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The Structur e of Admissible Points with Respect to Cone

D o m i n a n c e

by G.R. Bitran and T.L. M a g n a n t i

Abstract

We s tudy the set of admissible (pareto—optimal) points of a closed
convex set X when preferences are described by a convex, but not neces-
sarily closed , cone. Assuming that the preference cone is st r i c t l y  sup-
ported and making mild assumptions about the recession directions of X,
we

(i) extend a representation theorem of Arrow , Barankin and Blackwell
by showing that all admissible points  are e i the r  limit points of certain

- 
- 

“s t r i c t l y  admissible” a l ternat ives  or t rans la t ions  of such l imi t  points
by rays in the closure of the preference  cone , and

( i i )  show that the set of s t r i c t ly admissible points  is connected ,
as is the f u l l  set of admissible po in ts .

Relaxing the convexity assumption imposed upon X , we also consider
• local properties of admissible points  in term s of Kuhn—Tucke r type

characterizations. We specify necessary and sufficient conditions for
an element of X to be a Kuhn—Tucker point , conditions which , in addition,
provide local characterizations of strictly admissible points.
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I. INTRO DUCTION

Formal approaches to decision making almost always pre-

sume that an underl y ing preference relation governs choices

from available alternatives. Rich theories now go far toward

either characterizing or computing solutions that are in some

sense “optimal” . Mathematical programming techniques predomi-

nate when preferences can be embodied in a real valued

utility function (Debreu [1], [2] discusses appropriate con-

ditions. See also Bowen [3] and Arrow and Hahn [4, page 1061).

Multi—attribute utility theory (Keeney and Raiffa [5]) pro-

vides one means for considering multi—objective situations

which involve several , possibl y conflicting, criteria. En

summarizing methods for studying multi—objective decision

making, Mac Crimmon [6] has classified approaches as weight-

ing methods , including statistical anal ysis; sequential elim-

ination techniques; mathematical programming procedures;

and special proximity methods.

Although these theories have made impressive contribu-

tions to decision making, they have yet to resolve a number

of issues that are fundamental to both descriptive and

prescriptive theory. For arbitrary preference relations ,

still little is known , and possibl y can be said , about such

an essential concept as admissible alternatives , als o cal le d
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nondominated , efficient , or pareto—optimal alternatives. Even

when a convex cone P, the set of points x+ I’ {x +p : pEP)

specify ing those alternatives preferred to x , describes

preferences , admissible points have not been characterized

completel y. Is the set of admissible points connected ? Are

there representation theorems which characterize admissible

points ? What are local characterizations of admissible

points ? Can the notion of admissible points be exp loited

within the context of solving mathematical programs ?

In this paper , we consider several of these issues. En

Secti on 2, we introduce notation and concepts to be used

throughout the paper. The next section considers global char-

acterizations of admissible points , including existence. We

show that the sets of admissible and strictl y admissible

points are both connected when (i) the preference cone P

is convex , (ii) the set P~ = {p~~E R
n 
: p ’ . p > 0 for all

nonzero p E P} is nonempty, (iii) the set of available

alternatives X is convex and closed , and (iv) some element

of P
4 

makes an obtuse ang le with every direction of reces-

sion of X. In this section , we also present a representation

theorem which partially characterizes admissible points. This

result says that “all admissible points can be expressed as

limit points of ‘strictly ’ admissible alternatives or as a

translation of such limit points by certain rays in the 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ --- ~~~~~~ •- • -—•~~~~~~~~~~~~~~~~~ --- -— ---
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closure of the preference cone F ’. Section 4 considers local

characterization of admissible points in terms of linear

approximations. These results are related to the usual Kuhn—

Tucker characterizations of nonlinear programming. The final

section discusses possible extensions and app li cations.

Our anal ysis is based upon results of convex analysis

and mathematical programming. This approach is an outgrowth

of work conducted around 1950 in mathematical stat istics

(Wald [71, Arrow , Barankin and Blackwe ll [8]), in linear

and nonlinear programming (Gale , Kuhn and Tucker [91, Kuhn

and Tucker [10]), and in economic planning (Koopmans [lIfl .

These fundamental contributions either proved or suggested

many of the properties that we consider here under various

restrictions on the problem structure , most notabl y that the

set of available alternatives is pol yhedral and/or that

preference x >- y, x is preferred to y, is defined by x 
~ 

y,

x * y. Later in a series of papers [12 1 , [13], and 1 14 ] ,

Geoffrion studied propert ies and computational aspects of

certain nonlinear vector maximization problems. More recently

Yu (15] considered preferences defined by cones as here ,

including several results related to this paper. In the

economic literature , Smale [16), [17] and [18], Rand [191,

S i m o n  and  T i t u s  [ 2 0 ]  and Wan [2)] have studied local properties
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of admissible points from the viewpoint of differential topol-

ogy. A number of other papers (Charnes and Cooper [22], Ecker

and Kouada [23], [24], E v a n s  and S t e u e r  [ 2 5 ] , Gal [26],

Geoffrion , Dyer and Feinberg [27], Philip [28), Sachtman [29],

and Yu and Zeleny [30]) have treated algorithms for deter-

mining and investigating admissible points , primarily for

linear problems.

Applications of the concept of cone dominance are varied

and  i n c l u d e  e f f i c i e n c y  in e c o n o m i c  p l a n n i n g  [ 4 ] ,  [ I i ] , mathemat-

ical statistics [311 , maximizing utility vectors in exchange

equilibrium [4], [321, risk—return trade— offs in portfolio

selection [33], [34], risk sharing and group decisions [35],

and many others as suggested in [36] and the collection [37].

2. PRELIMINARIES

Throughout our discussion , we let P be a nonempty and

nontrivial , i. e., P * {0}, cone in Ri’. We say that an

n—vector x is preferred to an n—vector y with respect to the

cone P, den oted x ~-y , when x ~ y and

x E y + P  ~y + p : p E P } .

We say that a point y is admissible for the cone P over a
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I
g i v e n  s e t  X w h e n  y E  X and X c o n t a i n s  no p o i n t s  p r e f e r r e d

to  y ;  t h a t  i s ,

X f l (y+ IP) = {y } .

L e t  A ( X )  d e n o t e  t h e  s e t  of a l l  a d m i s s i b l e  p o i n t s  y in  X.

F r e q u e n t l y ,  t h e  c o n e  P is  t h e  n o n n e g a t i v e  o r th a n t  R .

T h e n  x ~- y  w h e n  x ~ y and  x ~ y ,  and  a d m i s s i b i l i t y  i s

c o m m o n l y c a l l e d  P a r e t o— o p t i m a l i t y .  As a u s e f u l  v a r i a n t  of

t h i s  e x a m p le , t h e  p r e f e r e n c e  c o n e  P i s  g i v e n  b y

= {o} u 1~ ~~~~~~~~~~~~~~~~~~~~ 
R~~: all A .  ~ 0 and (X I,...,A k) * 0).

In this case the prefe rence relation compares only the first k

c o m p o n e n t s  of any  v ec t o r .

T h e  p r e f e r e n c e  c o n e  a r i s e s  f r o m  t h e  v e c t o r  m a x i m i z a t i o n

p r o b l e m  of ‘ o p t i m i z i n g ” a v e c t o r  f ( z )  = ( f
1 

( z )  , f2 (z) , . . ., fk
( z ) )

of k real valued criteria over a s u b s e t  Z of R n k . A p o i n t

~~EZ is called efficient in this problem if there is no point

zE Z , satisf y ing f ( z )  ~ f ( ~~) with the inequality strict in at

least one component.

I f  X {x  = ( y , z)  E Rn : zEZ and y ~ f(z)}, then a point

~~E X  is admissible with respect to the cone 
~k 

if and only if

= (3 ,~ ), j~ 
= f ( ~~) and  i i s  e f f i c i e n t  in  t h e  v e c t o r  m a x i m i z a —

tion problem. By this construction , we have expressed , and can

~~~~~~~~~~ - --— __ _ __ _ _ _ __  -—-&- -• .--- — - ---- — —•— -
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s t u d y ,  t h e  p r e f e r e n c e  o r d e r  z — i  d e f i n e d  by f ( z )  ~

f(z) * f(~~), in terms of a cone preference 
~ k 

in an enlarged

space.

T h e s e  e x a m p l e s  s u g g e s t  t h a t  b o t h  c l o s e d  and  n o n c l o se d

preference cones mi ght be studied profitabl y since both arise

in practice.

I
M a n y  p r o p e r t i e s  of a d m i s s i b l e  p o i n t s  d e p e n d  u p o n  t h e

s e p a r a t i o n  of  t h e  s e t s  y +  P and X by  a h y p e r p l a n e .  F o r  a n y

admissible point y, such a separation is possible whenever

P and X are convex since (y+ P) (~ X = {y). That is , there

i s  a n o n z e r o  n — v e c t o r  p
4 

s u c h  t h a t

- x 
~ 

y ~ 
- (y + p) for all xE X and p E P ( 2 .  1)

Because the right—most inequality can be restated as ~ 0

for all p E P , we may reexpress (2.1) by say ing that there is

a nonzero vector p
+ contained in the positive polar cone P ’

of P defined by

P ’ ~p
’ E R ’

~ : p
t

- p  ~ 0 f o r  a l l  p e  P }

with the property that y solves the optimization problem

max {p ’. x : xE x}. (2.2)

T h e  p o s i t i v e  p o l a r  c o n e  is  c l o s e d  and  c o n v e x  w i t h o u t  a n y

assumption on P.

It-. — --• • -
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T h e r e  is  a p a r t i a l  c o n v e r s e  t o  t h i s  n e c e s s a r y  condition

for a point y to be admissible , which does not require any

c o n v e x i t y  a s s u m p t i o n s .  L e t  P ’ denote the set of strict

s u p p o r t s  of P defined b y

P ’ {p~ E R~ : > 0  f o r  a l l  n o n z e r o  p E F } .

If this set is nonempty we ~say that P is s rictl y sup p o r ted

or that P is a s tri ct l y sup p or ted cone (any p~~e P~ d e f i n e s

a s u p p o r t i n g  h y p e r p l a n e  { xE  Rn : p~~ •~~ = 0)  t h a t  i n t e r s e c t s

P onl y at the origin). In this t e r m i n o l o g y ,  t h e  c o n v e r s e

states that if y solves (2.2) for any strict support

p~~EW ~ then y is admissible. This fact is a simple con—

s e q u e n c e  of o b s e r v i n g  t h a t  p
+

e P and x ~
.— y (i.e., x * y,

x — y E P)  imp l i e s  t h a t  p
4 . (x  — y) > 0 and , therefore , th at

y does not solve (2.2). We distinguish these special admis-

sible points in the following definition

D e f i n i t i o n  2 . !  An a d m i s s i b l e  p o i n t  y E A ( X )  i s  s t r i c t l y

admissible if it solves the maximization problem

+
max {p •x : xE x}

f o r  some p
4

E P ’ . Any  o t h e r  a d m i s s i b l e  p o i n t  i s  s a i d  to  be

nonstrict.

We let A S(X) denote the set of strictl y admissible points

in •X. 

----~~~~~~~~~ - —•---- ~~~~ I
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Most of our subsequent results require that preference

cones be strictl y supported. When P is closed and convex ,

this condition is equivalent to it being pointed , that i s

containing no lines. In an appendix , we extend this charac-

terization in order to interpret the strictly supported con-

dition directl y in terms of the underl y ing preference cone

whenever P is convex. The following characterization is a

consequence of this development.

Proposition 2.1. Let  P be a convex cone in R’~. ~ ~~

ported strictl y if and onl y if the relative interior of P
4

is con tai ned in P ’ .
S

As an examp le , i f  P {p ( p 1 ,p2,p3
)E R 3 (p1 ,p2,p3

)=(O,O,O)

or p 1 ~ 0 and p
2 
> 0), then P ’ 

= P fl {p e 1R3 : p
3 

= 0),

P ’ = P ’ \ { O ) , and the relative interior of P~ is the set

{p E R 3 : p 1 > 0 , p 2 > 0 and p
3 

= 0), a strict subset of P ’ .

Remark 2.1

Throughout the remainder of this paper we frequentl y

app ly elementary results of convex analysis without reference.

We also translate many properties of polar cones usuall y

formulated in terms of the (negative) polar of any set S ,

denoted by S~ fy ER~ y •x ~ 0 for all xE s} into state—

ments concerning the positive polar S~ of S. Standard texts 
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in convex anal ysis (Rockafellar [38], Stoer and Witzgal [39])

discuss those results that we use.

In addition to the notation introduced earlier in  th i s

section , we let RC(X) denote the recession cone of a convex

set , let cl(S), r i ( S ) , and — S  {x : — xE s} denote the

closure , relative interior , and negative of any set S . and

le t S\T denote the set theoretic difference of two sets S —

and T. We adop t Rockafellar ’s [38] terminology by incl uding

the origin in RC(X), bu t b y defining direc tion of recessions

as o n l y the nonzero elements of this cone. Finall y ,  we u s e

the Euclidean norm to define the open and closed unit balls

nin R

3 . G L O B A L  C H A R A C T E R I Z A T I O N S

When the set of available alternatives X is convex and

closed and the preference cone P is convex and supported

strictl y ,  the admissible se t A(X) has important global prop-

er ties : it is connected (see Theorem 3.4) if some strict

support to P makes an obtuse ang le wi th every direction of

r e c e s s i o n  of X , and it can b e characterized in terms of strictl y

admissible points (see Theorem 3.1) if no direction of recession

of X belongs to the closure of P. 

~~~-— - - -~~~ 
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Before es tablishing these properties , we briefl y con—

• sider the existence of admi ssible points.

3.1 Existence

Yu [is] has observed that A(X) is nonempty if either X

is compact and the interior of is nonempty (]P �~ ~ suf-

fices) or if the problem max fp
+. x : xE x} has a uni que solu-

t i on f o r  some p ’ CF ’. Nei ther condition requires convexity

of P or X. He also notes that A(X) may be empty when these

condi tions are not satisfied.

The following proposi tions characterize the existence

of admissible poin ts for closed and convex , bu t not necessar-

i l y bounded , sets of alternatives when preferences are defined

b y s t r i c t ly s u p p o r t e d  c l o s e d  c o n v e x  c o n e s .

Proposition 3.1. Let  P be a s t r i c t l y support ed closed convex

cone and let X be a nonempty closed convex set. Then A(X) *

if and only if the ori gin is  th e on l y element contained in

bo th F and the recession cone of X.

Proof : If y * 0 EP flRC(X) then x+ ye (x+ P) flX for any

x E X , and so no point xc X is admissible.

If P fl RC(X) = (0}, then (y+ F) flX is compact for

any yE X ([38], Thm. 8.4). Consequentl y, for any p~ ~ 
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there is an optimal solution z to the optimization problem

max {p ’ x : xE (y + ]P) fl X }. The point z is strictl y admis-

sible in (y+ II’) flX with respect to P. It also must be

admissible in X , for if p * 0 ElF and z+ p6 X , then

z ‘- p 6 (y + IP) fl X is preferred to z. U

To obtain a dual version of this proposition , we note

the following theorem of the alternative.

Proposition 3.2. (a) Let  P be a s t r i c t l y supported closed

convex cone and let X be a closed convex set. Then exa~~t l y

one of the following alternatives is valid

(I) P(~RC(X) * (0)

(II) P f l RC(X)* # ~5.

Co n sequ en t l y ,  the set of admissible points in x is nonempty

if and only if P f l R C ( X ) * * ~~~~.

(b) Y-~ r - - --~’rr , if P is any strictl y s u p p o r t e d

convex cone , not nece ss -1rii !d closed , then A S(X) * ~ i m p l i e s

alt ernative ( I I ) ,  and alternative ( I I )  imp lies that A 5(X) * ~

whe never X is a pol y hedrc n .

Proof Alternatives (1) and (II) cannot both be valid since

any p * 0€ PflRC(X ) and C P rI RC(X*) must satisf y 
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p ’ • p > 0 and p • p ~ 0.
1 

So suppose that P ’ fl RC(X) =

Since F
+ 

and RC(X)* are nonempty convex st~ts , they can be

separated; that is , there is a nonzero vector u E R n and a

real number 6 satisf y ing u y 
~ 6 u • p ’ f o r  a l l  ye RC(X)*

and all p 6  P ’ . Since the origin is a limit point of P ’

and is contained in RC(X)*, 6 = 0. The left most inequality

imp lies that uE RC(X)** = RC ( X ) , since the recession cone

of a closed convex se t is closed. The ri gh t most inequality

shows that u - p~ > 0 for all p
~
’ E F ’ and thus u - 

~~ ~ 0

for all p
4
E j~~~•~

2 Con s e q u e n t l y ,  u E  ~~~~ = P and uE P fl- RC(X)

so that one of alternatives (I) and (II) is always satisfied.

Since , by the previous proposition , A(X) is nonempty if

and onl y if a l t e r n a t i v e  (I) is not satisfied , A(X) * ~ if

and only if a l t e r n a t i v e  (II) is valid.

To prove the final assertions of the proposition , con—

sider the optimization problem

max {p ’ .x : xEX} (3.1)

+ 4 5 +
where p 6 P .  If  z C A ( X )  , we can select p so that z

solves this problem. Therefore p ’. y ~ 0 f or a l l  y C R C ( X )

imp lying that p ” C RC(X)* and that P ’ f l R C ( X ) * * ~~

‘Closure of P is not required for this conclusion.

2
Every poin t of P ’ is a limit point of P~ , since , by Propo-

sition 2.1 , ri (P ) C P C P 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ A
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If p ’ C P ’ (~ RC (X ) * and X is polyhedral , then p . y  ~ 0

for all y C RC(X) imp lying, by linear programmin g theory,

that there is a solution to problem (3.!). This solution is

strictly admissible. U

The following examp les show that the hypothesis that P

is closed is required for these propositions and that con-

verses to part (b) of the last propositi on are not possible.

Example 3 .1 . Let X {(x 1 , x2)E R
2 

x 1
x2 ~ 1 , x 1 ~ 0, x2 ~ 

0)

and let P = { (x
1
,x

2
) E R 2 : x~ < 0  and  x 2 ~ 0)tJ ( ( 0 ,0)).

2 

~~~~~~~~~~~~~~~~~~~~~~ X)

~ .x
1

Fi gure 3.1 PflRC(X) (0) and No Admissible Points

Then p~ 
= (_ I ,O)CP flRC(X)* and A(X) = 0. The preference

cone  P is not closed and neither of the conditions

IP ñRC(X) * (0]  or P~~flRC(X)* = 0 for A(X) to be empty is

valid. In addition , the converse to the first assertion in

part (b) of the last proposition is violated. 

-~~~~~~~~~~~ -~~~~~-—
-—-~~~~~ .--~~~ -~~ ~~~~

—-
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Exa mp le 3.2. Let P be the po sitive orthant in R
3 except for

those points in the x
1 

— x
2 p lane not on the x

2
— axis , i. e.,

P = {( O ,A ,0) A >0) u ((A
1 
,A2 , A 3) :A 1 

>0, A
2 
>0 and A 3 >

0).

I

Let X = {(x
1
,x2 ,x 3

)E R
3 : x

3 
= 0, x 1 > x~ and x 1 ~ x2 

+ 1).

Then RC(X) is the line A( i ,1 ,0), A C E ;  RC(X)
4 

is the sub—

space {(x
1
,x2 , x3) C ]R3 : x

1 ~
x
2 

0); lF~
’ = ( (A

1 ,
A2 , A 3) CR

3
: A

1 ~ 
0,

A 2
> 0 and A

3 > 
0) and A(X) {(x 1 , x2,x3

)C R3 : x
3

0 and

x = x
2
) .

x2 

)

x
3 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ x l

Figure 3.2 Proposition 3.2 Requires P to Be Closed

In this instance , P is not closed and neither alternative (I)

or (II) of Proposition 3.2 is valid. The examp le also shows

that the statement “A (X )  * 0 i m p l i e s  a l t e r n a t i v e  ( I I ) ”

might not be true , even when X is polyhedral , unless P is

cl osed.

k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— I s  —

3.2 Representation

Arrow , Barankin and Blackwell [81 have shown that every

admissible point is a limit point of st rictl y admissible

points whenever P = R~ and X is convex and compact. The

f o l l o w i n g  e x a m p le  shows that this property is not valid for

all preference cones.

Examp le 3.3

Let X , as illustrated in Figure 3.3 , be a truncated cone in

— R
3 

with vertex V = (0,1 ,1) and circular base {x CR 3 : x~ ~~~ ~ I

and x
3 = 0). Let P = P

2 
= ( 0 } U { ( A

1
, A 2 ,  A

3
) : A

1 ~ 0, A
2
> 0

and ()~~, 
~~~ * 

0) which “ignores ” the direction ± (0,0,1).

The set of strictl y admissible points A 5(X) consists of those

p oints on the interior of the arc KS , the closure of these

poin ts is the entire arc , bu t the admissible points also

include the line segment KV

Fi gure 3.3 A(X) ~ cl A
5 ( X )

_ _ _ _ _  
._._ _~~__~I_1__~ 
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Observe that the admissible points in this examp le are

those points in X which are translations of the arc KS b y

the direction (0 ,0,1), a direc tion which belongs to the

closure of the preference cone P
2 

but not P
2 

itself. Our

nex t result , which shows that this observation characterizes

admissible points under very general hypothesis , extends the

Arrow , Barankin and Blackwe ll representation by permitting

more general preference cones and by relaxing compactness of

of X. We build upon their clever proof techni ques using the

following result in p lace of the von Neumann minimax theorem.

Lemma 3.1. Let C and D be nonempty closed convex sets in

E’
~ satisfy ing the conditions

(i) C*(~~RC(D) = {0} t
(ii) RC(C)nD ’ = (0).

Then the function u • v has a saddlepoint on C D in the

sense that for some u C C and v0E D

u. v° ~ u°• v° ~ u°. v for all u E C and v C D .

$

Proof : The lemma is a specialization of a theorem due to

Rockafellar [38, Theorem 37.61. By this theorem a saddlepoint

exists if the functions f
u
(v) u .v for uCri(C) have no

• common direction of recession over their domain D and the

functions g (u) -u~~v f or v~~ ri(D) have no common direction

of recession over their domain C. A direction of recession y

I
L -~~~. ..—•— - -~~~~ --- - —~~~- —• ~~~~— - —•~~~~~ -—-~~~ -- - —  -- - ~~~~~~~~~~ - --- ~~~~~ - - - - — - - - -~~~~ -- -- —
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for f (v) is a nonzero element of RC(D) satisfying u. y ~ 0.

Therefore , the functions f (v) for uE ri (C) have no common

d i r e c t i o n  of r e c e s s i o n  if no nonzero yE RC(D) satisfies

u •y ~ 0 for all uE C; that is , RC(D)  C’C~ = (0). Similarly,

the functions g (u) for vEri(D) have no common direction

of recession if the inequalities — y .  v ~ 0 for all vC D are

• impossible to satisfy s i m u l t a n e o u s ly w h e n e v e r  y E R C ( C )  i s

nonzero , which is condition (ii). U

Theorem 3.!-. Let X be a closed convex set , le t P be a

s t r i c t ly suppo rted convex cone , and suppose tha t

el P flRC(X) (0). Then any poi n t x E  A(X) can be written as

* —x = x  — p

where x~ belongs to c i  A
5 (X )  and either ~ = 0 or ~ be longs

to ci. ]P\P.

Proof : We first establish preliminary results to be used in

the proof. Let B be the closed unit ball in R
n and let 3

~Severai choices are possible. We may , in fact, choose polyhedral cones

for the S.. Let B° denote the open unit ball in 1R
5 and for each

j= l ,2,..., let F. be a finite set of points in Q [ri(P
+
)U{0}]flB0

with the property that (-1-)—balls about these points cover Q. The convex

hull H. of {0)uF 1 uF2
u ...uF~ is polyhedral and, so then, is the cone

S. that it generates [38, Cor.19.71]. Any xEQ belongs to the interior

of a simplex in Q whose dimension equals that of Q. For some j, points

in F. are close enough to the vertices of this simplex so that xCH~ .

Therefore u{H. : j > I) = Q and the union of the S.’s is ri (I”)U {O}.

—--

~ 

•~
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S. for j = 1 ,2 ,..., be nonempty, closed , convex and increasing

cones (i.:., S~ CS . ,1 ) whose union is ri(P ’) 1.) (0). Then

ci. P = P = ri(P ) = fl S. . Note that for some pos itive
j >1 .1

integer J , fl R C ( X )  = {O} whenever j > J .  O t h e r w i s e ,

(B fl5~~) fl ( B ñ  R C ( X ) )  * (0) for all j which implies by t he

finite intersection proper ty [since X is closed , so is RC(X)]

th at (B (~ cl F) Cl (B flRC(X)) * {0}, contrary to hypothesis.

The sets T. B for j = 1 ,2,..., are nonempty, convex

and compact. In addition , T. = S. .
3 3

Now , let x° be any admissible point in X and let

= z C R n : z = x  — x° for some xC II. Then Z is convex and

RC(Z) = RC(X) . We app ly Lemma 3.1 with C = Z, D = T. and

j > J where J is defined as above. Since T. is compact ,

conditions (i) and (ii) of the lemma reduce to RC(Z) Cl T.’ = {0}

which we established previously. Therefore , for each j > J

there are points t 3 CT 3 and z3 C Z s a t i s f y i n g

z • t~ ~ z~ • t~ ~~~ z~ . t f or all z C Z , t C T~ ( 3 . 2 )

S i n c e  x
0 E X , z = 0 b e l o n g s  to Z and

• t > z 3 . t 3 > 0 f or all t E T 3 .

The definitions of S3 and T3 imp ly tha t the inequalities

z3 . s > 0 for all s E S3 (3.3)

are valid as well. 

• -  -~~ - - — --_ - -- - - - ~_ - _ ~~~~~~~~ •-- - - •
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Because the union of the increasing sets S. for j 1 ,2,...

is ri (F’) U{O), the inequalities (3.3) impl y that for any

E r i ( P ’) , p
4 
. z3 > 0 for all j s u f f i c i e nt ly large. Conse—

. * 0 . .
q u e n t l y ,  i f  z = x  — x is a limit point of  t h e  s e q u e n c e

{z3 ).>1 , then p ’ • z~ > 0 for all p~ En (F’) and z~
’ belongs

to ri (P~~)~ = p
4
~ = ci P. If x -* x°, then ( x —  x°)~~ P

beca u se x° was chosen from A(X).

Therefore , any limit point z~ to the sequence {z3 }.>., I 
-

gives x
0 =x * _ z~ with either z = O  or z*E cl P \ P. Th is

representation satisfies the conclusion of the theorem if

x C cl A 5(X). But x~ fulfills this condition , since , with

j j  0 .
z = x — x  , expression (3.2) gives

[x 3 — x°J > t 3 .[
~~ 

— x °J for all x C X .

Consequentl y, x3 solves

max {t3 .x :x CX} I -
and x3 CA

5(X) because t 3 CP~~ . Thus x is a limit point of

the strictly admissible points {x3 }.> 1 .

To comp lete the proof , we must show that the sequence

{ z 3 }.> contains a limit point. Suppose , to the contrary, that

it does not . Then the Euclidean norms A 3 of the z3 must grow

without bound as j increases. As we have noted prev i- usl y,

• -
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+ + + • + 3
for each p C r i  (P ), p . z3 > 0 and hence p • -~-r > 0 for all

A 3
j sufficiently large. But then for any limit point y to the

+ + +sequence -

~~

-

~

- .
> 

, p . y > 0 for all p C ri (P ) .  Therefore
A 3 j_ —l

y C ri (F’) = P ’’ = cl P and yCRC(X) = RC(Z) ([38], Thm.8.2),

contrary to hypothesis , and our assumption that the sequence

z3} 
~~~ 

contains no limit point is untenable. U

When the preference cone P is closed , ei ther

PflRC(X) * {0) and A(X) = 0 or PClRC(X) = {0} which ful-

fills the hypothesis of the theorem. In either case , the

charac terization simplifies to

Corollary 3. 1 . Let X be a c los~ d convex set and let P be

a strictl y suppor ted closed convex cone. Then every admis-

sible p oint is a limit point of strictly admissible poin ts. —

A slight modification to Examp le 3.3 shows that the

representation of Theorem 3.1 might not be valid when

jP ClRC(X) * 0 .

Example 3.4. Let Y be the cone generated by X — V  in

Example 3.3. Then if P = F 2 ,  the admissible set of V+ Y is

the half—line from V passing through K. The set of strictl y

admissible points is empty, however.

We should emphasize that the previous results do not 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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characterize admissible points comp letel y. Arrow , Barankin

and Blackwell show by an example that a limit point of strictl y

admissible poin ts need not be admissible. The following example

shows that points expressed as x = x*~~~p as in Theorem 3.4

need not be admissible , even when x*E c lA ~~(X) is admissible.

Example 3.5 As in Examp le 3.2 , let P be defined b y

P= { ( O , A , O)  : A >  O } u  { ( A 1, A 2 , A
3
) : A

1
> 0, A 2

> 0 and A
3 
>0).

Let X be the triang le in g iven b y

X = { ( x
1 
,x

2 
,O) : x

2 
> 0, x

1 
> x

2 
and x 1 

+ x
2 ~ 

I).

Every point in X on the line segment 9~ satisf y ing x
1 

+ x
2
= 1

is strictl y admissible and every point x in X can be written

as

* —

x = x  — p

for some x*E P~ and ~~C cl P\P; but not every point is admis—

sible. The admissible points are the points in X on the lines

x
1 

= x
2 

and x
1 ~~x 2 

= I.

3.3 Connectednes s

W h,en X is a poly hedron and P is a polyhedral cone ,

parametric anal ysis in linear programming shows that A(X) is
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connected (see , for examp le , Koopmans [II], or Yu and Zeleny

[301 for related results). To study the connectedness of A(X)

in a more general setting, we also use a parametrization of a

mathematical programming cbjective function.

We first set some additional notation. Let p(O) and

p ( l )  be any poin t s in R~ and for  each 0 ~~O ~ I , let

p ( O )  = O p (1 )  + (I—O)p(O) . Let X(0) denote the set of optimal

solutions to the optimization problem

v ( O )  = sup {p(O).x : x CX }  (3.4)

for a given set X , not necessaril y convex; x(O) denotes a

generic element of X(O) .

Berge [40] discusses several properties of parametric

o p t i m i z a t i o n  p r o b l e m s  w h i c h  e n c o m p a s s  r e s u l t s  for this prob-

lem. See also Hildenbrand and Kirman [41], whose introductory

description of parametric anal ysis is formulated to include

the following result.

Lemma 3.2. Let X be an arbitrary subset of R~ and assume

that the solution set X(O) to problem (3.4) is nonempty and

compact for all 0 ~~O ~ 1. Then the point to set mapp ing

8 -
~ X ( 8) is upper semi—continuous; that is, i f  0~~ 8 ~~I and

G is an open set in R” contain ing X ( 8 ) ,  then there is a

real number 6> 0 such that X(O’) C C  whenever 0 ~ 0 ’  ~ 1 and

J o  - o ’ J  ~ ~~~
. 

~~~~~~~~~~~~~~~~~~ • •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • 
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Using this lemma , we first consider the set of strictl y

admissible points.

Theorem 3.2. Let  P be a st r ic t l y suppor ted convex cone , let

X be a give n subset of R ’, and suppose that the solution set

to the optimization pr oblem max {p~~ 
. x : x E x} is nonempty,

compact and connected for each C IF ’. Then A S (X) is

connected.

Proof : Suppose to the contrary that A
S (X) is not connected

that is , there are disjoint open sets G and H with

G n A S ( X )  * ~~
, H C l A~~(X) * 0 and A

S (X )  C G U H.  Le t

x(0)EG flA S (X) and x(1) E H f l A S (X). The defini tion of strictl y

admissible poin ts imp lies that there are vectors p (O) 6

a n d  p(I) C P~~ so that for 8 = 0 and 1 , x(8) solves

m ax {p(0).x : x EX )  (3.5)

where p(0)E P ’ is defined as above , as

p(O) = Op( l ) + (l—O )p(O). Since the set of optimal s o lu t i o n s

X(0) to problem (3.5) is nonempty and connected , each X(0)

is ei ther contained in G or contained in H. In particular ,

X (0) C C and X( l )CH.

Le t 0 ’ = sup (0 : 0 ~ 0 ~ 1 and X(0) C C fo r  all 0 ~ 0 ~~
•
~

• )

By the prev ious lemma , 0’> 0. N ow X(8’) must be con tained in

either G or H. But either as~-utnpti on leads to a contradic—

tion. For if X(0 ’)CG , then X(0)C G for every 0 ~ B ’ + 5
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and some 6> 0  by Lemma 3.2 , con trary to the definition of 0’ ;

and if X(0’) C H , then by Lemma 3.2 again , X ( 0 )  C H  for every

0 > 0’ — 6  a n d  some 6 > 0  c o n t r a r y  to the definition of 0 ’.

Therefore , our assumption that A S (X) is not connected

is untenable and the theorem has been proven. U

The following version of this cheorein is probabl y more

useful in app lica tions.

T h e o r e m  3 . 3 .  Le t  F be a s t r i c t l y supported convex cone , let

X be a closed convex set , and suppose that — P ’ fl RC (X )~ * ~~~~.

Then A
S (X) is connected.

No te that the condition P ’ Cl R C  (X)~~ s t a t e s  t h a t  f o r

some p~ C P , p~ 
• y < 0 for every element y in the recession

cone of X . That is , the solution set to the optimization prob-

lem sup (~
+ x :xCX ) must be bounded for  some , but not

necessarily all , strict supports p~ to IF. This weakening of

the hypothesis of Theorem 3.2 is offset by the stronger assump-

tion that X is convex.

With slight modifications , the proof of Theorem 3.2 proves

Theorem 3.3 as well. Without loss of generality, we may select

x(1) in the proof as the solution to max {p(I).x : xE x )  w h e r e

+ . . .
— p ( I ) E RC (X)

5 
. Then we invoke the following result instead

of Lemma 3.2. (Observe that each solution set X(0) , 0 ~ 0 ~ I ,

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _  a ~~~~~~~~~ 
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to problem (3.5) is convex and hence connected.)

Lemma 3 . 3 .  Let X be a convex set in R . Assume that the solu—
n

t i o n  set  X ( 0 )  t o t h e  p r o b l e m

v(0) = sup {[Op(l ) + ( I  — O)p(O)] •x : x CX }

is nonernp ty for 0 = 0 and nonempty and compact for 0 = I . Then

X(0) is nonempty and compact for all 0 <0 ~ I and the point

to set mapp ing 0 -* X ( 0 )  is upper semi—continuous.

This lemma is proved in Appendix B.

When X is compac t , RC (X)  = (0), every point in B’ is a

strict support to RC(X), and t he hypothesis — P fl RC (X) * 0
of this theorem is valid whenever P is strictl y suppor ted.

Therefore , we have

Corollary 3.2. Let  P be a s t r i c t ly supported convex cone and

le t X be convex and compact. Then A
5(X) is connected. If, in

addition, P is closed or P\ {0} is open , then A(X ) is connected.

P r o o f  : As we h a v e  j u s t  n o t e d , T h e o r e m  3 . 3  s h o w s  t h a t  A 5 ( X )  is

connected. Whenever P\{0} is open , P’ = and so A(X) = A
S(X)

i s  c o n n e c t e d .  By C o r o l l a r y  3 . 1 , w h e n e v e r  P i s  c l o s e d  A ( X )  i s

connected since it is contained in the closure of the connected

S . 5• set A (X) and contains A (X). U

The next two examples show that the “strictly supported”
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c o n d i t i o n  i m p o s e d  u p o n  P in t h i s  c o r o l l a r y  is  i n d i s p e n s i b l e ,

as is the condition — P’ Cl RC(XY’ * 0 of Theorem 3.3.

Examp le 3.6. Let X be the closed unit ball in R
2 

and let

p = { ( O ,A)C 1R
2 : A C  R}. Then P is closed and convex , but P’ = 0.

— S i nce the onl y ad m i s s i b l e  p o i n t s  a r e  ( — 1 , 0) and ( 1 , 0 ) ,  A ( X )

is  n o t  c o n n e c t e d .

Examp le 3.7. Let S = { ( x
1 ,x2 , x3 ) C R 3 : x 1 = 0 , x 3 ~ 0 ~~n’~

e
X
3 

- I < x 2 ~ 0) and let T be the halfline {(1 ,0,A) eP
3 :A ~~0}.

Def in e X , wh i ch  i s  c l o s e d  ( [ 3 8 ] ,  C o r .  9 . 8 . 1 ) ,  as t h e  c o n v e x

hull of S and T and let P ’ be g e n e r a t e d  by n o n t r i v i a l  non-

negative combinations of p(O) = (—1 ,0,0) and p(I) = (l ,— I ,0).

Since the third component of every element of P ’ is  z e r o , a

point in X is strictl y admissible if and only if it belong~

to y+ T for some point y that is strictly admissible in the

set obtained by projecting X onto the x
1 

— x
2 

axis.

The so l u t i o n s  to  p r o b l e m  ( 3 . 5 )  a r e

S i f  0 = 0

X ( 0 )  = i f  0 < 0 < 1  (0,0) (1 ,0)

(0 ,~~i )

Alternatives X Projection on x 1 —x2 Plane

Fi gure 3.4

~~~iIii. ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ •~~~--_ •-_ - --_ -~ —• • -——  —-- --- - -—- •- - —_ •--‘—-—— - •- - - ---• - -
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In this case , R C ( X ) = {( x
1
,x 2 , x 3

) ER 3 : x
3 < 

0),

— Cl R C ( X ) ’ = 0 and A 5 ( X )  = S U T is not connected.

To s h o w  t h a t  A ( X )  is  c o n n e c t e d  w i t h o u t  a s s u m i n g  t h a t

the underl y ing preference cone P is closed or that P \ {O }

is open , requires additional argument. For any vector YE R
n
,

let £(y) and £ (y)
1 

denote the subspace generated by y,

and its orthogonal subspace .

Lemma 3.3. Let  F and X be a cone and arbi trary  set in R n
.

Suppos e t h a t  p~ b e l o n g s  to P~ and t h a t  y solves

max {p ’ - x xE X)- . Then the following conditions are equiv—

d e n t

( i)  y C A ( X )

( i i )  y EA(s) where ~ = X fl (y +C(p ~~)
1
)

(iii) y is admissible in X Cl (y  + £ ( p ’) 1) w i t h  r e s p e c t  to

P Cl

Proof : Suppose that z = y+ pE X for some p e P .  By defini-

tion of y, p
~ 
. z = p~ y + p~ • 

~ 
y. But since p

~~
• p > 0,

p = 0; that is , pCC(p~~)
1 

and zC (y + .C(p ’)
1
) Clx . Con-

sequently, y is not admissible with respect to F , that is ,

p can be chosen to be nonzero , if and onl y if condition ( i i )  i s

violated and if and onl y if c o n d i t i o n  (iii) is violated. U

Corollary 3.3. Let  p~~E P
’\P ’ and let y solve the problem 

~~~~ -_• - - . -~~-- --- ~~~~~~~~~ _ -_ - -~~
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max {p~ . x : xC X l .  Then either y C A ( X )  or y + p C X for some

p contained in the boundary of F.

Proof : App ly the p r e v i o u s  l e m m a , no ting that any point

p EP Cl £ (p~~)
1 

belongs to the boundary of P. U

+ + + +
C o r o l l a r y  3.4. Let p C P , le t  X = {x C X : p ~x > p • z

for all zE xl and let p ’ C . Then any so lu t ion y to th e

p r o b l e m  max {p~ •x : x C x} belongs to A(X).

Proof : Since y belongs to A
5(~~) C A(X) and , by Lemma 3.3 ,

A(X) A(X) C l X, y belongs to A(X) . U

These results and the representation theorem 3.~ p r o v i d e

ingredients for proving that the set of admissible points is

connected , without requiring P to be closed or F\{0} to be

open.

Theorem 3.4. Let F be a strictl y support ed ccnvex cone and

l-et X be a closed convex set satisfy ing — P’ Cl RC(X) *

Then A ( X )  is connected.

Proof : We use induction on the dimension k of X . Whenever

k = 1 , A( X ) is an interval and hence connected , so assume that

the theorem is valid for all closed convex sets with dimen—

• sion less than k and that X has dimension k.

Note , fi rst , that no generalit y is lost by assuming that

_ _ _ _ _ _ _ _ _  —~~~~~~~~~~~~~~~~ --- - - — _
~~~~~~~~
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X has full dimension. For suppose , by t r a n s l a t i o n  if necessary ,

that the ori g in belongs to X. Then X is connected in RT
~ jf

and only if it is connected in L , the smallest linear subspace

containing X . The definition of admissibility imp lies that x

belongs to A(X) if and onl y if it is admissible in X with

respect to PflL. Moreover , expressing any p~ C 

+
- p C RC(X) as p = 

~L 
+ p1 where C L and p 1 C L

the orthogonal subspace of L , shows that Q (P Cl L)~~ Cl L is

nonempty as is — Q  fl [RC(X) Cl LI (i.e., if p E P  fl L and

yE RC(X), then • = 

~ L p > 0 and • ‘ = 

~L 
y <0.

+ + +Thus p~ C Q and C RC(X) Cl L). Consequentl y, the hypoth-

esis of the theorem is valid in L and we may assume that X

is an element of Rk

Let y be any element of A(X) . Then y solves

+ + +
max (p •x: x E X }  for some p EP - Let X denote the set of

optimal solutions to this problem. If (i) A (X)ClX is con-

nected , and (ii) ci A 5 (X) fl A (X) fl~~ * ~ , then by Theorem 3.3

the set of strictl y admissible points in X together with the

admissible points in ~ is connected. Since y CA(X) was chosen

arbitrarily, the set A(X) will be connected as well.

Consequently, we will establish the theorem by verif y ing

- . conditions (i) and (ii). Since X C X , RC(X)  C RC (X)  and
+ ... + + +

RC(X) C RC(X) . Therefore — F~ Cl RC(X) * ~ and , since X

has dimension less than k , the inductive hypothesis imp lies

- • • ~~~~~~~~~-~~~~ . - --• -- -- ~~~~~~~~~~~~~~~~ 
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that A(X) is connected. By Lemma 3.3 , A ( X )  Cl X A ( X )  and

condition (i) is satisfied.

To establish condition (ii), let x0 solve max{p •x : x E~~}

for some p
5 
CP

5
. By Corollary 3.4 , x° EA(X). Si nce

- P ’ Cl RC(X)~~ * ~~~~~
, cl IFClRC(X) = (0) (any q C - P ’ Cl RC(X)~

and p C cl IF Cl RC(X) would satisf y q • p ~ 0 and q • p >0) and

the representation theorem 3.1 applies. Thus x0 can be repre-

sented as x
0 

= x* — p where x C cl A 5(X) and either ~ = 0 or

p Ccl P\ Ii’. Therefore p ’. x
0 

= p ’ • x* — p
+ 

• 
•~~~ ~ p

+
• x* and

+ 0 + * + — + * * *x = x — p • p ~ p • x , and so x C X and x solves

max (p’ • x : xE Xl. As a result , X E  A ( X )  Cl cl A S
(X) and cond i-

ti on (ii) is satisfied. U

4. LOCAL CHARACTERIZATIONS

Stud ying properties of an underl ying set by appl y ing

convex ana l y s i s  to approximations of the set has been a recur-

ring and frui tful theme in o p t i m i z a t i o n .  In this section we

adopt this viewpoint , assuming that the se t of a l t e r n a t i v e s  X

is defined as the intersec tion of a convex Set C w i t h  a se t  D ,

no t n e c e s s a r i l y convex .  By a p p r o x i m a t i n g  D at a given point

x° to form an approximation to  X , we i n v e s t i g a t e  a d m i s s i b i l —

ity in X via the approximation. We show , with appropriate

hypotheses , that strict admissibility i n X is equivalent to

I
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admissibility in the approximation. We also establish a

K u h n — T u c k e r  t h e o r y  in t h e  s e t t i n g  of cone dominance , which

when specia lized ,becomes the Kuhn—Tucker theory of nonlinea r

programming.

4.1 General Setting

L e t  us  c a l l  a s e t  L ( x ° ) a canonical approximation to D

at  x 0 if L(x °) — x° { (x— x°) : X E  L(x °)} is a closed cone.

If , in addition , DC  L(x°), we say that L(x°) is a suppor t  to

D a t  x 0 . A s u p p o r t  to  D a t  x 0 i s  s a i d  t o  be  finite if it is

a p o l y h e d r o n .  In this case , L(x°) is the intersection of a

f i n i t e  n u m b e r  of h a l f — s p a c e s , e a c h  s u p p o r t i n g  73 a t

In many app lications the set D is defined by a system

of nonlinear inequalities , D = {x : h .(x)  > 0 , i = I ,...,m} .

In this case , two canonical approximations to D predominate

in the optimization literature. When each function h.(x) is

differentiable at x0 with gradient c7h .(x°), then

L(x 0) = {X C R
n : V h . ( x °) ( x — x °) > 0  for  all  i with h.(x°)0) (4.1)

and when each function h.(x) is concave with supergr adient

at x
0 

(i.e., s . sa t i s f i e s  the “ s u p e r g r a d i e n t ” i n e q u a l i t y

h
1

(x )  ~ h 1
(x °) + s

1
(x — x °) fo r  all XC R

n ) ,  then

L(x°) = {xCR ~ : s.(x— x
0) > 0 for all i with h .(x°) 0}. (4.2) 

~~~~~~ - _
~~~~~~~~~I__ ___ _ _ _ _ _ _ _ ~~~~~~~_~~~_
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When the functions h.(x) are both differentiable and concave ,
i

t h e  f i n i t e  s u p p o r t s  ( 4 . 1 )  and  ( 4 . 2 )  c o i n c i d e .

Our  f i r s t  r e s u l t  r e l a t e s  a d m i s s ib i l i t y  in  L ( x °) t o  s t r i c t

a d m i s s i b i l i t y  in D .  We w i l l  a p p l y some s i m p l e , b u t  u s e f u l ,

observations concerning admissible points in cones.

Lemma 4 .1. Let F and Y be closed convex cones in Rn 
and

suppose t h a t  P is suppor t ed  s t r i c t ly. Then for any x
0 
C R

n
,

0 0 0
( i )  etther x C A(x + Y) or A(x + Y) = 0,

(ii) 
x: 

EA :(x: +Y) if and onl y if P fl * ~~~~,

and ( i i i )  x C A (x +Y) whenever x C A ( x  +-Y) .

Proof Conclusions (i) and (ii) are immediate consequences

of definitions. If x0 ~ A
S (x

o
+ Y), then P~ Cl y * = 0 by (ii)

and A(x°+ Y) 0 by Proposition 3.2. This observation coupled

with part (i) establishes conclusion (iii). U

In the next two propositions we assume that C= Rn in

the definition X = C fl D of X .

Proposition 4.1. Le t P be a s t r i c t ly supported closed con—

vex cone and let x°E X C R
n. Then x

0 C A 5 (X) i f  and onl y i f

x0 is admissible in some support L(x °) to X at  x0.

Proof Whenever x° is strictly admissible , it solves the

problem max (p .x: xEX} for some p C P ~ . The set

- - — -~ —--- _ • -
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L(x°) = {x  C Rn : p~~ .x 
~ 

• x°} supports X at x° and x0 is

admissible in L(x°) .

If x
0 

i s  a d m i s s i b l e  in some support L(x°) to X at

then by the previous lemma , x
0 

is strictl y admissible in L(x°).

But since x0 E X C  L(x°), the definition of strict admissi-

bility implies that x°E A
5 (X ) .  B

Examp les 3.3 and 3.4 show that the closedness of P is

necessary in the previous lemma and Proposition. Let

= V = (0,1 ,1) and let X and Y be defined as in these

examp les. Then x° is not strictl y admissible in either x° +Y

or X even though it is admissible in both of these sets and

L(x°) = Y is a support to X at x°.

Certain features of Proposition 4.1 are worth noting .

0Fi rst , the conclusion does not state that whenever x is

strictly admissible it is admissible in every support L(x°)

to X at this point. For example , let X be the unit cube in

and P = R~~. Alth ough L(x°) = {x = (x
1 ,

x
2
) x

1 ~ I } is a

support to X at the strictl y admissible point x° (1 ,1),

0 .  . .x is not admi ssible in this support. In fact , the support

L(x°) = {x C R n 
: p

5 
•x 

~ 
p ’ • x°} to X chosen in the proof of

the proposition depends upon knowledge of a strict support

E p + for which x° maximizes ~~ . x over X. More useful
5 S S

would be a support that depends only upon local information

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -~~~-—



--  -

— 34 —

at x
0
, such as the suppor ts specified in expressions (4.1)

and (4.2). Our next resu lts delineate a wide class of prob-

lems where such supports are possible.

Proposition 4.2. Let  F be a s t r i c t l y supported cl osed con—

vex cone and let X be a pol y hedron . Then every admissible

point x
0
E X is strictl y admissible. Moreover , any admissible

point x°E X is s t r i ct l y a d m i s s i b l e  in the  support  L(x°)

defined b y (4.1) with D= X.

Proof Le t h .(x) = a’x — b. for i = I ,2 ,...,m deno te linear—

affine functions defining X and suppose that X
0
E A ( X )  and

that L(x°) is defined by (4.1). We first note that x° is

admissible in L(x°) ,  for otherw ise some z *x
0 belongs to

L(x°) Cl (x ° + F ) .  B u t  t h e n  a~~ . z > b .  and  y x 0 
+ 0(z —x °), where

0 > 0, sa t i s f i e s  a’.y > b. for all indices i with a i .x ° b. .

Choosing 0 small enough , a’ •y > b. for  every  i wi th

a • x  > b~ as well. Therefore , y E X , y # x and y~~~x + F ,

con tradicting x°C A ( X ) .

Since x
0 

is admissible in L(x°) and L(x °) — x
0 is a

closed convex cone , X
0E A° (L(x °)), by Lemma 4.1 , and conse—

quently x°E A 5(X). U

P r e v i o u s l y ,  Evans and S teuer [ 2 5 ]  have shown that

A ( X )  = A
S (X)  when F, as we l l  as X , is pol yhedral.
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We next consider instances when X is nonpolyhedral. If

x° is strictly admissible in X = C C l D , then it solves the

optimization problem

+ 0
Max p . (x — x  ) (4.3)

xCCClD 
S

for some p~~E ~;. Rep lacing D by L(x°), a support at x°,

and “dualizing ” with respect to u C [L(x °) — x° ]~ removes

L(x°) from the constraints and g ives

+ 0Sup (p + u) • (x — x  ). (4.4)
xCC

Note that when L(x°) is defined by (4.1),

L(x°) — x 0 = (y C R~ V h . ( x°)y > 0 for all I with h .(x°) = 0)

and , by Farkas ’ Lemma , EL(x °) _ x O
]
+ 

= fuC]R
m 
: u = A •Vh(x )

for some vector A > 0 with A~~h(x°) = 0). In this case , the

objective function in (4.4) is a linear approximation to the

Lagrangian function of (4.3).

Recalling the usual terminology of nonlinear programmin g

for this examp le , we call x0 a Kuhn—Tucker point in X = C~~~D

with respect to the cone P and support L(x°) to 73 at

0
if x C D  and

Max (~~ + u) (x — x °) = 0
xEC S

for  some “Kuhn—Tucker ” mul t i p l i e r s  p 5 
6 P5 and uE [L(x °) — x°]’.
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The  f o l l o w i n g  p r o p o s i t i o n  c h ar a c t e r i z e s  such Kuhn—Tucker

p o i n t s

Proposition 4.3. x° is a Kuhn—Tu cker point in X with respect

to the cone P and support L ( x ° ) to D at x
0 

if and onl y if

the following two conditions are satisfied

( i )  x 0 
is strictl y admissible in C Cl L ( x°) ;  th a t is ,

0
x solves

v = m a x  {p ~~ • (x — x°) x C C  Cl L(x °) }

for some p
5
C P~~~, and

(ii) for this

v = m m  f v ( u )  u C [L ( x °) — x
0

J~~

w h e r e  v ( u )  = sup ((p~ + u) (x — x °) xEC} .

Proof : The validity of conditions (i) and (ii) imp lies that

+ 0
0 = v  = m a x  { (p

5 + u ) ( x — x  ) : x C C }

for some u C [L ( x °) — x ° ]~~, so x ° i s  a K u h n — T u c k e r  p o i n t .  Con-

v e r s e l y ,  i f  x 0 
is a Kuhn—Tucker point with associated Kuhn—

Tucker mul ti p l i e rs  p~ and u , then v (u )  = 0. Since

uC [L(x °) _ x 0J
+
, u • ( x — x °) > 0  and c o n s e q u e n t ly

. (x — x °) 
~ 

+ u) (x — x °) ~ v(u)

whenever x ECClL(x°). These inequalities imp ly that

v ~ v ( u ) = 0. S i n c e  x ° E C C l L ( x °) ,  v > 0 .  T h e r e f o r e ,

v = v ( u )  = 0 satisfies conditio ns (I) and (ii). U

• .
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W h e n e v e r  L ( x ° ) is poly hedral , as in ( 4 . 1 )  or ( 4 . 2 ) ,  and

r i ( C )  C l L ( x °) * 0, t h e  d u a l i t y  c o n d i t i o n  (ii) is fulfilled

( [ 3 8 ] ,  C o r .  2 8 . 2 . 2 ) .  In p a r t i c u l a r , if C = R~ then condi-

tion (ii) becomes superfluous and we may sharpen proposition

4.1 by specify ing necessary conditions for strict admissibil-

ity in terms of easil y computed supports.

C o r o l l a r y  4 . 1 .  Let  F be a s t r i ct ly supported convex cone ,

let X = D = Cx  E R~ : h . (x )  > 0 , i = 1 ,2 ,... ,m } , and assume

that each constraint function h. is differentiable at a

strictl y admissible point x° solving

m a x  {p .x : x C X )  (4.5)

where p ’CP . Then , if proble m (4.5) satisfies any constraint

qualifi cation~ , x° is s t r i c t ly adm i s s i b l e  in th e suppo rt L(x°)

defined by ( 4 . 1 ) .

Corollary 4 . 2 .  Le t  F be a s tr i c t l y supported convex cone and

let X = C Cl D where C is a convex set and D = {xC R1
~ : h~~

(x) > 0,

i = 1 ,2 ,- .. , m} is defined b y con cave functions. Then , if X

satisfies the Slater condition hi(x *) > 0 for i = 1 ,2 ,...

for some x
4 
C C , x 0 is s t r i ct l y adm i s s i b l e  in the suppor t

defined b y (4.2).

4
C o n d i t i o n s , like linear independence of the vectors Vh 1 (x °)
for indices i with hj (x°) = 0, that ensure that x0 satisfie s
the Kuhn—Tucker conditions of nonlinear programming for
p r o b l e m  ( 4 . 5 ) .

_ _ _ _ _ _
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4 . 2  The  V e c t o r  M a x i m i z a t i o n  P r o b l e m

To i l l u s t r a t e  the previous results in a somewhat more

concrete setting, let us consider the vector optimization

p r o b l e m  i n t r o d u c e d  in  S e c t i o n  2 with a criterion function

f ( z )  = ( f
1

( z ) ,  f 2
( z ) , . . . , f k ( z ) )  and a set of alternatives

Z C ~~~~~ Le t X = {(y,z) C : z E Z and y ~ f(z)} and sup-

pose that Z is defined by Z = C C l D  where

D = {z C R n—k : h.(z) > 0 , i= I ,2 ,... ,m} . For any zE D , let

h
~~
(z) denote the subvector of h(z) = (h

1
(z), h2(z),..., h (z))

with components h.(z) = 0. As we noted in Section 2 , z
0 is

efficient in the vector maximization problem if and onl y if

= ( f ( z °), z°) is admissible in X with respect to the

preference cone P = Note , in this cone , that

= {(X ,y) C R k
~~ R

n -k  
A > 0  and y = 0 ) .

If each of the functions f.(z) and h.(z) is differ-

entiable , then the linear approxim ation to X at x
0 

correspond-

ing to (4.1) becomes

L(x°) — x
0 = { (y , z) C R’~ : y ~ V f ( z °) . z and V h

~
(z°) • z > 0) .

Since any admissible point (y*, z*) in L(x°) Cl C with respect

to 
~ k 

must satisf y y = V f(z°) • z~~, x
0 

= ( y ° , z °) i s  s t r i c t ly

a d m i s s i b l e  in  L ( x ° ) Cl C whenever it solves

v = max{A Vf(z°) . ( z — z °) z C C  and V h ~, (r °) . ( z — z °) > 0 )  ( 4 . 6 )

—-— - -—_ —•-—
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for some positive k—vector A.

As we h a v e  n o t e d  p r e v i o u s ly ,  Farkas ’ Lemma imp lies that

the polar to the pol yhedral cone L(x°) — x° is g iven b y

[ L ( x 0) _ x 0
1
+ 

= {(u 1
, u2 ) E R n u ’ = — A  and u

2 = AV f(z)+1
~

Vh
~
(z)

for some A > 0 and jj > 0).

T h e r e f o r e , (y ° , z °) i s  a K u h n — T u c k e r  p o i n t  if it solves

m a x  ~ [ A V f ( z °) + p V h ( z °) ]  ( z  - z°) + (a- A) . (y -y °) }
y C R k
z C C

for some positive k—vector 0. The value of this optimization

problem is + °° unless o A .  Thus , ( f (z °) ,  z°) is a Kuhn—Tucker

point , or z° is a Kuhn—Tucker point in the vector maximization

p r o b l e m , w h e n e v e r

max {[AVf(z °)+ jiVh
~~

(z °)]  • (z — z °) }  = 0 ( 4 . 7 )
zE C

for some positive k—vector A.

Note that for z° to be a Kuhn—Tucker point to the vector

maximization problem requires a choice of positive weights A

for the vector c r i t e r i o n  function f(z) so that z° is a Kuhn—

Tucker poin t to the n o n l i n e a r  program

max { Af ( z )  : z C C  and h(z) > 0 }.  ( 4 . 8 )

Proposition 4.3 shows that necessary and sufficient conditions

L. - ~~~ — - • .  • . •. •
~~~ -- - ~~~• . •~~~~~~
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fo r  z° to be a Kuhn—Tucker point are that (i) z
0 

solves the

firs t order linear approximation (4.6) to (4.8) at z°, and

(ii) t h e  i n eq u a l i t y  constraints of (4.6) can be incorporated

within the objective function by an appropriate choice of

weigh ts p so that the optima l value to the problem remains

unaltered. That is , Kuhn—Tucker points are associated with

(1) a r e g u la r i t y  condi tion g u a r a n t e e i n g  t h a t  a l i n e a r  a p p r o x —

imation inherits certain solutions from a nonlinear program ,

as w ell as (ii) a dua~ ity condition guaranteeing dua l i z a t ion

of the linear approximation problem.

When k= 1 the vector maximization ~iroblem becomes a non—

linear program and condition (4.8), wi th the positive scalar A

normalized to value 1 , r educes  to the usual Kuhn—Tucker con-

k ditions . Consequentl y, t h e  r e g u l a r i t y  and  d u a l i t y  c o n d i t i o n s

for charac terizing Kuhn—Tucker points subsume all of the

numerous constrain t qualification conditions of nonlinear

programming ( s e e , for example , Mangasarian [421). Fiacco and

McCormick [43] seem to have first stated this fact when C R ~

and the dualit y r ondition is not required. In a section of an

unpubl ished repor t , Magnan ti [44] introduced the duality con—

di tion in the context of nonlinear programming. Halkin [45]

presents related results in the context of nonlinear program—

ming. More recen tly, Robinson [46] has studied optima l ity

condi tions for preference orderings in infinite dimensional

s p a c e s .  

~~~~~~~~~~~~~~~~~~~~~~~~ - - - - _~~~ -~~~~~~~ - --~~~- -
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When specialized to the vector maximization probl em ,

Corollary 4.1 shows that if C = R
n 

and the regularity con-

dition is fulfilled , then a necessary condition for z0 to

be strictl y admissible (i.e., z° solves problem (4.8) or ,

equivalentl y ( f ( z°), z°) is strictl y admissible in X) is

that x0 = ( f ( z °), z°) is a d m i s s i b l e  in L(x °). The las t con—

dition is equivalent to z0 being efficient in

{z ER~~
k : Vh

~~
(z°) . (z— z°) > 0) with respect to the

vector criterion ‘7f(z °) . z. Therefore efficiency in the

linear approximation to the vector optimization problem is

necessary for strict admissibility in the problem itself.

Remark 4.1 . These results are related to the notion of

proper efficiency introduced by Geoffrion [12] (see also

Kuhn and Tucker [10]). By definition , z° is a proper effi-

cient point in the vector maximization problem if there is a

scalar M > 0 with the proper ty that for every z C Z and each

index i satisfying f.(z) > f .(z°) the inequality

f
~~
(z) — f.(z°)

f.(z°) — f . ( z )

is valid for some index j such that f.(z) < f.(z°). As

Geoffrion shows , whenever Z is a convex set and each func—

tion f.(z) for j = I ,2 ,...,k is concave , proper efficiency

of z° is equivalent to z0 solving problem (4.8) for some A >0 . 

_
~~~~~

_ _ _ _ i
_ _
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As we have noted , this last condition is equivalent to

( f ( z °),z°) being s t r i c t l y  a d m i s s i b l e  in X . If C R
5
, we m a y ,

th en , restate our comment made just prior to this remark as

if z° is strictly admissible in the vector maximization

problem and the regularity condition is fulf i l l e d , then

z°CZ is a proper efficient point in with
(4.9)

respect to the vector criterion Vf(z°). z.

We might also note that if f(.) and h(.) are concave , then

condition (4.9) imp li es that z° is a proper efficient point

in the vector maximization problem. To establish this fact ,

we note that condition (4.9) imp lies that z° solves prob-

lem (4.6) for some positive k— vector A. Therefore z
0 satis-

fies the Kuhn—Tucker conditions (4.7) with C E  Rn 
and ,

because of our concavity h ypothesis , z
0 solves the Lagrangean

maximization

m ax {A f(z) + p h (z)}.

Since , by definition , ph
~~
(z°) = 0, the optimal value to this

problem equals A f(z °), and since z°EZ , it must solve
5 

the

optimization problem max {Af(z) : h(z) > 0) and hence be a

proper efficient point in the vector maximization problem.

5Here we use the standard weak duality argument of nonlinear
programming.

- —  - — — -—  ----- - -——~~ —.-~~~ —-—---- - --
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We should point—out , though , that a proper efficient

point z
0 

need not satisf y condition (4.9). As an example ,

let z° = (0,0) in the vector maximization problem with cri-

terion f
1
(z) = z 1, f

2
(z )  = z

2 and constraints

h 1
( z)  = z

2 
— z 1

2 >0 and h2
( z )  = — z 2 — z~ > 0. In thi~ in-

stance , the regularity condition fails since the origin is

not admissible in ~~ = { ( z
1 ,z2

) CR
2 

2
2 

= 0 ) .

5. DISCUSSION

In the previous sections we have studied structural

properties of admissible points with resp2ct to a convex

cone. Our results provide global characterizations of admis-

sible points in terms of strictl y admissible points and

local characterizations in terms of linear approxim ations.

We have also shown , with appropriate hypotheses imposed

upon the problem structure , that the sets of admissible

and strictly admissible points are both connected. In this

section , we briefl y discuss a few potential extensions and

a p p l i c a t i o n s .

First , we migh t comment on the f r e q u e n t l y  evoked assump-

tion that the underlying preference cone is strictly supported.

A c c o r d i n g  to P r o p o s i t i o n  A. I , this assump tion rules ou t

- —-— - --- -— -

~

—
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“grass is greener ” preferences in which each of two alterna-

tives is preferred to the other. More generall y, it does not

permit situations in which x >- y and y3 - x for j = 1 ,2 ,...

for some points y3 converging to y . As an examp le , lexic og-

raphic orderings define preference cones that are not strictl y

— supported.

Whenever underl ying preferences are described by a closed

indifference cone F ’ (i.e., y E x  + P’ if and onl y if y ~ x),

the set P = {x C P1 0 ~-x } describes a strictl y supported

preference cone. This cone is strictl y supported for if p C P

belongs the line al ity space of ci F , i.e., — p C c l  PC cliP 1 P
1
,

then 0 p — p6 p + P1 
or 0 

~ 
p, a contradiction. We should

emphasize , however , that even though this construction pro-

vides strictl y supported cones , our development does not

presume the existence of any “weak ” preference relation ~~.

There are several ways in which our results mi ght be

extended. Replacirg the preference cone P by a convex set C

or , more generally, by a family of convex sets C , C denoting

the set of points preferred to x , would add possibilities for

broader app lications. Another line of investigation would be

to retain our hypothesis and to see what additional assump—

tion s might lead to stronger conclusions. For example , Arrow

and Hahn [41 show that if P then the following restric—

tions on the (convex) set of alternatives X
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(i) 0 belongs to the interior of X;

(ii) X Cl R ’ is compact; and

(iii) free disposal , i.e., x — y C X  for any

whenever x C X

imply that A(X) is homeomorphic to an (n—1 )— dimensional

simp lex. This substantial strengthening of connectednes s is

possible , with similar hypothesis , for other closed convex

cones as well. In general , it may be that the set A(X) is

h o m e o m o r p h i c  t o  a u n i o n  of simplices with some special struc-

ture.

In a paper not yet available to us , Naccache [47] has

initiated investi gations of another nature. He studies

stability of the set of admissible points with respect to

perturbations in X and P. He has also studied connectedness

o f A ( X ) , but with assumptions that may be related to free

disposal.

There are a number of ways in which the structural prop—

erties discussed in this paper and these extensions aid

decision making. Consider , for examp le , the vector optim iza—

tion problem. In practice , it is convenient to generate

strictl y admissible points by solving

k
max C ~ A. f.(z) : Z EZ} (5.1)

j~~l ~
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with positive weights A. associated with the criterion func-

tions. By varying the weights , decision makers can generate

all strictl y admissible points , or by choosing a sequence of

p o s i t i v e  w e i g h t s  a p p r o p r i a t e l y  t h e y  might move toward some

admissible point that is “best ” with respect to some auxiliary

c r i t e r i o n  ( s e e , f o r  e x a m p le , [ 2 7 ] ) .  C o n s i d e r i n g ,  as  b e f o r e ,

t h e  v e c t o r  m a x i m i z a t i o n  p r o b l e m  in  t e r m s  of t h e  s e t

X = {(y,z) C Rn 
: y ~ f(z) and zEZ} and the preference cone

we see from the representation theorem that every

admissible point (y° = f ( z °) , z°) is a limit point of solu-

tions (y* f(z*) , z*) to (5.1) or a translation of such limit

p o i n t s  b y v e c t o r s  (O , z )  C ci  
~~~~ ~~~~ 

T h a t  i s , “ i n  t h e  s p a c e

R
k the image f( .) of e f f i c i e n t  points is contained in the

c l o s u r e  of t h e  i m a g e  of t h e  p r o p e r  e f f i c i e n t  p o i n t s ” ( s e e

Geoffrion [. 121)
6
. In this context , the representation theo-

rem 3 .1 shows that the solutions to (5.1) delineate all

potential values of the criterion function when evaluated

at efficient points; connectedness of the admissible points

shows that to move from any (proper) efficient point to

another , we can restrict ourselves to local movements among

6Some assumption such as the hypothesis cl P flRC(X) of Theo-
rem 3.1 is required for this statement. For example , let V
and Y be defined as in example 3.4 , let Z =V +Y and let
f 1 ( z )  •z

~ 
and f 2(z) 22. The efficient set is the haifline

from V passing through the point K (see Figure 3.1). Every
efficient points is non—proper , though , so that the statement
is not valid in this instance. 

- - —- -~~--~~~~-- ---~~~-~~~~~~~~~~~- -—— ~~~~~—_ - - - - -~~~~~~~ - - . - .~~~~~
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(proper) efficient points only, such as local changes in the

c o e f f i c i e n t s  A .  of ( 5 . 1 ) .

We w o u l d  e x p e c t  s i m i l a r  b e n e f i t s  f r o m  t h e  s t r u c t u r a l

p r o p e r t i e s  of a d m i s s i b l e  p o i n t s  in g e n e r a l , e s p e c i a l l y w h e n

solving for strictly admissible points is attractive computa—

t ional ly.

One app lications of admissibility that might be explored

profitabl y concerns the optimization of monotonic functions

h ( x ) , where , say, h(x) is strictl y increasing in each compo—

nent x . of the vector x . In this instance , any optimal solu-

t i o n  t o  t h e  p r o b l e m

max (h(x) x CX }

is admissible for X with respect to PCR~ . This observation

suggests that optimization al gorithms might restrict their

search to the admissible points A (X), especially once any

algorithm first identifies a point in this set.

Do mathematical programming al gorithms have this prop-

er ty ? Th e an s w e r , at least ~n terms of the simp lex method ,

is no. In the examp le ,

m ax 2x 1 
+ x

2

subject to 4x 1 
+ 7x

2 >18

x 1 
+ 2x

2 ~ 5

x
1
>0 ,x 2

> 0

k . . . 



.._ - ~~~~~~~~~~~~~~~~~~~~~~~ 
-~ ~~~~ ~~

- - - - 
- ——--- .-—--- — — -_ ---

— 48 —

the admissible set is the line segment joining the points

a = (1 ,2) and the optimal solution c = (5,0). Starting from

the extreme point a , the simp lex method moves off the adinis—

sible set to the point b = (4.5 ,0). In a number of experi-

ments conducted on larger problems [36], we have never ob-

served this same phenomenon. In these examp les , once the

simplex method first encountered an admissible point , it

always generated an admissible point at each successive

iteration. Our understanding of the simp lex method might be

enhanced if we would explain this behavior.

6. APPENDIX A

The following, rather intuitive , propositions character-

ize the strictl y supported condition for a convex cone.

Recall that the lineality space L of any cone C is the set

of lines contained in C , i.e., L = CCl (—C).

Proposition A .1 . Let L be the iineality space for the

closure of the convex cone P .  Then p is supported strictl y

if and onl y if P Cl L = {o }.

Proof  : Let L’ denote the orthogonally -comp lementary subspace

to L. Then ci P = L ® (cl PnL1) is a direct sum representa—

Ii
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Lion , and (cl p)~ = L
1 Cl ( c l  P Cl L1)~~ .

+ 1 + + + +
N o w  P S 

C L w h e n e v e r  p CF  C (ci F) and p • p = 0

for all p C PClL. Consequentl y, PCl L = {0) .

To establish the converse , note that since ci P

1 +
is convex , closed and pointed , its posit ive polar (ci P C l L  )

has fuil dimension ([38], Cor .14 .6 .I). Any point y belong ing

to the interior of (ci P Cl L
1
)~ must satisfy y .p > 0 for all

nonzero p C (ci P fl L
1
). Expressing y as y = 

~ L 
+ y

1 
wit h

€ L and y
1 
C L’, we note that 

~~~ 
+ y

1) .  p = y
1

~ p > 0 f o r

all nonzero p C (cl P Cl L
1
). If p E P  and P flL {o}, t h e n

I I
+ p f o r  some 

~L
6 L and some nonzero p C (ci P Cl L )

and y
1. p . p

1 
> 0. Therefore P Cl L = {0) imp l i e s  t h a t

y
1
•p > 0  for all p EP; that is , P is support ed strictly.

U

The proof of this proposition shows that whenever

PCl L = { 0},  any point contained in both L
1 

and the interior

of (ci P Cl L
1
)~ is a strict support to P. We next establish

the converse to this sta~ ement .

Proposition A .2. Let L be the lineality space for the

cloaure of the convex cc-ne P .  Then r i (P ’
~) C P 5~ if and onl y

if L f l P  = (0 ] .  Moreover , if ci  P C l L1 = P f l L
1
, then

c ri (F 9
) and, consequentl y, r i  ( F ’ ) = P if and onl y if

L Cl~~ = {Q}.
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Proof Let ci P = L 0 (ci  P Cl L ) be a direct sum represen-

tation. Then P 9 
= ( c l  P ) ~~ = L

1 Cl ( ci  p C l  L
1)~~ and , s i n c e  L1

is a subspace and (ci PC l L1)~ has a nonempty interior I which

I . + I
intersects L , r i (P ) = L Cl J~

By the remark preceding the proposition , Pfl L = (0)

implies that ri(P ’) C 
~~
:• Conversel y, i f  r i ( P 9

) C P , t h e n

* 0 and Lf lP  = (0) by the previous proposition.

F i n a l l y, suppose that cl PflL’ = PC l L’ and let y belong

to the relative boundary of P
+
. Then there are vectors

y~ E L
1 

c o n v e r g i n g  to  y s a t i s f y i n g  y J .p J < 0  f o r  some

p 3 C P w h i c h  we scale to unit norm. Any limit point p of the

sequence belongs to ci P C l L1 = PCl L
1 
C F and

sati sfies y. p~~~ 0. Consequentl y ,  y ~ P~~ and P~ C r i ( P ~~).

When combined , these propositions establish Proposi—

L i o n  2 . 1  of the text. Note that the illustration following

Proposition 2.1 shows that ri(P ’) * P i s  p o s s i b l e .

II
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7 .  A P P E N D I X  B

We p r o v e  t h e  c o n t i n u i t y  lemma required for Theorem 3.3 ,

namel y

L e m m a  3 . 3 .  Let X be a convex set in Rn . Assume tha t the solu-

t ion  set to the  p rob l em

v ( 0 )  = s u p  { [ O p ( 1 )  + ( 1 —  0 ) p ( O )  ] •x : x E X }

is nonempty for 0 = 0 and nonempty and compact for 0 = 1.  Then

X(0) is nonempty and compact for all 0 <0 ~ I and the po in t

to set mapp ing 0 X ( 0 )  is upper semi—continuous.

P r o o f  : L e t  y be a n y  r e c e s s i o n  d i r e c t i o n  of X . Since X(0) is

n o n e m p t y  and  X ( 1 )  i s  n o n e m p t y  and  c o m p a c t , p ( O )  • y  ~ 0 and

p ( l ) .  y < 0. T h e r e f o r e

[O p ( I )  + ( I  - 0 ) p ( O ) ]  . y < 0

f o r  a l l  0 < 0  ~ I implying that X(0) is nonempty and compact.

According to Lemma 3.2 , the mapping 0 -
~~ X ( 0 )  i s  u p p e r

semi—continuous on the interval [c , I ] for any 0 < c ~ I .

Cons equentl y, to complete the proof we must show that this

mapping is upper semi—continuous at 0=0.

T h i s  i n d e e d  i s  t h e  c a s e  if , for some 6 >0, the set

S
6 

U{X(0) : 0<0 ~~6} is bounded. For if the mapp ing 0 ~~ X ( 0 )

;• g  not upper semi—continuous at 0 = 0, then th ere is an open
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s e t  C c o n t a i n i n g  X ( 0 )  and points x3 C X ( 0 3 ) \  C for some real

n u m b e r s  0~ >0 approaching 0. Since

p ( 0 3 ) • x3 > p ( 0 3 ) ~x f o r  a l l  x C X

* . -  . . . 3any  l i m i t  point x (such a limit point exists since the x

eventuall y lie in the bounded set S ) to the sequence
6

s a t i s f i e s  x * 
~ C and

p ( O )  .x * > p ( 0 ) . x  f o r  a l l  x E X .

B u t  t h e n  x * E X ( 0 ) \  C , contradicting X(O) 
E 

G.

Therefore to establish the theorem we onl y need to show

th at S
6 

is bounded for some 6 >0. For notational simp licity

suppose , by translation if necessary, that 0 €X(O) . Then by

d e f i n i t i o n

p ( 0 )  . x(0) ~ p ( O ) .  x ( O )  = 0 ( I )

for any x(0) C X ( 0 ) ,  0 < 0 ~ I . Since 0 C X ,

[O p ( I )  + (~ —0 )p(0)] .x(0) > 0

impl y ing, from (I), that

p ( 1 )  . x(0) > 0. (2)

.1

Now if S 6 
i s  u n b o u n d e d  f o r  e v e r y  0 < 6  ~ I , then there

a r e  -÷ 0 and points x(03) C X ( 0 3 ) w h o s e  E u c l i d e a n  t~orms A.

approach + ~~~. Since 0 CX , any limit point y to the sequence

{x (0 3 ) ~ i s  a d i r e c t i o n  of r e c e s s i o n  of X .  B u t  t h e

i n e q u a l i t y  ( 2 )  i m p l i e s  t h a t  p ( 1 ) . y  > 0 , c o n t r a d i c t i n g  t h e

~

I_ 
~~~~~~~~~

__ 
_ __
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hypothesis that X(I) is bounded. Consequentl y, S6 must be

bounded for some 6> 0  and the point is complete. U
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