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ABSTRACT

The deterministic Duane Model as well as several stochastic

models for reliability growth are studied. Graphical dnd

quantitative techniques for assessing the performance of these

models are introduced and are illustrated on a set of data. A

small-scale simulation is carried out in which the effect of two

factors (the number of failure modes and the range of failure

intensities) are investigated. Some practical conclusions are

drawn and the possibility of employing doubly stochastic Poisson

Processes is discussed.
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1. IRTRCDUCTION AND SUMMARY

In this paper we carry out a comparative study of various

aodels for reliability growth data. We assu-' the reader is

genarally familiar with the problem. For a review of current

work in the area see the ANSAA Reliability Growth Symposiur [1974].

Of these models, one is deterministic and the rest stochast•c.

The former Is due to J.T. Duane [19641 and is widely used

In practice. It seemed of some interest to probe the relativa

strengths and weaknesses of the two approaches and, indeed,

interesting differences were found.

Section 2 describes the models and discusses their metivwtion.

In Section 3 these models are applied to a set oaf reliability

growth data and various goodness-of-fit procedures, both graphical

and quantitative, are introduced and applied. Section 4 provIdes

the details of a Monte Carlo study that was carried out to shed

more light on how well the different models performed under

various conditions. Section 5 analyzes the results of the Monte

Carlo, while some tentative conclusions and prospects for further

study are given in Section 6.

2. THE MODELS

tie first require some notation. If a device has been on

test for time t and has experienced N(t) failures up to that

time, then Y(t)-t/N(t) is called the cumulative mean time between

failure (CMTBF) at time t . If the failures occurred at times
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Ont0 < t 1 < t 2 <...< tn n T, then we define X t i-t 1

(-1,2 .... n) as the n interfailuro times. At time point

t_ EX, can be interpreted as the instantaneous mean time
i-

between failures (IMTBF). Contract specifications are often

phrase in terms of the CATBF reaching some assigned level.

Nonetheless, the IMTBF is rather important because It gives the

reliability engineer a good idea of current progress and how

long until the CMTBF gonl is reached. This brings us to the

.cruical point: The success of the models must be Judged on how

well they allow prediction of future failures.

The deterministic model was first introduced by J.T. Duane

[19643. He found emplrically that plots of C14TBF versus cperat-

ing time were approximately linear on a log-log scale. That is,

In Y(t) a+b In t.(1

Reliability growth occurs when Y(t) increases with t, so that the

slope b is positive. To calculate the INTBF, one computes the

current *intensity" and takes reciprocals:

X(-)= '-' d (e-a t1-b" (1-b) e-a t-b. (2)
dtti-b)
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or

IMTBF eatb .e.. (3)
1-b

Of course these expressions ought not be given a stochastic

interpretation. Duane suggested using least squares to estimate

a and b in (1). Despite the obvious theoretical objections

(after all, the successive observations on Y(t) are very much

dependent!) the procedure has worked well enough in practice to

achieve wide success.

A stochastic model for reliability growth was proposed by

L.H. Crow E1975]. Using (2) as a guide, he suggested modelltng

the process as a nonhomogeneous Poisson process (NHPP) with an

intensity function of the form
X(t) - ot 0'1,9 (4)

where reliability growth is said to occur if B<2. Maximum like-

lihood estimates of y and 8 were derived as well as formulas for

CMTBF and IJTBF:

EY(t) - y-1 t-0 ()

and 1-0

EX1 - (y)" 1t- (2,3, '..,n) (6)

EX1 Y y 1-0 r(1/o+1).
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Note that since the intensity function varies with time, the

successive interfailure times are not independent.

A second stochastic model, proposed by Braun [1976] took

a different tack. One can think of reexpressing the RHS of (2)

in terms of N(t) rather than t, obtaining something of the form
1-1/B

AM ya Y6 (t)] * (7)

and reliability growth occurs if 0<1. Thus we think of the

failures generated by a Poisson Process whose intensity function

changes only with the number of failures, rather than with time.
As a result the interfatlure times are independent and

exponentially distributed with parameters
1-1/B

*t -x(tt) mys t (izZ,...,n) . (8)

Of course then

EX1 " 1 (9)

and
I

EY(t 1 ) * 1 E 1 (10)

A variant of this model is obtained by changing (8) so that A, has

a different functional dependence on i:
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reliability growth occuring if b<O.

This has an advantage of allowing the intensities to tend to a

non-zero constant, a proposal which seems quite reasonable. The

parameters of these models can be easily estimated by maximum

likelihood.

The estimation theory for the model(4) is given in'Crow (19753,

while that for models (7) and (11) can be found in Appendix A below.

The four models described above will be denoted by D,C,BIB2

respectively. The latter three despite their somewhat ad hoc

parametrizations seem reasonable competitors of model D, though

they in no way attempt to model the physical processes generating

the failures. We shall see in later sections how successfully they

accomplish their task. Another approach to the problem would be to

use techniques analogous to isotonic regression. This would

involve modelling the intensity function as a step function con-

stant between failures and required to be non-increasing. This is

discussed in a report by Donelson [1975J. It may well be that

this non-parametric approach could then be followed up by a para-

metric one, but this was not tried here. It should be noted that

the question of whether to use N(t) or t as the independent

variable in stochastic modelling of this kind is not new. See

for example the comments of T. Lewis in the discussion of a paper

by D.R. Cox [19553.
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3. ANALYZING THE DATA

The data set to be analyzed here consists of the recorded

failure times, during development testing, of a complex electronic

system. The data, which is presented in Appendix B, is composed

of 52 failures which are indentified either as having been

generated by one of 12 system modes (or components) or as a so-

called non-pattern failure. This set is denoted by GEl. A

subset of GEl, called GE2, can be derived by only recording the

first failure attributable to a particular failure mode plus all

the non-pattern failures. GE2 has 27 failures. Table I has the

parameter estimates for all the models for both data sets. One

can see that there is agreement among the models that GE2 dis-

plays the greater reliability growth.

We now proceed to consider some descriptive goodness-of-fit

techniques that can be used to compare the suitability of the

models, with the exception of Model D. They are all based on a

probability integral transform of the interfailure times. If

X has cdf F1, then Fi(Xt) is distributed.as a.uniform (0,1)

deviate. In our case, F1 involves certain parameters which must

be estimated from the data. As a result, the collection

(FXI): , ni will be only approximately uniform and

independent. Nonetheless we can try plotting Fi(XI) against I
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to see whether there is any pattern or whether the F1 (X,) are

fairly well scattered about the line at .5. (This was suggested

by J.W. Tukey). It is also worthwhile having a Q-Q plot of the

ordered FY(X1 ) against i/n+1, though this should tend to look

"super-regular". A quantitative feeling for the informatlon

contained in such a graph can be obtained by the following

strategy.

If we let Z1 I Fi(Xt) (I=1,2,...,n) and compare the

empirical distibution of the {Zj} with that of the uniform dis-

tributlon, then it Is well know (cf Durbin [19733 for example)

that the usual goodness-of-fit statistics such as the Kolmogorov-

Smirnov do not have the same distribution, even asymptotically,

that they do when the true F1 is used In place of Fi. Now it

seems plausible that if we were to randomly partition the data in-

to groups each containing say 10% of the points, and carry out a

goodness-of-fit test separately for each group, then the effect

of having estimated parameters from the whole data set should be

small, when considered from the point of view of a single group.

In fact, we can use the methods of simulataneous inference

to obtain an approximate overall level of significance for this

procedure. A theoretical justification of this approach is

currently under preparation by the first author.
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Crow [1975) has adapted the work of Darling [1955] and shown

how to make use of the Cramier-von Mises statistic for testing the

adequacy of Model C.with parameters estimated. He has shown that

if the model is correct, then the distribution of the statistic is

independent of the actual values assumed by the parameters and has

by Monte Carlo computed the critical values of the statistic. Note

that this approach works only for Model C. whereas the method

suggested previously is quite general in its applicability.

Figure 1 contains a plot of F(XY) versus I for Model 81 with

GEl data and Figure 2 contains a plot of F(X,) versus I for -

Model C with GE2 data. These plots as well as others not shown

here are reasonably patternless, having a hint of a positive slope

which would suggest that the (stochastic) models tend to over-

estimate the earlier failure times and underestimate the later

ones. The Q-Q plots are all well behaved. The modified Kolmogorov-

Smirnov statistic was computed for each case and was never found

significant (o=.05). In addition, the modified Cramier-von Mises

statistics was calculated for Model C and was not significant

(cz.10). Finally, Figure 3 plots In Y(t) vs In t for the GEl data.

Note that It is a bit u-shaped, indicating that CMTBF does not in-

crease until the process is well under way.

What have we learned? Only that both data sets exhibit re-

liability growth, GE2 more so than GE1,.and that the models seem
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to do an equally good job of fitting the data. In fact, our

graphical and quantitative techniques so far give us little reason

to choose between the models. It would be worthwhile to see

whether the forms of the different models have consequences which

can be used in an exploratory (graphical) way.

Suppose we let E denote the expected value of Xi, the ith

interfailure time. Then under Model BI,

(ET+ 1 -1/

or

log E1+ -(1-1/0) (12)

Under Model C, on the other hand,

So approximately,

EI + i-i (13)

Of course, (13) can be obtained approximately from (12) by expan-

sion of the logarithm. Nonetheless it may be that one approach
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is better in dealing with real data. Consider now replacing

expected values in (12) and (13) by the actual observations. If

Model BI holds, then plotting log (X1+I/X 1 ) against 11/ should

yield a linear regression through the origin with slope -(1-l/e).

In fact the estimated slope could be used to obtain an estimate of

0. If Model C holds, then plotting X1 +l/X 1 against 1/i should

yield a linear regression. This plan was carried out with in-

teresting, but by no means conclusive results.

Using the GEl data as a base, the interfailure times {X1} were

smoothed and from the smoothed sequence {,}the sequences

U = and {V1  log (i+I/i1) were constructed. These

were in turn smoothed (to reduce negative correlations between

successive elements) yielding {u4 and t "

Regression of i on 1/i indicated a negative slope while

regression of {Vilon 1/i gave a slope estimate which when solved

for B gave a value of 0.72, quite close to the maximum likelihood

estimate. However in neither case was the regression significant,

so the evidence in favor of Model B2 is by no means overwhelming.

Nonetheless, it suggests that this technique, properly enhanced

by smoothing, may be of some value.
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We now introduce three quantities which attempt to measure

how well the models do at predicting both the IMTBF and the

CMTBF. These measures will also allow us to compare the determi-

nistic model with the stochastic ones on a somewhat equal footing.

Now stoictly speaking, we should reestimate the parameters of the

model after each failure and use these new estimates to form our

prediction of the next failure time. This would be rather time

consuming, so instead parameters estimated from the entire data

set were used to make the predictions. However for the GEl data

the scheme of successive reestimation was carried out and the

parameter estimates remained fairly stable, though less so for

Model B2.

The statistics described below are closely related to the

criteria used in the study described in Schafer, etal [1975.]..

The first is

n 2
E (X1-EX1 ) / (n-2)
i1-i

E 2X
Junl

where

n
E Xilni-I
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and

E Xi fxdF Wx).

The motivation for this is obvious, and we expect RI to be small

(certainly less than one) if the model is of any use. A variant

of R1, denoted by R2, is meant to reduce somewhat the effect of

the great irregularity in successive interfailure times on R1.

We begin at some appropriate time once the process is underway

(say after 10 failures) and collect the failure times In successive

groups of those after that point. Let

m = number of groups of three

I"h

X * mean of the observed Xi for the Jth groupSa

EX= EX for the middle time in the jth group

J=1
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and define

m "

X (X- - EXj) 2 /(M-2)R2 . ,J=1 .. .. . .. .

m"'2
E (xX) /(M-1)
51=1 J

The third criterion, used in Schafer, etal [1975J deals with

prediction of CI4TBF. Let Y(t 1 ) denote the estimate of Y(ti), the

CMTBF at time ti. Then

n
E3* - (Y(t1)-y(t1 )) /(n-2) 3R3 - !1-1 .. .... ..

n
where V(ti) - E Y(tt)/n.t11

Table I1 contains the results of computing these statistics

for each of the models and data sets. It seems clear that the

stochastic models do better with the !MTBF while the deterministic

one does better with the CMTBF, but there is little to choose

between the stochastic models. A few general points may be worth

mentioning. Since CMTBF is more stable, all the models do well

with respect to the R3 criterion, and better with the GE2 than

GEl data. This suggests that looking at only first instances of
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failure modes can be one way of obtaining better predictions.

Of course there is a practical difficulty that failures can not

always be correctly classified or one not even recognized as

pattern failures until much later. Secondly, a comparison of the

R2 values with RI values shows that once we have smoothed some of

the roughness away, none of the models does better than the sample

mean. This is most pronounced with the GE2 data and the In-

escapable conculsion is that much more insight is required before

we can do better. To this end, a simulation was performed which

aimed to discover what aspects of the process had the. greatest

effect on the performance of the models. This is described in

the following section.

4. THE SrMULATION

The simulation was designed to produce data that could be

reasonably considered to approximate reliability growth data.

An observed process of this kind results from the superposition

of the failure patterns of different modes (usually due to design

faults) together with a process of non pattern failures (wear outs,

breakages, etc.) that inevitably occurs during the operating life

of any system. Since the GEl data was used as a guideline, let

us review its structure. There are thirteen failure modes which

when treated separately as homogeneous poisson processes yield
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estimated Intensities of between .5 and 2.5 failures per 1000 hrs.

(f/th). The non pattern failures have an estimated intensity of

4.4 f/th. The number of observed failures per mode varies between

two and seven, with most being either two or three.

Our simulated process will then be constructed as the super-

position of a number of independent Poisson processes, each to be

truncated after a random number of failures. Even so simple a

process defies analytic investigation. It resembles the so-called

"branching Poisson process" introduced by Lewis [19643 as a model

for computer system failures. His process was stationary but even

so, the main results were all asymptotic. For our case we are

precisely interested in the transient phase and are not concerned

with the structure of the non-pattern failures so asymptotics

would by meaningless here. Nonetheless, the work on superposition

of Independent sparse processes (see the review by Cinlar [1972J)

makes it plausible to assume that the superposition will resemble

a non-homogeneous Poisson process.

The advantage of this approach Is that the generating scheme

is based on an analysis of the physical situation and not on a

preconceived model. Hence if one of the models does very well,

we can have a measure of confidence in its success. Of course

with a Monte Carlo we can investigate certain problems which

would be difficult if not impossible to do with only real data.
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The assumption of independence in the model can not be

strictly justified in practice but is probably not a bad approxi-

mation to reality. We are primarily interested in the effect of

two factors: the number of failure modes and the range of failure

intensities. In our simple two-way design each factor has three

levels. For the number of failure modes: low (5), medium (10),

high (15). The intensity ranges are low, medium, and high, chosen

in the following way:

Let m denote the number of failure modes (5,10, or 15).

Let Zi<Z2 <...<Zm denote the expected values of the order statistics

from a uniform (0,1) random sample of size m. The intensities

are chosen so that:

(a) low: X a 2Zt+.5 (1=1,2,...,m)

(b) medium X a 2v/7+.5 (i=1,2,...,m)

(c) high X Z 2 rz'7+.5 (0=1,2,...,m).

(There is clearly overlap among the ranges). We then generate

m independent observations nl,...,nm from a Poisson distribution

with parameter three using the generator described by Ahrens

and Dieter [19743. The ni are randcm1y assigned to the A1.



17.

Thus we generate m Independent Poisson processes, where

.the 1t process has intensity .X and is truncated after the

appearance of the n1 th failure. These are then superposed and

to them is added another Independent Poisson process with an

intensity of 3 f/th, representing the non pattern failures. The

result is a simulated reliability growth process which is trun-

cated for fitting and analysis at the first failure after 4500

hours. For each combination of the two factors we have 20 re-

plications, so that there are 3x3x20=18O failure processes genera-

ted and analyzed.

It should be emphasized that the twenty replications in a

particular cell have the same number of failure modes m , the
ith mode having the same intensity Xi. However the number of

failures nt observed in the ith mode is generated anew for each

replication. Of course the waiting times themselves are generated

by Independent exponential variates. The simulation was pro-

grammed In FORTRAN on a PDP 11/40 under the UNIX operating system.

A (hopefully!) trustworthy congruential generator was used to

produce the uniform deviates employed.
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5. ANALYSIS OF RESULTS

Three models were fitted to each replication: 0,C, and B2

and the three criteria R1, R2, R3 were calculated for each. (For

reasons of economy, Model B1 was Jettisoned at this stage.) A

discussion and interpretation of the resulting analyses of

variance forms the body of this section. Before doing this, it

seems useful to mention some of the general impressions gained by

use of the graphical techniques introduced in Section 3, though it

would be obviously unwieldy to go into too great detail.

First, all the models did better the larger the number of

failure modes and the higher the range of intensities - clearly

the effect of having more data to work with. The stochastic models

had a tendency to underestimate the amount of reliability growth,

i.e. overestimating the earlier failure times and underestimating

the later ones.

Second, the plots of In Y(t) against ln t often had a U-shaped

appearance, initially decreasing but then increasing once the

process was well under way. This suggests an interesting modi-

fication of Duane's original proposal; namely, estimating the

parameters using weighted least squares, with the weights assign-

ed to ln Y(t) proportional (say) to VN(t). This would certainly

give proper due to the increasing number of observations contri-

buting to successive values of Y(t). This proposal was not,
however, tried in the present study.
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These graphical techniques and even the goodness-of-fit

statistics discussed in Section 3 were not sufficiently delicate

to discriminate between the models and so we turn to the more

quantitative methods. For each criterion (R1,R2,R3) a three

factor ANOVA was carried out, employing the criterion as the

dependent variable with the factors being models, number of modes,

range of intensities.

In addition to the usual ANOVA by least squares fitting,

a three-way median polish was carried out (cf..Tukey [1976])..

The results were qualitatively the same, though the magnitudes of

the fitted effects differed somewhat; there was little indication..

that a transformation of the data was called for. We therefore

content ourselves with presenting only the normal-theory analysis,

and Table III contains a compact summary of the results. After

considering these, we will discuss some of the more interesting

two way tables. The rather large number of degrees of freedom

(df) for Residual makes the analyses fairly clearcut.

For R1, the main effcctn are all highly significant, and the

modes-frequency interaction is very significant. Model D does

quite a bit worse than C or B2. The differences among the levels

within the other two factors are in the expected direction but one

not as large in magnitude as for the first. For R2, only models

and modes are significant. Note that the residual mean square is
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larger than that for R1 by a factor of 300. Again Model D does

substantially worse. For R3, only models is significant,.but here

Model D does substantially better than the others and Model C

substantially worse.

As we are led to expect from Section 3, Model D does best

with CMTBF, while Models C and B2 do best with IMTBF. It is

interesting that as the "smoothness" of the criterion considered

increases (R1IR2+R3), the importance of the factors, modes and

frequencies, diminishes. Let us investigate this further, by

considering some two-way analyses.

Tables IV, V, and VI contain the ANOVAs and fitted effects

for R1, R2 and R3 respectively. There we note that Model D is

sensitive to the number of modes for RI and R2 but not R3. Model

C is sensitive to the number of modes for all criteria, but to the

frequency range only for R1. Model B is sensitive to the number

of modes for Ri and R2 and to the frequency range for R1.

However when we consider the data by criterion, we see that

Model C tends to be quite a bit more sensitive than the other

models to the number of modes, while Models B and D are roughly

equivalent in this regard. It is to facilitate this comparison

that the tables are arranged as they are. Finally nowhere are the

two factor interactions of any importance except possibly with

Model C for RI.



21.

6. CONCLUSIONS

There are several conclusions that can be drawn from the

study. First the graphical techniques are quite useful in giving

a general impression of the fit, but are not delicate enough to

distinguish between models. Second, smoothing the data may

certainly enhance the stability of the estimation procedures and

give some hope of developing ad hoc approaches to model develop-

woent. The Duane model is quite workable as far as CMTBF is

concerned but its performance would probably be improved by use of

weighted least squares. It is not recommended when IMTBF Is of

interest; there the stochastic models are superior. In addition,

data of the GE2 type seem to allow regression parameters of the

model to be estimated more accurately than data of the GE1 type.

Turning to the simulation, it seems clear that although the

various techniques work better with increasing amounts of data, a

really successful method would be fairly insensitive to the factors

considered such as number of modes and range of intensities. (This

is particularly true in the case of R3 which deals with a stable

criterion, namely CMTBF.) In fact it is a bit surprising that

these factors do not have a greater influence. Of course a larger

range of levels ought to be used in any further simulation. Over-

all Models C and B2 are roughly equivalent in performance, though

Model B2 seems less sensitive to changes in the levels of the

factors.
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We are now in the situation of having the problem somewhat

in hand, but by no means mastered. One approach would be to

consider stochastic models with different parametizations. The

astute reader will have noticed that the models discussed here

bear more than a passing resemblance to the linear logistic models

of Cox [1970J, where it is the log odds ratio that is posited to

have a linear regression on one or more independent variables. In

the present context it seems easier to work with the discrete

N(t) rather than the continuous t itself. (See Brown [1972] for

a discussion of hypothesis testing for nonhomogeneous Poisson

processes.)

Thus we can envision trying models of the form

log .X = a+b log i + c(log 1)2 (14)

trying to get a "best fit". It does not seem likely that this

would result in substantial gains. For if one compares the

sequence of predicted interfailure times with the actual observed

sequence, it is clear that the former, while capturing the drift

of the latter, does not resemble it in the least - particularly

because of the great variability in the observed times. This

situation can not much change by the addition of terms into the

regression.
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These considerations lead us to suggest that perhaps a doubly

stochastic process model might be more suitable (see Grandell

[1972J.) That is,

log Xt * a+b log i+i (15)

where c1 N(O, a ) and independent for each i. Such a model

would certainly introduce more variability, but the question

arises of whether we understand something better for having named

it. The answer in this case is yes, because such a model has

ramifications which can be sought in data. If Xiis exponentially

distributed with parameter .X, then under (14)

Var (Xi) = 1

while under (15)

Var (Xi) *E [1 + Var

I + Var
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Thus, in this latter case, there is another component to the

variance.

Unfortunately, in any single process we have only one

observation on X1. But it is quite common to test three or four

devices simulataneously, thus giving replications which allow us

to compute estimated variances. Note that this is only possible

when we use N(t) as the independent variable (as in Models BI and

B2) rather than t ( as in Model C).

For definiteness, consider making m replicate observations

jx1 (t)} 1 on a particular reliability growth process. We then

have n (say) sets of lid observations j * 1.2.. n

where X "j EXP (Xt) jal,2,...,m.
2 12

Then compute I1  - x and s r (X 11-X 1) f
Mi

we fit a model like (7) to the data (using the full likelihood),

then the sequence {xil} should probably conform very closely to

But the sequence' s2 would probably not resemble

1~ very much. If such were the case it would be strong

evidence in favor of (15), particularly if the regression of
S2- 1 on i had zero slope. If this regression were not
i



constant, it would of course indicate modifying (15) to allow

2the cisto have different variances a,1 9 and then one might try

to study the structure of the a I . But in this situation there

would be also ample incentive to search for another regression

which would do as well in fitting the Xiwhile keeping the

a12 constant.

It is certainly premature to proceed further along these

lines until supporting evidence for models like (15) can be found.

But if they were to prove plausible, they would provide reliabi-

lity engineers with better variability estimates with which to

plan development program~s and the like.
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APPENDIX A

For Model B1 we have

X(t) - y$eN(t)3_ 1 /1 0

The likelihood function of the observed interfailure times is given

by

n X
L~x,.,,xun X e iL=1

where

X7 = YBi 1-1/0

taking N(o) 1 1 for convenience. Differentiating the log likeli-

hood with respect to y and 0 and setting the resulting expressions

equal to zero yields

"A n (Al)
YA

E j3x t 1-1/
i

and A1-1/8
El x log l E log i

n -(A2)A n
1-1/E

Equation (A2) can be easily solved numerically for 0, the

solution being used then in (Al) to obtain y. Note that various

quantities of interest are now easily computed. For example
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E(Xn+1) is estimated by

1n+n

and from this one can calculate the expected number of failures

that will occur In a given amount of time. In planning a develop-

ment program, one may want an estimate of the number of failures

that will be needed to bring the reliability to a desired level.

If the desired intensity is X and the trial values of the

parameters (perhaps current estimates) are 0 and o, then the

required number is approximately

Finally, one would like to have approximate standard errors

for the parameter estimates. If we let

e =O ( and 1(e) - log Lie; x 1 ... ,xn),
( e, )
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then
2 .- n

a2 l(Q) -1 {n6 2 +2 E log ! +
36X2l~ )2 t1.i/02l (A3)

Bol~ee

2 ~ ~~eEx1(log 1) 211-/2(A)

32 1(e)~ -Ex 11i-1/0 2 j+ Ilog]

___________ I I

Then as is well known from maximum likelihood theory. (even though

the observations are not identically distributed)

___(__ -•e (4)
()[32 1(e)(M

which involves replacing x In equations (A3) by X -

e81 2 1 1-1/2 . The resulting expression depends on the

A A

data only through e1, 62 and n, and is particularly simple to

compute. The asymptotic variance-covariance matrix of e is the
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inverse matrix to (A4), denoted by (I (_)) and which has for

a consistent estimate, 1 ij ^

For Model 82 we have

A. C exp b (j-

Differentiating the log likelihood with respect to b and c

and setting the resulting expressions equal to zero yields

A J1- 2 (AS)
c n/E x, exp b

and

E exp {b (1- ji2 (1 Y)2

2A

Equation (A6) can be easily solved numerically for b, the solution
A

being used in (AS) to obtain cA

Now let 9m e(1(c\ and

I(e) = log L(_; xis..,*xn). Then
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a2 1(e) - n
T01

aoy o e 0 x exp )} 2
382 I.(A7)

32 1(e) e 21I 212
~U - E x1i exp n0 (n 2L J iJL 2

The argument after equations (A3) applies here as well, and a

consistent estimate of the variance-covariance matrix of e is
obtained. In this case the variance-covariance matrix depends

only on 8ls and n.
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APPENDIX B

'A. GE1 Data. Interfailure Times (to be read across rows)

25 15 210 25 20 5 15 30 5 25

75 10 110 10 80 120 60 110 10 60

30 25 175 175 25 200 175 25 10 65

25 250 5 95 50 25 45 5 15 60

70 10 170 20 80 30 195 125 100 150

60 190

B GE2 Data. Interfailure Times (to be read across rows)

25(2) 15(NP) 210(NP) 25(NP) 20(3)

5(2) 15(NP) 30(7) 5(NP) 25(2)

85(NP) 110(NP) IO(NP) 260(2) 180(2)

55(NP) 175(2) 175(NP) 500(1) 25(3)

255(NP) 215(3) 5(NP) 15(5) 130(NP)

200(NP) 740(NP)

NOTE: Quantities in brackets give the number of failures

that occurred in that mode whose first occurrance

is recorded in the corresponding entry. "NP" stands

for non-pattern failure.



TABLE 1: PARA'METER ESTIMATES

D at

Model GEl GE2

b a .195 ba .347

D A A

a U 2.65 a a 1.89

A A

B .837 .620
C

A A

y a .0537 * .171

0 a .799 (.1002) 0= .592 (.00317)
Bi

y - .0385 (.0236) y a .0799 (.00577)

IA A

b w .635 (.457) b a 1.49 (.0197)

B2
C = .0121 (.00253) c a .0004 (.000117)

NOTE: Quantities in brackets are estimated

standard errors of estimates.



TABLE 2: GOODNESS-OF-FIT STATISTICS

ON MODEL PREDICTIONS

F R1 R2 R3

MODEL GEl GE2 GEl GE2 GEl GE2

D .986 .921 1.18 1.96 .454 .179

C .983 .870 1.19 1.55 .480 .228

B1 .963 .833 1.17 1.41 .621 .472

B2 .969 .894 1.22 1.94 .571 .322



TABLE 3: 3-FACTOR AgOVA'S AND ESTIMATED MAIN EFFECTS (FRON
SIMULATION)

RI R2 R3

Source of F- Est'd F- j Est'd F- Est'd
jValation df Stat Effect Stat lEffect Stat Effect

Grand Mean 1 .92 1.37 .52

ID .07 .35 -. 13

Podels 2 76 .8*** -. 04 5.74** -. 09 13.1*** .01

-. 03 -. 26 .12

5 .04 .43 .06

It-s 10 2 18.8"** -. 01 7.85*** -. 20 2.37 -. 05
10 18*-.02 -. 23 -. 01

SLow .02 -. 01 .04

Freq l d 2 10.1** .0 .05 -. 03 1.35 -. 04
High -. 02 .03 .0

moels x
Modes 4 .77 .96 1.62

Models x
Freq 4 1.27 1.03 1.40

Modes x
i'req 4 3.18* .04 1.44

Models x
Nodes x 8 .16 .76 .81

Freq

HS MS MS

Residual 513 (.010) (3.189) (.204)

Total 5401
I f

NOTES: (1) Significance levels of F-statistics: *÷p<.OS;

**+p<.01, ***+p<.001

(2) Bracketed quantities In "Residual" row are ntean

squares. Thus all mean squares and sums of squares
can be computed from information in Table

(3) e.g. Estimated main effect of B2 with R1 as dependnt
variable is .92+(-.04)=.88



TABLE 4: 2-FACTOR ANOVA*S WITH RI AS DEPENDENT VARIABLE; ALSO

ESTIMATED MAIN EFFECTS

'Model 0 Model C Model B2

Source of hF- Est'd F- Est'd F- Est'd

Variation df Stat Effect Stat lEffect Stat Effect
rl ~ ~ I, -. -...! .....

Grand Mean 1 , - ,89- .88

5 .04 .04 .03

Modes 10 2 5.36** -. 02 10.72*** -. 01 6.48** -. 02

i -. 02 -. 03 -. 01

Low .01 .04 .1

rip, 9 1 d 2 .36 -. 01 10.45**0 -.. C 7 7 7**',* .0

N -0-03 -.03

r:req 4 .83 2.19 1.03

MS MS m•S

Residual 171 (.016) (.007) (.007)

Total 180O

See Notes to Table 3



TABLE 5: 2-FACTOR ANOVA'S WITH R2 AS DEPENDENT VARIABLE; ALSO
ESTIMATED MAIN EFFECTS

_____ODEL D MODEL MODEL B2

Source of F- Est'd F- Est'd F- Est'd
Variationl df Stat Effect Stat Effect Stat Effect

Grand Mean 1 - 1.72 1.10 1.28

5 .70 .19 .40

Modes ,10 2 3.17* -. 37 7.04** -. 09 3.14 -. 15

is -. 33 -. 10

!Low -. 27 -. 03 .27

! h~t47 1 U .6 -. 12

Freq 4 .18_.

MS NS

!Residual 1171 (7.02) (.234) (2.31)

L11a 80{________



TABLE 6: 2 FACTOR ANOVA'S WITH R3 AS DEPENDENT VARIABLE

ISource df D C B2

Grand Mean 1 - - -

Modes 2 .24 3.45* .05

Freq 2 1.66 1.96 .13

Modes x
Freq 4 1.02 .f . .

MS

j.120) (.1721)
F LZK S I


