = Gl

I

29y (13 - Il)w3wl = 02 (I1.5)

I3w3 - (Il - Iz)wlmz = G3

Clearly, the components of the moment vector E will now be in the body fixed

reference frame.

The applied moment vector ¢ is once again determined from the various inter-
actions mentioned in the case of roller mass center motion. It is easy to
understand that while the normal contact forces at each interaction dominate the
mass center motion, the angular motion is dependent on the moments which result

from the tractive forces at the various interactions.

Since the applied moments are conveniently expressed in the inertial coordinate
frame, it will be necessary to define a law of transformation between the inertial
and body fixed frames. Although such transformations have been defined in
(reference 1) in case of the cage motion and in (reference 2) for ball motionm,

they will be repeated here for completeness.

Coordinate Transformations

As shown in Figure (II-2) let (X,Y,2) be the inertial frame and (xp,yp.zp) denote
the body fixed frame. The required transformation is obtained in terms of three

angles n, 3, and y by the following three successive rotations:

1) nf; 10 83" (141) v

e
where I,J,K,1i,j,k, etc. are unit vectors along the corresponding X,Y,Z, and x,y,z

axes.,

The relevant transformation from (X,Y,Z) to (xb,yb,zb) frame may be written as

-+

T, = (T,,(n,8)] R (11.6)
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Figure II-2,

Transformations From The Inertial Frame (X,Y,Z)
to Any Other Moving Frame (xb.yb.zb)
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where

cosB cosy cosn siny sinn siny,
+sinn sinB cosy =-cosn sinB cosy

[Tib(n’B’Y)] = -cosB siny cosn cosy sinn cosy (11.7)
~-sinn sinf siny +cosn sinB siny 3

sinB -sinn cosB cosn cosB

It may be noted that the transformation angles n, 8, and Y, are quite similar
to the conventional Euler angles. It can also be readily shown that the above
transformation matrix is orthogonal and hence the inverse is readily determined

by the transpose.

In order to complete the formulation it is now necessary to estaplish the rela-
tionship between the angular velocity and the time rate of the transformation
angles n, 8, and y. Let ;b be the angular vector in the body fixed reference
frame (xb,yb,zb) or (Ib’sb’ﬁb)' In accordance with the law of transformation

->
defined earlier, the incremental vector rotation én is written as

ém = anl + 28)” + AyKb (1I.8)

where

7" = siny ZL + cosy Zs
and

->
I = cos3 £°° + sin8 ib

(11.9)
= cosB (cosy I£ - siny IS) + sing Eg

A combination of the above two equations results in tle expression for re-
quired angular velocities

én = (AncosBecosy + ABsiny)Is + (-Ancosgsiny + ABCOSY)I£ +

(ansing +Ay)§£




or
\
ulb ¥ cOsBf cosy siny 0 n
uzb ? = | -cosg siny cosy 0 8 (I1.10)
m3b sing 0 1 Y
y,
It may be noted that the matrix in Equation (II.1l0) is not orthogonal.
However, the computation of the inverse is rather straightforward and some
algebraic manipulation will show that
Fi
. cosy _ Siny 0 . b
n cosB cosf o
g )= siny cosy 0 “zb } (11.11)
Y -tang cosy tang siny 1 “3b
7/
\ J

The accelerations may be written by a straightforward differentiation of the

above equation

(" b f. b
n u.“L W ml 1
{ 3 } = 3[B] wzb} + (8] 4621’ (11.12)
ot
Y w > @ L
k p, 3. (3 )
where
cos 5%
cosB cosf
(33 siny cosy 0 (I1.13)
-tan8 cosy tan8 siny 1
-
I11-7




AT

and it may be shown that

-y siny sec8 -y cosy sec8 0 ¢
cosy sec8 tanf ~8 siny secB tanB
3 L) »
—%%l Y cosy -y siny 0 (I1.14)
Y siny tan8 Y cosy tan8 0
-8 cosy sec“3 +8 siny sec”8

For prescribed initial conditions the above formulation may be readily used

to obtain the real time simulation of the ball motion. The initial conditioms
will comsist of ball position and velocities. Thus, the mass center position,
(x,r,3), mass center veloecity, (x,f,8), angular position, (n,8,y) are prescribed
at any instant of time. Sometimes P may be known instead of (ﬁ,é,}), in

such a case equation (II.1ll) will provide the necessary relationship. With
these given position and velocity components the force and moment vectors,

T and G respectively, are computed from the models for the various inter-
actions. Both these vectors will generally be determined in the inertial
frame. The mass center accelerations are given by equation (II.l). For the
angular acceleration the moment vector will have to be transformed in

the roller fixed frame using equation (II.7) and (II.8). This transformed
moment vector can then be substituted, along with the known angular
velocities, in equations (II.4) and 3 can be determined. Equation (II.1l2)

is now used to compute 1,3 and V. All the acceleration components are
finally integrated numerically to obtain the required time dependent

motion.

11-8
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SECTION III

ROLLER-RACE INTERACTIONS

The normal and tractive forces at the roller-race contact constitute the domi~
nant forces on the roller. The interaction is very similar to that in case of
a ball-race contact (reference 2). It is first necessary to compute the geo-
metrical interaction between the roller and a raceway. This geometrical inter-
action will define the elastic deflection, if a contact exists, which in turn
will give the normal contact load, using a given load-deflection relationship.
Once the contact geometry and load are determined, the local slip velocities in
the contact zone may be determined from the prescribed velocities of the roller
and race. A suitable traction model for a given lubricant and operating condi-
tions is then used to compute the tractive force. A discussion of all these
factors is the objective of this section.

Geometrical Considerations

Figure (III-1) schematically describes an exaggerated view of the geometrical
interactions between the roller anc a race. For simplicity, the diagram is

drawn in the x-z plane and y axis is normal to the plane of the diagram. The
position vector ;r locates the mass center of the race, RM’ relative to the
inertial frame (X,Y,2). Vector ;rg locates the race geometric center, RG’ rela-
tive to the mass center and vector ;gc locates the center of race land Rl,

relative to the race geometric center, RG. Similarly the mass center of the roller,
BM, is located by ;s relative to the inertial frame and T locates the roller geo-

bg

metric center relative to the ma-s center. The vectors ;r and ;53 will generally

be prescribed respectively in the race fixed frame (x,y,z) and the roller fixed frame
(x,¥,z). Also, the relevant transformations will be:

Transformation from inertial to race frame: [Tir(nr,Br,Yr)]

Transformation from inertial to roller frame: [Tib(“b'sb"b)]

In addition to the above it will be convenient to define an azimuth frame

(xa,ya,za) such that z, is parallel to the radial component of ;ﬁ, Xy is parallel
to the inertial X axis and Y, is determined by the right-hand screw rule. Since
the diagram in Figure (III-1) is drawn in the x-z plame, this coordinate frame is

III-1
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Figure III-1, Exaggerated View of Roller-Race Interaction
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not shown in the figure. However, the transformation will depend only on the

race azimuth angle ¥, and it may be defined as

Transformation from inertial to roller aximuth frame: [Tia(V,0,0)]

In order to make the entire analysis applicable to both the outer and inner race
contacts, it will be convenient to introduce a transformation from the azimuth

to contact frame.
Transformation from azimuth to contact frame: [Tac(o,u,O)]

where a = Q0 fcr outer race and 7 for inner race.

It may be noted that for most practical problems the mass and geometric centers
may be coincident and this could simplify the geometry to some extent. The
purpose of defining the geometric center different from the mass center is just
to preserve the generality and capability of simulating some advanced config-

urations in the future.

Now the interaction between the roller and the race will be determined by
locating the geometric center of the roller BG, relative to the race land center,

Rl‘ Let us denote this vector by Tor and it will be given by the equation

-bi -Pi . -bb -bi e +T + T
T ® Ty + [Tib]rbg - {;r + (Tir] {tr8 + rgc} . . (I11.1)
It may be noted that everything on the right-hand side of the above equation

is known except for the vector ;gc' It will be necessary to determine a race

azimuth angle ¢', measured in the race fixed coordinate frame such that BG’ RC,
->
and RG’ all lie in one plane. The vector locating BG’ relative to RG' rbrg s
written as
> +i ,->b -»i ’-br
rbrg =Ty + [Tib]rbg - (rr + [Tir]rrg} (111.2)
-

When rbrs is ih the inertial frame, an angle ¢ may be defined such that it
denotes the angle between the inertial z axis and the plane containing vector
;brg and a line passing through RG and parallel to the inertial X axis.

I11-3




Symbolically

brg
¥ = arctan n 2 (III.3a)

tbrgz

If the race is assumed to be symmetric about the x axis, then the race fixed
coordinate frame may not be necessary and ¢' = ¥. However, if the generalities
mentioned above are preserved, then ¢', is determined in the race fixed frame
such that ;SC and T lie in the same plane. Now if R is the radius of the

brg
circle representing the locus of the race land centers, then

T = {0, -Rsin®', Rcos ®}
gc
In order that ;gc and ;brg are coplaner, the y-component of the following vector

must vanish

(0
‘ Qsi 1
Yy 1 = nd
(700,001 (T4,"] 4 pogor
\ (II11.3b)
i o
or ¢' = arctan TZQ
22

where T22 and T23 are the relevant components of the matrix obtaired by the
product [T(¥,0,0)] [Tir'].

Once ¢' is known, ;br may be determined in the inertial frame using equation

(III1.1) and it may be referenced in the race azimuth frame as

-
T,

a _ ' b
b = [T(®',0,0)]r, (1I1.4)

and in the contact frame

+C e
T ™ [Tac] Tor (I11.5)

where the matrix [Tac] has already been defined above.

The computation of the roller azimuth ¢, is quite straightforward once the

I11-4




orbital position, 6, locating the roller mass center is known from prescribed 1
;b Z (x,r,0) in cylindrical coordinates,

-r, ]
¢ = 6 - arctan g (I11.6) :
3 4
N ->
where r, and £, are the y and z components of the vector ['l‘ib ]rbg'

Once the geometric center of the roller is located relative to the race land

center, it will be necessary to examine every point on the roller for possible
interaction. Hence, the introduction of the roller geometry becomes essential
at this point. Figure III-2 shows this geometry for a typical roller in a
cylindrical roller bearing. The interaction between the roller and race will be
restricted to the central flat land and the crowned areas at this point. Later
in the next section the {nteraction between the roller end and race flange will
be considered.

Now a point of the roller surface is best described in the roller frame by the

position vector

" A
2 e {-R'sgne (111.7)
R*cos?

Where ¢ is the angular position about the X axis, t {8 the length coordinate
along the X axis and R“{s the effective radfus. For the geometry shown in
Figure III-2, will depend on

L L
PG AR -2 '
N S T
p " |
L: - " L2 L2
and R'= % - “Rc -Llil:‘--z— lnd—z-:Q:Ll

where Rc is the crown radius as shown in Figure III-2.

. |
The vector r can be expressed in the contact frame as 1

*c *b ; (ITI.8)

B [Tac] [Trn] lrtr] [Tib] %
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Figure III-2, Roller-Race Contact Geometry
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For the point to be in the contact plane the y component of T must vanish
and t" ‘s condition will determine the relevant ¢. Since the rotation of the
roll. about the Y and Z axes will be in general small, it will only be neces-

sary to compute ¢ for the roller center, hence

T
¢ = arctan ng (I11.9)
22

where T23 and TZZ are the corresponding elements in a matrix obtained by the
product of matrices shown in equation (III.8).

The deflection at any point on the roller surface is now given as

§ = (¢ +71°) (111.10)
br 3

A negative value of § will mean no contact.

In order to determine the effective contact length, when the roller is crowned,
the length coordinate 2 in equation (III.10) will be determined by standard
bisection techniques. In other words, the value of & for § = 0 will determine
the contact length. Clearly, these will be two such roots and they both have

to be determined separately since in general the roots may not be symmetric.

For the purpose of computing the total interaction, it will be convenient to
divide the contact length into a finite number cf elements as shown in Figure
ITII-2 and compute the normal and tractive loads for each element. A proper
summation will then give the total required load. Thus, the analysis presented
below for the normal and tractive load will apply to each element in the contact

zone.

Normal Contact Load

The load deflection relation for a line contact is not uniquel;y defined, as in
case of point contact. The deflection can be computed only in terms of strains
corresponding to finite lengths in the two interacting bodies. (Reference 3)
suggests a relationship of the form

2
1=v 2d v
1 \)1 2 2 2
aits 2(1-v1)} e = g‘“ 5 " vy (111.11)

2
1-v 2d
- 29 1
§ »i El ¢n

Yy =




where the contact half width

L
¥ 4Q 1 2 :
b Tilp El + E, (I1I1.12)

=

Vis El, vz, E2’ are the Poisson's ratio and elastic modulus for the two inter-
acting bodies, Ip is the sum of the principal curvatures, Q is the normal

contact load, and £ is the contact length.

The determination of lengths d1 and d2 is rather arbitrary and, hence, application
of (III.1ll) becomes a little difficult.

In view of this difficulty, Lundberg (reference 4) has determined an empirical
equation based on actual load deflection measurements in line contact. This

relation is

L
§ = Py El + : n T + 1.1932 (I1I.13)

<4

where the contact half width b is given by equation (III.12).
It is clear that for a given Q, the computation of § is straightforward from
equation (III.13). However, when § is prescribed, some type of iterative pro-

cedure will be necessary to order to compute Q.

Palmgren (reference 5) gives a relation which is free of the above difficulty.

i B 0.90

-)) -\ .

§ = 0.39 T - L (111.14)
E, E, ~ ,0.80

In terms of results, the above two relations are fairly close. Hence, if
equation (III.13) is to be used, then the initial guess in the iterative scheme
can be derived from equation (III.1l4) and under such conditions the iteration

will converge rather rapidly.

Tractive Forces and Moments

For the purpose of computing the traction, it will be necessary to define the
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position vector locating the center of the elementary strip in the contact zone,
relative to the roller mass center and the local slip velocities. If we assume
that both roller and race deform equally, which is quite reasonable, then the
required position vector may be written as

= 2
r = -(R=-6/2)sin¢ (III.15)
P (R-8/2)cos¢

In order to compute the local slip velocities, let the race have a translation
velocity ;r and an angular velocity ;r' Likewise, let the roller have a trans-
lational velocity ;b and an angular velocity ;b' Generally, the angular
velocities are specified in the body fixed frames while the translational veloc-
ities are measured in the inertial frame. Furthermore, the roller velocity is
conveniently measured in the cylindrical coordinate frame in terms of components
X, £, and 8. In terms of these components, the local slip velocity ;h of the
race relative to the roller at point P (see Figure III-2) is given in the contact

frame in terms of the race and roller velocities, ;r and ;b respectively as

b
- - -> > i e
urc - [T, ]IT,,] {vri + {[Ti'r]wrr - gg%} X {{Rp + [Tir]rrgr}}} (I11.16)
i - e ® x (T30 S + (1,007, ) 1.17)
w = [Tac] 2 +* [Tia] (T, Jw, " X [Tia][ a‘:]rp (T} Tig (I1I.
ol - ¢ »* <
A LR (111.18)

where the vector ip, which locates the center of elementary strip with respect

to the race mass center, is computed as

ip - ?p + 'Ebg + ?b - (?r + ?rs) (111.19)

The components u:1 and u: in the contact frame will result in tractionm, u:

being along the rolling direction and u:1 being normal to it.
In case of a roller bearing the slip will be primarily in the y direction and,

hence, the tractive force will act along the y axis. The relevant traction

coefficient, x, will be determined by the appropriate traction model, which will
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be described in Section V, for the present it may be denotad as:"

K =
2 Kz(uz) (III.20)
where the subscript 2 is used to denote the y direction.

The tractive force, F is now defined as

t’
F, = Q (III.21)

where Q is the already known normal load on the elementary strip.

Both the normal and tractive forces, acting on the roller can be combined in

a general force vector, written conveniently in the contact frame as

F- =4 «Q

The force on the race will just be -f, while the moments on the roller and
race are defined as

6. = (r 4+1.) XF
b T

d G R +r ) xF
an - P rrg X

All vectors must be transformed to appropriate coordinate frames. It is con-
venient to compute the forces in the initial frame and the moments in a body fixed

frame.

It should be remembered that all the above forces and moments will be on a given
elementary strip in the contact zone and a summation over the contact zone will

give the total force and moment vectors.

I11-10

i




SECTION IV

ROLLER END-RACE FLANGE INTERACTION

In a roller bearing subjected to a slight misalignment, the loads between the
roller and raceways may be somewhat nonsymmetric and, hence, the resulting
tractions develop a moment about the transverse axis of the roller. Such a
moment will lead to angular rotation of the roller about its transverse axis

and this type of motion, which is highly undesirable, is generally called
skewing. It is quite easy to understand that when the roller skews, the corners
of the roller could interaction with the cage and the flanges on the race.
Generally, the axial clearance between the roller end and cage is quite large
compared to that between the roller end and race flange. Hence, the cage inter-
action can be neglected, but it is essential that the roller end and race flange
interaction be modelled in a realistic fashion in order to treat the roller skew-
ing with adequate justice. Unfortunately, the local geometry and the kinematics
greatly complicate the problem and the development of a realistic model becomes
extremely difficult. It should be remembered that a realistic model should not
only simulate the problem correctly, but it should also be simple enough to be
rapidly executable of a digital computer, since computer time is a key factor

in sophisticated programs, such as the one under comsideration.

With the above difficulties in view, a first order interaction model for the
roller end and race flange contact is derived on the basis of the following two

assumptions:

(1) 1If the roller end is not contacting the race flange, there is no

contact force. In other words, any hydrodynamic action is neglected.

(2) When the race flange is contacting the roller corner, which will have
a finite radius of curvature, the contact load is approximated by an
effective Hertzian type contact model and the tractive force is deter-

mined by a prescribed traction-slip relation.

It is, therefore, clear that the objective is to treat metal to metal contact only.
There will basically be two parts to such a treatment, e.g., the contact geometry

and the load deflection relationship. Both of these parts will be discussed in

this section.
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Geometrical Consideration

The roller geometric center was located with respect to the race geometric center
in the preceeding center. In case of.the roller corner and flange interaction,
it will be necessary to locate the ceno;t of curvature of the roller corner with
respect to a point on the race flange. Thus, an additional transformation from
the race azimuth to flange frame is introduced.

Transformation from race azimuth to race flange frame: (Trf (0,y,0)] where the
angle y will depend on the particular flange under consideration as shown, in an
exaggerated fashion, in Figure IV-1l.

Vol ST

It should also be noted that the race azimuth angle will now be defined by the

relevant center of curvature of the roller corner and not by the center of roller.

Let us consider a point, 0, on the locus of the center of curvatures of the roller
corner, as shown in Figure IV-2. It is clear that the locus will be a circle and

the position vector locating 0, with respect to the roller geometric center in

roller frame, is given as - - B
T4
—
¢

T.° = (-Rsin e - (3, 1)
Rcos
where ¢ is just angular coordinate about the X axis in the roller fixed frame.

It will be necessary to write r: in the race frame, and ultimately in the flange
frame, and, hence, we recall the transformation from the roller to race frame from

the preceeding section

(Ty ] = (T 0 (Ty] (1v.2)

Also, a vector rbr; locating the roller geometric center with respect to the

race geometric center can be written in terms of the various vectors introduced

in Figure III-1 in the preceeding section.

—r ‘.—-1 . — 1
tpeg ~ (Tael (o [Ty rbs} -%rir] 4 T (1V.3)
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Figure IV-1l, Sign Convention for Race Flange Angles.
(Xa, Yz, 23) is the race azimuth frame
and (X°, Y°, Z°) is the flange frame.

Y axis is not shown since the figure
is drawn in the X-Z plane.
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Figure IV-2, Exaggerated View of Roller Cormer and Race Flange Interaction
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Now for any selected value of ¢ in (IV.1l), the race azimuth angle ¢ is defined,
such that the vector

— mm— eo——
S
er e brg

when written in the race azimuth frame has only X and Z components. Hence,

——p —r —b
Ter rbtg * {Tbr} Te
58 (1Iv.4)
b ery
and r =00
er
a
ers
where
re: = re: and r & = /(1' 5 )2 + (re )2
1 1 er, er, Ty

>
It should be remembered the B locates the roller corner curvature center with
respect to the race geometric center. If we define the point 0' as a reference
point on the flange, then the roller curvature center can be referenced relative

to 0' as

S
—ra —>a
Tof Fop -{2} (1IV.5)

where S is the race half width and R is the radius of the race land.

When the above is written in the flange frame

— —ra

£
Tor = [Togl Tge (1v.6)

Clearly, the point of maximum interaction will be determined by maximizing the ;
——f
r

Z component of of * In fact, the Z component will define the elastic deflection

if it is positive, and greater than the corner radius, Rce'

It may be recalled that all of the above is carried out for a preselected value

IV-5 !




After carrying out some routine algebra, it may be shown that the above equation

may be written as

T [- Tbr R cos¢ - T

of R sing]

31 12 Ty 4

£33 § r
+ (r o) L -T R sing + T R cos9)
122 rry - bril br12 bri3

X (-Tbr. R cosy - Tbr. R sing)) =0 (Iv.7)
i2 i3
The above is solved for 7 by standard bisection. Note that there will be two

possible roots, one denoting the maximum and the other defining a minimum. The

interest here is, of course, in the maximum.

As discussed above, the elastic deflection will be defined by the (reg ) when
it is positive. 3 wmax
§ = (r > ) - R when >0 (1v.8)
ef e
3 max

If § is negative, then there will be no interaction between the roller corner

and the race flange.

Normal Contact Load

If the contact between the roller corner and race flange exists, then the contact
load can be determined by using the classical point contact Hertzian solution
described earlier (reference 2). Clearly, the deflection § is computed as
described above, the material properties are prescribed and the only additional

parameters needed are the effective radii of curvature of the interacting bodies,
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B

which may be defined as follows,

Race fl By
ce flange R2=R’

R1 0 Rce

Roller corner { ;
R2 = (Rce + R)/cos.s
where Gs is the skew angle. This angle is included in the transformation Tib

used above and in the preceeding section.

It should be noted that when es is zero, the above model will not be valid,

since the entire end face of the roller will interact (for a flat end) and the
contact is no longer Hertzian. Such a contact will only exists when there is a
dominant thrust load on the bearing, which is never the case in cylindrical roller

bearing.

An alternate way to compute the normal load will be similar to the one described
for roller-cage and ball-cage interactions in (reference 1). A certain stress
level for the computed deflection is prescribed and the contact area is just com-

puted by the geometry of interaction.

Tractive Forces and Moments

The computation of tractive force will be very similar to the procedure described
for the roller-race interaction presented in the preceeding section. The contact
point is located relative to the roller and race mass centers and the slip
velocities are computed. So, if r; defines the contact point relative to the
roller mass center, and R; defines it relative to the race mass center, it will

be straightforward to show that

T i) 0
*f = g
pr =[Teg1(Tral reb + r?b\ + {0
8 R (1v.9)
= ce
—f - f —f —
and Rp = rp + L + [Trf] prra] rrs (1v.10)

where [Tra] is the transformation from the race frame to the race azimuth

frame.
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The local velocities at the contact point are clearly

— ——
X

+
b rp

o~}
£

= -

nd
[}
n}

—h = =)
+ w_x R
r P

Effective slip g, - (ur2 - ubz)

u
and the traction coefficient x= « (us) —=

u
|"s
The total force acting on the roller is now defined in the flange frame as
0
Rt
-Q
where Q is the normal contact load, discussed above.
The load of the race will just be
F F,
r W

and the moments on the roller and raceway will be

P — akszay -
Gb = (rp + rbg) X Fb
G.= R +r_ xTF

> P rrg X b

It must be remembered that all vectors must be transformed in appropriate

(1Iv.11)

(Iv.12)

(Iv.13)

(Iv.14)

(Iv.15)

(1v.16)

coordinate frame. Generally, the forces will be computed in the inertial frame

and the moments in the body fixed frame of reference.




SECTION V

ELASTOHYDRODYNAMIC TRACTION MODELS

Several approaches to a realistic model of the traction slip relationship of
a given lubricant may be considered. The simplest approach will be to test
the lubricant at the prescribed operating condition and derive a hypothetical
model by curve fitting the experimental data. A somewhat more realistic
approach will be to perform a two-fold elastohydrodynamic analysis where the
first part will determine the nominal film thickness and the second part will

evaluate the effective values of the coefficients in the pressure-temperature-

viscosity relation by curve fitting the experimental traction data. A discussion

of these different approaches is the primary objective of this section.

A Hypothetical Model

Most of the available experimental data shows a general trend demonstrated in
Figure II-1. Traction initially increases with increasing slip, reaches a
maximum value at some slip velocity, and finally reduces to some asymptotic
value as the slip continues to increase further. Such a qualitative trend

may be simulated by an expression of the form (reference 8)

3 ™ (‘1’1 e WZ U) exp ('W3 U) + \b4 (V.l)
where x 1s the traction coefficient and u is the slip velocity.

In general, the coefficients wl' wz, wJ, and *a will be a function of the
operating conditions and the lubricant properties. However, if it is
postulated that the model is valid for a given lubricant at prescribed oper-
ating conditions, then the values of the coefficients may be derived from
the various parameters shown in Figure V-1, which can be expressed as

u = 0’ K = K‘o (V.Za)

u = ® K = K (v-zb)
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Combining (V.1), (V.2a), and (V.2b) gives

wl . g, =Kk (v.3)
b, = «x | (V.4)

Also, from equations (V.1l) and (V.2c)
and
Gy * ¥y ) exp (Yo u) +y, = o

which form the two simultaneous equations for determining wz and ¢3.

Eliminating wa in equations (V.5) will give a nonlinear equation in ¢2.

wZ Un
(mo w g ¥ wz um) BXp (e e TR m R TR (V.6)
o © 2 m

which is solved by standard bisection methods. Hence, all the four coefficients

can be computed from the prescribed conditions shown in Figure V-1.

It is clear that the above model is very simple in that it does not allow
any variation in the parameter as a function of local variations in rolling
speed, Hertz stresses, etc. In order to allow for these variations, a some-
what more sophisticated elastohydrodynamic model will be required. The first
step in such a model is the computation of the nominal film thickness, which
will be discussed below.

Nominal Film Thickness Computation

The computation of film thickness is one of the most fundamental steps in
simulating the behavior of a concentrated elastohydrodymamic contact in
rolling bearings. Most of the available analysis first determines the film
thickness under isothermal conditions and the computed value is later modified
by a thermal reduction factor in order to accommodate the thermal effects.

Some of the formulae and computational procedures are discussed below.




Grubin Formula: This is perhaps one of the first relations which appeared

in the literature (reference 9) for the computation of the isothermal film

thickness h, in a line contact configuration

8/11
h ©u - V.7
R 1.95 i 1711 (v.7)
where
R1R2
R = R R the effective radius in rolling direction
r 2

G = aE', the elasticity parameter

My U
Uu = TR the speed parameter

1
> (vl + vz), the rolling speed

W = E¥E » the load parameter

Ve E, Hos O and w are respectively the Poisson's ratio, elastic modulus,
inlet viscosity, pressure viscosity coefficient, and applied load per unit
length.

Dowson-Higginson's Formula: A similar relation is put forth by Dowson and

Higginson (reference 9)

0.60.,0.70
G U
g 2 o

|
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The various parameters are the same as these described in the case of the

Grubin's formula.

Thermal Reduction Factor: The isothermal film thickness computed by any of

the above expressions must be modified by a thermal reduction factor in
order to allow for appropriate thermal effects. Cheng (reference 10) has
summarized the results of a thermal analysis and the required thermal
reduction factor can be computed by interpolating the results. Primarily

for completeness, these results are reproduced here from reference 10.

The thermal reduction factor, oT, is expressed in terms of the following

parameters
b (v,+v )2 =
Qm g Mwas il pATRY
2 Kf 'I‘0 Kf To
at = 2.10° .4
Qe e
: T
Q
¢ 2 vymvy
V2
Py,
and “E'’ the dimensionless Hertzian pressure.

Kf, B, and To are the thermal conductivity, temperature viscosity coefficient,
and inlet temperature, respectively. All other parameters are the same as

discussed earlier.

The solutions of ¢T indicate that the most influential parameters are the

P
viscous heating parameter Qm. The other four parameters, a*, 8', —%%, and s

all play secondary roles in governing the thermal reduction factor. 1In




particular, the influence of the slip ratio is very mild. A review of these
curves shows that within the range of the parameters investigated, the thermal

reduction factor can be represented by

_— sz
¢T 1 (1 -0.1s8)1 - f2 -EFO (V.9)

where fl and f2 are numerical functions of Qm’ a*, B', and are tabulated in

Tables V-1 and V=-2.

Side Leakage Factor: Cheng (reference 10) has also presentea a side leakage

factor, ¢s, to modify the line contact film thickness in the case of ellipti-
cal contacts which may be relevant of crowned rollers. The dimensionless

film thickness for an elliptic contact is expressed as

ho uoaU e | PHz o
grec [ &)
X (v.10)
where C, ny, and n, are numerical functions of a/b. These values are shown

in Table V-3,

Assuming that the film thickness at k = a/b = 5 approaches that of a line

contact, then the side leakage reduction factor becomes

p Uayfm, = (n,) % n, - (n,) £
‘3’5"6'(:;:5'[—%—][1 1k5:| [E%_f][Z 2 5] (V.11)

The effective film thickness can now be expressed as

h=nh (V.12)

iso o1 %s




TABLE V-1
VARIATIONS OF fl WITH RESPECT TO

]
a*, £;, and Q
Q

(*=a-2.10° g/t =2 i
02
a*

N7 1571 | 15,71 | 23.564 | 23,564 | 23.56 | 31.419 | 31,419 31410
Q 0.35 | 0.5 | 0.75 | 0.35 | 0.5 | 0.75 | 0.35 | 0.5 | 0.75
¢.6 |20 } 20 | o |10 Yare Jro ) ne | 20 1 1o
0.00 | .99 | .98 .99 | .99 | .97 | .97 | .98 .98 | .98
0.02 | .98] .96]| 98| .98 | .95 | .94 | .96 95 | .94
0.08 | 96f 94 .93l s | 2| w0l .93 90 | .89
0.1 93 | .9 89 | .9 .87 | .84 [ .90 .85 | .82
0.2 B8 w6l a | el m | .ml .m e
0.5 .8 el we il o 62 ] .73 .66 | .59
1.0 Ja ko et el e ] s .50 | .66 8 T
2.0 S oossk o wl] o osr ) ol s s As | .3
5.0 8 B S ael sz b L 1| .23
10.0 S0 bl e a2 d ari o 2 | s
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TABLE V-2

VARIATION OF f_, WITH RESPECT TO

a*, 8'/a®, and Q,

kool ok =
(a * 3 107, 8'/a - 5)
aT = 10
02
a% 15.71 15.71 15.71 23.56 23.56 23.56 31.42 31.42 31.42
L}
B /a*
0.35 0.5 0.75 0.35 0.5 0.75 0.35 0.5 0.75
| Om
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.0 3.6 3.95 0.0 3.78 4.34 0.0 8.3 4.6
1.0 0.0 ¥2.8 2.4 0.0 Tl & 8.2 4.1 12.4 12.0
5.0 47.5 48.8 40.7 26.5 17.6 30.1 12.9 13.75 19.4
10.0 {107.8 75.6 51.4 52.9 26.5 25.6 25.6 20.9 19.5
i TABLE V-3
i NUMERICAL FUNCTIONS OF C, n;, AND n,




The Turbo-33 0il Model

Based on the experimental data (reference 11) on the Shell turbo-33 type oil,
a traction model has been presented in reference 10, It is shown that the

traction coefficient Koo in the rolling direction is dependent on three param-

eters
u_u B.u u
o 2 17072
- . = — ® = .1
G1 Puh 3 G2 BKf 3 G3 apy (v.13)

where o is the lubricant viscosity at an inlet temperature of To; Kf is

2
slip velocity in the rolling direction; Py is the maximum Hertz pressure; and

the thermal conductivity of the lubricant; h is the film thickness; u, is the

the coefficients a and Bl are obtained from the viscosity-pressure-temperature

model of the form
u(p,T) = u, exp [&p - Bl(T - Toij (V.14)

The relationship between Gl’ GZ’ G3. and the traction coefficient ) is

represented graphically (reference 10) by a series of graphs and this data
is basically stored in a computer data file for real applications. The
film thickness h is computed by the methods described above.

With the assumptions of a narrow contact ellipse this model is directly
applicable to a crowned roller contact. In equation (V.13), PH is replaced by

the pressure as a function of §

pa"’u/-l_:(—é)—z

and u, is clearly a function of §, the coordinate along the major axis of
the contact ellipse (see Figure V-2). Thus,x2 is obtained as a function
of .

i 18 e i b - e —————




Figure V=2

Coordinate System in the Contact Ellipse




The 5SP4E Polyphenyl Ether Model

Smith, et al (reference 12) have proposed a traction model based on the experi-
mental data obtained by them for polyphenyl ether. It is shown that the shear
stress in the lubricant is best correlated by an expression

M u, sin = [v exp (a* p/2)] exp (a* p/2)

o =
h ¢ /rl + wz exp(u*P)
where
uoa*
Y = u
2 81(f

P 1s the local pressure obtained by Hertzian pressure distribution, (£,z) is
a coordinate system in the contact ellipse along the major and minor axes (see
Figure II-2), and other parameters are the same as defined earlier. The

three empirical constants, uo*. a*, B*, denote the coefficients in a modified
pressure-temperature-viscosity relation

u = uo* exp {(a®p + gt @ - To)} (V.16)

and the value of these constants are determined by correlating the experi-
mental data.

With the assumption of narrow ellipse equation (V.15) may be integrated with

respect to f to obtain a tractive force per unit length along the major axis

€. If this force is divided by the normal force per unit length, a traction

coefficient ) is the rolling direction determined. Some straightforward
algebraic manipulation will show that

L u
°2 J®
hy PE

3|s

<, (&) =
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where

O = f 200 @ s/ Tel el

: g
1+ 4" (§,8)

dzg (V.17)

¢(E,;) = | exp

e

and

2
b€ = b //1 =&

Generally the constants a* and 8* are independent of rolling speed, while
uo* is allowed to vary slightly with the rolling speed in order to allow for
the variation in traction as a result of short-time effects on lubricant

viscosity or the inlet zone heating effects (reference 12). It is found

(reference 12) that the values for the three coefficients which fit the experi-
mental data are

u = 1.4 x 10-3 1bf-sec/in2, for rolling speed, U < 900 in/sec

2

- 1.4 % 10" exp {-0.30111 (-9%3 - 1)} ibfzsec y; » 900 infeec
in

o & 397 %1077 ind/1ibs

and

8 = 0.046 1/°R
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It should be noted that relation (V.16) is valid only for the computation
of traction. For determining the film thickness a relationship of the form

1
u o= o exp {:p + (8 + Yp) (; - Tl—o)} (V.18)

is used, in which a, B, and y are the conventional pressure-viscosity temperature-

viscosity, and pressure-temperature-viscosity coeffieicnts. For 5P4E poly-

phenyl ether, these constants have the following values.

To = 630 °R g, - 4.7489 lbf-sec/in2

& = 1.1597 x 107 1n*f1be 8 = 6.5042 °R

y = 0.18305 °R 1bf/in’

Using the above values, the inlet viscosity at any temperature can be deter-
mined. An additional property required in computing the thermal reduction

factor is the thermal conductivity which is found to be 1.205 x 10-2 1bf/sec/°F.

The MIL-L-7808 Model

Similar to the polyphenyl ether model, Walowit and Smith (reference 13) have
investigated the behavior of the MIL-L-7808 oil and have presented a traction
model based on the experimental data. It is shown that the viscosity pressure
temperature relationship, in the high pressure zone, for the purpose of com-

puting traction is

3
o Ay . 524719 x 10
u 1:45 x 10 ° x (U) exp { 9.949 + T-345
4-18935 x 107> -5
Zo— + 360 x 107p (V.19)
(T-345)

where

x(ﬁ) = 1 for B, the rolling speed < 900 in/sec

= axp {70.70320 (5%5 - %)} U > 900 in/sec '

and T and p are, respectively, the temperature (°R) and pressure (lbflinz).

V-13
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Using the above equation, traction is determined by simultaneously integrating
the Newtonian shear and the energy equation through the film when the required
boundary conditions are determined by the prescribed surface temperature and

the rolling speed.

It turns out that such an integration has to be performed numerically and,
hence, the model becomes somewhat time consuming. In view of this difficulty,
equation (V.19) is further expanded to make it similar to (V.16), and
coefficients similar to uo*, a™, and B* are derived. These coefficients will
now, of course, be functions of temperature and some straightforward algebra

will show that the required expressions are

3 { 3 ; 5 =
u* e (@ 692743 x 10712 ap (324109 X107 418935 x ;of{ Lbi-sec
(T - 345) (T ~365)" § 1=
3 5
+ _ 5:24719 x 100  8-37871 x 10 0
8 = - 1/°R (V.20)

(T - 345)2 (r - 345)°

a¥ & 3.6 x 10 It

x(ﬁ) is the same as that described above in equation (V.19), and T will be
the inlet temperature (OR).

If the above values are used, then the 7808 model becomes identical to the
polyphenyl ether model, except that the apparent coefficients, uo*, a*, and
3* are temperature dependent. The differences between such a simplified
model and the actual model (reference 13) are shown in Figures V-3 and V-4
for some extreme cases. It is clear from these comparisons that the above

approximations are quite reasonable.

This simplified approach also suggests that the general analytical approach

can be used somewhat universally for any lubricant. It will be necessary to
derive an equation similar to (V.19) and then, depending on the actual form

of the equation, appropriate expansions may be substituted and relevant expres-
sions for the apparent coefficients, similar to equatioms (V.20), may be
derived. Once these coefficients are determined, the remaining analysis will

be identical to that described in the case of the polyphenyl ether model.

V-14

e




Once again the pressure-temperature-viscosity relation of the form (v.18)
1s used for the computation of the film thickness. The low pressure viscosity

data for the 7808 oil has been found to fit the following expressions
(reference 14).

b = 1+43 x 1077 exp {exp (=3.7048 1n T + 24.394) - o.s?} ibf-eac
{n”

8 L d In u
3(1/T)

exp [gxp (=3-7048 ln to + 24.394)] exp (=3.7048 ln Ty + 24-394) 3.7048 Tg
exp [exp (-3.7048 ln To + 24.394)] - 0.87

(v.21)
& -6 0-013332
- «22 w———
a 5+227 x 10 + T, - 388

when T is the reference temperature (°R).

v
Thermal conductivity of the MIL~L-7808 is found to be 1.2062 x 10™° 1bf/sec/°F.
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Bore

Outside Diameter
Roller Diameter .
Roller Length
Central Flat Land
Crown Radius

Number of Rollers
Pitch Diameter
Diametral Clearance

Roller Corner Radius

Radial Load

Inner Race Speed
Outer Race Speed

Inner Race Temperature
Outer Race Temperature

Lubricant

SECTION VI

ROLLER MOTION RESULTS

The analysis presented in the preceding section forms a basis for a roller
bearing performance simulation computer program. This can be seen by
examining some results for the roller motion in a typical high-speed roller

bearing. Some geometrical details for the particular bearing are as follows:

6.49606 in.
8.858 in.
0.6299 in.
0.6299 in.
0.20 in.

17.0 in.

32

7.75 in.

5.8 x 10-31n.
0.050 in.

All the details about the cage geometry have been omitted since the emphasis

is only on the roller motion in the present investigation.

The operating conditions assumed to be imposed on the bearing are:

1465 1bf
13230 rpm
0.

650°R
610°R
MIL-L~7808

In order to study the motion of a roller under the above condition, a simple
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quasi-static type computation is first performed to determine the relative

position of the races. As shown in Figure VI-1, the races are then held

in this eccentric position and all the rollers are removed from the bearing.
One roller is placed just before the start of the load zone with conditions
identical to those in the full bearing., Using these conditions as initial
conditions, the differential equations of roller motion are then integrated
to simulate the general motion. Since such an integration is performed
numerically, the equations are properly dimensionalized and the scales for
the fundamental quantities are derived from the bearing geometry and applied

conditions.

Force = Applied Load = 1465 1bf.
Length = Roller Radius = 0.3149 in.
Time = JG;76 =  1.7495 x 10-4 sec.

where m is the mass of the roller, r is the roller radius, and Q is the

applied load.

The above quantities will also be used in dimensionalizing most of the

results discussed below.

With reference to Figure VI-1, initially due to the centrifugal force, the
roller is in contact with the outer race only. As it moves in the load zone,
it comes in contact with the inner race and the load variation as the roller
moves through the load zone is shown in Figure VI-2. The roller will
experience radial accelerations due to this load cycle and also the resulting
tractive forces will contribute to the orbital and angular accelerations of

the roller. The general patterns of these accelerations are shown in Figure
VI-3. The high frequency variations in the radial and orbital accelerations
correspond to the roller/race contact spring resonance. In the load zone these
will be both inner and outer race contact springs in parallel while only the

outer race spring is relevant in the unloaded zone. Hence, the natural

VI-2
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Figure VI-1,

LOAD ZONE

INNER RACE

INITIAL POSITION

ROTATION OF THE ROLLER
o

15

Exaggerated view of the bearing model used to study
the roller motion
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Figure VI-2, Roller/Race Contact Load Variation as the Roller
Travels Through the Load Zone.

6.0




7.42

2.42

-2.58

ORBITAL ACCELERATION x 10

-7.58

8.07

3.07

-1.93

RADIAL ACCELERATION x 103

-6.93

0.0

ANGULAR ACCELERATION
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TIME x 010

j Figure VI-3. Typical Roller Acceleration Profiles as it
| . Travels Through the Load Zone.




frequency will be somewhat higher in the load zone. These frequencies are
similar to the ones identified by Gupta, et.al. [15] for ball bearings.

In general, the contact resonance frequency is somewhat dependent on load.
Hence, the frequency in the load zone is not constant in Figure IV-3.
However, since the centrifugal force is fairly constant, the resonance
frequency is constant in the unloaded zone. On an average, the load and
no load zone frequencies in Figure VI-3 are approximately 24 and 17 kHz,

respectively.

No skew type motion of the roller is observed in the present example, since
the races are perfectly aligned and the system is free of any imposed moments
about the transverse axis of the roller. In a real bearing with misalignment
or some geometrical deviations will result in roller skew. Skidding of the
roller primarily means relative sliding between the roller and the races.
Figure VI-4 shows the roller/race slip velocities and the resulting traction
coefficients for both the outer and inner race contacts. It is seen that the
roller starts out with a zero slip (the selected initial condition) and it
experiences a slip cycle as it travels through the load zone. Since the

magnitude of slip is quite small, the traction curve is almost linear with
slip and, therefore, the traction coefficients in Figure VI-4 appear to be

almost proportional to slip.

These general results primarily summarize the practical significance of the
roller motion analysis, presented in earlier sections, in simulating the

dynamic performance of a roller bearing. In a complete bearing such an ﬂ
analysis will be periormed for every roller and also a treatment of

roller/cage and race/cage interactions will be included.
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TRACTION COEFFICIENT x 10%

SLIP VELOCITY x 104

3.0

OUTER RACE
/INNER RACE
0.0
-3.0
-6.0
3.0
INNER RACE
0.0
UTER RACE
-3.0+
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TIME x 0.10

Figure VI-4, Roller/Race Slip and Traction Variationms.
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SECTION VII

SUMMARY

A generalized formulation of the differential equations of motion of a roller
in a radially loaded cylindrical roller bearing is presented. The motion is
considered in two parts, e.g., motion of the roller mass center in an inertial
frame of reference and the angular motion about the roller mass center in a
roller fixed coordinate frame. The formulation, therefore, has the complete
six degrees of freedom and it has the capabilities of treating roller skew and
other complicated, and often undesirable, motion. Also, the geometric formu-~

lation takes full account of any misalignment of the races.

Analytical frame work for the computation of applied forces and moments at the
roller-race interaction is described. The normal contact force is primarily
determined by locating the geometric center of the roller with respect to the
interacting surface of the roller and, therefore, by computing the elastic deflec-
tion at the contact point. Knowing the deflection, the normal contact load is
determined by the most commonly used Palmgren or Lundberg type of load deflection
relation for a line contact, The tractive forces and moments are computed by
first determining the local slip velocities in the contact zone and then esti-
mating the traction coefficient from the given traction-slip model. The total
contact zone is divided into several elements and the forces and moments are
computed for each element and a proper summation is used to compute the total
interaction., Thus, a full account for the local geometry, such as partial crowns,

is taken,

In the case of roller skew the interaction between the roller corner and the
race flange is considered. The general approach is very similar to that for the
roller and race interaction described above. The position of the roller is
located with respect to the race flange and the elastic deflection is determined
by the geometric interaction. When no contact between the roller and flange
exists, any hydrodynamic interaction is neglected, hence, only metal to metal
contact is considered. The tractive forces and moments are determined by first
computing the slip velocity and then using a specified traction slip relation.




Elastohydrodynamic traction models for three lubricants, the Shell turbo-33

oil, 5P4E polyphenyl ether, and the MIL-L~7808 oil, are presented in a form
which is readily adaptable in the computerized simulations. All models are
semi-empirical in nature and the characteristic coef”icients are derived by
curve fitting actual traction data obtained for a wide range of operating
conditions. For bearings which have limited lubricant, relatiomships to
modify the film thickness for starved conditions are presented and, hence,the
the influence of starvation on the traction characteristics, and ultimately

the bearing dynamic behavior, is treated to a first approximation,

For a typical bearing the equations of motion are numerically integrated in
order to examine the general nature of roller motion. It is shown that the
radial acceleration of the roller mass center demonstrate the presence of a
roller/race elastic contact resonance. This high frequency vibration results
in variations in normal contact load; it also leads to corresponding variations
in the tractive forces and, hence, the orbital accelerations. The general
nature of roller/race slip variations, and the resulting traction coefficients,

as the roller travels through the load zone is also simulated.
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SECTION VIII

RECOMMENDATIONS FOR FUTURE RESEARCH

One of the primary findings of the present research has been that the
roller is subjected to a high frequency motion resulting from roller/race
resonance. Such a behavior should be confirmed experimentally. It is
expected that these high frequencies will generally cause "ringing" of the
outer race and, hence, thelr presence can be detected by picking up

acceleration signals from the stationary race.

Roller skew and bearing misalignment are important subjects which can be
studied by using the computer programs developed on the basis of the general
roller motion presented in this report. Such a parometric study will be of

a great practical and design significance.
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