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The Structure of Admissible Points with Respect to Cone

Dominance

by G.R. Bitran and T.L. Magnanti

Abstract

We study the set of admissible (pareto-optimal) points of a closed
convex set X when preferences are described by a convex, but not neces-
sarily closed, cone. Assuming that the preference cone is strictly sup-
ported and making mild assumptions about the recession directions of X,
we

(i) extend a representation theorem of Arrow, Barankin and Blackwell
by showing that all admissible points are either limit points of certain
"strictly admissible' alternatives or translations of such limit points
by rays in the closure of the preference cone, and

(ii) show that the set of strictly admissible points is connected,
as is the full set of admissible points.

Relaxing the convexity assumption imposed upon X, we also consider
local properties of admissible points in terms of Kuhn-Tucker type
characterizations. We specify necessary and sufficient conditions for
an element of X to be a Kuhn~Tucker point, conditions which, in addition,
provide local characterizations of strictly admissible points.

ACCESSION for J
NTIS White Section

pDC Buff Section O
UNANNOUNCED O
JUSTIFICATION |

o sl
DISTRIBUTION/AVAILABILITY CODES
Dist.  AVAIL. and/or SPECIAL




INTRODUCTION

Formal approaches to decision making almost always pre-
sume that an underlying preference relation governs choices
from available alternatives. Rich theories now go far toward
either characterizing or computing solutions that are in some
sense "optimal". Mathematical programming techniques predomi-~
nate when preferences can be embodied in a real valued
utility function (Debreu [1], [2] discusses appropriate con-
ditions. See also Bowen [3] and Arrow and Hahn [4, page 106]).
Multi-attribute utility theory (Keeney and Raiffa [5]) pro-
vides one means for considering multi-objective situations
which involve several, possibly conflicting, criteria. In
summarizing methods for studying multi-objective decision
making, Mac Crimmon [6] has classified approaches as weight-
ing methods, including statistical analysis; sequential elim-
ination techniques; mathematical programming procedures;

and special proximity methods.

Although these theories have made impressive contribu-
tions to decision making, they have yet to resolve a number
of issues that are fundamental to both descriptive and
prescriptive theory. For arbitrary preference relations,
still little is known, and possibly can be said, about such

an essential concept as admissible alternatives, also called

]
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nondominated, efficient, or pareto-optimal alternatives. Even
when a convex cone P, the set of points x+ P = {x +p : p € P}
specifying those alternatives preferred to x, describes
preferences, admissible points have not been characterized
completely. Is the set of admissible points connected ? Are
there representation theorems which characterize admissible
points ? What are local characterizations of admissible
points ? Can the notion of admissible points be exploited

within the context of solving mathematical programs ?

In this paper, we consider several of these issues. In
Section 2, we introduce notation and concepts to be used
throughout the paper. The next section considers global char-
acterizations of admissible points, including existence. We
show that the sets of admissible and strictly admissible
points are both connected when (i) the preference cone P
is convex, (ii) the set P; = {p+€ RrR" :p+- p> 0 for all
nonzero p € P} is nonempty, (iii) the set of available
alternatives X is convex and closed, and (iv) some element
of P; makes an obtuse angle with every direction of reces-
sion of X. In this section, we also present a representation
theorem which partially characterizes admissible points. This
result says that "all admissible points can be expressed as
limit points of 'strictly' admissible alternatives or as a

translation of such limit points by certain rays in the




closure of the preference cone P". Section 4 considers local
characterization of admissible points in terms of linear
approximations. These results are related to the usual Kuhn-
Tucker characterizations of nonlinear programming. The final

section discusses possible extensions and applications.

Our analysis is based upon results of convex analysis
and mathematical programming. This approach is an outgrowth
of work conducted around 1950 in mathematical statistics
(Wald [7], Arrow, Barankin and Blackwell [81]), in linear
and nonlinear programming (Gale, Kuhn and Tucker [9], Kuhn
and Tucker [10]), and in economic planning (Koopmans [11]).
These fundamental contributions either proved or suggested
many of the properties that we consider here under various
restrictions on the problem structure, most notably that the
set of available alternatives is polyhedral and/or that
preference x -y, x is preferred to y, is defined by x >y,
X # y. Later in a series of papers [12], [13], and [14],
Geoffrion studied properties and computational aspects of
certain nonlinear vector maximization problems. More recently
Yu [15] considered preferences defined by cones as here,
including several results related to this paper. In the
economic literature, Smale [16], [li] and [18], Rand [19],

Simon and Titus [20] and Wan [2]1] have studied local properties
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of admissible points from the viewpoint of differential topol-
ogy. A number of other papers (Charnes and Cooper [22], Ecker
and Kouada [23], [24], Evans and Steuer [25], Gal [26],
Geoffrion, Dyer and Feinberg [27], Philip [28], Sachtman [29],
and Yu and Zeleny [30]) have treated algorithms for deter-
mining and investigating admissible points, primarily for

linear problems.

Applications of the concept of cone dominance are varied
and include efficiency in economic planning [4],[11], mathemat-
ical statistics [31], maximizing utility vectors in exchange
equilibrium [4], [32], risk-return trade-offs in portfolio
selection [33], ([34], risk sharing and group decisions [35],

and many others as suggested in [36] and the collection [37].

PRELIMINARIES

Throughout our discussion, we let P be a nonempty and
P s ; n
nontrivial, i.e., P # {0}, cone in R . We say that an
n-vector x 1is preferred to an n-vector y with respect to the

cone P, denoted x »y, when x # y and
x€Ey+P = {y+p:p€eP}.

We say that a point y 1is admissible for the cone P over a




given set X when y€ X and X contains no points preferred

to y; that is,
XNn(y+P) = {y}.

Let A(X) denote the set of all admissible points y in X.

Frequently, the cone P is the nonnegative orthant RP.
Then x >y when x >y and x % y, and admissibility is

commonly called Pareto-optimality. As a useful variant of

this example, the preference cone P is given by

Pk = {0} v ()\I,...,)\ ..,yn)e Rn: all Ai >0 and (}\l,...,)\k) # 0}.

k”Yk"" 3

In this case the preference relation compares only the first k

components of any vector.

The preference cone Pk arises from the vector maximization
problem of "optimizing" a vector f(z) = (fl(z),fz(z),...,fk(z))
of k real valued criteria over a subset Z of Rn-k. A point
Z€Z is called efficient in this problem if there is no point

z€2Z, satisfying £(z) > f(z) with the inequality strict in at

least one component.

If X = {x = (y,z) € R" : z€2 and y < £(z)}, then a point

%

€X is admissible with respect to the cone Ik if and only if

=(y,z), ¥y = £f(Z) and Z 1is efficient in the vector maximiza-

%|

tion problem. By this construction, we have expressed, and can




study, the preference order z > z defined by f(z) = f(Z),
f(z) # £(z), in terms of a cone preference P, in an enlarged

space.

These examples suggest that both closed and nonclosed
preference cones might be studied profitably since both arise

in practice.

Many properties of admissible points depend upon the
separation of the sets y+ P and X by a hyperplanme. For any
admissible point y, such a separation is possible whenever
P and X are convex since (y+ P) NX = {y}. That is, there

I +
is a nonzero n-vector p such that

p+-x<p+-y<p+-(y+p) for all x€X and p € P (2.1)

3 g i +
Because the right-most inequality can be restated as p +<p = 0

for all p € P, we may reexpress (2.1) by saying that there is
+ 7 ’ L +
a nonzero vector p contained in the positive polar cone P

of P defined by
+ +

P ' =(p'er®: p'-p >0 for all pe P}

with the property that y solves the optimization problem

max {p+- X : Xx€X}. (2.2)

The positive polar cone is closed and convex without any

assumption on P.




There is a partial converse to this necessary condition
for a point y to be admissible, which does not require any
- . + 5

convexlity assumptions. Let Ps denote the set of striet

supports of P defined by

P; = {p+ e R : p+-p > 0 for all nonzero p € P}.

SEN——

If this set is nonempty we say that P is sirictly supported
or that P is a strictly supported cone (any p+€ P: defines
a supporting hyperplane {x€ R" : p+-x = 0} that intersects
P only at the origin). In this terminology, the converse
states that if y solves (2.2) for any strict support

p+ GIP:, then y is admissible. This fact is a simple con-
sequence of observing that p+€ P; and x =y (i.e., x # y,
X -y € P) implies that p+-(x ~y) > 0 and, therefore, that

y does not solve (2.2). We distinguish these special admis-

sible points in the following definition

Definition 2.1 : An admissible point ye€ A(X) is strictly

admissible if it solves the maximization problem
+
max {p +.x: x€ X}

+ e 3 s 7 :
for some p € P;. Any other admissible point is said to be

nonstrict.

We let As(X) denote the set of strictly admissible points

in X.

e S ——



Most of our subsequent results require that preference
cones be strictly supported. When P is closed and convex,
this condition is equivalent to it being pointed, that is
containing no lines. In an appendix, we extend this charac-
terization in order to interpret the strictly supported con-
dition directly in terms of the underlying preference cone
whenever P is convex. The following characterization is a

consequence of this development.

Proposition 2.1. Let P be a convex cone in R". P is sup-

ported strictly if and only if the relative interior of )

y " y +
18 contatined in Ps.

As an example, if P ={p = (p],pz,p3)e R3 : (p],pz,p3) =(0,0,0)
or pl>0 and p2>0}, then P+=Pﬁ{pe'ﬂ{3:p3=0},
P; = P+'\{0}, and the relative interior of rt is the set

3

{peRr i P, >0, Py > 0 and py = 0}, a strict subset of P:.

Remark 2.1

Throughout the remainder of this paper we frequently

apply elementary results of convex analysis without reference.

We also translate many properties of polar cones usually
formulated in terms of the (negative) polar of any set S,
denoted by s* = {y eRr" :y*x <0 for all x€ S} into state-

$oalE +
ments concerning the positive polar S of S. Standard texts

g g i




in convex analysis (Rockafellar [38], Stoer and Witzgal [39])

discuss those results that we use.

In addition to the notation introduced earlier in this

section, we let RC(X) denote the recession cone of a convex

set, let c¢l1(S), ri(S), and -S = {x : - x€ S} denote the |
closure, relative interior, and negative of any set S, and
let S\T denote the set theoretic difference of two sets S -

and T. We adopt Rockafellar's [38] terminology by including

the origin in RC(X), but by defining direction of recessions
as only the nonzero elements of this cone. Finally, we use
the Euclidean norm to define the open and closed unit balls

3 n
in R .

3. GLOBAL CHARACTERIZATIONS

When the set of available alternatives X 1is convex and
closed and the preference cone P is convex and supported
strictly, the admissible set A(X) has important global prop-
erties : it is connected (see Theorem 3.4) if some strict
support to P makes an obtuse angle with every direction of
recession of X, and it can be characterized in terms of strictly
admissible points (see Theorem 3.1) if no direction of recession

of X belongs to the closure of P.




3.1

Before establishing these properties, we briefly con-

sider the existence of admissible points.

Existence

Yu [15] has observed that A(X) 1is nonempty if either X
is compact and the interior of P’ ois nonempty (Ei #* ¢ suf-
fices) or if the problem max{p+- X : x€ X} has a unique solu-
tion for some p+€EP+. Neither condition requires convexity
of P or X. He also notes that A(X) may be empty when these

conditions are not satisfied.

The following propositions characterize the existence
of admissible points for closed and convex, but not necessar-
ily bounded, sets of alternatives when preferences are defined

by strictly supported closed convex cones.

Proposition 3.1. Let P be a strictly supported closed convex

cone and let X be a nonempty closed convex set. Then A(X) # ¢
1f and only Zf the origin is the only element contained in

both P and the recession cone of X.

Proof : If y # 0 € P NRC(X) then x+y€ (x+ P) NX for any

x € X, and so no point x€ X 1is admissible.

If PNRC(X) = {0}, then (y+ P)NX is compact for

+ +
EP
s

any y€ X ([38], Thm. 8.4). Consequently, for any P

Ay "o




there is an optimal solution 2z to the optimization problem
max {p;-x :XxE€(y+P)NX}. The point z is strictly admis-
sible in (y+ P) NX with respect to PP. It also must be
admissible in X, for if p # 0 € P and z+ p€ X, then

z+pE€(y+P)NX is preferred to z. ]

To obtain a dual version of this proposition, we note

the following theorem of the alternative.

Proposition 3.2. (a) Let P be a strictly supported closed

convex cone and let X be a closed convex set. Then exactly

one of the following alternatives is valid

(I) P NRC(X) # {0}

(11) P; ARC(X)* # ¢.

Consequently, the set of admissible points in X s nonempty

if and only if P, NRC(X)" # ¢.

(b) Moreover, 71f P 1s any strictly supported
convex cone, not necessarily closed, then AS(X) + ¢ implies
alternative (I1), and alternative (11) implies that A°(X) # ¢

whenever X <8 a polyhedron.

Proof : Alternatives (I) and (II) cannot both be valid since

any p # 0€ PNRC(X) and p; € P:tWRC(X*) must satisfy




= Pl s 1 o AT St v B i T ——

p;-p > 0 and p:-p .05 So suppose that P;(ﬁRC(X)* — )
Since P; and RC(X)* are nonempty convex sets, they can be
separated; that is, there is a nonzero vector u€R” and a
real number B satisfying ucy < B < u-p; for all ye RC(X)'
and all p;e P;. Since the origin is a limit point of P;
and is contained in RC(X)*, B = 0. The left most inequality
implies that ué€ RC(X)*' = RC(X), since the recession cone
of a closed convex set is closed. The right most inequality
shows that ll'p; 2 0 for all p; € P; and thus ll-p+ =0

++
for all p e P*.? Consequently, ue B** = P and u€ P nRC(X)

so that one of alternatives (I) and (II) is always satisfied.

Since, by the previous proposition, A(X) is nonempty if
and only if alternative (I) is not satisfied, A(X) # ¢ if

and only if alternative (II) is valid.

To prove the final assertions of the proposition, con-

sider the optimization problem
+
max{ps-x:xEX} (3.1)

+
where psG P;. If z € AS(X), we can select p: so that =z
solves this problem. Therefore p;- y <0 for all y € RC(X)

implying that p.€RC(X)" and that P, NRC(X)" # ¢.

'Closure of P is not required for this conclusion.

2 s ROl eaety hi : .
Every point of P 1is a limit point of P; , slince, by Propo-

sition 2.1, ti (P+) = P;-g P,




If p, € P, N RC (X)* and X is polyhedral, then p‘;.y <0
for all y € RC(X) implying, by linear programming theory,
that there is a solution to problem (3.1). This solution is

strictly admissible. |

The following examples show that the hypothesis that P
is closed is required for these propositions and that con-

verses to part (b) of the last proposition are not possible.

Example 3.1. Let X = {(x],xz)E Rz P X, 21, x> 0, x, >0}
2 > 0}u {(0,0)}.

and let P ={(xl,x2)€]R P X < 0 and Xy

Figure 3.1 P NRC(X) = {0} and No Admissible Points

Then p; = (—l,O)GEP;f“RC(X)* and A(X) = ¢. The preference
cone P is not closed and neither of the conditions

P N RC(X) # {0} or P;nac(X)' = ¢ for A(X) to be empty is
valid. In addition, the converse to the first assertion in

part (b) of the last proposition is violated.

TR o




Example 3.2. Let P be the positive orthant in R3 except for

those points in the x - X, plane not on the x

I -axis, 1.€.,

2
P = {(0,),0) : A =0} U {(AI,AZ,A3) :AI >0, Az >0 and A3 > 0}.

3
Let X = {(x|,x2,x3)e R™ :x, = 0, x, > x, and x| < x, +1}.

Then RC(X) is the line A(1,1,0), A€ R; RC(X)" is the sub-

3 5 L 3
space {(xl,xz,x3) €E R :x +x, = 0}; B, = {()\I,Az,)\:;) ER

| 2 :AI 20,

3 5

Az > 0 and A3>-0} and A(X) = {(xl,xz,x3)€ R : x3-—0 and
x, = xz}.

X2

A

£ s
X
// ;xl
x3 /

Figure 3.2 Proposition 3.2 Requires P to Be Closed

In this instance, P is not closed and neither alternative (I)
or (II) of Proposition 3.2 is valid. The example also shows
that the statement "A(X) # ¢ implies alternative (II)"

might not be true, even when X is polyhedral, unless P is

closed.




3.2 Representation

Arrow, Barankin and Blackwell [8] have shown that every
admissible point is a limit point of strictly admissible
pcints whenever P = R: and X is convex and compact. The
following example shows that this property is not valid for

all preference cones.

Example 3.3

Let X, as illustrated in Figure 3.3, be a truncated cone in

R3 with vertex V = (0,1,1) and circular base {x € R3 :xf +x§ < 1

and Xy = 0}. Let P = P2 = {0}y {(AI, AZ’ A3): Al >0, Az = 0
and (AI,AZ) # 0} which "ignores" the direction * (0,0,1).
The set of strictly admissible points AS(X) consists of those
points on the interior of the arc KS, the closure of these

points is the entire arc, but the admissible points also

include the line segment KV

Figure 3.3 A(X) ¢ cl A%(X)




Observe that the admissible points in this example are
those points in X which are translations of the arc KS by
the direction (0,0,1), a direction which belongs to the
closure of the preference cone P2 but not P2 itself. Our
next result, which shows that this observation characterizes
admissible points under very general hypothesis, extends the
Arrow, Barankin and Blackwell representation by permitting

more general preference cones and by relaxing compactness of i

of X. We build upon their clever proof techniques using the

following result in place of the von Neumann minimax theorem.

Lemma 3.1. Let C and D be nonempty closed convex sets in
R" satisfying the conditions
(i) c¢*nrc(p) = {0}

{o}.

¢4y  RE(C) D"
Then the function u-e v has a saddlepoint on CxD <in the

sense that for some uw’ec and v°e D

uev < u ev <u .v for all uecC and v E€D.

Proof : The lemma is a specialization of a theorem due to

Rockafellar [38, Theorem 37.6]. By this theorem a saddlepoint

exists if the functions fu(v) = uev for u€ri(C) have no
common direction of recession over their domain D and the

functions gv(u) = -uev for ve ri(D) have no common direction

of recession over their domain C. A direction of recession y {




for fu(v) is a nonzero element of RC(D) satisfying u.y < 0,
Therefore, the functions fu(v) for u€ ri(C) have no common
direction of recession if no nonzero y€ RC(D) satisfies

uey <0 for all u€C; that is, RC(D) nc* = {0}. Similarly,
the functions gv(u) for ve€ ri(D) have no common direction
of recession if the inequalities -ye.v <0 for all ve€D are
impossible to satisfy simultaneously whenever yé€ RC(C) 1is

nonzero, which is condition (ii). ]

Theorem 3.1. Let X be a closed convex set, let P be a

strictly supported convex cone, and suppose that
cl PNRC(X) = {0}. Then any point x € A(X) can be written as

»* i
X=X =D

where x belongs to cl A°(X) and either p =0 or P belongs

to cl P\P.

Proof : We first establish preliminary results to be used in

the proof. Let B be the closed unit ball in R" and let?®

‘Several choices are possible. We may, in fact, choose polyhedral cones
for the S.. Let B° denote the open unit ball in R" and for each
j=1,2,..., let F. be a finite set of points in Q = [ri(l’+)u{0}]ﬂB°
with the property that (%—) -balls about these points cover Q. The convex
hull uj of {0}UF, UF,
Sj that it generates [38, Cor.19.71]. Any x€Q belongs to the interior

U...U Fj is polyhedral and, so then, is the cone

of a simplex in Q whose dimension equals that of Q. For some j, points
in F. are close enough to the vertices of this simplex so that x€ Hj.

Therefore U{Hj : j =1} =Q and the union of the Sj’s is ri(P+)U {0}.




Sj for j=1,2,..., be nonempty, closed, convex and increasing
+
cones (i.e., Sngj”) whose union is ri(P )U {0}. Then
++ g +_ + + ot iy
clP=P =ri(P ) = n SJ. . Note that for some positive

i>l

integer J, Sj+ N RC(X) = {0} whenever j > J. Otherwise,
(anj*)n (BNRC(X)) # {0} for all j which implies by the
finite intersection property [since X is closed, so is RC(X)]

that (B Ncl P)N(BNRC(X)) # {0}, contrary to hypothesis.

The sets Tj = SjﬂB for j=1,2,..., are nonempty, convex

and compact. In addition, 'I‘j+ =Sj+.

Now, let x° be any admissible point in X and let
Z ={z€ R” : z2=x-x° for some x € X}. Then Z is convex and
RC(Z) = RC(X). We apply Lemma 3.1 with C =2, D = Tj and
j 2 J where J 1is defined as above. Since Tj is compact,
conditions (i) and (ii) of the lemma reduce to RC(Z)N T; = {0}

which we established previously. Therefore, for each j > J

there are points tj GTj and zj €Z satisfying

z-tj <zj-tj <zj-t for all z€e Z, te'l‘j (3.2)
Since x°e€ X, z=0 belongs to Z and

zj-t>zj-tj>0 for all tETj.
The definitions of Sj and Tj imply that the inequalities

zd.s >0 for all se sJ £3.3)

are valid as well.




Because the union of the increasing sets Sj for =152 e
: c * % T 3
is ri (P ) U {0}, the inequalities (3.3) imply that for any

+ : + + j : s
p Eri(P ), p czd >0 for all j sufficiently large. Conse-

p * * o . g .
gquentky, 1f 2 =%x" - x is a limit point of the sequence
] + *
{ZJ}j>l’ then p .z =20 for all p+eri (P+) and =" belongs
. #F ++
to ri(P ) =P =vel P . VBE x’#xo, then (x*-xo)éP

because x® was chosen from A(X).

Ky : * ;

Therefore, any limit point 2z to the sequence {zJ}j>I
. o * * . . * * a
gives X =X -z with either z =0 or z €cl P\ P. This
representation satisfies the conclusion of the theorem if

x" €cl AS(X). But x = fulfills this condition, since, with

23 = xJ -xo, expression (3.2) gives

td . [xJ—xo] > ¢J -[x-xo] for all x € X.

Consequently, xJ solves

max {tJex : x €X)

and xJ GAS(X) because t? EP; . Thus x" is a limit point of

the strictly admissible points {x']}j>l "

To complete the proof, we must show that the sequence
{ZJ}j>l contains a limit point. Suppose, to the contrary, that
it does not. Then the Euclidean norms A of the z? must grow

without bound as j increases. As we have noted previously,




: ]
for each p+ €Eri (P+), p+. zJ > 0 and hence p+--f? =2 0 for all

j sufficiently large. But then for any limit point y to the
=1
sequence ‘rj.-l j?]’ P

vyeri (PY) = P'" = c1 P and yeRrRC(X) = RC(Z) ([38], Thm.8.2),

s y 20 for all p+€ ri(P+). Therefore

contrary to hypothesis, and our assumption that the sequence

{zJ} j> contains no limit point is untenable. u

When the preference cone P is closed, either

PNRC(X) # {0} and A(X) = ¢ or P NRC(X) = {0} which ful- %
fills the hypothesis of the theorem. In either case, the 3
3

characterization simplifies to

Corollary 3.1. Let X be a cloe2d convex set and let P be

a strictly supported closed convex cone. Then every admis-

sible point is a limit point of strictly admissible points.

A slight modification to Example 3.3 shows that the
representation of Theorem 3.1 might not be valid when

P ORC(X) # ¢.

Example 3.4. Let Y be the cone generated by X-V in

Example 3.3. Then if P = PZ’ the admissible set of V+ Y is
the half-line from V passing through K. The set of strictly

admissible points is empty, however.

We should emphasize that the previous results do not




3.3

characterize admissible points completely. Arrow, Barankin
and Blackwell show by an example that a limit point of strictly
admissible points need not be admissible. The following example
shows that points expressed as x = x*-'s as in Theorem 3.4

3 " * - T 2
need not be admissible, even when x € clAs(X) 1s admissible.

Example 3.5 As in Example 3.2, let P be defined by

P={(0,1,0) :A?O}U{()\I,A A ):Al>0, )\220 and )\3 >01}.

2’73
: . ey
Let X be the triangle in R~ given by

- s x, > {
X.-{(xl,xz,O) P X, 0, xl>=x2 and X, +x, < 1}

Every point in X on the line segment { satisfying X +tx,= 1
is strictly admissible and every point x in X can be written

as

for some x‘el and p € cl P\P; but not every point is admis-
sible. The admissible points are the points in X on the lines

xl = x2 and xI +x2 = I

Connectedness

When X 1is a polyhedron and P is a polyhedral cone,

parametric analysis in linear programming shows that A(X) is
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connected (see, for example, Koopmans [l11], or Yu and Zeleny
3 [30] for related results). To study the connectedness of A(X)
in a more general setting, we also use a parametrization of a

] mathematical programming cbjective function.

We first set some additional notation. Let p(0) and
p(1) be any points in R" and for each 0 <6 < 1, let
4 p(8) = 6p(1) + (1-8)p(0). Let X(6) denote the set of optimal

solutions to the optimization problem

‘ v(B) = sup {p(B)+x : x €X} (3.4)

for a given set X, not necessarily convex; x(0) denotes a

generic element of X(6).

Berge [40] discusses several properties of parametric

optimization problems which encompass results for this prob-
lem. See also Hildenbrand and Kirman [41], whose introductory
description of parametric analysis is formulated to include

the following result.

Lemma 3.2. Let X be an arbitrary subset of R" and assume
that the solution set X(0) to problem (3.4) is nonempty and
compact for all 0 <6 < 1. Then the point to set mapping

6 - X(0) 7s upper semi-continuous; that is, if 0< g <1 and

G 7s an open set 1in RrR" containing X(8), then there is a
real number & >0 such that X(8') C G whenever 0<6'< 1 and

le -0'| < 6.
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Using this lemma, we first consider the set of strictly

admissible points.

Theorem 3.2. Let P be a strictly supported convex cone, let

X be a given subset of R", and suppose that the solution set
to the optimization problem max {p;-x :x €X} is nonempty,
compact and connected for each p; (= ]P;. Then A°(X) 1is

connected.

Proof : Suppose to the contrary that AS(X) is not connected
that is, there are disjoint open sets G and H with
GNAS(X) # ¢, HNAS(X) # ¢ and A°(X) CGUH. Let

x(0) GGﬂAS(X) and x (1) EHOAS(X). The definition of strictly
admissible points implies that there are vectors p(0)E€ P;

and p(l)el’s+ so that for 6=0 and 1, x(8) solves
max {p(6)«x : x € X} (13515

where p(B) € Ps+ is defined as above, as

p(8) = 6p(1) + (1-68)p(0). Since the set of optimal solutions
X(6) to problem (3.5) is nonempty and connected, each X(8)
is either contained in G or contained in H. In particular,

X(0) C G and X(1)CH.

Let 6" = sup{B :0< B <1 and X(8) CG for all 0<9<86}.
By the previous lemma, 6'> 0. Now X(6') must be contained in
either G or H. But either assumption leads to a contradic-

tion. For if X(8')C G, then X(0)C G for every <o +6§




and some 6§ > 0 by Lemma 3.2, contrary to the definition of 6';
and if X(6') CH, then by Lemma 3.2 again, X(6) CH for every

6 =>6'-8§ and some & >0 contrary to the definition of 6'.
Therefore, our assumption that AS(X) is not connected

is untenable and the theorem has been proven. ]
The following version of this theorem is probably more

useful in applications.

Theorem 3.3. Let P be a strictly supported convex cone, let

X be a closed convex set, and suppose that - P; @ RC(X): * ¢.

Then AS(X) 78 connected.

. 5 + +
Note that the condition - Ps N RC (X)s states that for
+ + + . .
some P € Ps v By r Y < 0 for every element y in the recession
cone of X. That is, the solution set to the optimization prob-
+
lem sup {ps » x :x€X} must be bounded for some, but not
3 ; + : :
necessarily all, strict supports B to P. This weakening of

the hypothesis of Theorem 3.2 is offset by the stronger assump-

tion that X is convex.

With slight modifications, the proof of Theorem 3.2 proves
Theorem 3.3 as well. Without loss of generality, we may select
x(1) in the proof as the solution to max {p(l1)e.x :x€ X} where
- p(1)e RC(X); . Then we invoke the following result instead

of Lemma 3.2. (Observe that each solution set X(8), 0<06 <1,

bt o Ve ol




to problem (3.5) is convex and hence connected.)

Lemma 3.3. Let X be a convex set in Rn. Assume that the solu-

tion set X(0) to the problem
v(8) = sup {[6p(1) + (1-08)p(0)]+x : x€E€X}

is nonempty for 6 =0 and nonempty and compact for 6=1. Then
X(0) is nonempty and compact for all 0 <6 <1 and the point

to set mapping 6 > X(8) is upper semi-continuous.
This lemma is proved in Appendix B.

When X is compact, RC(X) = {0}, every point in R" is a
+ +
strict support to RC(X), and the hypothesis - B_N RC(X)s * ¢
of this theorem is valid whenever P is strictly supported.

Therefore, we have

Corollary 3.2. Let P be a strictly supported convex cone and

let X be convex and compact. Then As(x) ts connected. If, in

addition, P is closed or P\ {0} is open, then A(X) Zs connected.

Proof : As we have just noted, Theorem 3.3 shows that As(x) is
connected. Whenever P\{0} is open, P’ = P; and so A(X) = A%(X)
is connected. By Corollary 3.1, whenever P is closed A(X) is

connected since it is contained in the closure of the connected

set AS(X) and contains AS(X). N

The next two examples show that the "strictly supported"

e ol s oo a Baads
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condition imposed upon P in this corollary is indispensible,

as is the condition -P: F\RC(X); # ¢ of Theorem 3.3.

Example 3.6. Let X be the closed unit ball in R2 and let
2

P ={(0,\)E R : A €R}. Then P is closed and convex, but P; = ¢.

Since the only admissible points are (-1,0) and (1,0), A(X)

is not connected.

Example 3.7. Let S = {(x],xz,x3) € R3: x, =0, x, < 0 and

I
x3 : 3
e -1 < x, < 0} and let T be the halfline {(1,0,)) € R

: A <0}
Define X, which is closed ([38], Cor. 9.8.1), as the convex
hull of S and T and let P; be generated by nontrivial non-
negative combinations of p(0) = (-1,0,0) and p(1) = (1,-1,0).
Since the third component of every element of P; is zero, a
point in X is strictly admissible if and only if it belongs

to y+ T for some point y that is strictly admissible in the

set obtained by projecting X onto the X - x, axis.

The solutions to problem (3.5) are

S if =0
X(8) = ¢ if 0<6<I
T if 6=1
T "2
< 1
S X
—> X4

Alternatives X Projection on X=X, Plane

Figure 3.4
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In this case, RC(X)s = {(xl,xz,x3) ER” :x, < 0},

= P; r\RC(X): = ¢ and A°(X) = SUT is not connected.

To show that A(X) 1is connected without assuming that
the underlying preference cone P is closed or that P\ {0}
is open, requires additional arguﬁent. For any vector yE€ Rn,
let L(y) and £(y)l denote the subspace generated by vy,

and its orthogonal subspace.

Lemma 3.3. Let P and X be a cone and arbitrary set in .
Suppose that p+ belongs to P’ and that y solves
max {p+'x: Xx€ X}. Then the following conditions are equiv-
alent
(i) y € A(X)
o s s +. 1
(ii) y €A(X) where X = X Nn(y +L(p )7)
(iii) y is admissible in X N(y + £(p+)l) with respect to

POy,

Proof : Suppose that z = y+p€ X for some p€ P. By defini-
tion of vy, p+ ez = p+-y + p+ +p < p+-y. But since p+-p =0,
p °p = 0; that is, p€£(p+)l and z € (y +£(p+)l)ﬂx. Con-
sequently, y is not admissible with respect to P, that is,

p can be chosen to be nonzero, if and only if condition (ii) is

violated and if and only if condition (iii) is violated. =

Corollary 3.3. Let p+€ P \P; and let y solve the problem
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max {p+. X: XE X}. Then either y € A(X) or y+p € X for some

p contained in the boundary of P.

Proof : Apply the previous lemma, noting that any point

1
; pEPN £(p+) belongs to the boundary of P. |

+ + a + +
Corollary 3.4. Let p €P ,let X ={xEX : p sx>p =2

for all z€ X} and let p: € P: . Then any solution y to the

problem max {p; .x : x € X} belongs to A(X).

] Proof : Since y belongs to A°(X) € A(X) and, by Lemma 3.3,

A(X) A(X)NX, y belongs to A(X). |

These results and the representation theorem 3.1 provide

3 ingredients for proving that the set of admissible points is

# connected, without requiring P to be closed or P\ {0} to be ;

open.

Theorem 3.4. Let P be a strictly supported convexr cone and

F let X be a closed convex set satisfying -P; r\mxX); * ¢.

Then A(X) <18 connected.

Proof : We use induction on the dimension k of X. Whenever

-

k =1, A(X) is an interval and hence connected, so assume that
the theorem is valid for all closed convex sets with dimen-

sion less than k and that X has dimension k.

Note, first, that no generality is lost by assuming that




U —

X has full dimension. For suppose, by translation if necessary,

that the origin belongs to X. Then X is connected in 2™ if

and only if it is connected in L, the smallest linear subspace
containing X. The definition of admissibility implies that x

belongs to A(X) if and only if it is admissible in X with

+ +
respect to PNL. Moreover, expressing any Py € PS 3
+ e + S T
P, € R (X)s as p. = pp

+ + + L i
+py where PL € L and P, € L,

+
the orthogonal subspace of L, shows that Q = (P N L)s D He

+
nonempty as is -Q ﬁ[RC(X)s NL] (i.e., if p€P N L and

+ + + +
yE€RC(X), then p ep =p,. ¢ p >0 and p_ ey =p. .y <O0.
s L s L
+
Thus p, € Q and —p; = RC(X); N L). Consequently, the hypoth-

esis of the theorem is valid in L and we may assume that X
is an element of Rk.

Let y be any element of A(X). Then y solves
max {p+-x: xE€ X} for some p+€P+. Let X denote the set of
optimal solutions to this problem. If (1) A(X) "X is con-
nected, and (ii) ¢l AS(X)fWA(X)f\i #* ¢, then by Theorem 3.3
the set of strictly admissible points in X together with the
admissible points in X is connected. Since y €A(X) was chosen

arbitrarily, the set A(X) will be connected as well.

Consequently, we will establish the theorem by verifying

-~

conditions (i) and (ii). Since XCX, RC(X) C RC(X) and

+ o s
RC(X)s & RC(X)s . Therefore - P; N RC(?); # ¢ and, since X

has dimension less than k, the inductive hypothesis implies

g al ot bl sl Ll o
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that A(i) is connected. By Lemma 3.3, A(x)fWi A(i) and

condition (i) is satisfied.

To establish condition (ii), let x° solve max{ps ex : x€X}
+ +
for some Pg E]PS. By Corollary 3.4, x° €A(X). Since

- P; nRC(X); #+# ¢, cl PNRC(X) = {0} (any gq G-—P;

+
N

RC(X)
and p €cl P N RC(X) would satisfy q+« p <0 and q.p >0) and

the representation theorem 3.1 applies. Thus x® can be repre-

*  — * : —
sented as x° = x - p where x €cl AS(X) and either p=0 or
= + *
p€cl P\ . Therefore p -« x° = p+° K= p+- P S p+-x‘ and

+ + * + = -
By x° = B v THa 5D < p; -x*, and so x¥€ X and x' solves

max {p; e x: x€EX}. As a result, x*e A(X) necl AS(X) and condi-

tion (ii) is satisfied. »

LOCAL CHARACTERIZATIONS

Studying properties of an underlying set by applying
convex analysis to approximations of the set has been a recur-
ring and fruitful theme in optimization. In this section we
adopt this viewpoint, assuming that the set of alternatives X
is defined as the intersection of a convex set C with a set D,
not necessarily convex. By approximating D at a given point
x° to form an approximation to X, we investigate admissibil-
ity in X via the approximation. We show, with appropriate

hypotheses, that strict admissibility in X is equivalent to

s (e L ke e L =l el ol ona
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admissibility in the approximation. We also establish a
Kuhn-Tucker theory in the setting of cone dominance, which
when specialized,becomes the Kuhn-Tucker theory of nonlinear

programming.

General Setting

o . : 2
Let us call a set L(x ) a canonical approximation to D

(o] (o]

at x if L(xo)— X

{(x - x%) : xe L(x%)} is a closed cone.

I1f, in addition, D C L(xo), we say that L(xo) is a support to
D at x°. A support to D at x® is said to be finite if it 1is

a polyhedron. In this case, L(xo) is the intersection of a

finite number of half-spaces, each supporting D at x°

In many applications the set D is defined by a system
of nonlinear inequalities, D = {x :hi(x) 200, 1 =1, ,m}s
In this case, two canonical approximations to D predominate
in the optimization literature. When each function hi(x) is

differentiable at x° with gradient Vhi(xo), then
L(x®) = {xeR® :Vhi(xo) (x-x%) =0 for all i with hi(xo) =0} (4.1)

and when each function hi(x) is concave with supergradient
o /i - . 3 "
s; at x (1t.e., s satisfies the "supergradient" inequality

hi(x) < hi(xo) + si(x -xo) for all xe€ Rn), then

L(x®) = {xer": si(x-xo) > 0 for all i with hi(xo) =0}. (4.2)




When the functions hi(x) are both differentiable and concave,

the finite supports (4.1) and (4.2) coincide.

Our first result relates admissibility in L(xo) to strict
admissibility in D. We will apply some simple, but useful,

observations concerning admissible points in cones.

Lemma 4.1. Let P and Y be closed convex cones in R" and

suppose that P is supported strictlu. Then for any x® e r",

(i) either x°€ A(x°+7Y) or A(x°+Y) = ¢,
(ii) x° €a®(x°+Y) if and only if Pt nY" # ¢,

and (iii) xOEAs(x°+Y) whenever x°€A(x°+Y).

Proof : Conclusions (i) and (ii) are immediate consequences

of definitions. If x° ¢ A°(x°+Y), then B, N¥" =¢ by (ii)
and A(x°+Y) = ¢ by Proposition 3.2. This observation coupled
with part (i) establishes conclusion (iii). N

In the next two propositions we assume that c=R" in

the definition X = CND of X.

Proposition 4.1. Let P be a strictly supported closed con-

vex cone and let x°€X c R". Then x°e€A®(X) if and only if

x® is admissible in some support L(x%) to X at x°.

Proof : Whenever x° is strictly admissible, it solves the

+
problem max {ps x: xe X} for some p;eP; . The set




o n + +
L(x ) = {x € R ipgex < Pg e x%} supports X at x° and x° is

admissible in L(xo).

o

If x° is admissible in some support L(xo) to X at x ,

: o . . ; " .

then by the previous lemma, x is strictly admissible in L(xo).
2 o o S : . .

But since x € X € L(x ), the definition of strict admissi-

bility implies that x°e A®(X). »

Examples 3.3 and 3.4 show that the closedness of P is
necessary in the previous lemma and Proposition. Let
x =V = (0,1,1) and let X and Y be defined as in these
examples. Then x° is not strictly admissible in either x° +Y
or X even though it is admissible in both of these sets and

L(xo) =Y is a support to X at x°

Certain features of Proposition 4.1 are worth noting.
; ; O
First, the conclusion does not state that whenever x 1is
strictly admissible it is admissible in every support L(xo)

to X at this point. For example, let X be the unit cube in

Rz and P = Rf. Although L(x°)=={x==(xl,x2): X, <1} is a

support to X at the strictly admissible point x° = (6 B

x° is not admissible in this support. In fact, the support
L(x°) = {x e R" :p; ex < p;- x°} to X chosen in the proof of

the proposition depends upon knowledge of a strict support

+

+ : o I +
s S Ps for which x maximizes Py* ® Over X. More useful

P

would be a support that depends only upon local information




e

at xo, such as the supports specified in expressions (4.1)
and (4.2). Our next results delineate a wide class of prob-

lems where such supports are possible.

Proposition 4.2. Let P be a strictly supported closed con-

vex cone and let X be a polyhedron. Then every admissible
point x°e X is strictly admissible. Moreover, any admissible
point x°€ X 1is strictly admissible in the support L(x°)

defined by (4.1) with D= X.

Proof : Let hi(x) = aix - bi for i=1,2,...,m denote linear-

affine functions defining X and suppose that x%e A(X) and

that L(xo) is defined by (4.1). We first note that x? is

admissible in L(xo), for otherwise some z # x° belongs to

L(xo) a (x0 + P). But then ai ez = bi and y = % 0(z -xo), where
i o

6 = 0, satisfies al-y > bi for all indices 1 with a -*x ==bi.

Choosing 06 small enough, al-y > bi for every i with
i o o o
a » % > bi as well. Therefore, y€X, y #¥ x and ye€ex + P,

contradicting x% e A(X).

Since x° is admissible in L(xo) and L(xo)— £ 18 @&

closed convex cone, x%e A° (L(xo)), by Lemma 4.1, and conse-

quently x%e AS(X). [ ]

Previously, Evans and Steuer [25] have shown that

A(X) = As(x) when P, as well as X, is polyhedral.
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We next consider instances when X is nonpolyhedral. If
x° is strictly admissible in X = CN D, then it solves the
optimization problem

Max p; . (x =5°) (4.3)
XECND

+ + :

for some psE Ps’ Replacing D by L(xo), a support at xo,
and "dualizing" with respect to ue€ [L(xo) -x°]+ removes
L(x°) from the constraints and gives

Sup (p+ +u) e (x -xo). (4.4)
xec

Note that when L(xo) is defined by (4.1),

L(x®) -x° = {y€ R": Vh, (x°)y > 0 for all i with h (x°) = 0}
and, by Farkas' Lemma, [L(x°) -x%°1 = {ueR®: u= A-Th(x)
for some vector A = 0 with A+h(x°) = 0}. In this case, the
objective function in (4.4) is a linear approximation to the

Lagrangian function of (4.3).

Recalling the usual terminology of nonlinear programming
for this example, we call x°® a Kuhn-Tucker point in X = CND
with respect to the cone P and support L(xo) to D at x°

if x°eD and

s o
Max (ps +u)(x=-x) =0
XEC

+ +
for some "Kuhn-Tucker'" multipliers Py & Ps and u€ [L(xo)- x°]+.
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The following proposition characterizes such Kuhn-Tucker

points

Proposition 4.3. x® is a Kuhn-Tucker point in X with respect

to the cone P and support Lex?) to D at z° if and only if

the following two conditions are satisfied :

(1) x° is strictly admissible 1in CﬁL(xo); that 18,
o
X solves

v = max {p;-(x—xo) 5 xGCﬁL(xo)}

+ +
for some pSGPS , and

(ii) for this p;,
v = min {v(u) : ue(L(x°) -x°]+

where v(u) = sup {(p;'i'u) (x -x°) : xec}.

Proof : The validity of conditions (i) and (ii) implies that
+ o
0 = v = max {(ps+u)(x-x) i xec}

+
for some u € [L(xo) -x°] , SO xo is a Kuhn-Tucker point. Con-
versely, if x® is a Kuhn-Tucker point with associated Kuhn-
s ¢ +
Tucker multipliers P and u, then v(u) = 0. Since

u € [L(x°) -x°]+, ue (x-x°) >0 and consequently
p: e (x -x°%) < (p; +u) (x -x°%) < v(u)

whenever x €CNL(x°). These inequalities imply that
v < v(u) = 0. Since xOECnL(xo), v 2 0. Therefore,

v = v(u) = 0 satisfies conditions (i) and (ii). n




Whenever L(xo) is polyhedral, as in (4.1) or (4.2), and
ri(c) NL(x°) # ¢, the duality condition (ii) is fulfilled
([38], Cor. 28.2.2). In particular, if C = R" then condi-
tion (ii) becomes superfluous and we may sharpen proposition
4.1 by specifying necessary conditions for strict admissibil-

ity in terms of easily computed supports.

Corollary 4.1. Let P be a strictly supported convex cone,

let X =0 = {ner”: hi(x) =20, i=1,2,...sm}, and assume
that each constraint function h, i1s differentiable at a

strictly admissible point x° solving
+
max {ps «Xx : X €X} (4.5)

where p;€EP; . Then, if problem (4.5) satisfies any constraint
qualification“, x° is strictly admissible in the support L(x%)

defined by (4.1).

Corollary 4.2. Let P be a strictly supported convex cone and

let X = CND where C is a convexr set and D = {x€ R" s h.(x) 2 0,
1

i=1,2,...,m} 28 defined by concave functions. Then, if X

satisfies the Slater condition hi(x*) >0 for i=0,27.¢.,m

* ; : e o .
for some x €c, x° 1is strictly admissible in the support

defined by (4.2).

“Conditions, like linear independence of the vectors Vhi(xo)
for indices i with hj(x°) = 0, that ensure that x© satisfies
the Kuhn-Tucker conditions of nonlinear programming for
problem (4.5).




4.2 The Vector Maximization Problem

To illustrate the previous results in a somewhat more
concrete setting, let us consider the vector optimization
problem introduced in Section 2 with a criterion function
Rz = (f](z), fz(z),...,fk(zz) and a set of alternatives

n-~k

ZEC R Let X = {(y,z) €R"™ : z€2Z and y < f(z)} and sup-

—

pose that Z is defined by Z = CND where
D = {z € Rn—k : hi(z) >0, i=1,2,...,m}. For any ze€e D, let

h‘(z) denote the subvector of h(z) = (hl(z),hz(z),...,hn(z))

with components hi(z) = 0. As we noted in Section 2, z° is

efficient in the vector maximization problem if and only if

x° = (f(zo), zo) is admissible in X with respect to the

preference cone P = Pk' Note, in this cone, that

P; = {(r,y) € Rk><Rp—k : A >0 and vy = 0}.

TR

If each of the functions fi(z) and hj(z) is differ-
entiable, then the linear approximation to X at x° correspond-

ing to (4.1) becomes
Lx%) -x° = {(y,2)€R" : y<V£(z®) »2z and Vh(z°) .z >0}.

5 & 3 ¥ * ' 0
Since any admissible point (y*,z ) in L(xo)ﬁ C with respect

. »* * ¥ ;
to Pk must satisfy y = VE(2C) -2 8 x° = (yo,zo) is strictly

admissible in L(xo)ﬂ C whenever it solves

v =max{\ V£(z°) « (z-2°) : z€C and Vh*(zo)-(z-z°)>0} (4.6) i
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for some positive k-vector A.

As we have noted previously, Farkas' Lemma implies that

the polar to the polyhedral cone L(xo)- x° is given by

[L(xo)-xo ]+ = {(ul,uz) eR" : u| = -X and u2 =)\Vf(z)+u\7h‘(z)

for some X =0 and u = 0}.
Therefore, (yo,zo) is a Kuhn-Tucker point if it solves

max {[AVE(z®) +u¥h(z°) ]+ (z-2°) + (6- N+ (y-y°)}

yERk

zZEC
for some positive k-vector 0. The value of this optimization
problem is + % unless o0 =XA. Thus, (f(zo), zo) is a Kuhn-Tucker
point, or z® is a Kuhn-Tucker point in the vector maximization
problem, whenever

o o o
max {[AVE(z )+ th*(z Y1e(z=-2 )} =0 (4.7)

z€C

for some positive k-vector A.

o s
Note that for =z to be a Kuhn-Tucker point to the vector

maximization problem requires a choice of positive weights A

» . & (o] 0
for the vector criterion function £f(z) so that =z is a Kuhn-

Tucker point to the nonlinear program

max {Af(z) : z€C and h(z) = 0}. (4.8)

Proposition 4.3 shows that necessary and sufficient conditions




for z° to be a Kuhn-Tucker point are that (i) z° solves the

first order linear approximation (4.6) to (4.8) at zo, and

(ii) the inequality constraints of (4.6) can be incorporated
within the objective function by an appropriate choice of

weights U so that the optimal value to the problem remains

unaltered. That is, Kuhn-Tucker points are associated with
(i) a regularity condition guaranteeing that a linear approx-

imation inherits certain solutions from a nonlinear program,

as well as (ii) a duality condition guaranteeing dualization ;
of the linear approximation problem. 3
1
When k=1 the vector maximization problem becomes a non-

linear program and condition (4.8), with the positive scalar A
normalized to value 1, reduces to the usual Kuhn-Tucker con-
ditions. Consequently, the regularity and duality conditions

for characterizing Kuhn-Tucker points subsume all of the

numerous constraint qualification conditions of nonlinear

} programming (see, for example, Mangasarian [42]). Fiacco and
McCormick [43] seem to have first stated this fact when c=R"
and the duality condition is not required. In a section of an
unpublished report, Magnanti [44] introduced the duality con-
dition in the context of nonlinear programming. Halkin [45]
presents related results in the context of nonlinear program-
- ming. More recently, Robinson [46] has studied optimality

conditions for preference orderings in infinite dimensional

spaces.
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When specialized to the vector maximization problem,
Corollary 4.1 shows that if C = R" and the regularity con-
dition is fulfilled, then a necessary condition for z° to
be strictly admissible (i.e., z° solves problem (4.8) or,
equivalently (f(zo),zo) is strictly admissible in X) 1is
that x° = (f(zo),zo) is admissible in L(xo). The last con-
dition is equivalent to z° being efficient in
ZL = {z(ERn_k 3 Vh*(zo)- (z-2° >0} with respect to the
vector criterion Vf(zo)- z. Therefore efficiency in the

linear approximation to the vector optimization problem is

necessary for strict admissibility in the problem itself.

Remark 4.1. These results are related to the notion of
proper efficiency introduced by Geoffrion [12] (see also

Kuhn and Tucker [10]). By definition, z° is a proper effi-
cient point in the vector maximization problem if there is a
scalar M > 0 with the property that for every z € Z and each

index i satisfying fi(z) > fi(zo) the inequality

o
fi(z) = fi(z ) )

fj(zo) - £,(2)

is valid for some index j such that fj(z) < fj(zo). As
Geoffrion shows, whenever Z is a convex set and each func-
tion fj(z) for j=1,2,...,k is concave, proper efficiency

of 2° is equivalent to 2° solving problem (4.8) for some A > 0.




As we have noted, this last condition is equivalent to

(f(zo),zo) being strictly admissible in X. If C= Rn, we may,

then, restate our comment made just prior to this remark as :
p o . . i 0 " ol -
if -2 is strictly admissible in the vector maximization

problem and the regularity condition is fulfilled, then

2°€Z is a proper efficient point in 2t with
p (4.9)
respect to the vector criterion Vf(z ). z.

We might also note that if f(.) and h(.) are concave, then
condition (4.9) implies that 2° is a proper efficient point
in the vector maximization problem. To establish this fact,
we note that condition (4.9) implies that z° solves prob-
lem (4.6) for some positive k-vector A. Therefore z° satis-
fies the Kuhn-Tucker conditions (4.7) with cer” and,

because of our concavity hypothesis, z° solves the Lagrangean

maximization

max {Af(z) + uh'(z)}.

z E]R“.k

Since, by definition, uh*(zo) = 0, the optimal value to this
problem equals Af(zo), and since z° €Z, it must solve5 the
optimization problem max {Af(z) : h(z) = 0} and hence be a

proper efficient point in the vector maximization problem.

Here we use the standard weak duality argument of nonlinear
programming.




We should point-out, though, that a proper efficient
point z° need not satisfy condition (4.9). As an example,
let 2° = (0,0) in the vector maximization problem with cri-
terion fl(z) = Zys fz(z) =z, and constraints
2

-zf =20 and hz(z) = -2z,=-2., 20. In this in-

h,(z) == 2 1

2
stance, the regularity condition fails since the origin is

not admissible in ZL = {(z],zz)esl!2 P By, = 0}.

DISCUSSION

In the previous sections we have studied structural
properties of admissible points with respect to a convex
cone. Our results provide global characterizations of admis-
sible points in terms of strictly admissible points and
local characterizations in terms of linear approximacions.
We have also shown, with appropriate hypotheses imposed
upon the problem structure, that the sets of admissible
and strictly admissible points are both connected. In this
section, we briefly discuss a few potential extensions and

applications.

First, we might comment on the frequently evoked assump-
tion that the underlying preference cone is strictly supported.

According to Proposition A.l, this assumption rules out




"grass is greener" preferences in which each of two alterna-
tives is preferred to the other. More generally, it does not
permit situations in which x ~ y and yj>— x “for = A2, ...
for some points yj converging to y. As an example, lexicog-

raphic orderings define preference cones that are not strictly

supported.

Whenever underlying preferences are described by a closed

indifference cone PI (i.e., yEX + PI if and only if y * x),

I .

the set P = {x€ P 0 x} describes a strictly supported

preference cone. This cone is strictly supported for if p€E P
belongs the lineality space of cl1 P, i.e.,-p€cl Pecl ]PI =PI,
then O = p-pE p+ PI or 0 > p, a contradiction. We should

emphasize, however, that even though this construction pro-

vides strictly supported cones, our development does not

presume the existence of any "weak" preference relation ».

There are several ways in which our results might be

extended. Replacirg the preference cone P by a convex set C

or, more generally, by a family of convex sets Cx’ Cx denoting
the set of points preferred to x, would add possibilities for

broader applications. Another line of investigation would be

to retain our hypothesis and to see what additional assump-
tions might lead to stronger conclusions. For example, Arrow 1

and Hahn [4] show that if P = R; then the following restric-

T T T W

tions on the (convex) set of alternatives X
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(i) O belongs to the interior of X;
Ein)e SXE6 R; is compact; and
(iii) free disposal, i.e., x -~y €X for any yER;

whenever x €X

imply that A(X) is homeomorphic to an (n-1)-dimensional
simplex. This substantial strengthening of connectedness is
possible, with similar hypothesis, for other closed convex
cones as well. In general, it may be that the set A(X) 1is
homeomorphic to a union of simplices with some special struc-

ture.

In a paper not yet available to us, Naccache [47] has
initiated investigations of another nature. He studies
stability of the set of admissible points with respect to
perturbations in X and P. He has also studied connectedness
of A(X), but with assumptions that may be related to free

disposal.

There are a number of ways in which the structural prop-:
erties discussed in this paper and these extensions aid
decision making. Consider, for example, the vector optimiza-
tion problem. In practice, it is convenient to generate

strictly admissible points by solving

k
max { £ A.f.(z) : z€2} (5.1)
i=1 .




with positive weights Aj associated with the criterion func-
tions. By varying the weights, decision makers can generate
all strictly admissible points, or by choosing a sequence of
positive weights appropriately they might move toward some
admissible point that is "best" with respect to some auxiliary
criterion (see, for example, [27]). Considering, as before,

the vector maximization problem in terms of the set

I

X {(y,2) er"” : y < £f(z) and z €2} and the preference cone

P=P we see from the representation theorem that every

k’
; . ! or o (She o s .
admissible point (y =f(z ),z ) is a limit point of solu-

; * * * ! e
tions (y =f(z ),z ) to (5.1) or a translation of such limit
points by vectors (0,z) € cl Pk\ P . That is, "in the space
Rk' the image f(.) of efficient points is contained in the
closure of the image of the proper efficient points" (see
Geoffrion [|2])6. In this context, the representation theo-
rem 3.1 shows that the solutions to (5.1) delineate all
potential values of the criterion function when evaluated
at efficient points; connectedness of the admissible points

shows that to move from any (proper) efficient point to

another, we can restrict ourselves to local movements among

*Some assumption such as the hypothesis cl P NRC(X) of Theo-
rem 3.1 is required for this statement. For example, let V
and Y be defined as in example 3.4, let Z =V +Y and let
fl(z) =z, and fz(z) =z,. The efficient set is the halfline

from V passing through the point K (see Figure 3.1). Every
efficient points is non-proper, though, so that the statement
is not valid in this instance.
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(proper) efficient points only, such as local changes in the

coefficients Aj o (5.1).

We would expect similar benefits from the structural
properties of admissible points in general, especially when
solving for strictly admissible points is attractive computa-

tionally.

One applications of admissibility that might be explored
profitably concerns the optimization of monotonic functions
h(x), where, say, h(x) is strictly increasing in each compo-
nent x. of the vector x. In this instance, any optimal solu-

tion to the problem
max {h(x) : x € X}

is admissible for X with respect to PEERI’. This observation
suggests that optimization algorithms might restrict their
search to the admissible points A(X), especially once any

algorithm first identifies a point in this set.

Do mathematical programming algorithms have this prop-
erty ? The answer, at least in terms of the simplex method,

is no. In the example,

max 2xl + x,

subject to 4x, + 7x,>18

1 2
X, + 2x2 < 5
x]>0,x2> 0
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the admissible set is the line segment joining the points

a = (1,2) and the optimal solution ¢ = (5,0). Starting from
the extreme point a, the simplex method moves off the admis-
sible set to the point b = (4.5,0). In a number of experi-
ments conducted on larger problems [36], we have never ob-
served this same phenomenon. In these examples, once the
simplex method first encountered an admissible point, it
always generated an admissible point at each successive
iteration. Our understanding of the simplex method might be

enhanced if we would explain this behavior.

APPENDIX A

The following, rather intuitive, propositions character-
ize the strictly supported condition for a convex cone.
Recall that the lineality space L of any cone C is the set

of lines contained in C, i.e., L = CN(-C).

Propasition A.l. fet L be the lineality space for the

closure of the convex cone P. Then P is supported strictly

tf and only if PANAL = {0}.

L
Proof : Let L denote the orthogonally complementary subspace

to L. Then cl1 P =1L ® (el Perl) is a direct sum representa-




Linky and Sea B el Blcimag T,

+
Now p;G Ll whenever p;GP:E (c1 l’)+ and Py 0

for all p€ PNL. Consequently, PNL = {0}.

: 1
To establish the converse, note that since cl P NL

e 1 + :
is convex, closed and pointed, its positive polar (cl PNL) |
has full dimension ([38], Cor.14.6.1). Any point y belonging
to the interior of (cl P r\LJ')"' must satisfy yep > 0 for all

1 ; 1 <
nonzero p€ (cl PNL ). Expressing y as y =y, +y Wwith

1 1
yLEL and yleLl, we note that (yL+y Yep =y *p >0 for

1
all nonzero p€(clPNL ). If peP and PNL = {0}, then

1 15
p = pL+pl for some pLG L and some nonzero p € (cl PNL ),

and yl-p = yl.pl > 0. Therefore PNL = {0} implies that

yl-p > 0 for all p€ P; that is, P is supported strictly.

The proof of this proposition shows that whenever
PNL = {0}, any point contained in both Ll and the interior
of (clP ﬂLl)+ is a strict support to P. We next establish

the converse to this stacement.

v

Proposition A.2. Let L be the lineality space for the

closure of the convex cone P. Then ri(P) §_l’s+ if and only
if LNP = {0}. Moreover, if cl Pl'\l..l = PﬂLl, then

+ " + ;
P C ri (P ) and, consequently, ri (P+) =P; if and only <if

LNP = {0}.




Proof : Let ¢l P = L ® (cl PﬁLl) be a direct sum represen-

eation. Then B = et B)" =0t Gtel B ) land, since 11

is a subspace and (cl PﬂLl)+ has a nonempty interior I which

. 1 L 1
intersects L, ri (P+) =L NI.

By the remark preceding the proposition, PNL = {0}
: : L + . By +
implies that ri(P ) C Ps . Conversely, if ri(P ) C Ps, then

P; # @ and LN P = {0} by the previous proposition.

Finally, suppose that cl PﬁLl =PﬂLl and let y belong

2 +
to the relative boundary of P . Then there are vectors

e

yJ eLl converging to y satisfying y-e«p” < 0 for some

pJGP which we scale to unit norm. Any limit point p of the
sequence {pJ}j>| belongs to cl pnit = Bn iy C P and
satisfies yep < 0. Consequently, y ¢ P; and P; c ri(P+).

When combined, these propositions establish Proposi-

tion 2.1 of the text. Note that the illustration following

+
Proposition 2.1 shows that ri(P+) #*+ Ps is possible.

e o ——————A2% et
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APPENDIX B

We prove the continuity lemma required for Theorem 3.3,

namely

Lemma 3.3. Let X be a convex set in R". Assume that the solu-

tion set to the problem
v(B) = sup {[Bp(1) + (1 -06)p(0) Jex : x€EX}

18 nonempty for © =0 and nonempty and compact for 6 =1. Then
X(0) Zs nonempty and compact for all 0 <86 <1 and the point

to set mapping © > X(0) <s upper semi-continuous.

Proof : Let y be any recession direction of X. Since X(0) 1is

nonempty and X(1) is nonempty and compact, p(0) -y < 0O and

p(1)sy < 0. Therefore
[6p(1) + (1 -8)p(0)] -y <O

for all 0<6 <1 implying that X(6) is nonempty and compact.

According to Lemma 3.2, the mapping 6 > X(86) 1is upper
semi-continuous on the interval [e,]1] for any 0<e< 1.
Consequently, to complete the proof we must show that this

mapping is upper semi-continuous at 9='0”
\

This indeed is the case if, for some 6§ >0, the set

Sg = U{X(8): 0<86 <68} is bounded. For if the mapping 6 =+ X(6)

is not upper semi-continuous at 6 =0, then there is an open




set G containing X(0) and points xJ € X(GJ)\ G for some real

numbers 67 >0 approaching 0. Since

P(e‘])~xJ >p(6J)'x for all x€X
any limit point X" (such a limit point exists since the x7

eventually lie in the bounded set S.) to the sequence {x7}.
§ izl

satisfies x‘¢G and
p(0) 'x* = p(0)-x for all x € X.

But then x‘e X(0)\ G, contradicting X(0) C G.

Therefore to establish the theorem we only need to show
that S(S is bounded for some & >0. For notational simplicity
suppose, by translation if necessary, that 0 € X(0). Then by

definition

p(0) » x(8) < p(0).x(0) =0 (1)
for any x(6) € X(8), 0 <8 <1. Since 0 € X,

[6p(1) + (1 -8)p(0)] «-x(6) > 0
implying, from (1), that

p(1)+x(8) > 0. (2)

Now if SG is unbounded for every 0 <8 <1, then there
are 63 > 0 and points x(eJ)GX(GJ) whose Euclidean unorms Aj
approach + ., Since 0 €X, any limit point y to the sequence

{x(SJ) / Aj}j>l is a direction of recession of X. But the

inequality (2) implies that p(l).y = 0, contradicting the

i ban il




hypothesis that X(1) is bounded. Consequently, SG must be

bounded for some &> 0 and the point is complete. ]
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str1ct1y admiss1ble alternatives or translations of such limit points by rays i

the closure of the preference cone, and —{4+)}>>show that the set of strictly admigsible

e
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20. ABSTRACT CONTINUED
gdvjiq
,———7>p01nts is connected, as is the full set of admissible points. Relaxing the
convexity assumption d upon X, we—also conside® local properties of
edmissible poi %"%ems of K\g&—hckga Aty'pe characterizations. We-speeify
ecessary and sufflcient conditions, Tor"an element of X to be a Kuhn-Tucker poigﬁ,
conditions which, in addition , provide local characterizations of strictly admipsible
points.
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