AD-ABSI 536 STANFORD UNIV CALIF SYSTEMS OPTIMIZATION LAB F/6 9/2
DEC 77 M A_SAUNDERS N00014=75-C=0865
UNCLASSIFIED SoL=-77-31 ARO=12215.22=M NL
Jor2

-

MINOS SYSTEM MANUAL. (U)
3 I
EERRLEECREER
— - - :

— —

ALO 12,2/5 02-m

o MINOS
Ve SYSTEM MANUAL
r 3
. r={ ¥4
. (=
<< BY
MICHAEL A. SAUNDERS
o1
% (@ B8
. S TECHNICAL REPORT SOL 77-31
/) DECEMBER 1977
- —3
I§ — S
-

e COPY AVAILABLE 9 Pn7 POrs NOT
S2E PERMIT FULLY LESE rieouilo

Systems Optimization Laboratory

Department of
Operations
Research
Stanford
University |
e Ting i"":rs in this report are not to be constr . . i
offeal, /7yt of he Aemy otiion. ualess g9 94305 |

e o S i b
; l W
45 T e Lot {
| s, e
/ SYSTEM MANUAL _ | N
‘ Sy e e £

R

', i
1 // / Michael A. /Saunders

e

}

s
3 ety

L-77-31 /

Z G g é
~ | TECHNICAL REP@RT, SO
| 2

k. s

*** This manual documents MINOS Version 3.3, dated October 1977 *x

" o B B8 7 ,"' 4 "/ . - r 7 "’ b #2
15X NOpGL7—15=C=F365, PAAGAT—/* o

7

()‘i§7ébe the Board of Trustees of the
Leland Stanford Junior University
All rights reserved

Printed in the United States of America . v ﬁ?
“oN Ar Al (1aYaia94 2.2 -
JEYARE] (9] 12216 . A4

Research and reproduction of this“¥éport were partially supported by the
Energy Research and Development Contract EY-76-S-03-0326 PA #18; the
Office of Naval Research Contract N0O0O14-75-C-0865; the National Science
Foundation Grants MCS76-20019 and ENG77-06761; the Army Research Office
Contract DAAG-29-74-C-0034; and by the New Zealand Department of Scientific
and Industrial Research.

Reproduction in whole or in part is permitted for any purposes of the
United States Government. ”f:h\

___SYSTEMS -OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH

[_Stanford University
Stanford, California

Abstract

MINOS is a Fortran system for solving large-scale linearly

! ; constrained optimization problems. The System Manual gives an

overview of the system, the programming conventions used, data struc-

tures, tolerances, and error conditions. Details are given of a

practical implementation of the method of Bartels and Golub for

a4 maintaining a sparse LU factorization. The reduced-gradient approach
| for handling a nonlinear objective function has been described

elsewhere by Murtagh and Saunders; further implementation details
i é are included here. The System Manual should facilitate interfacing

of MINOS with other optimization software.

RCCFSSION for

- white Section 1§
“62 gt section O
v

qnNeTD =
A

pes | IATE

o
77 5PE0

e

UL
TR

ii

l' MINOS
‘ SYSTEM MANUAL

CONTENTS
PAGE

e R O e B i e e 3

2raiVERIEN - g s o e R e e A e e s 5

2.1 iStoragerAliliocationt sk R St e e .. 5
2.2 Subroutine Hierarchy

3. PROGRAMMING CORMERTIONS oo oo oo ai ov aw vs se 8

3.1 Conversion to Other Machines 10

B R A e s R R S e el G e 12

.1 Variable-dimension Information 12
<2 COMMONS Decliadratiions et en i o e i s o . 13
.3 Definition of COMMON Variables 14
A G R T L R e Ty, W e s 19

NI~ R~)

N ORI e L T e s e B

0 DRI SERUETBRES. 50 0 0 eoiins e s wh sk b T e

1 Constvatmt Matieink DAL Bl Ll S e s e e e e s 24
2 LU Factors of the Basis R O P e o 26
slra e b OrRde. RO it oF s Tl e R S i s R 27
R A o U R i R i T S 32
T) o T e s o R i TS R e Tl S A T 33
3 Cholesky Factor of the Reduced Hessian ST N g 34

A O O DY O O

ARG | g hy D S S S P
E | B, IR BBOUESTS . . . e e i G e e

5 CENNONCRUMDEIIBNS L0 G W e i e e K ke lemley we S8

10!

11,

12,

SUBROUTINE SPECIFICATIONS

ADDCOL .

ALIGN ML alrn 43
BERRBL .. s i 44
BIRARD, '»o .5 45
BUMPS R RN 46
CALEFG 47
CALCG e 48
GHEDER . o v ws 49
CHEKGRD 50
CG S et s 51
CHUZQ S R 52
CHUZR sio e 53
CURBEY . .y s 56
CRASH T e P 97
BELLOL o ha 5. 59
DOT SR ey 60
DOT1 S 60
BRINER i aeiwa 61
DUMPN iR 0w e 64
FRCTOR~ .. oo «» 65
FORMC Wi e 68
FIRANL - 70
FERANY .o «c o 71
FUNGRD .o ¢ "%, 72
GETEGRE .o 5s 5. 73
GO e e 74
HASH oW ww w 76
ARIELZE o0 Cve w i
INSERT .. .o < 79
ERVERT . o a 80
FEEROP .. s o 82
LOADB en e 83
LOADN A RPRE 85

PERFORMANCE

ADCENDA TO MINOS USER’S GUIDE ..
REFERENCES

LPITN

MINOS
MKLIST
MODLU
MOVE
MPS
MPSIN
NEWPTC
NMSRCH
PACKLU
PRICE
PUNCH
P3

P4
RESETR
RGITN
RTRSOL
R1ADD
R1MOD
R1PROD
R1SUB
SAVEB
SEARCH
SETPI
SETX
SOLN
SOLPRT
SPECS
SPECS?2
SQUEEZ
STATE
TRNSVL
UNPACK

41

87

89

91

92

94

95

98
100
101
102
103
105
106
107
109
110
113
114
115
116
117
118
119
120
121
122
124
125
127
128
129
130
131

132

134

135

1. INTRODUCTION

MINOS is an in-core, Fortran-based optimization system for the
solution of large-scale linear and noniinear programming problems involving
sparse linear constraints. Full user information is given in the MINOS
User's Guide (Murtagh and Saunders, 1977). Theoretical aspects of the
algorithm, and experience with an earlier version of the system, are des-
cribed in Murtagh and Saunders (1978).

This manual provides details of the implementation methods used. Much
of the complexity of the system is concerned with a reliable and efficient
implementation of the primal simplex method, as described in Saunders (1976).
The nonlinear programming features are an integral part of the design, and
this required that most of the standard simplex routines be moderately
generalized. However, the bulk of the code for nonlinear problems is con-
tained in 24 additional subroutines.

Occasional reference is made to MINOS/GRG, an extension of the present
system designed to handle problems with nonlinear constraints and a sparse
Jacobian matrix (Jain, Lasdon and Saunders, 1976). This system will be
documented elsewhere.

The primary goals throughout the coding of MINOS have been as follows
(in alphabetical order).

Efficiency - Use of efficient algorithms; conservation of core require-
ments through dynamic storage allocation; avoidance of
multi-dimensional arrays; sequential access to data where
possible to avoid frequent page-swapping in a virtual
memory environment.

Flexibility - Free-format input for user-defined parameters; ability to
solve problems of arbitrary size without recompilation of
the source program; various restart facilities; provision
for interface with existing commercial systems.

Modularity - Well-defined functions for each subroutine; use of para-

meters to pass all array storage and dimension information.

Portability - Use of only those Fortran constructs that are commonly
available on (large) machines; separation and internal
documentation of routines that are necessarily machine-
dependent; calculation of precision tolerances from one
machine-dependent constant.

Readability - Indentation of loops as a bare minimum; meaningful names
for variables; a reasonable amount of in-line documenta-
tion.

Reliability - Use of numerically stable algorithms; consistency checks

on input data, restarting files and gradient computation.

There is always room for improvement in putting such goals into
practice, but certainly some such aims are necessary if a system is to
develop while the algorithms being implemented are themselves continually
evolving.

2. OVERVIEW

2.1 Storage Allocation

To ensure storage economy, a single array Z(x) is used to provide all
array workspace. The type of Z must match the largest word size used (e.g.
REAL%8 for IBM, REAL for CDC). Arrays of other types are allocated compactly
within Z, using three constants to define the word sizes available on any
particular machine.

Array storage is made available to all subroutines through parameters
rather than through blank or labelled COMMON. (Use of COMMON diminishes the
effectiveness of optimizing compilers.) It should be noted that sensible
modularization eliminates potential inefficiency in this respect. If a sub-
routine performs any significant work at all, or of it is called infrequently,
the overhead in passing 20 or 30 parameters is negligibly more than in passing
Just one.

A particular advantage arising from the use of a single array Z is the
ability to acquire core according to problem size without recompiling the ,
program. For the IBM version of MINOS, an assembly language main program has
been provided by Hedges (1975), allowing core requirements to be defined at
run-time through the JCL REGION parameter. An analogous Algol procedure is
available for the Burroughs B6700 version, which incidentally circumvents the
restriction in B6700 Fortran that arrays be no longer than 65535 words. This
is documented in Saunders (1977).

2.2 Subroutine Hierarchy

The diagram below illustrates the broad grouping of subroutines. Once
a problem has been input, the dimensions of most arrays are determined.
Hence subroutine MINOS is able to pass many segments of the array Z to
DRIVER, which thereafter knows them as separate arrays with meaningful names.
A few other arrays for the LU file remain to be allocated by INVERT within
the remaining part of Z.

MAIN
GO
A
MINOS
/ 4 \
INITLZ DRIVER
I 03
SPECS, INSERT, PUNCH,
SPECS2 LOADB, SAVEB,
LOADN SOLN
MPSIN i
INVERT,
/ LPITN,
o { RGITN.
MPS MOVE etc.
|
Y
HASH,
NMSRCH
Input Solve and Output

A more complete classification of subroutines is given on the next page.

Input routines (for processing the SPECS and MPS files)

HASH MOVE MPS MESIN SPECS SPECSZ

Basis loading routines

CRASH INSERT LOADB LOADN NMSRCH

Pasis and soluticn saving routines

CUMP PUNCH SAVE®R SCLN SOLPRT STATE

Algorithmic routines required for purely linear prograams

- - D S PSS D BT DG e WS A EE R D e e G G R R G G W D GD G e -

BTRANL BTRARKRU BOMES CHUZE DEIVER FACTOF
FORMC FTRANL FTEANU GO INITLZ INVEET
ITEROP LPITN HINOS MKLIST MODLU PACKLU
ERICE P3 P4 SETPI SETX TRNSVL
UNFACK

Additional algoritheic rcutines for nonlinear probleas

- A D G P D GO WS D e D ED D W A R G P D S D GG e D T S D e - -

ADDCCL ALIGN CALICEG CAICG CG CHKDIR
CHEKGRD CHUZQ CCMDFP DPELCOL DCT DOTH
FUNGRD GETIGRD NEWPIC RESETR RGITN RTFSOL

R1ADD R1MOD F1EFOD R1SUB SEARCH SQUEEZ

b i AR BT s e Bk g

3. PROGRAMMING CONVENTIONS

The originating source code is for the IBM Systems 360 and 370. The
notes here will facilitate conversion to other machines.

Types

In most subroutines the type of a variable is defined by the first
character ¢f its name, as follows:

A-B REAL

C-G, 0-Z REAL+8

H INTEGER«2
I-N INTEGER

The only variables beginning with H are half-word arrays. These and other
arrays are always typed and dimensioned explicitly, e.g.

INTEGER+2 HA(NE)
REAL A(NE)
REAL %8 X(MN)

A few variables are explicitly typed LOGICAL.

IMPLICIT

Non-standard implicit typing is used only for double precision simple

variables, and is accomplished where necessary by the statement
IMPLICIT REAL«8(C-G,0-Z)
(which immediately follows a SUBROUTINE statement).

COMMON

Blank COMMON is not used. There are 24 labelled COMMON blocks, con-
taining only simple variables and a few very short arrays. None of the
COMMON variables is used for variable dimensions.

EQUIVALENCE

No EQUIVALENCE statements are used, except in a straightforward manner
in subroutine MPS:

e i e i e e

EQUIVALENCE (KEY, ID(1), ID2(1), ID3(1), ID5(1))

DATA

Some subroutines use data statements to initialize integer variables
to strings of at most four characters, e.g.

DATA LRHS /3HRHS/
Such items immediately precede the first executable statement in a sub-

routine. For CDC compatibility, apostrophes are never used.

Variable dimensions

Subroutine parameters are used to define the size of all variable-length
arrays. Arrays are strictly one-dimensional. Declarations such as REAL A(1)

are never used.

Subscripts
Subscript expressions of the form X(M+J) are often used, but more
complex forms such as X(HB(J)) are not.

Avoidance of trouble-spots

The following Fortran syntactical items are not used:

arithmetic IF

assigned GO TO

BACKSPACE

blank COMMON

BLOCK DATA

COMPLEX

ENDFILE

ENTRY

EQUIVALENCE (except as noted above)
EXTERNAL

FIND

FUNCTION i
NAMELIST
nonstandard RETURN
PAUSE

< e i sl " e i ot e e i o icia 7
SO 45 G T bl e B VT e R "
e et = o

PRINT

PUNCH

TIME

unformatted READ or WRITE

$ in identifiers

/ around subroutine parameters

3.1 Conversion to Other Machines

(a) INTEGER+2 may be replaced by INTEGERbb throughout (where b means
"snace"), although most compilers do the right thing anyway.

(b) If double precision is not required, the foilowing modifications
should be made:

change to in

i REAL*8 REALbb all
DABS ABS all
DMAX1 AMAX1 subroutine INITLZ
DMIN1 AMIN1 subroutine SEARCH
DSQRT SQRT all
D- E- subroutine INITLZ
DLOG ALOG subroutine CALCFG

The IMPLICIT statements may then be deleted.

(c) On the Burroughs B6700, a simpler alternative is to use the compiler
control card $SET DBLTOSNGL.

(d) To speed editing it may help to note that the specifications
IMPLICIT
INTEGER*2
REAL 8
all begin in column 7.

(e) The quantities EPS, NWORDR, NWORDI, NWORDH must be set correctly in
subroutine INITLZ.

(f) Floating-point constants are coded in single precision, e.g.
PLINFY = 1.0E+30, and therefore do not require conversion. (An
exception is the arqguments to DMAX1 in subroutine INITLZ, requiring
the change of D- to E- as noted above.) {

10

i
-

(g) If double precision is required but the IMPLICIT statement is not
allowed, all relevant simple variables beginning with C-G, 0-Z must
be typed explicitly, e.g. DOUBLE PRECISION EPS,EPSO,EPS1. This
includes local variables, COMMON variables and subroutine parameters.
Such a conversion will require many additional lines of otherwise

unnecessary code. It will also be highly prone to error, since
Fortran compilers normally do not issue warnings or error messages |
for undeclared variables.

(h) For CDC-RUN, several READ statements of the form
READ(u,f,END=m) 1
must have the ",END=m" eliminated, and additional cards inserted of
the form
IF (EOF,u) m,n
n CONTINUE

(i) In FORMAT statements, apostrophes are used to delimit strings. How-
ever, strings never contain the character x. Hence for CDC machines
it is acceptable to convert every apostrophe to x (except perhaps in
comment cards).

1

e A i s . e T b i A e _‘ R A_‘.‘ e ‘—.‘~ .”:‘_..‘—' -~ _—.-—h-. ” _T
e > . - e e Qi il et e . s e e '
| ;
{
|

4, VARIABLES

4.1 Variatle-dimension irfcrrmaticn

] o et ik

The follcwing INTEGER variakles are used to define the current 1l-2ngth
of various variable-dirensicn arrays. They usually occur at the front
of a sutrcutine's pararater list.

LFN Lergth of hash table used tc store row names during infput.

T e

M No. ¢f rows in constrairt matrix A.

MAXL Maximum no. cf elemants currently allcwed for in L file.
MAXS Maximum no. of supertasic variahles allow=ad. ,
MAXU Maximum no. cf elements currently allowed for in U file.

MAX2Z Size of Z, the single array of ccre in which all else resides,
MCOLlS No. of columns allowed for in A during input (must be >= N).

MELMS No. cf nonzeros allcwed for in A during input (must be >= NF),

MN # + MAXS. Maximur dimernsion of basics + supertasics.
MNN max(¥N, NN)., ©Used only for dieension of work vectors Y and
Y1‘

MROWS No. of rows allcwed for in A during input (must bhe >= M),

MS M + NS. Current dimension of basics + supsrbasics.

M1 Mo+ 1,

M2 3 ¢+ KINV, Up to this many traasformations allowed for in I and

N No. of variakles in ccnstraint matrix (structurals ¢ THS +
slacks) .

NE No. of elements in constraint matrix.

NEN No. of entries in hash table during input.

NF Size of array F = MSPK* (MSPK¢1) /2 where ¥SPK = max no. of
srikes.

NN Ne. of norlinear variatles (these invelved in nonlinear

objective).

NNO max(NN, 1)

NP1 N+,

NR Size of array F = MAXS#® (MAXS+1) /2.
NS Current no. of supertasic variablas.

12

T

4.2 COMMON daclarations

The followirg lahelled COMMCN blocks are used

to

segment

paran2ters

into various 1logical sets, This is to avocid repetition of one large

CCMMON tlock in every sukrcutine.

LOGICAL CCNV, FESTRT

COMMON /BGCCN s TCLSWP,NBUMP,NSPIKE,MSEK

COMMNN /CGCCM s CGRETA,ITNCG,MSGCG,MODCG,RESTRT

COMMON /CONVCY¥, ETASH,ETARG,CCNV (4) ,LVLTCL,NXTPHS,NFAIL
COMMON JCORE , KZ1,K22,K73

COMMON ,DJcoM , TCLDJ1,T0LDJIZ,TCLDJI3, TOLDJ

COMMON /EESCCM, FES,ZESC,EFS1,EES2,EES3,EPS4,EPS5,PLINFY
CCMMCN JFPILES ; ISCE,INPUT,IOLCE,INEWR,INSRT,IPNCH,ILOAD,TDUNP
COMMON JFREQS , KCHK,KINV,KSAV,KLOG,I1FREC,I2FREQ

CCMMON /PXCOM ; FX,SINF,WTOEJ,MINIMZ,NFX,NINF,IORJ,NPRCE
COMMON JINTCOMy 1TN,ITHRITM,NEHS,KMCLCLU,KMODPT

COMMON /INVCCM/, INVEC,INVITN,INVHOL,NBFLEM,KHL,KDL,KHU,KLU,KFF
COMMON /ITNLCG, DJQ,THETA,PIVOT,COND,NCNOPT,JP,J0,KADD, KSUR
CCMMON /ITNLG2/ IHEAD,JC1,J0Q2,J%1,JE2

COMMON /LPCOM , KRHS,NS1,MAXF,IFRR,IDEFUG

COMMON /LUFILE/ IMBEC,NETAL,NETAR,NETAU,KL,KU,LEGN,JLBGN
COMMON /MPSCCM/ ATJTCL,ESTRUC (2) ,MINMAY ,MLST,MEE,

1 NAME (2) ,MOBJ (2) , MRHS (2) ,MENG (2) ,d4BND (2)
COMMCN /NLCCOM/ NNLECN,LCERIV,LPRINT

COMMON /PARMCN, DERRM (9) ,TPARN (9)

COMMON JPRCCCM/ NEAFEE,NPRC,JPRC,KPRC,MFEJ,NPEJ,JREJ (20)
COMMIN /PRCCM2/ NMULPE,NEWSB

COMMON /RGTCLS, XTOL(3) (FTCL(3) ,GTCL(3),PINOF™,RGNOFY, TOLKG
COMMON /SCLNCM/ ISCIN,KSCLN,MSCIN,NSTATE,LCHKGR

COMMON /TOLS / TCLX,TCIPIV,TEPIV1,TRPIV2,TOLROW,XNORN
COMMON JWOEDSZ, NWOEDK,NWOrDI, NWCRDH

13

4.3 refinition of CCMNCN variatles

- D R S D D PR D S W@ D W D W W ae S W .

AIJTCL

BSTRUC (2)

CGBETA

COND

CCNV (4)

DJO
DPARN (9)
EPS

EPSO

EPS1
EpPS2
EPS3
EFSY
FPSS

PTARG

ETASE
PTOL (3)
FX
GTICL (3)
IDEBUG
IPUME
TERR
IBEACT
ILOAD

IMBED

Tolerance for ignoring matrix coefficients during MPS input,

Default lower and wupper bound values for structural
variables.

Conjugate gradient scalar. (mnew D) = =-gradisnt + CGEETA*(0ld
D).

Square of cordition number of diagonal of P, This provides
a lower bound cn the ccndition cf the Hessian approximation,

Logical variatles shoving result cf ccnvergence tests in
RGITN.

Best reduced cost found by PRICE.
Array of floating-pocint farameters.
Machine precision. 16*%%(-13) for IBM 370.

EPS*%(4/5). Used, amcng cther things, for packing LU
tranformaticrs.

EPS*%*(2/3). Used fcr finite differencina in ADDCOL.
SCRT (EPS) .

EPS*%(1/3).

EPS*%(1,4).

EES*%(1/5).

Minimization-within-subkspaca2 accuracy tolerance, used in
RGITN.

linessarch accuracy tclerarnce, used in NEWPTC,

Current, loose and tight tcls or change in objactiva,
current objective value (linear ¢ nonlinear teress).
Current, loose and tight tols on ncrm of reduced gradicnt,
Debug lavel,

nit no. for CUMP file.

Error indicator for numerous routires,

Determines if ancther heading is to be printed in itn 1log,

Unit nc. for LOAD file.

Determines if part of L should te imbedded irn A.

14

B AR R S A PRI S =

INEWP Unit nc. for NEW BIT=-MAP file.
INPUT NTnit no. for MES file,
INSRT Urit no. for INSEERT file.
INVITN No. of iteraticns performed since last invert.
INVMOD No. of modificaticns made to LU factors since last invert,
INVEC Invert requast. Set positive for nurmercus reasomns.
! I0BJ Row no. of linear cbiective. Zero if nore.
E IOQOLLCE Unit no., for CLD BIT-MAF file.

IPARM(9) Array of integer parameters.

IENCH Unit no. for FUNCH file.
ISCR Unit no., fcr SCRATCH file,
ISOLN Unit no. for SCIUTICN file.
ITN No., of iteraticns since start of run.
ITNCG No, of consecutive ccnjugata=-qradient itrs since restart.
ITNLIX Maximum nc. of iterations allowed.
I1FRED May be set Lty IVPREQ card in SPICS file, 1 causes the bump
and spike pattern to he displayed after each INVERT.
I2PFEQ May be set ty I2FREQ card in SPECS file.
JLBGN Beginning in HL,CL cf *transfcrmaticn pcintad to by LBGN.
E JP The JP-th cclumn of the tasis will be replaced.
JPRC Column no. warking end of last partition of A scann2d by
PRICE.
;; Jc Column no. of variable selected by PRICE or CHUZ20 to enter
: ' basis.
Jo1 Coclumn no. of variatle entering *he basis (for printina). §
JQ2 Column no. of variatle entering the superbasic set. !

JREJ (20) Column nos. of variatles rejected frcm basis by INVERT.

JR1 Coluan no. of variable leaving the basis.

JR2 Column nc. of variable leavirng the superbasic set.

KADD Indicator for modification of R.

KCHK Check frequency (testing row residuals). f
1S i

At P g~ N e SIS s b2 = e e . PPN S o

KDL
KDU
KFF
KHL
KHU
KINV
KL
KLOG
KMCDLU
KMODEI
KPRC
KRHS
KSAYV
KSOLN
KSUB

KU

KZ1
KZ2
KZ3
LEGN
LCHKGR
LDERIV
LPFINT

LVLTOL

MAXRB

MEND (2)

MEF

MINIMZ

Beginning of array DI ir memory array 2. (Part of LU f.'l.e,)
Beginning c¢f array DU ir memory arra:’ 2. (Part of LU tile.)
Beginning of array ¥ in sewmory array Z. (Part of LU file,)
Beginning of array Bl in memory array 7. (Part of LU file,)
Beginning of array HU ir memcry array Z, (Part of LU file,)
Factorization (invert) frequency.

Pirst free position in L file, KL-1 = no. of nonzeros in L.
Lcg frequency (iteraticr 1lcg).

Set to 1 if 1U factors are tc be mcdified.

Set to 1 if EI is to be reccrputed.

Which partiticn cf A was last scanned ty PFRICE.

Column no. of the RHS (treated as a variabls fixed at -1.0).
Save frequency (for NEW BIT MAP).

Indicator for final call to CALCFG at optimal solution.
Indicator fcr modification cf R.

Pirst fres positicr in U0 file. KU-1 = no. of nonzercs irn U.
This includes nonzeros in cclumns of U that have been
deleted during updatirg.

Points to heginning ¢f ccre available for INVERT.

Not used.

Points to end of core used by arrays oth;r than for Lu.

The first L transfcrmation to be used by FPTRANL and RBTFANL.
Indicator for verifying gradient of abjective.

Derivativae level. Not used.

Print level. Nct used,

2 (3) means lccse (tight) tels for normal (f£inal)
iterations.

Maximum dimensicn of R. Max nc. of superbasics for
quasi-Newton.

Nase of BCUNL set.

Maximum no. of errcr sescsages (of each type) during MPS
input.

1 for m»in, -1 for max.

16

MINMAX
MLST
MCBJ (2)
MODCG

MREJ

MPHS (2)
MENG (2)

MSGCG

MSCLN
MSPK
NAME (2)
NBELEM
NEBUME
NETAL
NFTAF

NETAU

NEWSE
NFAII
NFX
NINF
NMULER
NNLFCN
NONCET

NPARER

NPHS
N2ERC
NPECE

NRFJ

Contains relevant string "MIN' cr *'MAX'.

Maximum lines cf MES data to b2 listed during input.
Name of OBJECTIVE row.
Defines which ccrjugate-gradient algorithm is to te used.

Maximum no. of rejected vars. to he saved for FEANDAID in
PRICE.

Name of RHS.
Name of RANCE set.

Used for daetecting first entry to ccnjugate-gradient routine
(CG) .

Indicator of request to print sclution.

Paximum nc. of spikes curraently allowed for.

Name of protlem (on first card cf MPS file).

No, cf nonzeros in tasis cn entry to INVIRT.

No, of tumps fcund by P4 during refactorizationmn.
No. cf transformations in L after invert.

No. of transfcrmations added to L during updating.

No. of transformations in U, includina ones flagged as
deleted.

No. of nonktasic variables sealected to beccme superbasic.
Nc. of consecutiva linesearch failures.

No. of evaluaticns of objective function and its gracient.
No. of infeasitilities.

Multiple rrice indicator. Overrides NFARPR,

¥o. of nonlirear €uncticns (0 or 1 in MINOS, More in GPRG).
No. of nonoptimal cclumns during last PRICEing swveep.

Partial price indicator = no, of partitions into vhich ¢he
censtraint matrix A is divided for the purposes of pricinj.

Current phase (1, 2, 3 cr 4),
Size of partitions of A for partial pricing.

Problem no., for use in CALCFG.

No, cf variatleées rejected from tasis by INVERT.

NSPIKE

NSTATE

NS1
NWORLCH
NRORDI
NWORDR
NXTPHS
PINOFM
PIVCT
PLINFY
RESTERT
RGNORM
SINF
THETA
TOLDJ
TCLDJ1

TOLLJ2

TCLDJ3
TOLPIV

TOLRG

TCLERCW

TCLSWP

TCLX
TRPIVI
TRPIV2

WTOBJ

XNORM

XTOL (3)

No. of spikes in F (active spikes in 0, set by
P4,FPACTCR,NMCDIU,

Parameter of CALCFG. 0,1,2 indicate rormal, first, last
entries.

No. of nonlinear variables currently in the basis.

No. of HALF INTEGER words per word of memory array Z.
No. of INTEGEF wcrds per wcrd of memory array 2.

No. of REAL words per word of memory array Z.

In RGITN, suggests NPFHS for next itn. FORMC may cverride.
Norm of PI.

Pivot element for column entering hbasis.

1.0E+30. Used for "infinite™ bcunds.

Requasts restart cf conjugate gradient algorithm.

Norm of reduced gradient (largest amcngst superbasics).
Sum of infeasitilities.

Step moved ipm current search direction.

Current reduced cost tol (scaled by PINOFM).

Reduced cost tcl while infeasihble.

Initial reduced ccst tcl during feasible itns if partial
pricing.

Final reduced cost tcl during feasible itns.
Minimum size for PIVCT during iteratiorns.

Level to which FEGNCRM wmust be raduced before adding
superbasics.

Tol used in seasuring “KOW ERROR™ (size of EKHS - A*X).

1U MOD TCLEFRAKNCE. Pelative pivot tol for updating LU
factors.

Feasibility tclerance for structurals and loaicals.
LU0 ROW TOIERANCE. Relative pivot tol used in FACTOP.
L0 COL TOLERANCE. Pelative pivot tol for spike swaps.

Weight or the true linear chiective while infeasible (for
the composite chiective method).

Norm of X for rasic variaktles.

Current, locse and tight tcls on change in X.
18

4.4 Arrays

All arrays ar= segments cf the artay Z. Most are allocated after
input, once the dimensions of the prcblem are known., Those contairing
the TU factorizaticn <c¢f the tlasis are reallocated at each call to
INVERT,

Array Length

A NE Nonzaerc coefficients in +he constraint wmatrix
A EHS 1 }, 1listed cclumn-wise.

BL N lover bcunds.

By N Upper tcunds.

(o NNO Gradient cf ncrlinear part of objective function.

DL MAXL Nonzeros in L transforzations.

ki) MAXU Nonzercs in 7 transformations,

P NF A full triangular watrix, part of LU factors of basis.

G MAXS Reduced gradient vector fcr supertasics.

GNEW MAXS New reduced gradient vector for superbasics.

GPED MN Gradient vectcr for kasics and superlasics.

G1 NNO Tempcrary gradient w7ecteor for nonlinear cbhiective.

HA NE Fow indices for cach cclumn of A.

HR MN Cclumn nos. of tasics and superbasics.
For tasics (' <= J <= ¥), HB(J) i3 the colusn that
pivots cr rew J.

HE NP1 HE (J) rcints to the =nd of column J-1 in arrays A,4A.

HL MAXL kow indices for ncnzercs in each transformation in L,
The first index for cach transformation is negative if
the pivct elenent is 1.0, otherwise the pivot is ir DU,

HPIVF "2 HPIVF (J) is the row on which the J-th spike pivots.

HPIVL "2 HPIVL (J) is the pivet row for the J-th transformatinm
in L.

HPIVOD 2 HPIVU (J) is the row on which the J-th column of U pivots.
If negative, this column of J has been deleted.

HS N HS(J) is the cstate of the J-th variable im (A EHS I).

0 => wvarialtle J is ncntasic at it3s lower bound.
' => wvariatle J is nonbasic at its upper bound.

N AR T 7 PR R T T

S gt e

HSPIKE

HU

NL

NU

PI

XN

Y1

MAXU

¥2

M2

NR

NN

NNO
MNN
MNK

MAXZ

2 => variakle J is superbasic.
3 => variable J is tasic.
Nontasic FRFE variatles may have state 0 or 1.

During INVEFT defines the spike structure of the
basis. (This structure ray be displayed by setting
ITFREQ = 1). During iteraticns, HSPIKE is used as a
work vector in calls tc BTRANL.

Row indices for ncmnzeres in U.

NEL = NL(J) is the number of nonzeros in the J=th
transforpaticn c¢cf L. If NEL < 0, the transformation
is actually colusn "=NEL™ of A, with non-unit pivot
element pcinted to (indirectly) by an element of the
array HL.

KU (J) is the no. of ncnzeros in the J=-th transfcrmation

of U.

The pricing vecter (i.e. the Lagrange multipliers or the

simplex mmltigliers or the shadow prices for the gene
constraints).

Upper triangular matrix used to approximate the raduced

Ressian, thus: R*'R = 2Z'GZz approximately, where
spans the null space cf the active constraints.

Values of the tasic and supertasic variables.
Values of the nonlincar variables.

Work vector.

Work vector.

The single array of mesory in which all else resides.

20

ral

Z

;
|
i

5. TOLERANCES

Most tolerances are defined in terms of the machine precision
EPS = €, which is the smallest positive number such that 1.0 + EPS is
greater than 1.0, when the arithmetic is performed in the apprc riate
precision (e.g. single on CDC and Burroughs machines, double on IBM and
Univac).

For convenience, the labelled common block EPSCOM contains the
following quantities, which are initialized in subroutine INITLZ and never
altered:

EPS =€

EPSO = /5
EPS1 = ¢%/3
EPs2 = ¢'/2
EPS3 = ¢'/3
EPS4 = ¢'/4
Eps5 = ¢'/°
PLINFY = 103°

A tolerance TOLZ is used for packing transformations (PACKLU, MODLU) and
for detecting negligible elements in transformed vectors in order to speed
transformation processing (BTRANL, BTRANU, FTRANL, FTRANU). This tolerance
is set to EPSO at the beginning of the subroutines mentioned. A larger
value for TOLZ would reduce the accuracy with which the constraints Ax = b
could be satisfied, without ensuring any significant improvement in storage
or run time. (In fact, the effect could be negative.)

The following tolerances are set in subroutine INITLZ (see the 1isting
of that subroutine in section 10). The values used should be satisfactory
for most well-scaled problems.

Tolerance Value Description
TOLX max(e%, 10°°) Primal feasibility tolerance. Structural and

slack variables are allowed to lie outside their
bounds by as much as TOLX.

TOLDJ1 max(eg, 10®) Relative dual infeasibility tolerance while
infeasible. In PRICE, the actual tolerance

21

| used to screen reduced costs (reduced
i gradients) on nonbasic variables is

i TOLDJ1xPINORM.
s TOLDJ2 1.0 Initial and final relative tolerances on reduced
TOLDJ3 max(e*. 107°) gradients in PRICE when feasible. If partial

, pricing is in effect, a relative tolerance TOLDJ
| begins at TOLDJ2 and is reduced in stages to the
2 level TOLDJ3. Again, the actual tolerance used
in PRICE is TOLDJ+PINORM.

If partial pricing is not in effect, the value
used in PRICE is TOLDJ3xPINORM.

TOLPIV e;5 The smallest pivot allowed in CHUZR during
simplex iterations (LPITN). For non-simplex
steps (RGITN) the value used is TOLPIV«xYNORM,
where YNORM is the norm of the search direction.

TOLROW max(st/{10'4) The tolerance used in SETX to determine if the
3 constraints Ax = b are sufficiently well

v — R ——
T e e T ,

9
: satisfied. The error allowed on each row is
measured relative to the norm of the correspon-
ding row in the current basis. See the des-
cription of SETX in section 10.
Certain other tolerances are available to the user to alter if desired,
via the SPECS file. (This is accomplished in subroutine SPECS2.) Default
» values are shown below. Fuller details are given in the MINOS User's
- Guide.
Tolerance Default Value Description
AIJTOL 10”10 The smallest matrix coefficient accepted as
input.
ETARG 0.2 Affects the accuracy of minimization within
- each subspace. Refer to REDUCED GRADIENT
TOLERANCE. '
ETASH 0.01 Affects the accuracy of the linesearch.
Refer to LINESEARCH TOLERANCE.
22

TOLSWP 0.99 Relative pivot tolerance for Bartels-Golub
updating., Refer to LU MOD TOLERANCE in the
User's Guide.

TRPIV1 0.001 Relative pivot tolerance for accepting the
preassigned pivot row in FACTOR. Refer to
LU ROW TOLERANCE.

TRPIV2 0.1 Relative pivot tolerance for accepting one of
several possible spikes as substitutes for a
column whose preassigned pivot row is
unsatisfactory. Refer to LU COL TOLERANCE.

WTOBJ 0.0 The weight to be placed on the true objective
function when infeasible. (The sum of
infeasibilities always carries a weight of 1.0.)
Refer to WEIGHT ON OBJECTIVE.

Post-script:

TOLX and TOLDJ3 above may also be changed via the SPECS file.
See section 12.

6. DATA STRUCTURES

Here we describe the arrays and variables used to store the constraints,

the basis factors, and the reduced Hessian approximation.

" 6.1 Constraint Matrix (A b 1I]

REAL A(NE) Nonzero matrix and rhs coefficients.
INTEGER«2 HA(NE) Corresponding row indices.

INTEGER%2 HE(NP1) HE(J) points to the end of column J-1 in
arrays A and HA.

REAL BL(N) Lower bounds on all variables (including rhs
and slacks).
REAL BU(N) Upper bounds.

Related INTEGERs:

M Number of rows in A (including objective rows).

N Total number of variables (structurals, rhs and slacks).

NE Total number of matrix elements (including rhs and slacks).
NP1 N+1.

KRHS Column number for rhs.

The constraint matrix [A b 1I] is stored column-wise in packed form,
using the arrays A, HA and HE. The coefficients for column J are in elements
HE(J)+1 through HE(J+1) of arrays A and HA. The row indices in HA for a
particular column are not required to be in ascending order (say); they are
stored in the same order as they occur in the input data (which in general
is arbitrary).

The absolute value of a particular element HA(I) is taken as the
required row index. Hence, negative entries in HA may be introduced in
special applications. (For example, in MINOS/GRG they are used to
distinguish variable Jacobian elements from normal (constant) coefficients.)
Note that HA(I)=0 is not allowed.

For a typical use of arrays A, HA and HE, see subroutine UNPACK in
section 10.

Explicit upper and lower bounds are stored in arrays BU and BL for all
variables. The value

PLINFY = 103°

24

s

I e cse oo

e ——

——

e e e

is used to represent "infinite" bounds. For instance, the bounds on slack
variabies to implement the four types of inequality constraint are as

follows:
Constraint Type BL BU
L 0.0 PLINFY
E 0.0 0.0
G -PLINFY 0.0
N -PLINFY PLINFY

RANGES on rows are implemented by altering either BL or BU in a trivial way.

Note:

It is more common for the constraint matrix to be stored in the form
[I A bl. This certainly simplifies the input procedures. We have
chosen the less conventional form [A b I] to ensure that the
column numbers of the first NN structural variables correspond to

the nonlinear variables in the array X of the user's subroutine
CALCFG. This also allows the simple test IF (J.LE.NN) ... to
determine whether the J-th variable is nonlinear.

25

6.2 LU Factors of the Basis

Ignoring certain permutations, subroutine INVERT produces an LU
factorization of the current basis B in the form

where L is lower triangular and F is upper triangular. The "bump and spike"
structure of B is vital to the success of this factorization. B is first
permuted to block lower triangular form using the procedures of Duff and
Reid (1975, 1976). Each block ("bump") is then processed by the algorithm
P3 of Hellerman and Rarick (1971), thereby dividing the columns of B into
two sets, called triangle columns and spike columns. Spikes are those
columns that have nonzeros above the diagonal of the permuted B.

The LU factorization amounts to Gaussian elimination with column inter-
changes. If a column in a particular bump has to be interchanged with some
alternative column, the only alternatives that need be considered are the
remaining spikes in the same bump. If a triangle column is interchanged
with a spike, the number of spikes generally increases by one. If two spikes
are interchanged the number of spikes generally stays the same.

The dimension of F is the final number of spikes.

The reasons for computing the factorization in thi: way, and the
(numerically stable) method for updating L, U and F when a column of B is
replaced, are fully described in Saunders (1976). The result is a practical
implementatidn of the method of Bartels and Golub (1969, 1571). Our aim here
is to describe how the various matrices are stored.

For an initial factorization (immediately after INVERT), the columns of
L and U are stored conventionally in packed form, working forwards through
the arrays HL, DL and HU, DU. The upper triangular part of F is stored column-
wise as a dense matrix in the array F.

When the factorization is updated, U and F are modified explicitly and
continue to be stored in the same way. Updates to L are accumulated in product
form. They are stored in arrays HL, DL, much like columns of the initial L,
but interpretationof the contents of these arrays is unusually intricate.

26

Disclaimer:

Since the density of F is typically about 10% (though in some cases as
high as 50%), the storage required for F becomes excessive if the number of
spikes is 200 or more. (The efficiency of FTRANU and BTRANU is not
necessarily degraded, because many rows and columns of F can be skipped
during the transformation processing.)

| In a future version of MINOS it is intended to store F row-wise via a
j linked-list data structure.

6.2.1 Storage for L

REAL8 DL (MAXL) Packed nonzeros. i
INTEGER#2 HL (MAXL) Corresponding indices. :
INTEGER NL(M2) Number of nonzeros in each transformation. %
INTEGER«2 HPIVL(M2) Pivot rows. 1

Related INTEGERs:

MAXL Maximum number of nonzeros currently allowed for in the
L file. (Reset during each call to INVERT.)

M2 An upper bound on the number of transformations there
could be before the next call to INVERT. (Fixed;
M2=M+KINV, where KINV is the refactorization frequency.)

NETAL The number of nontrivial columns in L after INVERT.
(Those corresponding to slacks are not stored.)

NETAR Current number of nontrivial updates to L.
KDL, KHL, KL See also.

The K-th transformation in the L file is represented by NL(K), HPIVL(K)
and a set of contiguous entries i,d in the arrays HL,DL. Let JL be a pointer
such that JL+j marks the j-th pair (i,d) thus:

Index HL DL
JL KEY PIVOT
JL+1 5 d,
IL+2 i, d,
JL+NEL NEL 4

27

Not all items need be present. Where relevant, let the following quantities
be defined:

NEL = NL(K)

IPIV = HPIVL(K) = pivot row

KEY = HL(JL)

PIVOT = DL(JL) = pivot element
Initial L
For K < NETAL, the K-th transformation represents the K-th column of L,

which may be one of three types as follows.

Type 1:

Type 2:

NEL < O. Triangle column of B imbedded in the
constraint matrix.

This column of L is the J-th column of A, where J = -NEL. Only one
entry exists in HL and DL (KEY and PIVOT). KEY is not used.

NEL > 0, KEY > 0. Triangle column of B, not imbedded in the
constraint matrix.

This column of L is the column vector
(PIVOT, d1, d2, i dNEL)
with coefficients in the rows
(IPIV, i,, 13, ..., iyg)-
It has been copied explicitly from A into the L file.

NEL > 0, KEY < 0. Bottom half of a transformed spike.
This column of L is the vector in Type 2 divided by the pivot
element, i.e.,

(1.0, d,/PIVOT, ..., dygL/PIVOT).

The divisions are not performed explicitly, as they are more economic-
ally accounted for whenever the transformation is used in FTRANL and
BTRANL. Note that the pivot element for this spike transformation is
deliberately chosen to be 1.0, and the element PIVOT is installed as
the appropriate diagonal of F. (The two pivot elements could be PIVL
and PIVF for any numbers such that PIVL«PIVF = PIVOT. However, the
primary aim is to keep L well-conditioned, since no part of it is dis-
carded, and to let the condition of the basis be reflected in F. Thus
we choose L to be as near to the identity matrix as possible.)

28

Type 2 transformations would not be required if triangle columns were
always imbedded in A. However, on a machine with virtual memory and/or a
cache memory, transformation processing will be faster with Type 2 than with
Type 1. Also for applications involving nonlinear constraints, the columns
of A may contain variable elements of the Jacobian. Their present values
can be retained with Type 2, but not with Type 1.

Ugdates to L

For NETAL < K < NETAL + NETAR, the K-th transformation represents the
(K-NETAL)th update to L. The items KEY and PIVOT do not exist.

Referring to section 4 of Saunders (1976), recall that any one such
update comes from a product of elementary trgnsformations Ej (j=1,2,...,NEL
say), which reduce some intermediate matrix F to upper triangular form F,
using Gaussian elimination with row interchanges. Thus

Most of 1
% revious i e
F o= ¢ €«——of F

sparse row vector
to be eliminated

and

ENEL"’E2E1F = F.

If L is the previous (possibly updated) factor, the modified form of L is

L= LM1M2"'MNEL

where MJ = Ej'ﬂ but since Mj and Ej are trivially related, it is immaterial
which of these matrices is stored. We choose to store Ej.

In the method of Bartels and Golub, each transformation Ej is a matrix
of the form

29

row IPIVj dj 1

L : i
column 1j

which is possibly preceded by a permutation matrix that interchanges rows

IPIVj and ij. The indices ij are the positions of nonzeros being eliminated

from the bottom row of F. These indices and the corresponding multipliers

are stored as the pair (ij,dj) in arrays HL,DL as shown earlier.

Now, the intricate part of the implementation lies in keeping track
of the values IPIVj without storing another set of indices. First of all,
note that the initial row index IPIV, is the pivot row corresponding to the

column that was deleted from the basis. This value is stored as IPIV = HPIVL(K).

Secondly, note that if no interchanges were required to maintain
stability, then a1l IPIVy would be the same value IPIV. (The update would
then be analytically identical to the method of Forrest and Tomlin (1972).)
In practice we have found that

(a) The number of eliminations per update is extremely small. It is bounded
by 0 < NEL < current no. of spikes, but typically 0 < NEL < 20 because of
the sparsity of the bottom row of F.

(b) It is frequently the case that no interchanges are required, even if the
tolerance TOLSWP is 1.0. (This means that the diagonal elements of F
are usually larger than the elements being eliminated from ?.) Perhaps
this explains empirically the practical success of the method of Forrest
and Tomlin on problems that are not severely ill-conditioned.

Because of point (b) we distinguish between the two updating cases.
Type 1. NEL > 0. No interchanges.

The row indices IPIVJ are constant, namely IPIV. The indices ij
are stored in HL(JL+j). Transformation processing in FTRANL and

30

BTRANL can be coded somewhat more efficiently. In particular, a
complete transformation can be skipped in BTRANL if the element
Y(IPIV) in the vector being transformed is sufficiently close to
zero.

Type 2. NEL < 0. Some interchanges occurred.
An interchange associated with E; is recorded by storing HL(JL+j)
negatively. During a forward pass through the Ej, the indices
IPIVj and ij are generated recursively as follows:

for j = 1 until abs(NEL) do

begin
i = HL(JL+]);
if 1 >0 then (IPIVy = IPIV5_4; 15=1)
else (IPIVy = abs(i); ij = IPIV;_,)3
end.

For FTRANL the indices IPIVj and ij are used as soon as they are
generated. However, for BTRANL the indices IPIVj must be stored in a work
vector during the above forward pass, and then used in reverse order.

Given from point (a) above that NEL is typically quite smail, the double
handling of the indices HL(JL+j) does not add up to a significant overhead,
and in a pure-Fortran implementation the overall storage management is
simplified by retaining just the two parallel arrays HL,DL. (In a machine-
coded implementation the efficiency of FTRANL and BTRANL would be readily
improved if the IPIVj for all updates were stored permanently, and the
increase in storage would not be substantial.)

31

;‘
|
§
'g

6.2.2 Storage for U

REAL %8 DU(MAXU) Packed nonzeros for each column of U.
INTEGER%2 HU(MAXU) Corresponding row indices.
INTEGER NU(M2) Number of nonzeros in each column of U.

INTEGER#2 HPIVL(M2) Pivot rows.
Related INTEGERs:

S BT ——h—
A it

MAXU Maximum number of nonzercs curvently allowed for in the
U file. (Reset during each call to INVERT.)

M2 Previously defined.

NETAU Current number of columns in U, including those that

have been deleted.
KDU, KHU, KU See alsc.

The k-th column of U is represented by NU(K), HPIVU(K) and a set of
contiguous entries HU(JU+j), DU(JU+j) for j = 1,2,...,NU(K). Recall from the
definition of U and F that each column of U represents a conventional eta
transformation with pivot element 1.0 (which is therefore not stored).

When U is updated, new colurns are added to the U file in the same
format. If a spike was deleted during the basis change, the corresponding
column of U is flagged by changing the sign of the entry in HPIVU. The
storage for this column is not recovered. If a triangle column was deleted
from the basis, any packed nonzeros in the relevant pivot row are physically
reset to zero.

32

6.2.3 Storage for F

REAL+8 F(NF) The elements of the upper triangular matrix F,
stored column-wise.

Related INTEGERs:

MSPK Maximum number of columns currently allowed for in F.
(Reset during each call to INVERT.
NF Dimension of array F, namely MSPKx(MSPK+1)/2.

| NSPIKE The number of spikes found by P4, Later, the current
number of columns in F {(set in FACTOR and MODLU).

KFF See also.

If NSPIKE = 3 and

-n
]
o o

O O =

o

then array F contains 3«(3+1)/2 = 6 elements, namely 2, 5, 8, 1, 0, 9
in that order.

If a spike is deleted during a basis change, the corresponding row and
column of F are deleted and the storage is recovered.

e e e

33

St b . s e DRTPRp ;
i o o e . .~ e e e OGP b v SR BICRRIY, T

st i e

6.3 Cholesky Factor of the Reduced Hessian

REAL»8 R(NR) The elements of the upper triangular matrix R,
stored column-wise.

Related INTEGERs:

MAXS The maximum number of superbasic variables allowed.

MAXR The dimension of the reduced Hessian factor, R.
1<MAXR <MAXS. If the number of superbasic variables
-exceeds MAXR, the information in R is no longer updated.
An exception is in DELCOL; if the JQ-th column is being
deleted and JQ < MAXR, then R is updated normally, although
R will not be used unless the number of superbasics decreases
to MAXR. (It would probably be preferable to enforce R = I
whenever the latter occurs, and skip any earlier updating in
DELCOL.)

NR The dimension of array R, namely MAXRx(MAXR+1)/2.

Since R is in general a dense triangular matrix, it is stored in
exactly the same manner as the matrix F on the previous page.

P P ORI

7. INVERT STATISTICS

The following items are printed in the Iteration Log whenever the basis
matrix B is re-factorized. The factors L, U and F have been defined in

section 6.2. The constraint matrix array is denoted by A.

Label

FACTORIZE

DEMAND

ITERATION
INFEAS

OBJECTV

SLACKS
LINEAR

NONLINEAR
ELEMS
DENSITY
P4 BUMPS

SPIKES

CORE REQD

Description

Counts the number of factorizations since the start of
the run.

Gives the reason for the present factorization, as
described in section 8. (Variable INVRQ).

The current iteration number.

The number of infeasibilities at the start of the
previous iteration.

If INFEAS > 0, this is the sum of infeasibilities at the
start of the previous iteration.

If INFEAS = 0, this is the value of the correct objective
function after the previous iteration.

Tne number of slack variables in the basis.

The number of basic structural variables that are not
involved in the nonlinear objective.

The number of nonlinear variables currently in the basis.
The number of nonzero matrix coefficients in B.
Percentage nonzero density, 100xELEMS/(MxM).

The number of bumps or blocks found by P4 while permuting

B to block lower triangular form.

The number of spikes tentatively assigned after applying
P3 to each bump (prior to LU factorization).

The number of words of core required for P4 and P3 to
determine the bump/spike structure of B. This will
always be substantially less than the total core required
for the run (since the subsequent LU factorization 3
requires significantly more core).

35

Ty

T

L LIMIT

U LIMIT
LU BUMPS

SPIKES

AlJ ELEMS

L ELEMS

U ELEMS

F ELEMS

The number of nonzeros allowed for in the LU factoriza-
tion and subsequent updates to L.

Similarly for U.

The number of bumps after LU factorization. This will
invariably be the same as P4 BUMPS.

The number of spikes after LU factorization. Column
interchanges may increase the number tentatively assigned
by P3 above.

The number of nonzeros in L that are represented by
pointers into A.
These belong to non-spike (i.e. triangle) columns of the
basis, and will often comprise the bulk of L, unless
there are very many spikes. This mode of storage can be
suppressed by a card reading

IMBED NO
in the SPECS file. The L ELEMS count will then corres-
pondingly increase.

The number of nonzeros stored in the L file. This
includes one for each column that is imbedded in A as
above.

The number of nonzeros stored as packed column vectors
in the U file.

The number of nonzeros in the (dense) triangular matrix
F, followed by the percentage density of F. These
figures are for interest only; they indicate the
efficiency or otherwise of treating F as a dense matrix.

The following statistics refer to the LU factorization of B. They are
printed only if one of the items TRISWAPS, SPKSWP or REJECTED is nonzero.

TRISWAPS

The number of times a triangle column was interchanged
with a spike in the same bump to preserve numerical
stability. The LU SPIKES count usually exceeds P4 SPIKES
by this amount.

36

Al e . 1+ s i e A ARG S 455 SRSV L s Sl S et

SPKSWP The number of times twe spikes in the same bump were
interchanged to preserve numerical stability.

REJECTED The number of variables rejected from the basis and
replaced by suitable slacks. (This seldom occurs, unless
the basis supplied at the start of a run proves to be
singular, or else the current B is very ill-conditioned.)
Any such rejected variables, up to a maximum of 20, are
stored in a list and given priority for reintroduction to

the basis during subsequent calls to PRICE.

MIN PIV RATIO The smallest preassigned pivot ratio encountered and
accepted. (This will always exceed LU ROW TOL.)
For each bump column, the pivot ratio is measured as the
size of the preassigned pivot element in the correspon-
ding column of L, relative to the largest element in the
same column of L and inside the relevant bump (including
the pivot element itself).

TOLS The values just used for LU ROW TOL and LU COL TOL
respectively. (If numerical error is apparent following
LU factorization, the factorization will be repeated
with larger values for these tolerances.)

37

o s e e~

8. INVERT REQUESTS

The variable INVRQ is set in DRIVER and certain other subroutines to
request a call to INVERT. If two such requests occur without an iteration
being performed, an error exit is taken from DRIVER. If INVRQ > 20 an
iteration was beginning but could not be completed.

| INVRQ Set in Meaning
3 % 0 DRIVER Start of run.
E | 1 DRIVER Invert frequency interrupt. Z
2 DRIVER LU file has grown significantly. I
: 3
b 4 MODLU No room to update L. {
: 5 MODLU No room to update U.
: 6 MODLU No room to update F.
3; 7 MODLU New pivot element in F is too small.
8
. ; .
10 DRIVER Row error after row-check interrupt.
11 i
&
i2 :
13
14
15 £
21 DRIVER No workspace in LU file for use by CHUZR.
22 RGITN Linesearch failure.
23
24
25

38 :

9.

condition.
to output the final basis and/or print the final solution.

e e it Bl e s b

ERROR CONDITIONS

The variable IERR is set by many subroutines to indicate an error
Some values cause the run to terminate.

With composite objective, the
incoming variable will not
improve the true objective.

Proceeding, or solution is
Problem is infeasible.
Problem is unbounded.

Too many iterations.
INVERT called twice in a row.
Too many superbasics.

Unable to improve objective
value after repeated attempts.

User's CALCFG requests that the
run be terminated.

CHUZQ failed too often to find a
superbasic to replace a variable
that wants to leave the basis.

Not enough core for P4.
Not encugh core for L.
Not enough core for U.
Not enough core for F.
Wrong number of basic variables.

Not enough core for INSERT.

IERR Set in Meaning
-4
-3
-2
-1 LPITN
0 DRIVER
optimal.
1 DRIVER
2 LPITN,
RGITN
3 DRIVER
4 DRIVER
5 RGITN
6 SETX Row error.
7 RGITN
8 DRIVER,
FUNGRD
9 RGITN
10 INVERT
11 FACTOR
12 FACTOR
13 FACTOR
14 INVERT
15
16
17
18 DRIVER
19 DRIVER

Not encugh core for LOADN.

39

P =

RS

et o e .l

If 1cRR < 10 it is safe

Suggested Remedy |

Check constraint data.
Raise FEASIBILITY TOL.

Add realistic bounds to
variables.

Continue run.

System erroy.
Increase SUPERBASICS.
Scale data better.

Is the nonlinear objective
and gradient well-defined?

Check scaling of the data.

Increase core by a
substantial amount.

System error.

Increase core.
Increase core.

IERR Set in Meaning Suggested Remedy

20 LOADB Incompatible basis map supplied. Check OLD BASIS FILE.

|

21 DRIVER Not eqough core to output Increase core. i

solution. 1

|

22 4

23 |
24
25

In general, error conditions and warnings are brought to the user's
attention by a printed message starting with XXX .

Caution:

The message EXIT -- OPTIMAL SOLUTION FOUND must always be interpreted
in terms of the size of the reduced-gradient vector, particularly if messages
of the form

XXX NO FUNCTION DECREASE.
occur at the end of the run. The final computed solution may or may not be
acceptably close to optimal, depending on the "friendliness" of the nonlinear
objective and the condition of the current basis. The latter message occurs
in RGITN if the linesearch procedure was unable to obtain an improved objec-
tive value, at a time when various tolerances suggest that it should have.
The following information is also printed:

NORM RG = the largest reduced-gradient component amongst superbasics.
NORM PI = a measure of the size of the current m vector.
LAST SB = the column no. of the last superbasic variable. This was

previously nonbasic with reduced-gradient shown.

The recovery action taken by MINOS is to add the most favorable nonbasic
variable to the superbasic set and continue optimization in a larger subspace.
If PRICE finds there are no favorable nonbasics, the solution is accepted as
the best attainable and is declared OPTIMAL.

Broadly speaking, if (NORM RG)/(NORM PI) = 10°9, then the objective

function would probably change in the d-th significant fiqure if optimization

could be continued. The user must decide for himself whether d is
sufficiently large.

40

T TS Lo e e e R Sty ‘ AR s 4 L o s S
e AN el e A s < S i e W i i e A e et

10, SUBROUTINE SPECIFICATIONS

Each of the subroutines in MINOS is documented under the following
headings:
+ Subroutines called and called by
» Purpose
! « Parameters
{ * Method

The Parameters description does not include any variables with the
same name and function as those defined in section 4.

41

|

SUBFOUTIN® ADLCCCI(M,M2,MNN,NE, NP1, NF, NP, NN,N5,KS,MAXL,NAYU,
1 HSPIKE,HA,FE,EPIVL,BPIVY , HPIVE,HB,NL, N,
2 A,F,X,GRD,Y,Y1,XN,C,G1,GNE¥ ,HL . DI ,HU,DI,F,UNIT,J0Q)
Subroutines called: Calied ly:
BTRANU CALCG PTRANL FUNGRD RGITN
GETGED SETPI UNPACK
Purpose:

To construct a mev column for B when the no, of superbasics is beirg
increased by 1, from N<-1 to NS.

Farameters:

INTEGEF Jo {Input) Cclumn no. of variable being added +o
tte set of surerkasics.

LCGICAL UNIT (Input) Specifies if new column of R is to be
a unit vector or nct.

Yethod:

If ONIT = TROE, the unit vector ¢ {NS) will be used. This is the casa
i€ MUITIPLE PRICEing is invcked.

If UNIT = FALSE, an attempt will be made o0 estimate curvature in the
revw sutspace by finite-differsrcing the gradient vector alonag the new
coluen of Z (the null space ma‘*rix). See Murtaach and Saurnders (1978),
section 3.,3.4.

Tf the off-diagonal elements cf *te naw cclurn shos signs of being
extremely big or small, further work is avoided and th~ unit voctor
e (NS) is used instead. 1If the rew diaqcnal element rproves to ba
significaprtly larger cr sralier ¢than the ncrm of E, again a unit
vector is used and the wcrk required *o estimate the new column is
wasted. The aim hera is to avoid constructing a naw F that is
significantly more ill-conditioned tian the rrevious R.

SUBFOUTINE ALIGN(N,NS,HE,BL,BU,X,Y,THETAS,NALIGN,TSPECL)

Subrcutines called: Called bhy:
DOT1 RGITN
Purpose:

To scale the search directior for supertasics so that if several are
about to reach a bound *hen all of them do so sirultancously.

Parameters:

INTECER*2 HB(NS) (Ingut) Ccluar nos. of surperbasics (only).
INTEGFR NALIGN (Cutput) Nc. of variatles finally aligned.
REAL*S THETAS (NS) hworksrace to store steps to reach bounds.
RFAL*8 TSPECL (Cutput) PFiral ster size, 1f NALIGNDO.
REAL*8 X (NS) (Input) Values of sugerltasics (crly).
REAL*8 Y INS) {Input) Search direction for superbasics.
Methcd:

Q

Classify each supartasic variakle X (j) as "normal®™ cr ‘"srecial”
as follcwus, If thke scarch direction Y (j) 15 larger than scne
tclerance 2TCLY, and if +thke distance +*o the relevant bound
(Gepending on the =ign c¢f VY(§)) is less thar scme tolarance ZTCLY,
then X (j) 1is special, otherwise normal.

Ccmpute TNORML (cor TSFECYL), the step that wmakes ¢the first
normal (or special) wvariable hit its bound. Store steps for all
special variables in array TFFIAS.

If the first supertasic to rcach a becund is special (i.e., if
TSPECL <= TNORML), scale dcwn the cozponants Y(j) for special
variablaes so that all sgecial variables will reach thzir bounds {f
a step TSPECL 1s taken along the mcdified search direction. (A
tasic variatle way reach a tourd earlier, in which case ¢ta
alignmen*t will have been tc no avail.)

SUBBQUTINE BTRANL(M,M2,NE,NP%,MAXL, HA, HE,R,HPIVL,NL,HL,DL,HW,Y)

Subroutines called: Called t7:

Nchne CHUZQ FACTOR

Purgcse:

To sclve the system I (transpose)*x = y, where both v and y are
stored in the parameter Y. This is the 2nd rart of & conventioral
"ETRAN" operation.

Parameters:

INTEGER#2 HRW (M) A vork vector required to re=generate the
sequence of =row interchanges that occurred
during each update tc the LU factors. (Not
reguired during INVEERT).

Method:

The reverse of FTRANL. Updatecs are treated ¢first, fcilowved ry <*he
transformations constructed ty FACTIOR.

Treatment of the update transfcrwations is rather complex becausa just
orne integer is stored per pcnzerc, rather than twc, and a forw:rd pass
“hrough the integers irn each transformaticn is reguired *o rejenerate
the second set,

Puring INVERT, orly a rpartial sweep through the normsal column
transformaticns is needed. The variable LEGN allows the ‘tackward
sweepr tc stop at the teginning of the current bump, It is reset *o
point to the beginning of 1 refore exit from FACTOCR.

s e s = B

SUBRCUTINE BTEFANO(®,MZ,NF, MAXU,HEIVU,VPIVY,NU,HO,DU,F,Y)

Subrcutines called: Called ty:
None ADCCIOL LPITN RGITHN <ETX
Purgose:

To soclve the system U*x = y, where both x and vy are storel in the
paraseter Y. This is the 2nd part of a conventional "™FTRAN®
operation,

Method:

Normal column=-wise back-sutstituticn, with each column of U and P
being treated as a column of the full matrix "U". Columns are
processed backwards. If a ccmputed cosponent of x is r=sentially
zero, the corresponding cclumrns cf U and ¥ can be skipped.

SUBFCUTINZ BUMPS(N,N1,NZ,IF,IBN,CUTF,NUMB,B,LOWL,PREV,NBLK)

Subroutines called: Called by:
None 1
Purgose: ’
] Given the rov numbers of the ncnzeros in each column of a square
, i sparse matrix A, “his routine finds a permntation P such that P'AP
is tlock uppar triangular.
: Parameters:
: INTEGER N (Irput) Dimencion of the matrix.
3 INTEGEP N1 (Input) N+,
INTEGER NZ (Infut) No. of ncnzeros in the matrix.
INTEGER*2 IP(N1) (Inrut) Pcints to the first nonzerc in each
calurn,
INTEGER#*2 1IRN(N?Z) ({Input) List of rew numhers for monzeros.
E TNTEGER#*2 OQUTE(N) Werk vector.
INTEGER#*2 NOME(N) f{Cutput) NUMB{K) will contain the perrmuted
pcsition of coclumrn K.
] TRTEGER*2 E(N) (Output) B(I) will contain the row no. in the
E permuted matrix of the rteainmning of the I~th
tlecck.
TESER#*2 LOWL (N) Work vector.
; {TEGCE*2 TFRBVL (N) Wecrk vector.
E I «TEGER NBLK (Cutput) WNo. of blocks found (ibcludirj ores of
dimension 1). 4
I~ thod:

Saee F, Tarjan, SIAM J. Ccmputira (1972), 1, rp. 146=160.

Sibroutine BUOMPS is derived directly from Harvell subroutine MT13A by
J.¥. PReid (197%). (MC13A has sinca been replaced in the Harwvell
fabroutine Library ty »C13C:; see 1.S. Duff and J.K. Feid, "An
: fsolementation of Tartan's algorithm for the hlock triangularization
‘ ¢~ a matrix, Report No. CSS 29, Harwell, April 1976).

Fote: It is assumed that the matrix A has already beem permuted to
have ncazeros on {ts diagcnal, Sec the tramsversal finder, subroutine
TRNSVL.

SUBFCUTINE CALCFG(MODE,N,X,P,G,NSTATE,NEROR)

Subroutines called: Called by:
None FUNGRD
Purpose:

To evaluate a user's particular nonlinear objective function f(x) and
its gradient vector g(x) at a given pecint «x.
Parareters:

The required form for this sutroutine is docurented in the MINGS
User's Guide, section III.3.

g
k
i
i
i
¥
i
5
s

SUBBCUTIMNE CALCG(M,NF,NP1,NS,¥S,HA,H3,HF,A,PI,3ED,G,RGNOEN)

Subrcutines called: Called by:
¥one ADDCCL DRIVEE ERGITN
Purpose:

To calculata the reduced gradient vector G €for +th=

current sct of
supertasic variatles,

Tarameters:

REAL*8 GRD (MS) (Ingput) Ccntaine the currert gradient vactor for
supertasics in gpositions M+1, ..., M#NS.

EEAL*8 RGNORM (Output) Feturns the norm of the reduced
gradient vector. This {s taker to he *he
largest element ¢f G in absolute size.

¥ethod:

The J=-th ccmponent cf the reduced gradient is

G(J) = GRD(M+J) - PI*A (J)

where A(J) is the corresgcrding cclumn of A.

A ———————

s SO ST T

SNBFQUTINE CHKLIF(N,BL,FU,X,C,NFEAS)

Subrcutines called: Called by:

None CHEKGRD

Purgcse:

CHKGRD is about to use direction D for forward differercing +he
nonlinear objective functicn, starting from the first feasi!le pcint
X. This routina checks that D is a feasitle direction, and n- t{ifies D
if necessary.

Paramaters:

INTEGPE N (Input) Will be NN, the nro. of nonlinear vars.

REAL BL(N) (Inprut) Lower tcunds for the ncnlinqar vars.

REAL BU (N) (Input) Ugper tcunds for the nonlinez:r vars.

REAL*8 X (N) (Tnput) Will be YN, the norlinear variables.

RERL*8 L (N) (In,out) The directiorn to te checkad.

TNTEGER NFEAS (Cutprut) The no. of feasible componeuts in the
(possibly mcdified) vector D.

Method:

If variable X(J) is fixed (BI(J) = EU(J)), D(J) is set to zero and
NFEAS is no¢t 4incremented. Otherwise, D(J) 1is left unaltered or
perhaps is reversad in sian, and NFFAS is incremernted.

SUEFOCTINE CHKGRD¢ N ,BL,.BY,%.G,YFATL,A,B,C,TPSMCH)

R T T T W TN T T T T s e

Subrcutines called: Callizd by:
CALCFG CHKDIR DOT CFIVEF
Purgcse:

Toc verify to some extent that the user has «cerrectly programmecd the
gradient of the objective function in subroutine CALCPG.

E | Parametars:

INTEGER N (Input) Will be NK, ¢he no. of ngnlinear vars.
: REAL BL (W) (Input) Lcver bocunds for the rncrlinzer vars,
- FZAL BU (N) (Typrut) Upper kcunds for the nonlinear vars.
REAL*8 X (N) (Input) Will be N, the ronlinear variables.
REAL#*3 G(N) {(Tnput) Will be C, the agradient at th= first
1 feasilkle pcint,
INTEGER IPAIL (Output) Will be zero if the gradients lock CK,

2 if they don't, or B if the us<r sets MODE ¢o
a negative number in subroutine CRITFG, +to
terecinate the run.

FEAL=*8 A (N) work vector for 1st differencs directicn,

HEAL*S B (W) Work vector for 2ad difference cirecticzcn,

PEAL®*8 C (N) Work vectcr tc hcld gradients at X+H®*A, Y+H=*B,
Ccontents not used.

I ZAL*8 EBSMCH (Input) Machine precision,

P 2+thed:

Thitg routine was taken directly from subroutine CYKGRD bLv Gill,
¥urray, Picken and Barber. Sees Lecudant no. F4/05,/0/2/11/75, DNRC,
Faticnal Fhysical Laboratory.

S'iaht changes were rade, e.g9. tc make sure A and B were fea=ible
é¢irecticns,

50

SUBFQUTINE CG(NS,G,CNEW,[,TEETA)

Subrcutines called: Called by:
DCT DOT1 PGITN
Purpcse:
To compute a search directicn for supertasics, asing crne cf several
confjugate gradient methods fcr unccnstrained minimization.

|

i Parameters:
REAL*8 G (NS) (Input) Reduced gradisnt at prezvious stap.
REAL%8 GNEW (NS) (Input) FKeduced gradient at current s*en,
REAL*S D{NS) Cr ingut, the previous search direction for

surertasics.,
Cn output, +ha new search direcrion for
supertasics.

REAL#*8 THETA {Infut) The step moved dnring the previous itn
along the (0ld) search direction D.

Methcd:
1. Use MSGCG to print 2 message if this is the first entry tc (G,

2. Use ITNCG to determine if NS consecu ive iterations hive heen
performed since the last restart. 1If so, request a restar--.

3. Use “IODCG to Adetarmine which version of CG has heen raquesrted,

U. Most methods (Fletcher-Raeves, Polak-kibiere, Perry) ccmpute tha
new D according to
F{(J) = -GNEW(J) ¢ CGRETA*D(J)
fcr some scalar CGEETA. Mesoryless LPF, COMDFP, etc. add a ternm
GAMMA* (GNEW (J) = G (J))
fcr some scalar GAMKA.

Note: CG is called frcm RGITN at the end of an iteration, bu+ only if
that iteration was unccnstrained. Th2 required search direction D is
then still available for use during the next call +o PGITN. “c+te that
in BRGITN, D resides in Y (M+1), ..., 1 (M+NS). This is overwri-ten if
the ensuing step is ccnstrained.

51

. : e NSNS A A 5 TGS ot e A DRI SR SN 55ar 2 e LB el SORSESEISES FR L SR B y
T D

i SUBRFOUTIN® CHUZQ(¥,N,NE,NF1,MS,
; 1 HA,HB,HE,A,PL,BU,X,Y,J0,PIVCT,VAFHMET)

{ Subrcutines callad: Called bhy:
| |
| FPTRANU BTRANL FGITN 3
1
g
' Purgcse. i
|
% When the JP-th variable leaves the fkasis, this routine select:c ope of
E ! the supertasic variakbtles to rerlacz it. The primary aim is to keep k
] the basis well-conditicned. where possible the <choice 1s tiased f

tovards a superbasic that is away from its bcunds, in the hopz that it
will be less likely to leave the Frasis during sabsequent iterations.

Farareters: A
REAL*8 Y (MS) The first ¥ conmponents of Y contain +he JP=th g
tcw cf B inverse. On output, Y ('+1, ..., I
Y (¥M+N3) will ccrntain a vactor v requirad 4
later bty RK1PEOD, { 12
INTEGER Jo (Output) wWill pcint to the chosen superbasic. 3
P < JC <= MeNS, - 18
4 REAL=*8 PIVOT {Output) The value of Y'#2(K) for the chosen §
] cclumn, K = ER(JQ). :
CGICAL VARMET (Infut) Used tc skip computing v if i+t is no*
goirg tc te used later. 3
: i<thod:

ks described in Mnrtagh ard Saunders (1978), section 3.3.2.

T

(P~

SURROUTINE CHUZR(¥,N,HP,PL,BU,X,Y,ATEND,DJO,TOLY,TOLPIV,THE, 4,JdP,

1 RTHETR ,TAU,MPT,MRI,TEMAX)
Subroutines called: Called hty:
Yone IPITN GRGITN

Purgcse:

To choose an index JP and a step size THETA > 0.0, such that variabla
HZ (JE) reaches one cf its tcunds when X changes to ¥ =~ THETA*Y, If X
is feasible, HB (JP) will be the first variable to reach a boun:, If X
is infeasible, JP is chcsen tc minimize tho sun of infeasitilities
withcut regard to the numter (which may increase).

Parameters:

INTEGER M (Input) This will really vpe 4+1 when CHU7E is
called frcm LPITN., (The variabla ent.riiqg the I8
tasis will be in position M+!', and Y(L+1} will f
ke 1.0,) It will be HK+i3S when called from
RGITN, and the last NS values of Y will 1+ the
searchk directicn fcr supertasics.

REAL®*S Y (M) {Infut) The search diraction,

LOGICAL ATBND (Input) TRUYUE fer LPITN if variable entaring

tasis is currertly at i*s upper hcurd. In
>ffect, AIFNT causes =Y to be used in :lac>y of
Y in the usual ratio test. 1In general, ATPND

shculd therefore be TFUE if ¥ is baing clang-i
to X ¢ TEETA*Y.
RFAL*3 DJQ (Ingut) This is used only i€ the curiren*t £ s

infeasitle., It is the slops of the ypi.c. -~wise
linear gqraph c¢f the sur of infeasibiliti=s
vérsus THETA. Mcra generally, it shoald bo
g'r, the wusual innerprcduct of the ! rective
gradient with the search direction, p=v.

For LFITN, this is the reduced gradient of the
inceming variakle,

For FGITIN, it is
g'p q' (Z2q)
(a'Z) *q
(g'Z2)*(-2'q)
- 11 Z'9 1) (squared)
i R R (squared)
where G ccntairs the reducsd gradient, 7'qg;

wonon WM

q is the part cf p for supertasics,
namely th: negativ- reduced «ridien*;:

and Z is the null-space ratrix,

REAL*SH TCLX (Iinput) Feasibility tolerance,

PFrL*8 TCLPIV (Input) A component of Y will be treat=-d =as
zerc if swallar than this *clerance,

REAL*R TEETA (Cutput) The chcsen step size.

INTEGEPR JP {(Cutput) T}rs chosen irdoax.

93

4 AN SR 351 S e e e T

INTEGER*2 MPT (IFMAX) (kcrkspace) MHclds poinrers to maintain 2 linked
list in the parallel arrays MRI, PTHFTA and
TAU, The list is ordered according ¢o
increasing values cf TAU, starting from ¢tha
negative value, =ars(LJY).

INTEGER*2 MRI (IEMAY) (Workspaca) llolds pivot rows corresponiirg +o
the sters ir RTHETA.

REAL*8 RTHETA (TEMAY)
(workspace) Holds list cof step-sizes, THEITA.
REAL*8 TAU (IEMAX) (Workspace) Hclds list of =slopes. LU (I) is
the slore after a ster RTHETA(I) is taken.
INTEGER IEMAX (Input) The saximur length allcwad for the

linked 1list. Storage for the 4 above arravs
ccees frem unused space in the LU file arnd
therefore vargies lotween calls to CHUZPR., 1%
will alwayvs be at least 5 (otherwis- INVERT
wil) te called).

Method:

The following two methods, as implemented by Johr Tcmlin, November
1675:

* If feasible, Paula Harris's two-pass method for taking
advantage of near ties.

* If infeasible, Dennis Rarick's one-rass method for minimizing
the sum of infeasitilities.

Harris

The aim here is to take advantage cf the 1likelihood that several
variablas may reach a hourd almost simultaneously whern the final step
THETA is taken. (This is especially protatle orn d=generate stens,
i.e., when TEETA = 0.C) The method does nct expect to firnd exact ti=s
but instead lcoks for near ties, which are considerably more frequent
arnd mean much the same in prractice, since the vertices of a simplex
are in scme sense "fuzzy", at least tc the extent of the uncertainty
in the original data.

1. (First pass) Compute a guantity FSI such that at least one variable
wculd overshoot its bound by an amount PERTBN if a step TSI were
taken. Since FORMC regards variables as being feasibl: orly to
within a tolerarce TCLX, we won't mind if certain new variables go
outside their ‘toumds by a similar amount. PEFTBN can thrrefore,
with safety, be as larga as TCLX. Thinking further along these
lines, observe “hat +the actual step THETA that is finally taken
will be strictly less than FSI, Hence it is OK to allow PEFfITEN *o
be slightly larger ¢ttan TCLlX. We take the value 1,1%¥T31¥, More
thir¥ing required to decide what the maximum value should really
be. (Actually, ¢the real reason for taking PERT3N > TOLX 1s simply
cn rrinciple, to avecid getting a zerc numerator in +¢he ratios
dafining PSI.)

2. (Second pass) Now go thrcugh ccmputirg the usual ratios, this time
without perturtation. Skip any that are larger than PSI. Nf the
remainder, f€ind ¢the c¢na for which ¢the pivot element Y(J) is

54

largest.

% Rarick

A full description will nct te attemptcd here. Briefly, the method
would be conceptually sisgple if all the TH®TA's were computed and
sorted into ascending order. Rarick showed ttat with the aid of a
linked 1list the sortirq can be avcided and evarything can be Adona
during a single pass thrcugh X and Y.

e A ——.

For further details, see Johnp 1Tcmlin.

SUBROUTINE COMDFP(B,Y,G,NR,N,THETA,YTP,GTP,KADD,KSUB)

Subroutines callead: Called by:
R1MOD EGITN
Purgcse:

To irplement the "Complementary DFP™ or "BFGS" quasi-Newton update to
a given Hessian approximaticn, stored in factorized foram as k'F, thus:

(new R'R) = (cld R'R) + c1 yy' ¢+ c2qggq"’
vhere

g = new reduced qradient

Yy =9 - (old g)
p = search directicn
cl = 1/(THETA*y'p)
c2 = 1/q9'p.
Parameters:
REAL*8 THETA (Input) The step just taken along direction p.
REAL#*8 TP (Input) y'fp.
REAL*8 GTP (Input) gq'p.
INTEGER KADD (Output) Prror flag for adding the rank-1
vatrix, cl1 yy'.
INTEGER KSUPR (Cutput) Errcr flag €cr subtracting the rank=1
matrix, c2 qg°.
Method:

Call R1MOD twice with appropriate parameters.

B S S S

ek

[P e T e N0

—~——— TR Y

& ——

i

2'

3.

S.

SUBROUTINE CRASH(M,MN,N,NE,NP1,NN,NNO NS,
1 HA,HB ,HE,HS ,HEIVL ,R,Bl,BU, X, XN)

Subrcutines called: Callad by:
None DRIVEF
Purpose:

Tc select M vectors from A inm & way ¢that will produce a lowver
} triangular, nomsingular tasis B. Three options are isplemented,
acccerding to the value cf IPARM(1).

IPAEM(Y) Meaning
0 Set up the all slack tasis.
1 Scan all cclumns cf A.
2 Scan only these cclumns of A corrasponding to

linear variatles.

Parameters:

INTBEGER#*2 HS (N) {Output) Will define chosen basis,

INTEGER%®Z HPIVL (M) work vector to record state of rowus.

Method:

1. Initialize state vectcr HS(j) so variables are nonbasic at their

srallest bound.

If NS>0, make relevant norlinear variatles superbasic, as cspecified
by the INITIAL bcunds se€t.

Look at the values given to nonlinear variables during inpu+t of the
ISITIAL bounds set. Set nonbasic nonlinears at the bound nearest
to the values in XN, ir case the LO or UP state specifi:d during
irput is opposite tc the default in 1 above,

Proceed to construct a triangular tasis. The array HEIVL will have
tha following interpretatior:

HPIVL (i) Label Meaning
k>0 Fivoted Bow i has been assigned as the pivot row
for cclusn K.
-1 Marked Row i occurred in som2 previous column

but has not yet teen assigned as a pivot
rov (i.e. has not bteen labellad : ‘ivoted).
0 Virgin Row §{ has nct yet occcurred im any chosen
coluen.
Naturally, all rows start out labelled Virgin.

First, make any free logicals basic.

57

8.

Now du two passes of the following, first onp free structurals only,
then on all structurala. (This gate tice rtruycturals {ntro th
Pausis first, subiect of coursa to the tasis sraying tciangnlar, 7T-
is quite pomsitla that soso firee variables will u+il1ll he nonrasic
After CRASH.)

(a) For any given cclumn, find

AIMAX theé biygest elasant {n the whole colusu;
AFIV (Y1) the Flagest element in Marked rowvs;
APIV (2) the tigqgest elemant in Vvirqin rows;
NPIV tte no. of Pivotad rcws in this colusmn.

The rows corresronding to APIV (i) are ¢the "hest" VMarkad arnd
Virgin rows respectively.

() Select a potential pivot row, If possible, take the best
virgin row. If none, and if NPTV=0, choose the hecr Marked
rov, Otherwise, skip the column altogether.

(c) TOLPR is some relative pivct tolerance, e.g. 0.0, Tc prevent
getting a tadly conditioned Lasis, skip the coluun if the
chosen pivot elemant (APIV (1) or APIV(2)) 1is smali=r <+han
TCIPE*ATNMAX.

(d) Otherwvise, latel the chosen row as Fivoted, set the state of
the column to be tasic, and label any remaining Virgir rows in
the column as Marked.

Pinally, €411 up the tasis with the logicals orn any rows <that did
not get labelled as Fivoted.

st e R ol BB i i . : : D e s

SUBFOUTINE DELCCL(M,NE,NS,MS,HB,F,X,JC,DELETR)

Subroutines called: Called ty:
None INVERT RGITN SQUEEZ
Purgcse:

To perform housekeeping when tte J0-th supertasic variable is daleted.
This may include deletirg the JQ=th cclumn of R and restoring R to
upper triangular form.

B
'
[
1]
|2
1y
11
¥
4
£
£
s
¥
H
¥
|
£
§
14
£
‘3
i1
F
1

Parameters:

INTEGEF JQ (Infut) <The position cf the superbasic being
deleted.

LCGICAL DELETR {Input) TRUE if gquasi=Newton or conjugate-
gradient methods are in effect. FALSE if
infeasiktle or prcblem is linear.

' Method:

Perfcrm a partial forward sweep of plane rotatiors, affecting the last
rovs and columns of R. Also, move cclupns JO+1, ..., NS of R one

place to the left. Adjust arrays HB and X similacly. Decr2ase NS by
1.

o b ~ o - 3 0o aiy
S abayes - s R A $ anekir

; SUBFOUTINE DOT(N,V¥,%,5)

Subrcutines called: Called by:

None CG CHKGRD SEARCH

Purpose:

To compute the inner groduct £ = V'*w for the two N-vectors
vV and W,

A v i)
it

Paraseters:
REAL48 vV (N} (Input)

BREAL*S W (N) (Input)
REAL®*S) {Cutput)

SUBRCUTINE DOT1{ N,V,S)

Subroutines called: Called by:
None ALIGN <CG RGITN
Purgpose:

To compute the sum of squares S = V'*V for the N=vector V.

Paraseters:

REAL*8 V (N) (Input)
REAL*8 S iCutput)

SUBBOUTINE CRIVEBR(Z,MAXZ,IFSCLN,
¥»,M2,8N,KNN,E,NE,NE1,NR,NN ,NNO,MARYS,NS,
HSPIKE.EE,HA,A,EI1,RU,ED, XN,
HS,HPIVL,HPIVU,HPIVE,

NL,NU,d,C,X,EI,
GRD,Y,Y1,61,6,GNEW }

VN E W -

Subrcutines called: Called bhy:

CALCGC CHKGRD CRASH DUMEN MINOS
PCRMC TFUNGED GETGRLT INSERT

INVERT ITEROP LOALB 1ICALN

LPITN MCOLCLU PRICE EUNCH

RESETR RGITN SAVEB SETEI

SETX SOLN STATE UNPACK

Purgcse:

To invoke all necessary algorithmic routires for solving a problen,
onca i* has been input. 1his includes satting up a starting basis,
calling INVERT™ when required, switching hetween simpiex and
non-simplex iterations, <checking that tolerances are tight enough *o
declare optimality, caving tasis files, and cutputtiang the solutiorn.
Much cf ¢the complexity cf the code has to do with setting “he Phase
parame+ar NPHS, which can take the fcllowing values:

NEHS Mearing

1 Ordinary Phase 1 simplex method (solution fufeasible).
Any supertasics will be ignored by PRICE.

2 Ordinary Phase 2 simplex method (sclution feasible).
Again, any supertasics will ke ignored by PRICE,

3 Non-simplex iteration, (feasible or infeasible), including
a PRICE operaticn to select additional supertasics.

4 Non-sinmplex iteraticn, (teasiktle or infeasible), operating
on the current tasics and supertasics, without a call to
PRICP,

Using NXTPHS, subroutine RGITN suggests a value for NPHS for the next*
iteration, btut PORMC may override, e€.g. after INVERT,

All arrays required have already been allocated and are paramecters to
DRIVER, except for those allccated by INVERT for the LU file, namely
HI, CL, HU, DU and F,

It is conceivable that CRIVER could te used as a subroutins within
some different environment, bhut enormous care would be rcquired ¢o
ensur2 that the varicus arrays and labelled COMMON areas were s<t up
correctly, im the way that is presently accomplisihed by INITLZ, SPECS,
SPPCSZ and MPSIN.

Parameters:

T e i ottt o] s s e 1)¢ el L e e st it S e el s I .

REAL#*8 Z (MAXZ) {In,cut) The array of core. INVEET must be
frea tc use core from Z(KZ21) up (temporarily,
while factorizing thc basis), and from Z(KZ3)
up thereafter (for the LU file), where KZ1, K73
are proset variables in COMMON /CORE /. of
course, all the array parameters c¢f DRIVER also
reside in 2 in the current igplementation of
MINOS5, but that is not necessary as far as
LEIVEE 45 concerned, and need not be true in
scra ctler envircnment. For example, KZ1 and
X2? <could both be 1.

On output, the solution vector begins at
Z{KZ1), This is a vector of dirension N, and
contains values for structurals, EHS, and
Jogicals, in that order.

INTEGER IPSOLN {Input) Showld te positive if the soclution |is

tc re output tsing the standard output routine,
SCL¥. Should be zero othervise (e.g. 1if the
ucer wishes to do further computation on the
gclution) .

INTEGERS M,M2,MN,MNN, N, N2, NP1 HR,NN,NNO MAXS,NS are all input.

Arrays HE,HA,A,BL,EU, HE, XU are all ingut.
Arrays HSPIK®,HS,BEIVL, HVYIVU,EPIVF,NL,NU,R,C,
X,PI,GRD,Y,¥1,G1,G,CGNEWU provide workspace.

Parameters M, M2, N, MNN,N,VE, NDY,NR, NN ,NNO,NAXS,
HE,BA,A,BL,EN will be unchanged.

Most othar parameters wmay beée used as output, depending on the

application,

Methcd:

1. Initialize numerocus scalar quantities. This includes setting the
tolerances XTOL (1), PTCL(1), GTOL(1) to their "loose"” values, as
indicated by 1VLTC1l=2,

2. Select a starting tasis, with the following order of preferance:
OLD BIT MAP, INSERT FTIiE, LCAD FILE, CRASY.

3. Call INVERT to factcrize inftial basis.

4. (Main loop)
(a) Call FORMC to test {casibility and set NPHS.

(t) Call CHXGRD if first feasirle point has just been found.

(c) Call RESETR if the Hessian is abcut to be used for the first

time.
(d) If MPHS>2 and feasibla, call GBTGRLC to get an appropriate rhs 3
fcr computing pI. .
(e) Call SETPI, unless PT has already been computel. .
62

v

Se

(f) If NPHS>»2 and NS>0, call CALCG to ccmpute the reduced gradient,

(g) If MNPHS<4, «call PFRICE to select one or more additional
superktasics.

(h) Skip to S if PRICE found ncthing, Otherwise, reset XTOL(1),
etc, to their "lcose" values, ir case thev have beer tightened
up by a previous skip tc 5. (Since PFPICE found a wvariable ¢to
release freom its ltound, we were wrcng in thinking eatlier that
the final set cf active constraints had been dztermired.)

(i) If NPHS<=Zz, call LPITN,

(§) I1f wPHS>=3, call EGITN. On exit, if NXTPHS=0, FGITK will not
have performed an iteraticn after all, but wants to try again
with NPHS=3 (fcllcwing a PRICE)}.

(k) siepilarly, a iteration could not be performed if IERR=-~1 (WTORJ
rust be reduced) cr if INVEQ>=20 (must call INVERT).

(1) Ctherwise, an iteration has been successfully completed. Call
ITERQP to outrut a line of Iteration log.

(n) Test for various fregquency conditions and/or sexcessive growth
of the 11U file. Save hasis and/cr call INVERT if necessary.
Call MODLY if reguested, to wupdate basis factors. Check
residvals every KCEK iteraticns.,

(Apparently optimal)

PRICE foumd nc favoratle candidate. 1If infeasible, make sure that

WTIOBJ is gzero; if feasitle, check that tolarances XTOL (1), etc. are

at their "tight"™ values (LVLTIOL=3). If so, we're probacvly domne;

check residuvals conz last tire before terminating., Otherwise, reset

all relevant rarameteéers and repeat from U.

(Exit)

(a) Save basis map.

(b) Call PUNGRD one last time, if wanted.

(c) Set up solution vector in Z (RZ1), ..., using entry 1 of SCLN.

(d) Save PUNCH and/cr DUME files.

(e) Output solution tc printer using entry 2 of SOLN (unless not
wvanted) .

(£) Output SOIUTICN PILF if required.

SUBROUTINE DUMEN(M,N,KRH4S,AS,EL,BU,Y,ID1,ID2)

Subroutines called: Called by:
None CRIVEPR
Purpcse:

To output a basis descrigtion ¢to file IDUMP. One card image
containing KEY, NAME and VAIUE is output for each variable, except
for ncnbasic variatles that are fixed cr at a zero bound. Logicals
are treated the same as structurals. It is intended that a DUNP file
be easy tc w®modify when necessary (that is, scmewhat casier than a
PUNCE file).

Warning: Nonbasic variables that are fixed or at a zero bound will not
be output. If the file is used as a LOAD file for a modified problenm,
it may be necessary to arrend LL, UL or SB cards spacifying the state
of such variables exrlicitly, if their tounds are relaxed. Otherwisa,
the initial solution ottained may be slightly different (and in scme
cases pay be sericusly infeasitle)., Sirilar rroblems arise with PUNCH
files, but they can he overccme in both cases with a little care.

Farapeters:

REAL*8 Y (K) (Input) Contains sclution values for all
variables (structurals and logicals).

INTEGER IC1(M) Work vector to hcld left part cf row rnames.

INTEGEK ID2 (M) Rcrk vector to hcld right part of row names.

Methcd:

1. Read rov names frce the scratch file in%*o ID1, ID2.

2. Procsss each variable in turn. Scme monkeying around is necessary
because structurals are output before logicals. For each variable
Jdy if J<=KRAS then the relevant column name is to be read from the
scratch file, othervwise the lcgical name is already in ID1, ID2,

3. Skip nonbasics that are at zero bounds or are fixed. Otherwise, use
the state vector HS tc index the local array KEY to get the correct
indicator, then cutput it with the Name and value.

U, Frint message to indicate succaessful DUME.

SUBROUTINE FACTOF(M,M2,N,NE,NP1,NF,MAXL,MAXU,

1 HSPIKE,HA,HR ,HE,HS ,HPIV]I ,HPIVO,HEIVF,NL,NU,
2 A,El,BUO,HPIVR, HPIVI X,Y,Y1,
3 HL,DL,HU,DU,F,
4 TPIVR,TPIVC,TMIN,NSWAF1 ,NSWAP2,NBELEM ,KDONE)
; Subroutines called: Called by:
BTRANL FTRANL PACKLU UNPACK INVEET
Purgcse:

To compute an LU factorization of the basis matrix B, as specified by
the 1list of coluan nuaters in HFIVU, Arrays HSPIKE, HPIVR arnd HPIVI
are assumed to be set cvp as descriked telow,

Parameters:

INTEGER*2 HSPIKE (M) (Input) Codes Ltump and spike structure as
described in sutroutine P4.

INKTEGER*2 HPIVU (M2) {Input) First M comporents are ccluen nos. in
the preassigned order from P4,

INTEGER*2 HPIVR (M) (Input) The <corresponding preassigned pivot
Icwus,

INTEGEFR#*2 HPIVI (M) (Input) The inverse of HPIVEK, used to tast if a
given rcw lies uwithin a given buamg.

REAL#*3 X (M) work vector for holding a row of L inverse,

REAL#8 Y (M) Work vector fcr Fonldirng transformed columrns.

REAL*8 YV (M) Work vector for holding pivot elements of
alterrative sgikes.

BEAL*8 TPIVR (Input) Row tclerance. Before cclumn
interchanges are invcked, a preassiqgned pivot
element is tested to maka sure it ic within
TEIVR of the bigaest remaining unpivoted
element in the <current rump.

REAL#*8 TPIVC Ingut) Coluan tolerance, If several
spikes are available for column svapping,

the one finally chosen must have a pivot
element within TIEIVC of the largest.

RFAL#*8 THIN (Output) The smallest row rivot ratio that was
ercountered during +he factorization. If the
factorization has to be doune again for
numerical reasons, TPIVkK aust be made bigger
than TMIN cr no improvesent will occur.

INTEGER NSWAP1 (Output) The no. of times a triangle ccluan was
svwapped with a spike.

INTEGEF NSWAP2 {Cutput} The no. of times a spike was swapped
vwith scae other spike.

INTEGE?® NBELEM (Cutput) The no., of elements of L that have

been imbedded directly in A (those in non-
spike columns if IMBED = TRUE, otherwise 0),
INTEGEP KDONE (Output) A counter to save wcrk if the LW
factorization has to be redone for storage
{rather than numerical) reasoms. The e&xisting
tovw and column eordering will be retained up to
the rcint KDCNE, which was where the rprevious

65

T A T e R T e

factorizaticn got interrupted.

Method:

Gauscian elimipation, with <column interchanges where necessary +o
preserve numerical stabtility. Interchanges can safely be restri-ted
to each bump separately. (- necessary, scme cclumns may be rejectad

from B and replaced by suitaiis unit vectagrs,

For K = 1, eeey M, the E—-th <column is treated according to the
follcwing steps.

1. Determine if K lies withi. the current bump boundaries, thus:
IBGN <= K <= YEND. If not, use the bump and spike information in
HSPIKE tc reset IBCN and IEHND,

2. The X=th dasis column corrocpondg to variable J = HPIVU(K), and is
suprosed ¢to pivet aon tow IBIV = HPIVR(K). Skip the column
irmediately if J is & siach tivoting on its cwn row. Otherwise,

HSPIKE {(K) is pegative if{ the cclamn is a spike.

3. (¥on-gpike) The column will become part of L directly, unless its
pivot alemant is tco swall. A cartals “row test"™ must now be
applied. Use HEBIV® «o £ ud ™MAY, the largest of those elements in
the column that lie inside the current tump, in rows that have not
yet Dbeen pivected on. “he ccluman fails the rcw test if its pivot

elament is swallar tha=n (0. 77 ¢(an absclute test), cr TPIVR*TMAX (a
relative test); in such cas2s, skip tc S. Otherwise, copy column

d iprto the L-file (if IMnilL =~ FALSE), cr set up a pointer to the
colusn within the ccrs+raint aatrix A. Then repeat from 1.

¥ote: the relative rows test is uot applied if wo previously had
¢rouble with the bk-th celows, The present column has already been
determined ¢o0 ba thoe Yzus¢ Sa*ivryte available, and GIVEOP has been
set to TFUE to siqgnify this fact.

4. (Spike) Unvack ccoloen J o < “rznsform i+ by that part of the L file

belonging te the curren?t tump (uwith the help of variables LBGN and
JiBGN <+¢hat are available to FTRANL), thus cbtaining a vector VY.

Check the pivot element as '2fore, this time looking at elemerts in
T that are inside the current bump. If the pivot fails the row
test, skip to 5. Cthevwisrs, call PACKLU to put the bottom half of
Y into L and the ¢toy hzlf ia%to 1, Repeat from 1.

5. (How *est failed, Ilook For a cubstitute spike)

(a) If GIVEDP = TRUF, s:l7 2o 7, de have already tried to find a

sukstitute for this pusition.

{b} Scam the remaining srides in the current bump. If none, skip
to 7. If only cug, yrai 1% immediatelvy and skip tc 6.

(c) Otherwime, find the [0Iv-th yow of (L transpose)-inverse, and
use it *0 conpute *lo pivot elements for all eligible spikes.

This regnires cingle [nner rroducts of the dense vector X with
the sparse spike celuvis. At the same ¢time, find PYAX, the
largest potential piv element ¢cn row IPIV.

(d) Now go through the =pi'e: frcm left to right, skipping those

»

e~

ey ey

A e

whose pivot elemant 4is not within TPIVC of PMAX, This is a
"column test" that makes the process equivalent to Gaussian
elimination with c~lusp interchanges. If the current column is
not a spike, take the first spike that satisfies the cclumn
test, becauvuse it is likely tc¢ be the shortest, and skip to F,
Ctherwise, for <cach remaining spike that satisfies the colunmn
test, extract its preassigned pivot row (LPIV, say), and fird
the one that raxisizes Y (LP1V). (This heuristic for selecting
an alternative spike is due to Charles Krabtek of CDC. It is an
attampt to prevent svapping the tad spike into 2 position that
will agair rejuire a swap.)

1 6. Interchange aprropriate elements of HPIVU and HSPIKE, and set
GIVEJF = TRUE. FKepeat frcm 2.

7. (Ra2vect column) Replace ccluen J by the corresponding slack (column
no. KRHS+¢IPIV). Accurulate rejacted cclumns in array JxEJ, for
preferential treatment ty PPRICE later cn (BANDAID). Repeat frce 2.

67

e it e Bt e .

LR S5 =3 A WSS R 3 1 B Spe

SUBRQUTINE FORMC{ ¥,R,NN,NNO,NS,MS,HBR,HS,BL,B0,X,GRD,XN,C,TOLX)

Subroutines called: Called by:
FUNGRD CRIVER
Purgcse:

To determine if the curyxent ¥ 1is feasible, and to set up a gradient
vectocr GRD to be used fcg ccuputing PI.

Also, to reset the phase Irdicator MFHS when needad (for the first
iteration, and fclleowing IHVERY).

Paramaters:

REAL+*S GRD (XS) {(Cutput}) The gradient vector for the current
linear obijective (wvhether feasible o¢r not).
GEDi§) = 0.0 1if X(4) is feasibla:

= 1,0 if X(4) is above its upper bnd;
= 1,0 if X(f) is btelow its lower bnd.

{ICRJ) is treated specially as noted below.

.outy If X is feasible but the previous

ryaticn was not (or if TNVERT has dJust been

ledi , any ncntasic ncrnlinear variapies will
jiven the appropriate bound values in XN.
"H<¢e ¥ill ke retained during sutsequent

iteraticns.

REAL*8 C(NNO}) (Cutputi BRgain, orn the first feasible iteration
cr after INVERT, the gradiant wvactor for the
rcnlinear vaviables will be ccmputed in C, by
one c¢all to FUNGRD. '

REAL*8 TOLY {Input} The feasibility tolerance for all
variatles.

REAL*8 XN (NNO)

f" [I i e

GE!

{1n
it
ca

>

Methcd:

1. Run through the X (3} wvaluse, ccaputing the numher and sum of
infeasibilities (NMINF and SINF) and satting GRD(3j) as abova,

2. (Infeasible)

(a) If this is the bsginning of the run (ITN=0), set NPLS=1 as
first prefereace, +¢ gat regular Phase 1 simplex method. Even if
thare are scme supertasics, NPHS resains 1 unless MULTIFLE [RICE is
in effect, or a basis file was ueed to start the runm. {The aim
here is to 1leave supertasics fixed at tha values specifi=d by an
INITIAL bounds se*4 and perform normwal Phase 1 - Phase 2 simplex
iterations on the remairing variables as lonqg as possibla,)

(t) At this stage, GHL (T0OEJ) will be zero unless TARGBETing is in
effect (4n which case ¥ (ICBJ) may be infeasible). Fesetting
GFD (I0OBJ) to GRD(IOBJ) ~ MINI¥Z#wTOBEJ has the required effect for
targeting and/or the cowmposite objective methcd, and also qives
2ero as required if npeither is in effect.

68

e m——

3. (Feasible)
(a) If this {s the Ltegirning of the run, set NPHS=2 for cold starts

where possible, for the reasons given in 2(a) above.

. (t) In all cases, reset GHRD(IOEJ) = -KINIMZ. This will he the cnly
nonzero ccamgonent of GFD, and gives thz correct gradient vector for
the linear objective. G:TGRD overwrites any nonlirear conmponents

later on.

(c) If this is the first feasible iteration, or +he first iteration
‘ after INVERT, set up ncntasic nonlinear values in XN and compute
the ronlinear obiective and gradient by a call to FUNGRD.

69

i e o

A S0 A L it i XM e Bl 5 5 9 o b SN A RN 5 3 HATIHATMEIANG 2 R S G BSGRII R

SUBROUTINE PTRANL(M,M2,NE,NP1,MAXL,HA,HE,A,HPIVL, NL,HL,DL,Y)

Subroutines called: Called by:

None ADCCOLl FACTOR LEITN FRGITN
SETX

Purpcse:

To solve the system L*x = y, where both x and y are stor=2d in the
paranmeter Y. This is the 1st part of a conventional "FTRAN"
operation.

Parameters:

All previously dafined.

Method:

The column transformaticns ccnstructed ty FACTOR (during INVERT) are
processed first, beginning at the one marked by LRGN and JLBGN,
During INVEXT, these parametars pcint tc *he start of the current
burg, <since any earlier transfcrrationc would have no effect on the
vector being transforred. During subsequent iterations, LB3GN and
JLBGN point to the rteginning of the L €file.

If WETAR > 0, some additional transformaticns of a different *ype have
been added to the L file during iterations. These are processed next.
Each transformation is really a saquence of mcre cel-mentaryv
transfcrmations of the type

"Add DL (J) times rcw I to the pivot row IPIV" |

vhare I is either HI(J) (if that quantity is positive) or the previous
value cf IPIV., Thus, a negative value cf HL(J) signals +that +the
transfcrmation is tc te preczded ty an interchange, as reguired for
stability ty the methcd of Bartels and Goluk,

ARl o S i el Ll o R i~ S S M L WS 1 i s b v 90 s AN Badhiions ¢ ARSI

SUBROUTINE FTRANO(M,MM2,NF,¥AXU,HEIVU,HPIVF,NO,H0,D0,F,Y)

Subrcutines called: Called by:

{ None CHUZQ PRICE

Purgcse:

To sclva thg system U(transtose)*x = y, where bhoth x and y are
stored in the parareter VY. This is the 1st part of a conventicnal
WBTRAN"™ gperation.

Method:

Porward~subtstitution. Ir this case U and F are treated separately.
Columns of U (rows cf U(transpose)) are precessed from fron*t +o Lack.
No transformations can be skipped. However, since P is a dense matrix
it is possitle tc traverse either by rows or hy columns as convernient.
Here the forward-substitution runs across the rows of F and thareby
allows a row tc be <kipped 4if the correspouding comgonent of the
ccuputed solution is negligitle.

e

n

i i, i ettt e

SUBRQUTINE PUNGEL(NN,MS,HE,XN,C,¥X,FN)

Subroutines called: Called by:

CALCEG ADDCCL DRIVER PORMC RGITN
SEARCE

Purposa:

To call ¢the wuser-writ<¢an subroutine CALCFG with appropriate
narameters, and vreturn the current value ¢cf ths objective function
(roth linear and nonlincar tarrs). wWill be called »Haly if the currant
point 1s feasible.

Barareters:

REAL#*8 XN (NN) (Input) Current value of ncrlinear variables.
REAL=*8 X (NS) {Input) Current value of bhasics and suger-
rasics.

REAL#*8 C (¥N) {Cutput) Ccmputad gradient ¢“ ncnlinear otid.
REAL*8 FN (Cutput) Returns the objectiva valua,
Method:

1. Extract tasic and surertasic values frce X and store in YN in
natural crder. It is assumed that noatasic nonlinear variables are
alrcady stored in XN; this is arranged by FOEMC after each call +o
INVERT.

2. Test NFX for first entry to FUNGED; set parameter NSTATE
accordingly and call CALCFC to obtain nonlinear objactive value FN
ard gradient vector C.

3. Test mode to s@e if user's subrovtine CALCFG requests termination
of the run.,

4. If a linear obijective rov exists, change FN tc FN - X(IORJ) to
include the linear part of the okjective.

5 '
L L W

St |

[——

S SRR A A SN TR LG 4 iy i BN A

SUBRCUTINE GEIGFL(NN,NNO,MS,EB,C,GED)

Subrcutines called: Called by:
Mone ADDCOL DRIVER RGITN SEARCH
Purpose:

To set up the gradient vector for basic and superbasic variables in
the crder defined by HE.
Parameters:

All gpreviously defined.

Method:

GED ({) is zero for linear variables, +C(k) or =C(k) for nonlinears,
vhere k=HB(J). GRD(ICRJ) = <MIMNINZ,.

73

T e el g R i v - AR A RGPS G G oo e 10 L S b YA 5" S5 S SRR S o SR St i

SUBROUTINE GO (Z,NHWCCRE)

Subrcutines called: Called tLy:
MINOS MAIN FROGFAM
Purpcse:

Tc call MINOS repeatedly urtil parameter IERROR is negative, which
signals that no further SEECS exist on file ISPECS and hence all
protlams have been processed.

This rcutine is the one that pay be altared if MINOS is to b= used as
a subrcutine for any special purpcse. For example it mav include
calls tc a matrix generator and a report writer refor= amd after the
call to MINOS,

Parameters:

REAL*8B 2 (NWCOREX) (Tngput) The availakle array of core.
INTFGER NWCCRE (Infut) The no. of werds of core in 7.
Method:

The standard version of GCT is shown on the following page.

sNeNeRe X NeNe Xe) (e X e EeNeReEs RS Ke)

aonoonononan

100

1

SUBFOUTINE GO(Z,NWCCRE)

INFLICIT REAL#*8 (C~G,0-2)

RFAL#*8 Z (NWCORFE)

CCHMMON /FILES s ISCR,INPUT,IOLDB,INEWB,INSRT,IPNCH,ILOAD,IDUNP
COMMON /SCLNCM/ ISOLN,KSCLN,MSCIN,NSTATE, LCHKGE

STANDARD CALLING RCUTINE FPCE ™ I N G S

- D D . = D D D > D D o T D GO ED DS W ED ED D T AR D W G ED D G D P G T D ED WS A o W G e WP ED GDED T WS S = o ED G G e D W e

SOLVES PROBLEMS CNE AT A TIME, READING SFECS FROM CARD KFADER.
STANCARD OUTPUT RCUTINE FEQUESTFL. NROWS,NCOLS, ETC., IGNORED.

ISPECS = §
ISCRCH = 8
IFSCLN = 1

CALL MATGEN(Z,NWCORE,ISPECS,INPUT,IERROF)
IF (IERROR.NE.C) FETURN

CALL MINOS(Z,NWCCFE,ISPICS,ISCRCH,IPSCLN,
IERRCF,NBCWS ,NCOLS,LXS,LXL,LPI,LHS,LPREE,NFEFE)

IF (IERROR,NE.O0) GC TO0 900
CALL REPWRT(ISCFCH,ISCLN,NEGCWS,NCCLS,
Z(LXS),Z(LFI) ,Z(LFREE) ,NFREE)

900 IF (IERROR.GE.D) GC TO 100

EETURN
END OF GO
END

75

SUBRQUTINE HASH(LFN,NEN,NCCLIL,
1 KEBY1,KEY2,MCDR,KEYTAB,NAMEY,NAME2,KA,FOUND)

Subroutines called: Called by:
None PES
Purpose:

To 1cok up and/or insert entries in a *able.

Parametars:

INTEGER LEN (Input) The lerngth of the hash table,

INTEGER NEN (Input) Maximnm number of entries allowved.
(LEN >= NEN, Usually, LEN is about 2*NEN.)

INTEGER NCOLL Accumulates tctal no. of collisionms.

INTEGER KEY1 (Inrut) left part of current entry.

INTEGER KEY?2 {Irgut) kight rpart of current entry.

INTEGEF MODE (Input) 1 for lcok-up only; 2 for look-up and
entry into table 1if KIY? and KEY2 ar=s not
already in tatle.

INTEGER KEYTAB (LEN) A tatle cf kays gfcintina 4into the 1list of
distinct antries,

INTREGER RAME1 (NEN) 1eft part of list of distinct entries.

INTEGER NAME2 (NEN) Fight part of list cf distinct entries.

INTEGER KA (Cutput) If MODE=1 (lock-~up), KA points to the
pesition in tha NAMZ1=NAME2 list «her=
KEY1-RKEY2 was found; will be zerc if nor
found. If MODE=2, KA pcints %o position where
new entry was mada (except KB=0 if table is
full) c¢r to positior where existinag ¢ntry was
found.

LOGICAL POUND (Cutput) TRUE {if entry KEY1=-KEY? already
existed.

Method:

See F.P. Brent, "Reducing ¢the retrieval ¢time of scatter storage
technigues,® Cors. ACM 16 (1973), rp. 10%=-109. This version has been
simplificd for the case where no entries will ever be delated.

Brent's method is well suited to this particular application becauss
each entry (FCW NAMES in the MPS comstraint data) is quite likely to
be locked up saveral times.

Wwarning: ¢he hash functicn tc be useéd in two places in this routine is
machine-dependent. The required properties for it are docuwz~nted in
the MINOS User's Guide, secticn IX.2Z.

SUBEQUTINE INITL?

Subroutines called: Called Ly:
None MINOS
Purgcse:

To initialize the machine precision EPS and the word-length indicators
NWORPR, NWORDI, NWOEFDH, and to compute numerous tclerances, in ternms
of FES where applicable.

Method:

The IBM 370 version of INITLZ is shown on the following page.

77

oo i 1 —

it il sV o o il

SUBFOUTINE INITIZ

IMPLICIT REAL*€ (C=G,0-7)

CCMMON ¢LJCC¥ , TCLDJI1,TOLCI2,TOLDI3,TOLDY

CCMMON /EPSCC¥, EPS,EFSO,EFS1,PPS2,EPS3,FPS4,EPS5,PLINFY
COMMON /RGTCLS/ XTOL(3) ,FICL{3),GTOL(3),PINCRM, BGNOR¥, TOLRG
COMMCN /TCLS , TCLX,TCLPIV,TREIV1,TRPIVZ,TOLRPON,XNOKM
CCMMON /WORDS2/ NWORDF,NWORDI,NWCEDH

THE FOCLLOWING 4 NUMBERS ARE TEE CNLY MACHINE-DEFPENDENT PARAMETRRS

EPS = THE MACHINE'S FIOATING-POINT EFECISION

NWORDR = NC. CF "FEALS™" PER WORD (VAES STARTING WITH A-B)

NWORDI = NO, QF "INTEGERS" FER WOED (VAES STABETING WITH I-N)

NWORDH = NO, CF "HALF INTEGERS"™ FER WOPD (VARS STARTING WITH H)
WHERE "WORC" MEANS SPACE USED BY VARS STARTING WITH C-G,0-2.

IBM 360 AND 370

oo nNnaannannonn

FPS
NWORDR
§ NWORDI
NWORDH

16,0%* (=13)
2
2
(1

Wonoun

USE EPS TO SFT CTHER MACHINE EREBCISICN CONSTANTS

(e NoNe]

EPSO
ZESH
EBS2
EPS3

EPS*#* (4.C/5)
BPS**(2.0/3)
BPS*#(1.C/2)
| EPS*# (1.0/3)
; EES4 = EPS**(1.0/4)
; EPSS = EPS##(1,0/5)
FLINFY = 1.0E+30

S —

LU TS U |

SET TOLERANCES

(s NeNe]

TCLX
TOLPIV
TEPIVY
TRPIV2
; TOLROW
; TOLDJ1
TO0LDJ2 1.0
TCLDJ3 = DMAX1(EES2, 1.0C=6)
XTOL(2)= 0.1
XTOL(3)= TCIX
| FTOL(2) = XTOL (2) 0.1
| FTOL(3)= XTOL(3)**2
; GTOL(2)= DMAX1V1(EES4, 1,0CL=3)
{ GTOL(3) = DMAX1(EPSZ, 1.0D=7)

DMAX1(EES2, 1.00-5)
PES2

0.001

0.1

DMAX1(EES3, 1.0C-4)
DFAX1(EES2, 1.0C-6)

LU I T I I |

RETURN . .
C END OF INITLZ |
END

?
E |
!
|

SRS O dages

SUBEOQUTINE INSFRT(®,N.NN,NNO,MN,MA¥S,NS,HS,HB,BL,BO0,X,XN,ID1,ID2)

Subroutines called: Called by:
NMSRCH CRIVEER
Purpcse:

To set up a starting basis using data on file INSRT. This routine {is
irterded to provide compatitiiity with ccmmercial systems by accepting
data in the forwat prcduced by the ccnventional PUNCH comrmand. (It
also reads a file produced by subroutine FUNCH in XINOS.) This data
is of the form
KEY NAFE1 NAME2 VALUE

vhere KEY may he one of the standard set 1L, UL, XL, XU or else SB
to irdicate superbasic. VALUEs are used conly if KBEY = SB.

Paraseters:

INTEGER NS {Cutrut) The €inal no. of supertasics.

INTEGER*2 PB(MN) {Output) Will contain a list of basic and
supertasic ccluemn ros.

REAL*S X (MN) (Cutput) X(3j) will ccntain values for J=N+1,
CRCIE] M*NS-

INTEGER ID1(N) Wworkspace to hold left vpart of variable rnanes.

INTEGEFR ID2(N) Werksrace to hold right part of variable names.

Method:

1. Fead row and column names frcm scratch file into ID1, 1ID2.

2. Set structurals to be ncntasic at their smallest bounrd.
3. Set state of logicals to te tasic.

8, Process data cards crne at a time, Pxchange cards are iqgnored if
the incoming variatle (NAME1) is already tasic or superbasic, or if
the outqgoing wvariatle (NAME2) is nct tasic. This guarantees that
there will always be M tasic variables cn exit.

SUBFOUTINE INVERT (MAXZ,¥,M2,MN,M,NE,NP1,NF,NB,NN,NS,KAXL,MAXD,
' HSPIKE,KA,FF,EF,HS,HKPIVL,HFIVO,HEIVP, NL,NU,
2 A,BL,BU,R,X,HEIVE,HEIVI,Y,Y1,2)

Subrcutines called: Called by:
DELCCL FACTOR F4 RESETR LRIVER
SETX

Purpose:

To compute an LU factcrizaticn of the current tasis, B.

Pararetaers:

INTEGER*2 HPIVRIM) Wcrksrace2 to hcld rowv perrutation.

INTEGER#*2 HPIVI (M) Worksgace tc hold inverse of HPIVR,

RPAL*8 X (Mm The first M lccaticns in X are available for
Wwerksgpace during PACTOR, but X (M+1), «ecoy
Y {M4X5) contain values <for superbasics and
must not bhe overwritten., On exit, values for
basic variables will be in X (1), eoes X(F).

REAL*3 Y Wcrksrace for FACTCR, SETX.

REAL=*S Y (M) Workspace for FACTCEK, SETX.

REAL=*8 7 (MAYXZ) Available core tegins at Z (KZ1) fer P4, ard atc
Z1{k23) for FACTOF, (KZ®* < KXZ3, but as it
happens, Fu4 needs puch less core than FACTOR.)

Methcd:

1. Use the state vectcr HS to select column numbers o¢f basic

2.

3.

variavles. Store thase tackvwards into HB, so that slacks wil!
appear first and get dealt with directly by the transversal
finder, TRNSVL. Count ncrzeros, slacks, etc. in B and print one
line cf basis statistics.

Call ©4 to determine the bump and spike structure cof B. Most
rarameters just provide workspaca. Uszful outpat is

HEIVB tow persutation
HPIVU Permuted column mumbers
HSPIKE Ccded bump and sgike structnure.

1f there is a linear otdective, make sure it pivots om its own row
‘hecause we want X {(IORJ) to b2 the objective value).

f ITPREQ=1, wuse HSEIKE to disglay the bump and spike structure
cn *he printer.

Set HPIVI = inverse of HPIVR, ready for FACTOR. Initialize pivot
“olerances TEIVF, TEIVC.

‘s llocate core) Allocate storage for F, L and U, using ¢the
*ysimum valune of NSEIKF and the values of KL and KU for the
sw.c0s LU file twhich usually will have been updated ahout SO0
re . and sihould give a fair indicatice of the relative sizes of L

80

|
2
;

8.

9.

10.

and U during the rext 5C updates). fThe five arrays HL and DL, HO
and DU, and ¥, will cccupy the whole of available core, Z(KZ3),
eeees Z(HMAXZ), in that order.

(a) Storage for ¥ is allccated first, from the top dowr. The
dimension cf F is taken tc be MAXSPK ¢+ NEWSPK, where MAXSFK is the
gaximum no. of spikes so far (in case of wultiple atrtumpts to
factorize the same Yasis), and WNEWSFK 1is estimated tc¢ include
about 10 parcaent triangle swaps in FACTCR (each ot which adds cna
spike), and/or up to somewhat less than KINV apdates. (No+ every
update results in an increase in spikes, since a spike may hLe
daleted during the urdate.)

(b) The remaining core is allocated tc L and U in the sar= ratio
as the previous LU file, just prior tc the current INVERT, namely
the ratio B = KU/KL. Tcr safety, this ratic is mcved inside the
range (0.2, 5). At the ctart of a run, KL and KO 2re initialized
in DRIVER to prcvide a rouqgh cuess for B as follows. For a warm
start fanything other <than CFASH), we guess that L will he
somewhat ©bigger than U and therefore take KL=6, KU=4 to get B =
0.66. For CREASH, althcugh L will be the whcle of the initial
(triangular btasis) anéd U will be I, we guess that the rate of
growth of U willi ke substantial, and therefore set kKU = 2*KL ¢to
cet B = 2.0,

(Factorize basis) Call FACTOR with the current 1list of basic
columrns in HPIVO. (This list will be permuted by FACTOR if column
interchanges occur, and will be altered {if any columns are
rejected from the tasis ard rerlaced ty slacks.) Test fcr error
condition, which <can <¢nly cccur 4f insufficiert storage was
allccated for 1, U or ¥. 1f necessary, repeat from 6 to try a
diffarent allocaticn of stcrage.

(NeB. The ioagic for re-allccating storaje for I, U and F should be
iaproved for the case whecre tl=re are mary spikes and not much
core, At present, if the total core aveilable is only marainally
greatar than absoclutely necessary, the estimates may fail again.
It is far better to i1estart the run with more core for Z.)

(Compute basic X) Call SETX to ccmpute thae basic variables X (1),
ceeye X(W), using one step of iterative refinement (without
accumulation of residuals in extended precisior). The erior flaa
will be -et if the row chaeck fails (i.e., if Ax = t is not
sufficiently well sati:zfied). If necessarv, tighten up the
tolerances TPIVF, TPIVC and try again frem 6. TEIVE must be
made smaller chan TMIN (output frcm FACTOR) or the pivot order
will not change.

Initialize arrav REIVU tc te HPIVF (they start to diffor during
updates).

If any variables were rejected by FACTOF, check for suparbasic
slacks that are mnow in the basis. <Call DELCOL if mecessary to
€eliminata them frce the suferbasic set.

ey ——

T el 25220

SUBFOUTINE ITERCE(NN,NS)

Subroutines called: Called by:
None CRIVEFR
Purpose:

To output one line of tke Itaraticn log, according to the required Log
Frequency, KLOG.

Parameters:

INTEGER NN (Input) The no. of ncnlinear variables.
INTEGER NS {Ingut) The nc. of superbasics.

Method:

1. If this is the first iteration since TNVERT, initialize COMMON

2,
3.

4.

6

variable IREAD ¢c zerc. (IEFAD is in COMMON sc that it will retain
its value tetween entries.)

Exit if MOD(ITN, RLOG) is nonzero. Cutput not wanted.
Increment IHREAD.

Branch if probler is nonlinear, or if NPHS>2. (Mora informa*ion {s
printed per lime fcr norn-simplex iterations.)

If IEEAD=1, this is the tirst iteration tc be printed since TNVERT.
Print relevant Log heading.

Print one line of the Lcg.

Sl Gl il ags Lo i skl o ORI Cdi
R s s i
DU U— et 2 e s R e ' ik s A

SUBFOUTINE LOACB(M,N,NN,NNC,MN,MAXS,NS,HS,HB,BL,BU,X, XX)

To input a bit map frow» file I0LDB describing the state of each
variable, along withk ¢the cclumn numbers and values for supertasic
variables. (I.e., the format cutput by subroutine SAVER,)

Subrcutines called: Called by: i
None [RIVEP d
¢
i
Purpose: i
:

i‘
g

Parameters: ;
INTEGER NS (Cutput) The nc. of superbasics loaded. ;
INTEGER*2 HS(N) (Cutput) The state vector. ¢
INTEGER#*2 HB(MN) €upertasic cols HB (M#+1), ..., HE(M#NS) will be }
cutput., 4
REAL*8 X (MN) Supertasic values X (M+1), ..., X(M¢NS) will be
output,.
REAL#*8 XN (NNO) Any values ccrrespcnding to nonlinear variables
will ke output in XN,
Methcd:

Essentially the reverse cf SAVEE, except that several consistency
chkecks must re perfcroed.

1. Print message 'BASIS TC BE IOADED FFOM FILE <IQLDB>',
2. Read and print first twc card irages. Extract M, N amnd NS values

from the second card; check M and N for consistency with the
current groblsa. Errcr exit if chack fails.

3. Read the state vectcr HBS, Exit if End of File.

4, Set NS=0., Load colusn nusbers J and values XJ for superbasics, one
pair per card.

(a) Move XJ values inside bcunds if necessary.
(b) Skip if HS{J)=3 (tasic).

(c) Overvrite HS(J) with the value 2 (superbasic). This allows the i
user to change ncntasics to superbasics at specified values by
sisply adding cards at the end of a saved hit map, without 1
having to change the FS vector.

(dy If the value XJ 1is essentially on a bound, or if the limit on
superbasics has already been reached, make variable J nontasic
at the approgriate tound.

(e) Othervise, increment NS and store J, XJ in HE (M¢NS), X (MeNS)]
raspectively. .1

83

o Blead AN b s TR

(f) Store XJ into XN(J). (Not necessary for MINOS, but requirazd
for MINOS/GRG.)

; S. Check consistency of the state vector KS.

(2a) Check that nontasic variatlaes are not specified tc be at
infinite bounds. Switch their state if necessary.

(k) Count the number of variables of each state 2 and 3. Error
exit 1f these do not agree with NS and H.

Tl L i

SUBROUTINE LOADN(M,N,NN,NNC,MN, MAXS,NS,HS,HB,BL,BU,X,XN,II'1,. 2)

Subroutines called: Called by:
NMSRCH LRIVER
Purpose:

To input a basis description froa file ILOAD, in thc format outrut by

subrcutine DUMP. vartatles are specified by state, name and value,

This type of basis file is irtended to be easier to modify than a
, EUNCH/INSERT deck.

Parameters:

INTEGER NS (Cutput) The no. of superbasics loaded.

INTREGEE*2 HS(N) {Dutput) The stat=2 vector.

INTEGER*2 HB(MN) Supertasic cols EB (M+1), ..., HB(M#NS) will bhe
output.

REAL*8 X (MN) Supertasic values X (M+1), ..., X(M+NS) will be
cutput., The first M locations of X contain the
FHS, cn eptry and cn exit.

REAL#*8 XN (NNO) Any values correspcnding to nonlinear variables
will ke cutput in XN,

INTEGER ID1(N) Wcrkspace to hold the left- and right-hand

INTEGER ID2(N) halves of the rovw and column names.

Method: i

Straightforward, except that many consistency checks must be applied

' to ensure that exactly M variables end up basic, that no infinite
bounds are specified, etc.

1. Print message ‘*'LOCAT FASIS BY NAMES -= FILE <ILOAD>',

2. Read and print tte first card image from file ILOAD. This should
contain the protiem name and the characters °'CUMP/LOAD'. The user
can check visvally that the correct file was loaded; otherwise it {

: is not really rossitle to determine that the file does not belong
E to scme other prchlem.

3. Read row and colurn names frcm scratch file into IDV1 and IDZ. Note
that rov names are first on th: scratch file, tut belong at the end
of 1IrP1 and IDZ.

4, Set the state vector HS tc make all variatles nontasic at their
smallest bound (in atsoluta value).

S. Initialize counters and proceed to read and process cards oneo at a
time, until an ENCATA card is found, cr End of File. Each card %
ccntains a KEY, NAME and VALUE. i

(a) Call NMSRCH to determine a column no. J coriasponding to NAME.
Skip 4if not found (NMSFCH will have printe¢ed an error message
and incremented the errcr counter).

85

I1f J is a slack, convert rcw value XJ to logical value, using
the RHS value stcred in Xe If necessary, move ¥.J values
inside bounds.

If KEY = 'ES', make the variable tasic. Skip if it already has
state 3, or if M tasics have already kean specified.

If KEY = *'LL' or '0L', pmake tha variable nonbasic at the
appropriate bound. Switch state if necessary to avoid infianite
bounds.

If KEY = *SB', make the variable supertasic as long as it is
not already at+t state 2 or 3. Skip if the no. of superbasics
has already reached MAXS (tha variable will remain nontasic).

Print no. of kasics and superbasics specified, the no. cf cards
tead and the no. ignored,

(Eartial basis) If fewer than M lLasics vwere specified, proceed to
rake logicals tasic, startirg frcm the left and skipping any that
are already tasic or supertasic. This will not necessarily give a
good final basis. Actually it will fail if toc many logicals were
already superbasic == there will not te a full set of ™ variables
at state 3 on exit. The cnly safe way would te to add a 1loop +to
run through the sugpertasic list backwards, changing as many states
tc 3 as necessary.

Check that the logical cn the obijective row is basic. If not, swap
it with the last rasic variatle,

v M

SUBROUTINE LPITN(®,M1,MZ,N,NE,NP1,NF,FAXL,MAXU,NN,
1 HA,HB,HE,HS,HPIVL,HPIVU,HPIVP,NL,NU,?,BL,B0,P1,X,Y,Y1,
2 HL,DL,HU,DU,F)

Subroutines called: Called by:
BTRANU CHUZR FTRANL UNPACK CEIVER
Purpcse:

To perferm a normal simplex iteration after PRICE has selected
variable JQ to entaer tte basis.

Parameters:

INTEGER M1 (Ingput) M+,

REAL*8 PI (M) Not used.

REAL*8 XM {In,out) The first M locations contain values
for the tasic variables. X(M1) wvwill be used
for the inccring variatle.

INTEGER*2 HB(M1) (In,out) The list of basic variables. HB (M 1)
will similarly be used for the inccsing var.

REAL*8 Y(um wcrksrace tc hold the search dirsction (which
will be the updated coluan A (JQ)).

REAL*8 Y1 (™ (Cutput) Will cortain the par+ially updated
cclumn A (2Q).

Method:

1. Set logical ATBND tc indicate whether variable J0Q is coming in from

2.

3.

4.

6,

its upper bound or not. The sign of DJQ tells the story.

Set XJQ to the appropriate tound valve. Must te zero if JQ is a
free variable,

Unpack column A(JQ) imtc Y, Sclve B*Y = A(JQ) by solwing L*Y1 =
Y, U*Y = Y1. 1he intermediate vector Y1 4is required on exit by
MODLU to update the LU factcrs of B.

If infeasible and a composite objective is being used, modify DJQ
to be the reduced gradient associated with the sum of
infeasibilities (vnccntasinated by a multiple TOBJ of the real
obiective). Fxit with error flag set if the modified DJQ indicates
that the sum of infeasibilities would nct decrease. (DRIVEF will
reduca WTOBJ and try again.)

Exit with an INVERT REQUEST if the LU file has essentially 10 space
left for CHUZGE. (Actually, CHUZR does not need space if the
sclution is feasilkle, tut INVERT would be needed pretty soon
anyvay.) Othervise, save the current values of HE(M1) and X(MV),
vhich w®may belong ¢to scme qenuine superbasic, and install the
corresponding valuaes for variable JQ.

Call CHUZFR to select JP -~ th¢ variable leaving the basis will be
the JP=th wvariable ip the 1ist HB. Exit if Jr=0 or THETA is very

87

large (problem is untcunded). Treat JF=Y1 specially ~- this neans
tha inccming variable has reached its ojposite bound. Sonmetimes,
CHUZE will return JB<0. 1This means that the (~JP)~th wariable is
currently dinfeasitle, and will become feasible this iteration when
it leaves the tasis. Record this fact and reverse the sign of Jp.

Perform housekeeping to urdate the list of tasic variables and to
reset the state vectcr HS., Reccmpute THETR exactly, im case CHUZR
used a perturtation.

If TFETA > EPSO, update X to tecome X + (or =) THETA*Y. The value
fcr thae inccming variable is then im X(M1).

Restore the original values of h.(M1), X(N1) and exit.

SUBKOUTINE MINOS(Z,NWCORE,ISPECS,ISCRCH,IPSOLN,

1 IFKROR ,NEQWS ,NCCLS ,L¥S,I¥XL,LPL,LH8,LFRE ", NFEFE)
Subroutines called: Callad by:
4 DRIVER INITLZ MPSIN SEECS GO
SPECS2
Purpcse:

To request input of the SPECS file and MES file, and to call the
i solving routime DEBRIVEF. The argument 1lists in the calls to cther

routines here lcok pretty ugly, but the actual routines being called
(in particular, MPSTN and DPEIVER) are reascnably normal. FHowever,
great care is requir«d if ever anything is modified.

Farapeters:

RFAL®*8 2 (NWNCCRE) (Output) The array of core, used for all
werksgace and to return certain array
information.

INTEGER NWCORE {Input) Dinmension of 7.

INTEGER ISPECS {Infut) OUnit no. from which the SPECS file is
tc te read.

INTFGER IPSOLN (Input) Shculd he positive if the solution is

tc ke output using the standard output rcutine,
SCLN. <thould he zerc otherwise (a.g9. if the
user wishes to do further ccmputation on the
scluticny.
INTEGER IERROR {Cutgput)
-1 if ¥FOF cccurred while trving to read from
' file ISPECS (sigrals end of problenms).

0 {if cptimal solution was found.
1 1if problem was infeasitle.
2 1f probler was unhounded.
3 if iteration limit was exceed:d.
4 if iterations were terminated by scme other
errcr ccndition,
30 if there was nct enough core to input the
MES file (NWCORE too scall).
U0 4§f scme other fatal error occurred during
input of the MPS file,
INTEGER NROWS (Cutput) No. of rows in the constraint matrix.
INTEGER NCOLS {Cutrut) No. of cols in the cons*raint matrix.
INTEGER LXS {Cutput) Addrcss in Z of the sclution vector.

The structurals form a vector of length NCOLS,
starting at Z (LXS).

INTEGER LXL (Cutput) Address in 72 of the slack variables.
These fores a vector of length VROWRS, scarting
at Z(LXL). (Alternatively, the structurals,

EHS and elacks form a vector of length
NCCLIS+14NFOWS, starting at Z (LXS).)

INTEGER Le1 (Output) Addrass in 2 of the dual solution ‘
véectcr, PI,
INTEGER LHS (Cutput) Address in 2 of the state vector HS.

89

This is an INTEGER*Z array of lemgth NCOLS+¢1e
EFCRS.

INTEGER LPREE (Cutput) Rrddress in 72 of the [irvst free

lccation in 2.

INTEGER NFREE (Cutput) VYo. of frea words in 2. Words

Z(LFREE)y +ese Z(HWCORP) arms not used to
return any of the atove sclution vectors, and
hence may be used as workspace by the calling
routine.

If necessary, various cother address pointers couid be addad ax output
paraszetars. Those peinting to the constraint matrix and bounds are
the most likaly, namely KEE,KHA,RAX,KB!,KBU.

Method:

1. Tall INITLZ to initialize a few CCMMON variables.

2. Call SPECS to look for a SFECS file and output it in spacial format
tc the scratch file. If no SPECS file, exit with IERPOR = -1,

3. Call SPFCEZ to input the SPECS parametars frow the asratch fils,
This returns various dimersion parameters.

8. Call MPSIPF to input the MPS £ile and to allccate ull array storaqge.
Mcst of the parameters reétucn starting addresses within 4, for the
arrays used by DRIVEE.

Se. Call DFIVPER to solve the rrchlenm,

Exit.

e

A B PG T AT T AT e R TR RO TR

|4

<o AT e o DAY B G s AR

SUBROOTINE MKILIST(M,M1,NE,NP1,NZ,HA, HE,HB,IP,IRN)

Subrcutines called: Called ty:
None F4
Purpose:

To set up a column list, containing the positions of nonzeros in
set cf columns defined Yy array HB.

Pararsters:

INTRGER | (Input) PFe+1,

INTEGER NZ (Input) Total no. of nonzeros in the list.

INTEGCER*2 1IP(M1) (Output) IP(J) will pcint ro the start of
the j~th cclumn, in IRN.

INTEGER®2 1IEN (NZ) (Qutrut) The cclumn list.

Method:

Obvicus.

SIS SRS S

SUBROUTINE MODLU(M,M2,NF,MAXL,MAXC,HPIVL,HPIVU, HPIVF,NL NU,

1 AL,CL,HU0,LU,P,HB, X,Y,Y1,JP)
Subroutines callad: Called by:
None CRIVER
Purpose:

To modify the LU factorizaticn of the kasis when the JP-th cclumn is
replaced ty =zome vector A(JdC), using Gaussian elimination with row
interchanges to maintain numerical stahility, a l1a Bartels and Golub.

Paragpeters:

INTEGEE*2 RB(M) (In,out) List of bkasic variables. “ust be
permuted to match any row interchanges.

REAL*S X (M) (In,out) Valuzes of btasic variables. Same
cemment .

REAL*8 T (M) kcrk vectcer to hold the Jp—-th row of U.

REAL*8 Y1(n) (Input) Contains the =solution of the system
1#Y1 = A(JQ). Gets overwritten.

Method:

That of Bartels and Golut, as implemented by Saunders (197€). The
tolerance TOLSWP (0.0 <= TOLSWP <= 1.0} is used in the test for row
interchanges. 1.0 gives the original Bartels and Golub; 0,0
simulates Porrest and Icelin. In practice, 0.99 or 0.9 is pleuty big
enough to preserve stability, and reduces work very slightly by
avoiding a few interchanges.

1. Increase NSPIKE and wake JP a new spike row.

2. Use HFIVP to pick out all spike~row elements from Y1 and form a
new column of ¥, PReset such elements of Y1 to zero, so they will
rot be packed up inte U. Save pivot elemenrt, which will become
part of the JP-th rew of [U Y1]

3. Fack remaining nonzeros in Y1 to form a new colurn of U.

6, Test if the JP-th cclumn of B is a spike. If so, the JP-th row
of "U"™ comes frcwm F, otherwise from U. The *est involves
jumping out of a loof on JQ, if HPIVF(JQ) = JP. This test will
always be satisfied at least the last time round, for JQ=NSPIKER,
tecause of 1 above. Hence, program will not fall through the
loop.

5. Sat Y aqual to the JP~th row o¢f "U"™, If a spike 1is mnot being
daleted, this means runring through HU, DU looking for ronzaros
in rov JP, which are rhysically reset to zero. Otherwise, JQ
pcints o the correct rov of F. 1Install this row into Vv while
deleting the JQO-th row and coluan froe F. Also, JU pcints to
the spike helng deleted; make HPIVU(JU) negative to i 'i-ate to
FTEANT and STRANU that this column bas beesn deleted.

92

I T AT I QTN A1 e o

IO

6.

10.

1.

12.

At this stage, F 1is almost wupper triangular, except for its
tottom row, which is stcred in Y. VNow elirinate any nonzeros in
Y. This will be straightforward Gaussian elimination with row
interchanges. The pivot rcw for Y (in IPVIY) is initielly JP.
All pivoet rows {IPIVY, HFPIVF, HEIVD) will remain unaltered
unless a rov interchanqge is required.

Scan Y forwvards locking for a nonzerc. Suppose Y(§) 1is found
to be significant., Ccmpare with the correspondirg diagonal of 7
as follows:

if abs(diagonal cf F) < TOLSWKP*abs(Y(j))
then interchange.

If no interchange, 244 appropriate multiple of row of F to VY.

Ctherwise, interchange Y wvwith the row cf F and perform the
2ligination simultanecusly. In ¢this case, the plvot row for F
tand U) is swappeé with TFIVY., 2alsc, the relevant ccamponents
cf HE and X are interchangad.

Pack the multiplier ard pivot trow (negative if an interchangs
cccurred) 1into the I file, and repeat from 7 for the next nonzero
in Y.

I1f any elements of Y were eliminated (often there will be pone) ,
increment NETAR and fill in NL, RPIVL for the new
transformaticn.

Test the final diagonal c¢f F. Request INVERT if smaller than
EPS1 (EPS**(2,)). This test should really be relative to the
norm of A(J¢), but we assume that all columns have approximately
unit nora.

—)

H'AD-A051 536 STANFORD UNIV CALIF SYSTEMS OPTIMIZATION LAB F/6 9/2
MINOS SYSTEM MANUAL.(U)
DEC 77 M A SAUNDERS NOODIH-?S-C-DBSE

UNCLASSIFIED SOL=77-31 ARO=12215.22-M

END
HIN

SUBEQUTINE MOVE(F1,R2,K,N1,82)

Subroutines called: Called by:
None MPSIN
Purgpcse:

To copy array R2 into a specified part cf array R1. This is required
by #PSIN during input, cnce the dimensicns of the problem are known.
In particular, the tounds for the slacks have to be moved into their
final position, To do this, a sutroutins call is required in order tc
maintain alignment of EFAL bcunds within the REAL*8 array Z that MPSIN
has to deal with,

Paraseters:

REAL RI1(NY) (Outrut) R1(K+1), ..., R(K+N2) will contain the
contents of FRz.

REAL F2(N2) {Input)

INTRCER K (Inpat) The required offset in R,

Methcd:

Trivial, as followvs:

DO 10 J=1,N2
10 R1(K+J) = R2(J)

SUBEOUTINE MPS (ANCALL,

1 LEN,NEN,NCCLL,MFO%S,MCOLS, MELMS, ¥, 4N, N, NE, NP1, HN,NNO ,KS ,®AXS,
2 NCABD ,HETYPE DAMEIR ,NAMEZR,KEYNAE,

3 HE,HA,A,5L,B0,HB, XN, NAMETC, NAME2C)

Subroutines called: Called by:
HASH NMSRCH MPSIN
Purpose:

To input comstraint data in standard MPS format. This is the format
used for specifying large-scale 1linear vprogrameing problems (the
"CONVEERT" data format cf IB¥'s MPSs/360 and MESX/370).

Nonzerc eleamaents ir the «corstraint matrix A are specified
celurn-wise, All elecments in a coclumn rust ke specified on ccusective
cards (there i£s nc =2rrcr check tc datect split cclumns).

Three entries are required tc input various sections of the data, as
specified by the parameter NCALI, thus:

NCALL = 9 Inrut NAME and RORS
2 Ingut CCILUMNS, PRHS and RANGES
3 Ingut BGUNDS and INITIAL BOUNDS

The FANGES and BOUNLCS sections peed no% he prasant, Data should be
terminated ky an ENLATA card.

Parameters:

INTEGER NCALL (Input) Defined atove.

INTEGER LEN tTnput) length of hash table for row names.

INTEGER NEN (intut) No. cf distinct entries in hash table.

INTEGER XCOLL {Input) Nc. of cnllisions during searching of
hash tatle.

INTEGEPR MROWS (Input) Maximum nc. of rows allowved for.

INTEGER PCCOLS (Input) Maxisum no. ¢f cols ailowed for,

INTEGER MELHS {Input) Maximum nc. of matrix elements allowved
for.

INTECER] {Cut,in) Thre actval no. of rows found.

INTEGER NCA®D (¢t) (Cutrut) No. of cards in each section ci data.

INTECER#*2 HETYPE (MEOKS)
{Cut,in) Codes constraint types as foliows:

-1 G >=
0 E =
1 L <=
2 N Non-tinding

INTEGPP*2 NAME1IR (XFOWS),NAME2R (MROWS)
(Cut,in) Left and right halves of rov names.
INTEGER*2 RNABEIC (MCCIZ) ,NAMTI2C (MCCLS)
(Cut,in) Left and right halves of col names.
INTEGER KBYNAM (LEN) (Zut,in) The hash table pcinters.
REAL#3 XN (NNO) {(Output) After entry 3, returns initial values
fcrr nenlinear variatles,

95

Nethod:

The required OBJ, RHS, FANGE and BOUND namses are in the /%PSCOM/
arrays MA0OBJ(2), MRHS(Z), MPEG(2), MENLC(2). 1If these names are blank,
the first names encountered in the MES data will be used.

Several other paramaters reside in labelled COMMON areas. In
particular, the variatles in /NMPSLCL/ are not used by any other
subroutine, but are in a CCMMNON area to ensure that they retain their
values letween entries to MES.

NCALL = 1 Input NAME and ECWS.

1. Initialize various counters. Zero the hash tahle pointers.

2. (NANME)
(a) Read first card froe file INPUT., Error message if it is not
the NAME card. Extract name from it anyway and proceed.

(b) Skip if first card wvas the FCWS card. Otherwise, read second
card, Error @wmessage if not the ROWS caid. Proceed as if it
were anywvay.

3. (ROWS)
Read row types and nases until the CCLUMNS card is found (cr EOF).

(a) Allow types I, G, E, N tc cccur in column 2 or columu 3.
{b) Make ICBJ fpoint to the appropriate N row.

{c) Enter each new row nase into the hash table and check for
durlicates.

(d) Write row napes cut toc the scratch file.

NCALL = 2 Input CCLUNNS, FHS and RANGES.

1. (COLUMNS)
Raad data until RAS, BCUNDS or BENLATA cards are found. Por each
card:

(a) If the column name is different from that on the previcus card,
increment the column counter N, save the new name in core and
also writa i+t oc¢ut to the scratch file. Error message if the
cld column had no elerents, unless it belcngs to a noalinear
variable; for nonlinears, enter a dummy zaro in row 1, so that
Fortran loops can go round omce without damage.

(b) Extract 0, 1 or 2 rcv namec 8nd matrix coefficients. Lock up
any non-blank rcw namse in the hash takle. Error messaqge if notc
found.

(c) Count up total elements NE, ignored elements NAO, etc.

2.

(RH 3)
Very similar to CCLUMFS ipput, except for some juggling tc celect
cne of possibly rultirle sHS's. If nc RHS elements are fcurd, or
if all are gero, insert a dusmy FHS with =zero in rowv 1. {This
serves acs a place hclder for colusn no. KRHS,)

3. (PANGES)

{a) Set default tovuds on the slacks, accordinag to the row types
(stored inm HBTYFE during entry 1.

(k) Txit if there is nc range set,

fc) Fead cards unti) required FANGR name 1is found. Bxtract rov
namasr eand rapce va'ues in sisilar fashicrn to COLUMNS and RHS
iapue,

1) Treat rancve values according to the row types.

NCALL = 13 Input PBCUNCS and INITIAL BCUNDS,

1. 2dd 2 fall jdantity eatrix to the and of the constraint matrix (one
pcnzerc rer slack).

2. Set tounds on structurals tc their default values BSTRUC(1) and
B5TeNC(2). These are usually C.C and 1,0B+30.

3. Skip if the ENLCATA card has already been read. Ctherwisa, read
data wuntil +he requir<d bounds set is found, or the reserved name
INITIAL is eancountered.

4., Pcr npcreal bounds, read one bound type, cclumn npame and value por
card. Do a linear search to find which column it is, starting from
the point where the previcus search {inished., (It is lika2lv that
bcunds will be roughly in ratural order, so the linear seatvch will
usually tersinate very quickly.)

5. Before reading any INITIAL bounds, set XN to the smallest bound (in
absclute value) cn the ccrresponding nonlinear variables., Then
réad through all cemaining data cards, until EKTATA is found. Even
i€ the bounds are +o tre ignerad, the cards wust ba read in case
further problems cccur later in the dnput file.

6. Court the no. of rows and cclumns of various type (NORMAL, FREE,

F1YEC, BOUNDED) and output as MAIRIX STATISTICS. 1In this context,
NCF*3l, means variatles with bounds 0O %o INFINILY or <=INFINITY to
O

97

SUBROUTINE MPSIN(Z,MAXZ,MFCHWS,MCCLS,MELNMS,

1 M,M2,MN,MNN,N NE, NP1,NR, NN, NNO,MAXS,NS,

2 KHR,KHE ,KiiA, KAX,KBL ,KEU ,KHE ,KXN,

3 RHS ,KEL ,KPU,KFF,

4 KNL ,KNO ,KRX,KCX,KXX ,KEI,

5 KGR,KYX ,KV1,KG1,KGA ,KGB)
Subroutines called: Called by:
MOVE MBS MINOS
Purpcse:

To input constrairt data, and to allocate all storage except that
required by the LU file.

Parareters:

REAL*8 Z (MAXZ) {(Cutput) The comnstraint matrix and bounds will
te in varicus parts o€ Z, pointed to by the
paramneters KEE,KHA,KAY,KBL,KBU. Certain other
arrays vill also contain useful information,
ramely, those pcinted to by KHR,KXN,K!S.

INTEGER KEL,KPU,KPF, ..., KGA,KGB
(Cutput) These are starting addresses in Z for
various other arrays tha+t will ke regquired bv
CRIVER for the solving procedures.

Nethod:

Three calls are regquired tc subroutine MPS. For the first, wz don't
krow M or N, For the second we don't kpow N. For the third, the
dimensions of the protler are kncwn.

1. Allocate storage in Z for 1cw types and rov names, using the value
MROWS which must te an over-estimate of the actual no. of rows in
the data about tc te read,

2. Find the nearest rrime number larger than MEOWS., This will be LEN,
the length of the hash table fcr hclding row names. Allocate that
asount of storage in Z.

4. Allocata more storage in ? for arrays EE,BEA,A (from the bottce up
starting 2ot end of hash tatle KEYNAP), and for BL,BO,NAMI1C,NANME2C
(frcm top dowi!, At this stage, BL and BU are bounds for the
slacks only, tc te defined durirg RANGES input. Also, “CCLS must
be ar over-astimate of the no, of structurals.

S. Call MPS with entry 2, to input COLUNNS, RHS and RANGBS.
6. Ncvw that M and N are known, ve can ccajact storage. Pirst, set up
nev (and final) starting addresses for existina arrays and for som=»

nev ones HB,XN,HS that are required during BCUNDS input. Ihen copy
existing arrays into their new posgitions in Z, startina from the

98

T

e ———————

7.

8.

Gl L e s ARBTG5 5T

i S A AR & S R RS s~

bottom. In particular, the existing bounds on slacks must go into
the end of tte new N-dimansioral arrays PL and BU. Word aligneent
can be maintained only with the help of subroutine MOVE,

Call MPS with entry 3, to input BOUNLCS (on structurals) and INITIAL
BOUNCS (on nonlinear variatblzs).

Allocate starting addresses in Z for all other arrays required by
CFIVER.,

SUBROUTINE NEWPIC(EPS, T, ETA, XLAMTA, U, FU, GU,
* XMIN, FMIN, GMIN, X&, FW, G, A, B, OLDF,

* BP1, SCxBD, E, L, RB, SS, GTEST1, GTEST2, TNL,
* ILOC, ITFST)

Subrcutines called: Called by:
None SEAPRCH
Purgcse:

To find a step length Aduring a linesearch. For full documentation sen
Gill, Murray, FPicken, Farber and Wright, NFL Algorithms Library, Ref.
No. EBu4/16/F, ©DNAC, Natioral Ehysical latoratory, Teddingtor. (Crown
Copyright Reserved.)

A Al i A - 11

o e

SUBROUTINE MMSRCH({ N,TD%1,ID2,NAMF1,NAME2,
1 NCARD,NOSFND,MAYMSG,Jd1,d2,J¥A%K,JPCUND)

Subrocutines called: Called ty:

None INSERT LOADN MPS
;

Purpose:

| To search arrays ID?! and ID2 for the name dafined by NAME1 and KAME2.
] Names in these varialtles are in A4 format.

Parameters:

INTEGER N {(Ingut) No. of names to be searched.

INTEGER ID1(N) iinfut) Left half of names t¢ bz searched.

INTEGEF ID2(N) {Tnput) Right half of names *o be searched.

INTEGEF NAME1,NAX¥EZ (Input) Left and right halves of name boing
iccked ng.

INTEGEF NCARD (Input) <Card no., fros which NAME1,NAME2 canme,

INTEGER NOTFND tIn,ont) Accumulates the no. of tiwmes the input
rame was nct found.

INTEGEPR MAXMSG (Input) Lieit on no. of error mes sages
allcwed.

INTEGER J1 (Input) Marks start of names to be searcled,

INTEGER J2 {Input) Marks end o©f names tc be gearch2ad,

INTEGER JMARK {In,out) On input, wmarks where the previous
search ended, On output, marks end of currcent
csearxch,

INTEGER JFOUND {Cutput) Will te O if the name was not found.

Ctherwise, pclints to position of name in IN1,2.

Method:

Nothing fancy == just a linear search, gplit into 2 halves (JMAFK ¢o
J2, then 31 to JMARK), on the assumption that the names being looked
up are likeiy to ke in rcughly tha sams order as the list of mames in
ID1 and 1rf2.

101

SUBFOUTINE FACKIO(M,M2,NP,MAXI ,MAXU,IPI1V,
1 HPIVL ,4PIVF, HEIVEK,NL ,NU,HL,HO,DL,CU,FP,Y,IBGN,K)

Subroutines called: Called by:
None FACTOR
Purpose:

To pack up significant nonzeros in L, U and F during INVBRT. The K=th
column of the basis has just been processed by FACTOR and it is a
spike.

rarampeters:

INTEGER IPIV {Input) FEivot rov for the spike.

INTEGER#*2 RPIVL(M2) Iist of pivot rows for the columns of L. IPIV
will te added to the list.

INTEGER#*2 HPIVF (M2) List of pivct rcws for F (previous spike rows).
ITIVv will be addead.

INTFGER*2 HPIVR (M2) (Input) The full row permutation being used by

FACIOR.

REAL*S Y (M) (Input} TLe transformed spike, comntaining the
nonzeros tc te racked.

INTEGER IBGN (Input) Marks the beginning of the current
tump.

INTEGER K Fcsition of thkis sgike in the basis.

Method:

1. Increase NSPIKE by 1; add IEIV to array HFIVF., Use HPIVF to pack
up ncnzaros in all spike rows. Reset such elements Y(i) to zero,
so they will not be packed up again for U. Save givot element,
Pl1v, fecr storing in the L file.

2, Use HPIVR to pack up elements in O, These are in rows HPIVR(i),
i=IBG", LI Ko

3. There canmot be any elements to add to L if this is the last
column in thre basis (K=M). Otterwvise, pack remaining elements into
L. These are in rows HPIVR(i), 1i=K+1, ..., M. Note: The
transformation is gqoing to be used as if the nonzeros, starting
from the pivot rcw, were

1.0, Y(11)/F1V, Y(iz)/PIV, ces
because the pivot elerent goes into ¥ rather than L. Howaver,
tc avoid the divisicrs we store the elements directly as

PIV, Y(in, Y(id),
and communicate the fact +tc PIRANI, BTRANL by setting the pivot
irdex HL(KL) to te negative, viz. -IPIV.

SUBROVTINE EFRICE{ M,MN,N,NE,NF1,KN,NNO,NS, HAXS,
1 HA,BE,HS,HBE,A,RLl,BU,C,X,PI1,GRL,G)

Subroutines cailad: Called by:
None LRIVEEF
Purpose:

To select one or wmore nontasic variables with favorable reduced
aradients, for addirion tc the superbasic set. The class of
candidates dependcs on certain rarameters as follows:

1. {BANLAID) If NREJ>U, give prefererce to a list of variables
in array JF®J that were rejected from the basis
ty the last INVERT,

2. (MULTIPLE PRICRP) If K#ULPr>(, scan all nontasic columas and select
up to EMULFik candidates.

3. (FARTYIAL PRICE) <¢Ctherwise, scan jtst the next partition of A, as
well as all slacks.

Caramoaters:

BEAL#3 PI (M) (Input) The pricing vector.
RERL*8 SRD (MN) Not used.
INTEGEE*2 HB (MM} (In,cut} If NMULPEDO, sclacted cclummn numbers

will be add=d ¢to this array, starting at
HB (M5 + 1)

REAL *8 G {MAYS) {In,outy If NMULERD>C, the corresponding re duced
gradients will te added to this array, starting
at G(NS+1).

Method:

This is one of the wore intricataly (L.e., obscurely) coded routines,
because +the wvarious options +4ere added in several stages. How=aver,
the important point is that ir all cases, the variables J1, J.2, J3
determine which cciusns are tc be priced (see the locp beginning
DO 7C€0 JJ=J1,J3). 1Thke possirle values are:

Ji J2 J3
BANLAID 1 NEEJ NKEJ
MULTIPLE PRICE 1 NSTEUC J24M
EARTIAL PRIYCE J1 J1+NPRC J2+M
where
¥REJ is +he no. of rejected variables remaininas
¥STFNC=KRRAS~1 marks +ha end of structurals;
NPRO=KAETRIC/NPARPR i35 the no. of columns in each partition cof A.
J? for PPPiIAL PRICF is 1+¢(a multiple of NPIC)
cr, equivalently, (previous J?)+1 (mod NSTRUC).
J3202+0 for the last twe cases in order tc include the

¥ slacks.

103

v

e

1'

2.

6.

7.

ot e A s i

If PARTIAL PRICE, mcve pointers J1,J2 to bracket the naxt partition
of K.

Set TOLD, the tolerance to be uvsed ip amecasuring whether a reduced
gradient DJ is significant. If the problesm is infeasible, TCLD is
lways TOLDJ1®PINOEX, (Scaling by PINCEM is nct vital here, except
perhaps if a very large waight 1is wused for the ccuposite
otjective.) If the wheole of A is going to be scanned during this
PRICE (i.e. if NPARPR=1 or MULTIPLE FRICE is in effect), we might
as well allow thrcugh anything that is going to be regard:d as
significant befcre optimality is declared, Only if MNPARPE>!1 {is
TOLD going to be decreased dynamically, bv setting it to ™OLDJ
vhich is reduced systematically as descrited in 7 below,

The first three lines in logp 7C0 define J, the next column to be

priced. Skip Lasics and superbasics immediately. Skip fixed

nontasics next, Then +treat a colunms specially if it is a3 slack

(DJ = - appropriate PI value). Othervise, the reduced gradient is
DJ = grad(Jdy - PI*A (J)

vhere grad(Jd) is 7 or C(J) for linear and necrlinear variables if

the solution is feasitle, ctheruwise 0 for sll variables,

Th2 required sign for a DJ depends on the stete of the variaktla.
Tha quantity D is defined to be either DJ or -DJ or abs(DJ), such
that a positive value for L means a favorable DJ,

If MULTIPLE PKRICE, ccmpare L[J with the list of values in G. if
necessary, add J and DJ to HE ard G, such *hat tha valves in G
remain in descending order c¢f «gagnitude. {(This section was
coded by Richard Asruth.)

Urdata DJIMAX, DJC, JQ tc reccrd the best DJ found so far.

On exit from loopr 700, deterwine if any suvitahle column was found
{NONOPTY0). If so, exit. Otheruise, the following cases arise:

SANTAID Bevert tc MULTIPLE or PARTIAL PRICE.

MULTIPLE PRICE Set NEWSR = pnumher ¢f colunmns added +o HB, G;
if necescsary, delete any small entrias frcm the
end of thase lists.

FARTIAL PRICE If not all of A has been scanned, repeat from 1,
Ctharwise, test if the largest DJ encountered in
all pgpartitions (DJSUP) is smaller than the level
TCLDJI*PINCEYN, which is taken to be insianificant,
If sc, exit., Otherwise, raduce TOIDJ to a tenth
of DJSUF and repesat from 1, {At least one column
must get picked up next *ise. Lt would be bettar
to aexit wirh the <cclumn corresponding o DJSUP
directlvy, Hcowever, the reduction of TILDJ occurs
only orce cr tvice during a run.)

et b il 142 b W e R T S LS (TS e e B3 S Y o S = s M) L

SUBROUTINE PUNCH(M,N,KRHS,HS,BL,BU,Y,ID1,ID2)

Subroutines called: Called by:
None CRIVER
Purpose:

To cutput a basis description to file IENCH, in a format compatible
with some of the ccmmercial LP systems. FEach card image is of the
fernm

KEY NAME 1 NAMEZ VALUE

vhere KPY pay b2 LL, UL, XL, XU or SB. (Type SB is a generalization
of the standard fcreat, necassary for daescriptiorn of nonbasic
solutions,)

The file produced by FUNCH may be used as input to INSERT.

Parameters:

REAL#*S Y (W) (Input) Contains solution values for all
variables (structurals, RHS and logicals).

INTEGZR IDT (M) Work vector to hold left part cf row nanes.

INTEGER ID2 (M) work vector to hkcld right part of row nases,

Method:

1. Read row names from the scratch file intc ID1, ID2,
2. Process each structural! in turn.

{2) Fead column name frcm scratch file, to be used as NAME1.

() (Nonbasics cor supertasics) Skip nontasics that are at a zero
bound or are fixed. Ctherwise, use the state vector HS to
index the local array KPY to get the correct indicator (LL, UL
or SBY., Cutput with NAME2 blank.

{(c) (Basice) Scan the state vectcr tc find the next logical that is
not basic (it may be nontasic or superbasic). The corresponding
rovw name wili be NAMEZ. Select the ccrrect indicator (XL or XU)
and ocutput,

Note: XL means the logical (not the row) is at its lover bound.

3. Output any supertasic lcgicals, using indicator SB and NAMZ2 blank.
I+t is important that these Lte output last.

4. Print message tou indicate successful PUNCIH,

SUBRQUTINE P3(M,M1,NBELE™,NBUMP HSEIKE,HC,HR,NI,HJ,
1 HSC ,HSR,HCLIST,HRLIST,NSFIKE)

Subroutines called: Called by:

None EY4

Purpcse:

To permute the rows ard cclumns of a square matrix B so ¢that it 1is
close to teing lowar triangular, agart from a few columns ("srikes")
which have nonzeros atove the diagonal,

Parameters:

INTECER M (Input) Dimension ¢f B, Will be the size of
just one of the bumps in the whole basis,

INTEGESR %1 (Input) M1,

INTEGEF NBELEM {Intrut) No. cf nonzercs in B.

INTEGER NBUMP Input) The number of this bump, used only for

storing into array HSPIKE.
INTEGEP*2 HSPIKT (M) (Qutgut) HSETKE(J) will be ~NBUMP if column J
is a spike, +%NQUMP ctherwise,

INTEGEER*2 HC (M) (Cutput) 7Tte assigned column order.

INTZGER*2 HR (%) {Cutput) The assigned rcw order.

INTEGEER*2 HI(N) {Input) Ceclu=xn counts,

INTEGER#*2 HJ(NM) %ork vector to hecld row counts.

INTEGER*2 HSC(M1) (Ingut) BSC (i) roints to the start of column j
in HCLIST,

INTEGER#*2 HSR(M1) Work vector to point to start of rows in
HELIST.

INTEGER#*2 HCLIST (NBELFNM)

{Input) Coclumn list,
INTEGEF#*2 HRLIST(NRELEM)

Werk vector to hcld row list.
INTEGER NSPIKFE (Cutput) No. of spikes found.

Method:

The tulk of P3 was coded directly frcm the description of the
Preassigned Pivct rfrccedure by Hallerman and Rarick, Math.
Programming 1, 2, Novemker 1971, It has teen modified as follows:

1. The backward and forward triangle secticns have been deleted, since
thay are now handled bty P4, Hance, this version ot P3 is 1utended
for use on an irreducible square matrix.

2. The method used for computing the Tally Function is more efficient
and fcllows that dve tc R. Peacock cf CDC.

SUBROUTINE P4 (M,M1,N,NE,NP?,NZ2,HSPIKE,HA,HF ,HS,HB,HC,HR,HT, J,
1 NUMB,HP,B,W1,W2 ,HRN ,NEUME,NSPIKE)

Subroutines called: Called by:
BUMPS MKLIST P3 TRNSVL INVERT
Purpose:

{ To perwmute the rows and columns of the rasis matrix B into the bump
‘ and sypike crdering of Hellerman amd Rarick. The permuted B will be
block lower triangula:.

Paramseters:

INTEGEER NZ2 (Input) Twice the no. of nonzeros in B,

INTEGEER*2 HSPIKE (M) (Cutput) Codes the bupp and spike structure in
the following way. Suppose B turns out to
have 2 buwps of dimension 4, each with 2
spikes. HSPIKE might then te

G0 6 Y 1T=T=4 O 0 2 2=2=2 0 0 0

vhich weuld mecn that the last two columns in
€each bump are spikes, the forward and backward
triangles are both of size 3, and the two bhumps
are separated by 2 triangle coluemns.

INTEGER*2 HB (M) On input, contains colurn nos. of basic vars.
INVEFT sets this list up backwards, so slacks
apgear first.

INTEGER*2 Ac (M) (Cutput) Wwill contair the column nos. in
rermut«d order, ready for FACTOR.

INTEGER®*?2 HR (M) (Cutput) Will =specify the preassigred pivot
rows for the recrdered columns. N

INTEGER®*2 HI (™) ,HJI (M) ,NUMB (M), HE(M),BM),WT1(M),wl(N)
All wecrk vectors.

INTEGE?R*2 HEN(NZ2) Work vector, w#ill be used for cclumn and row
lists bty P3.

INTRGER NBUMP {Output) Final nc. of bumps.
INTEGER NSPIKE (Cutput) Final no. of spikes in all bunmps.
Method:

1, Set up column list in corder specified by HB. This order \is
arbitrary excant for safety the slacks ace listed first.

2. Call TENSVL to find a maximal transvecsal. HP will contain the
resulting column perrutation.

o If P 1is structurally singular (NREJ.NE.O), an indirect method is
used ¢to find which coluwns in HE vere selected and which of those
sust te replaced ry suitable slacks.

U, Reorder HB and make a nev column list.

107

. " i . - S o s ey Y
0 o P e - . L 0 W NG 0 S AT ARSI b 340t = AN Wi e T s M s oo i AT s o it s et ..

5. Call BUMPS to find a sysnmetric permutation HP that makes B block
urper triaangular.

6. Since we wvant B ¢to te block lower trianqular, we now process the -
| output from BOMPS in reverse order, in particular the array
! B(NBLK) which pcints to the beginrirqg of each bump within array |
HE.

7. Por each bump, pointers F1,P2 mark the beginning and end gcing
backwards, and Q0,C1 mark the beginning and end going forvards when
results are stored finally in HC and HE.

8. Bumps of dimension 1 or 2 are treated diractly. Othervise, the
ccluan 1list for a bump is set up by taking the row nos. in each
column in the bump and tvsing thkem to index the array NUMB which is
output by BUMPS. If the relevant value of NUMB lies between P1 and
P2 then the element lies inside the burg.

» .

"\ —

9. Call P3 and accuwmulate results forwards in HSPIKE, HC, HR.

[S

SUBBROUTINE RESBTIR(NN,NR,NS,R,COND)

Subrcutines caliled: Called by:
None CRIVEE INVERT RGITM
Purpcse:

Resets F to the identity wmatrix (R upper triangular, storsd by
columns). Called wvher the first feasitle point is found, or as one of
the recovery actions if the linesearch fails.

Parameters:

RFAL%*8 COND (Cutput) Reset to 1.0.

P s g P Sy A AT AT

{7

SUBRQUTINE FGITN(M,M2,MN,MNN,N,NE,NP1,NF,NF,NN,NNO, MAXS, NS,
“AXL,MAXT,
HSPIKE,HA,HB,FE,HS,HPIVL,HPIVU,HPIVF,NL,NU,A,BL,B0,R,PI, X,
GRL,Y,Y1,XN,C,61,6,CNEW,

HL1,DL,HO,D0,F)

E W -

Subrcutines called: Called by:

ADDCOL ALIGN BTFANU CALCG TRIVEF
CG CHUZQ CHUZR CCEDFP
DELCCL LCT1 PTRANL FUNGRD
GBETGED RESETR RTRSOL RI1¥ROD
SEARCH SETPI SQUEEZ UNPACK

Purgcse:

To perform an iteration of the reduced-gradient method.

Parareters:

All defined previcusly.

#ethed:

NPHS is either 3 or 4 on entry to RGITN. The only difference is that
vhen NPHS=3, a list of nontasic variables (set up by PRICE) must first
be added to the supertasic set.

Thereafter (for bhcth phases) tta routine perforss ome optimization
step on the current tesics and supertrasics. In general i* may be
aentered with NPHS=4 for several consecutive iterations, during which
the pumber of sucartasics will either remain constant or decreas-.

1. (Initialize) Set up varicus lcgical variables to Adetersiras the
current state of the problem (FEASEY1, INFSBL, LINBAR, NONLIN,
VARMET). Por exarprle, LINFAR is true if the current sclution is
infeasitle, or i‘ tkere ar¢ nc ncnlinear variablas; the linesearch
and guasi=Newton or conmjugate~gradient steps can then be skipped.

2. (Ad4d superbasics) If NPHS=3, the nonbtasic variables 1listed in
EB (), {=8¢NS+1, ..., MeNS+NEWSE have been set up by PRICE to
beccme supertasic. The first variatle in the list has the largest
reduced gradient, TJC. If DJQ is not sufficiently laraer than
RGNOF® (the nore c¢f the reduced-aradient vector for the existing
supertasics), ignore the 1ist and proceed as if NPHS=4,
Gtherwiee, add th€e new supertasics one by one and incr: ment NS
accordingly. If necessary, add nev columns to R, Take failure
axit 1f W®S has already reached MAXS. Set VARMFT = FALST if NS
aexceeds MAXR (lessian dimerszion).

3. (Compute search directicn)
(a) Generate a search direction s for the superbasics, storing s
in Y(H+9), =1, s, NS,
If LINEAR, s 4is the negative reduced gradieat vector, -G.
T€ VARMET, k'Fs = =G,

110

4.

6.

10‘

1.

If CONJGE, s will already have teen set up by the previ us
entry to RGITN, except if RESTRT = TFUER,

(b) Sclve By = =-Ss t¢ g2t ccrresgcnding search direction y for
basicae. Store ¥y in Y(1), 3=V, ec..s M.

(CHUZR) Pind which variatle reachas one c¢f its bounds first when X
is changed to X +« THETA*Y (THFTA D>= 0). fet JP accordingly,
Erotler is urbounded if L TNEAE and JP=0.

(Linesearch} Skip if LINEAR or if THETA 1is @essentially zearo.
Ctherwise, call S:iAKRCH to detzrmine a new step lenath THETA.
Peclare problea untounded if necessary. If SEARCH falls on one or
more consecutive iterations, try the following in tucrn:

{a) Reset the Hessian (k = I) and try again.

(b) Cali INVERT and try again.

(c) Switch to NPHE=3 t¢ ask for PRICE (more superbasics) and try
again.

(d) Repeat (c} ur to & times.

{e) Give up for the day. Try again tcmcrrow.

(Pind new reduced gradient) Skip if LINEAR or THETA=0. Otherwvise,
cowpute new Pl vectcr and new reduced-gradient wvector GNEW, It
VARMET, compute Y = GNEW = G, etc. ready for quasi~ Newtcn update
to Hassian.

(Basis changa) If 1 <= JP <= M, a kasic variable reached its
tound.

(a) If VARMET, do quasi-Newtcrn update toc R.
{(b) Solve B'y = e {JF}.
{c) Call CHUZ(t¢ find the KQ=*h superktasic to replace basic.
This will he cl AR DOo. JO1.
(@) Tf VARKET, call »71PRCD te wodify R to account for basis change.
(e) dodify PI using v frcm (b) above.
(f) Solwe L1=2Y1 = 4{J01) ¢o prepare for update of LU factors
of basis.

(g) Go to 3(b).

(Delete one supertasic}y 1€ JP > M, a superbasic variable reached

its bcund. Set K¢ = JC - M.

fa) If VARMET, do quasi-Newton update to K.

(b) Call D¥LCCI ¢+o delete the KQ=th supertasic from X, HR and
pechaps R.

(c) Recompute reduced-gradient G anrd norm RGNORM.

(d) Go to 10,

(Unconstrained step) If JF=C, a sinimum was found along X +

TYFIA*Y before any variatle hit a bournd.

ta) L€ CONJGH, c:11 CG tc compute search direction for superbasics
for next itera+tion.

{(b) Tf VARMET, dn qguasi=-Newtor update to R.

(c) Sat G = GNFW,

(Bstimate conditinn no. cf rednced Hessian) Compute DMAX and DMIN,
the largest and srallest diagcnal eleaents «cf R. Set COND =
{DMAX/DMIN) **2,

(Convergence test for current sutspace) DPetermine vhether to stay
in phase 4 (ano*her itcration with the same sunerbzucics) ~r to ack

111

gor phase 3 (FRICF). See Murtagh and Saunders (1978), section
4.

SUBROUTINE RTRSCL(R,Y,NB,N)

Subroutines called: Called by:
None RGIIN
Purpose:

To solve the system B'Ry = 2z,

Paraseters:

INTEGER . {Ingut) Current dimension of R.

REAL»*8 Y (¥) Initially hclds z. Overwritten by y.
Method:

Fcrvard substitution followed ty back-substitution., Both are arranged
to run throuah the cclumns of H®, in crder to access memory
sequentially. This imrrcves execution speed cn some machines, e.qg.
those with a cache memory,

e —

R T)

PR

SUBFOUTINE RI1ADC(F,Y,NR,N,TOLZ)

Subroutines called: Called by:
None R1MOD R1PROD
Purpose:

To modify R such that (new E*R) = (cld R'R) + yy‘'.

Paramaters:

INTEGER N (Ingut) Current dimension of k.

REAL*8 Y {N) Cn input, contains vector y. Gets overwritten.
REAL#*8 1CLZ (Input) Tolerance for skiirping transformations.
Method:

A single forwvard sweep of plane rotatioas. For examgle, Y(1) s
eliminated first, changing “he remainder of Y and the first row of PR.
Maintains nomsingqularity cf R. Und-rflcw w®ay occur occassionally

withcut fatal consegquence.

SUBROUTINE RI1MOD(F,Y,NR,N,TOLZ,SIGNA,K)

Subroutines called:

RIACD R1SUB

Purpose:

To modify R such that

Parareters:

INTEGEE N
REAL#*3 Y (N)
REAL*S T0L2
REAL*8 SIGHMA

INTEGEF K

Method:

Called by:

COMDFF

(nev R'R) = (0ld R'R) + SIGHA*yy',

(Infu¢) Current dimension of R.

Cn ingut, coantairns vector vy. Gets overwritten,
(Input) Tolerance for skipping transformationms.
{Input) A scalar, may be positive or negative.
(Cutput) Error flag, set to =K if wmodification
failed.

1. Change y ¢to abs(SIGMA)*y. Fxit if norm(y) <= TOLZ.

2. Call RIADD or R1SUB acccrding to the sign of SIGMA.

115

e

SUPROUTINE RI1PRCI(FP,V,Y,NR,N,I012,TOLD,JQ,KADD)

Subrcutines called: Called by:

RIADC EGITN

Purpose:

To modify R such that (new R'E) = (I ¢ vw')*(0ld R'R)*(I ¢ wv'), for

the

special case where v is qeneral Ltut w is the J¢-th unit

vectcr, e (JQ).

Paramaters:

INTEGER N {Input) Current dimension of R.

REAL*8 Y (N) Cr ingut, con*ains vector y. Gets overwritten,

REAL*8 T0LZ (Input) Tclerance €or skipping transformations,

REAL*3 TOLD (Input) Minimum allowable size of the Jo=-th
diagcnal of k.

INTEGER KADD (Cutput) Error flag, st to -KADD if the JQ=-th
diagonal of F had to be raised to TOLD.

Methcd:

1. JC=1 is a special case. Sisply add R(1,1) *v' ¢to the first row of

2.

3.

Se

6.

R and elit.

Othervise, compute y = Ew = PRe(JQ). i.e. pull out the JQ-th
cclumn of R,

Perform a partial tackward svweer of plane rotations (as in F1SUB)
reducing the vector (v 0) to (0 S) by rotaticns in
the rlanes (j,N+¢1), 9=JC,JQ=1, ..., 1. This creates a row r
below R,

Comgrute y = r ¢+ Sv,

Give y to R1APL to comrleta the modification.

Test the JQ=th diaacnal cf F, which could te zero or very srmall,

Postscript: This routine has since been modified to perform a partial backward
sweep and then just a partial forward sweep (instead of the call
to RIADD). See Murtagh and Saunders (1978).

Subroutines called: Called by:
None F1M0OD
Purpose: {

To modify R such that (new R'R) = (0ld R'R) - yy'.

SUBEOUTIN® R1SUB(§,Y,NR,N,TOL1Z,FAIL)

Paramaters:

INTEGER n (Input) Current dimension of R.

REAI*S Y (M) Cn input, contaims vecter y. Gets overwritten.

REAL*8 TOLZ (Input) Tclerance fcr skipping transforwmations.

LOGICAL FRIL (Cutput) #ill be TRUE if y is such that (new
F'R) would not be positive definite; in this
case, PR will te unaltered,

Method:

1. Solve R'p = y, Compute D = 1 = p'p,

2. Exit with PAIL = TPUF if D <= TCIZ. Ctherwisa set S = SQRT (D).

3.

Ferform backward sweep cf rlane rotations, reducing the vector
(€ g S)y “to 'O 1 3 by rotations in the planes (j,N¢1),
j=N'N‘1, oo ey 1.

SUBRDUTINE SAVER(4,N,NNO,NS,4S,HS,HB, X, XN,ISTATE)

Subroutines called: Called by:
None CFIVER
Purpose:

To output the current state of each variable in the form of a bit map
(one character per variakle), along with column numbers and values for
supetrbasic variarles. Cutput is to file INEWB,

Parameters:

INTEGEP ISTATE (3) {Inpu¢t) 2 12-character string describing the
current state of the sclution f(see subrcutine
STATE).

Methcd:

1. Output one card image containing froblem name, Iteration nunber,
ISTATE, Phase, Ob“ective value (cr Sum of iafeasibilities, if
Phase=1)..

2. OQutput one card image containing OBJ name, RHS name, RANGF rame,
POUND name, No. of ccnstraints (M), No. c¢f variabies (N), ho. of
supertasics (NS).

3. Outrut the state vector HS using FORMAT(8011).,

4, OQutput the column numbter HB(J) and value X(J) for each superbasic,
cne pair per card ivage, using POSMAT (I8, 1PE24.14). Terminatc the
list with column numter 0.

5. Rewind €ile INEWE.

6., Print message 'BASIS MAE SAVED ON FILE <INEWBD>'.

1
1
1

SURFCUTINE SEARCH(NS,MS,NN,X,P,GRD,HB,XMN,C,Xx1,G1,
1 ETA,PNOKM,STEEMX,ALEHA,F,UNEBDPD,IFAIL)

Subroutines called: Called by:
DOT FINGFD GETGRLC NEWETC FGITN
Purpose:

To find an approximaticn tc the minisum (with respect to ALPHA) of the
function f£(X ¢+ ALPHA*P) defined by FUNGED. Driver for NEWPTC,
derived directly frcr subroutine LNSRCH by Gill, Murray, Ficker,
Barber and Wright, KPL Algcrithss Litrary, Ref. No. EW/16/7, DNAC,
Nationa! Physical Laboraztory, Teddéington.

Paramaters:

REAL®R X (MS) cn input, contains initial values of the lasic
and supertasic variables. On output, contains
X ¢ ALPHA*P,

RTAL*8 P (MS) (Input) Contains the search directicn for
tasics and supartasics.

PEAL*S X 1{NS) Work vector used to hold temrorary X ¢ ALpiA*pP,

AFAL*8 G1{(NN) work vector to held gradient for nonlinears at
11,

REAL*S ETA {Input) <lke linesearch accuracy tclerance.

REAL*3 PNOEM {Tnput) Norm of P,

REAL*8 STEPMX {Irgut) Upper liwmit on ALPHA, defined by ¢the
toundz cn X.

RPAL*8 ALPHA (Cutput) Returns stzp length.

REAL*8 F (Cutput) Feturns best objective value.

LCGICAL UNBDD (Output) will be TFUE if ALPHAR turns out to ba
very large (1.0F+8 currantly used).

INTEGER IFAIL (Cutput) will ve 0 if search was successful,

fcsitive otherwisa.

SCBROUTINE SETPI{(M,M¢,NE,NE1,NF,MAXL,MAXU,NORM,TOLZ,
1 HSPIXE,HA,HE,FPIVI HFIVO,HEIVF, NI ,NU,A,PI,¥Y,
2 dL,0L,HU,DU,F)

Subrcutines called: Called by:
BTRANL FTEAND ADCCOL DRIVER RGITN
Purgcse:

To sclve the system F(transrcse)®*PI = Y, given the vecter VY.

Parameters:

INTEGEER NORN (Input) O if norm(PI) is not required.

REAT *9 TOLZ (Ipput) If rorm(PI) is computed, any PI(i)
smaller than TOLZ will be reset to zero,

REAL*8 FI(N) (Cutput) The required soluticn. (The actual
parametsr pmay nct always be the pricing vector
for tte simplex method.)

REAL*8 Y (M) Ingut) The given rhs vector. Not overwritten.

Methcd:

1. Set FI = Y and call FTIRANU, BTEKANL.

2.

If NORM is nonzero, ccmpute SUM = sum of PI(i)**2, resetting small
compcnents to zero and counting significart ccmponents. Set T[TNORM
= square root cf the averzge valua of ncnzero PI(i)**’. This is an
attemvt +o0 dampen the effect of a few very large components.

SRR i - s R G Sl e s i

SUBFCUTINE ETX(M,M2,N,NP,NE1,NF,NS,NS,MAXL,MAXU,
1 HA,HB,KE,HS,HEIVL,HEIVO,HPIVF,NL,NU,A,BL,BO,X,Y,Y1,
2 HL,DL,4U,DU,F,IRESET)

Subroutines called: Called by:

BTRANU FTRANL CRIVEF INVERT

Purpcse:

(Optionally) to compute values for the tasic variables, using the
current basis factorizaticn and values for superbasics. Also, to
perfcrm a rov check on X, to ensure that the general constraints Ax
= b are csatisfic<d to a certain precision,

Parameters:

REAL*8 X(MS) Surertasic values are input in X(4), 1=M+1,
eee, MS, Values for tasic variables are either
input in Y., Jj=1¢ «s0e M, oOr are to bhe
cceputed, depending on the value of IRESET.

REAL*8 Y (M) Work vector.

RFEA1*8 Yi(™) Work vector.

INTEGER TIRESET {Inrut) 0 if tasic X(j) are input, >0 if theyv
are to te reccmputed.

Method:
1« Set Y = 0.

2. For each nontasic coluwmn A(R), accumulate «A (K) *B into Yo
where B 1is the acrrrcgriate upper or lower bcund, depending on the
state of the associated variable, Can he skipp=d if B is zero (as
i¢ usually will be).

Fcr each suraertasic cclumn A(K), accumulate <=A(K)*X(J) into Y,
wvhere X(J) is the apvropriate value c¢f the supertasic variable.

(Fecompnte X} If TFESF1I>0, solve B%*X = Y for the tasic vars.

(l1terative refinement) If IFESET>0, set Y1 = Y - B*xX and solve
tha systea ExIX = Y1 fcr a correction to X. Store DX in Y1,
Ccmpnta DXNOS™ = the largest comgobent of DX, excluding
corrections to lcocgicals.

(Fow check) Set Y = Y - B*)Y, At the same time, compute XNORM =
the largest component of X, excluding logicals:; also compute Y1(i)
= ncrm of the i-thk rovw of E,

I1f itarative refinerent was done, an estimate of ¢the condition
numker of B is TXNCFM/ (XNCEM®*EPS).

Ccmpute the largest normalized rov residual, BMAX = max
1((i)y,v1 (). Set thte arror flag IERR=6 if FMAX/XNOBM is larger
than the row-check tclerance, ICLROW.

121

SUBROUTINE SCLN(NCALL,M,N,NE,NF1,NN,NKO,N5,HS,
1 HA,¥B,HBE,HS,A,FL,BU,XN,C,X,P{,Y,HST,ISTATE,ONDISK)

Subroutines called: Called by:
SCLPRT ONPACK LRIVER
Purgcse:

To load solution and state values for all variables into arrays Y arnd
HST, and to output the soluticr in apprcximately MPS format.

Parameters:

INTEGER NCALL {Input) NCALI=1 if Y and HST are to be set up;
NCALL=2 if solution is to be output.
REAL=*9 Y (N) Belds scluticn values as follows:
Yen, eeey YIKRHS~1T) Stcucturals
Y (KRHS) RHS, always =1.0
‘(KSHS*“)' ee ey !(N) Loqicals (not rous)
INTEGEER*2 HST (N) Kclds state values for structurals, RHS ard
lcgicals, as fcllows:

HST State Meaning

1L variable is at its lower limit
UL variatle is at its upper liwsit
SBS Supertasic

ES Basic

EQ Fixed

FR Free (but nonktasic)

- Balow lower bound

4+ Abcve upper bound

N AN T (WA oY

INTECGER ISTATE (3) (Input) Ccntaing a string describing the state
¢f the sclution.

LOGICAL CNDISK (Input) TRUE if sclution is to be output ¢*o
file ISCLN.

Method:

1. (NCALL=1)
‘a) Ccpy the state vector HS into array HST.

() Run through the ncntasics, setting Y to the appropriate bound
values and changing LL cr UL statas 4o EQ or FR.

(¢} Pun zhrcugh the tasics and supertasics, setting Y to the
appropriate X values and changing BS or SBS states to == or ¢+
for any inteasitle values.

(d) Zxit if problem is linear or infeasitle, or if wuser has not
requested onae last call to CALCFG. Otherwise, overvwrite any
nonlinear scluticn wvalues with the values in XN, in case the
user altered XN,

122

S

2.

(NCALLD1)

(2)
(b)
{c)
(d)
(e)

()
(9)

Set LPR to the the output unit (file € or file ISCLN).

Expand the RHS vector into X.

Cutput solution heading (NAME, OBJ value, STATE, PHASE, etc.).
Cutput ROWS heading.

For each row, convert state and soclution values for 1logicals
into those for rcws (Rows valua = FHS value - Llogical value):
read the BRow Name frem file ISCR; call SCLPRT to output one
line of the solution.

Cutput COLUMNS heading.

For each column J, ccspute the reducad gradient DJ by the same
method as used in FFICE: 4include the gradient value C(J) if
sclution is feasitle and variable J is ncnlinear; changa anv

negligible values toc zero; read the Coluamn Name frcm file
ISCR; call SOLEFT to cutput cne line of the solution.

123

SUBRCUTINE SsCLPKT(J,1C,IA,¥%,C,B1,BZ2,0,K,BFLUS,CNDISK)

Subroutines called: Called tby:
None SOLN
Purgcse:

To output one line cf the sclution. Used for both the ROWS and the
COLUMNS sections.

Parameters: (211 are ingut farameters)
INTECEP J The variable number.

J=1 for the first structural;
J=N for the last row.

INTEGER ID(2) Name cf the row cr cclumn.

INTEGER IR An incex defiring the state of the variable,

RERAL*S X The value of the variable.

REAL*8 C Slack activity (for rows) or objective gradiert
(for colurns).

REAL E1 Lcwer found on row or column.

REAL B2 Urper tound on rcw or column.

REAL®3 D Fi value (fcr rows) or reduc=d gradisat (for
columns).

INTTGER K The cclumn no. usad by MP5/360.

K=1 fcr the first rovw;
K=N fcr the last structural (the RHS).

REAL BPLUS "Flus infini¢y"™ for bcunds.

LOGICAL CNDISK TRUE if *he soluticn is being output to file
IsCLN, rather than the printer.

Met hod:

The cnly logic here is in detersining which format statement *o us>,
dependiing on the size of the two bound values, B1 and B2. If CNDISK
is THUF, output occurs directly ¢to file ISCLN, using 1PE16.6 for all
REAL guantities. Otherwis2, cne of fotrr possitla format stat:mants is
usad, The word "NCNE" is used for all infinite bounds; otherwise,
REALS ara output with format P16.5,

SUEROUTINE SPECS(L,ISFECS,ISCR,IVERSN,NSPEC)

Subroutines called: Called by:
None MINOS
Purpose:

To make a first pass at processing the SPECS file. Fach card of ¢the
file is assumed to ccntain cne of the fcllowing:

KEYWORD IDENTIFIER
KEYWORD INTECGES
KEYWORD RFAL

in relatively free format. 7The aiw here is to extract such iters as
certain character s:rings and to output them to the scratch file ir a
fixed fcrmat that 1is suitable fcr re-reading using standard 1/0
routines. This is cne wvay of processing data in free format, in a way
that is sachine-independent,

It is assumed that the first and last cards in the SPECS file contain
the KEYWOEDS T"BEGIMN" and "EINL™ respectively.

Parameters:

INTEGER L (80) §orkspace to hold a card image.

INTEGER ISPECS (Inrut} OUnit no. for SPECS file.

INTEGER ISCF (Innut}) Urit nc, for scratch file,

INTEGEE IVEESN (Ingut) “oded versiocr and date cf MINOS.
INTEGER NSPEC (Cutput) Will te negative if an EOF occurred

on file ISPECS before a "REGIN™ card was found.
Othervwise, returns the no. of card images that
centaincd useful information.

Method:

Since tha scratch file is also used for rov and column names, we are
stuck with the sam= Lcgic2! kKecord lLength, & characters. Four logical
records will be output to the scratch file for each meaminaful SPECS
card, 1Thase will be the fclleocwing:

KEYWORD (3 characters ¢+ £ Ltlanks)
IDENTIFPIER (8R1, tc te re~read as 244)
INTEGER (EAY, tc te re-read as IB)
FEAL (R21, tc ke re-read as EB.1)

Devending on the KEYWORD, any of the IDFNTIFIER, INTEGPR or KEAL may
be £ bhlanks.

1.. Read cards from file ISFR®CS until ome is found that comtains “BEG"
as the firs*t non-blank characters. Fxit with IPECS = -1 if Enrd of
Pile cccurs first.

2. (BEGTN found) Docode IVERSN and output heading.

125

B R e 1
4

:
:
i‘ ;
%

3. Process each card as fcllows.
(a) Read and list the card image.

(b) Scamn to the first non~tlank charactar. Skip card if completely
blank, or if first character is "*", which indicates a ccmment,

| (c) Exit if the KBYWCED is ®ENL®,

‘ (d) Take as KZYWORD the 3 characters starting from, anpd including,
| the first non-tlank character,

(e) Scan to the next tlank or "=n,

(f) Scan past all tlanks cor ®="s,

(g) The next character deterwines wvhether the second item on the
card is ar identifier or a numher. If it is cne of a list of
characters contained im the local array LDIGIT, then extract up
to 8 such characters and treat =2ither as an INTF3ER, or (if it
contains a "," or "E™ or "[") as a FEAL., Otherwise, extract
exactly B characters *to Le output as IDENTIFIFPR,

(h) 1f an INTEGER or FEAL has pot yet been foumd, return to (e).

(i) Cutput the 4 {tems KEYWCRD, ICENTIFIER, INTEGER amd@ REAL to the
scratch file.

, §, If a SPRCS file was fcund, close and rewind file ISCR,

' e . Lo i s b Bl s Lo i bt St .-l i
i s e e e g—— =

SUBROUTINE SPECS2{ NSPFC,MRCWS,MCOLS,MFLMS,
1 M,M2,MN,ENK,N,NE,NF1,NF,NN,NNO,MAXS, S)

Subrcocutines called: Called Ly:
None MINOS
] Purpcsa:

To make a second pass at decoding information from the SPECS file.
The scratch file now ccntains a sequence of KEYWORDS and V2LUES in
fixed fcrmat. It remains tc determine which KEYWORDS they are.

Par ametars:

INTEGER NSPEC {Input) The no. of KEYWORDS to be read from
the scratch file,

The reraining parameters are output. They are the various INTEGER
variables defining the disensicng cf the problea about “c be solved.

Method:

1. Set most parameters tc their default values. For the others, it is
i@aportant to know whether tte user attempted tc define values, or
! not. This 1is determined by setting t+the parameters to illegal
values, €.9, 0 or -1, and thea testing for such values after all
KFYWORDS have treen rprccessad.

2, Pcr each KBYWORD, recad the variables Kk®Y, ID, NUM, DNUPM using
tormat{(A3/, 2A4/, 18/, EB8.1).

3. Netermine which kayword is contained in KEY by searching a list of
legal keyworis. The use of ID, NUON and DNUM deperds on KEY, In
mcst cases, only cne of 1L, NUM, or LNUM is used.

4, when all keywords have tecen processed, assign default values to
those that wz2re nct srecified,

S. Print a summary of the parameters about to be used, and exit.

SUBFOUTINE SQUFEZ(M,N,NE,NN,NNO,NS,MS,
1 HE,HS,BI,BU,R,X,XN,G,GRD,TCLX,PYFORM, RGNOKM,DELETR)

Subroutines called: Called by:
PELCOL RGITN
Purgcse:

To remove any supertasics that are very close to a bound and do not
have a siqguifican* reduced gradient drivirng them away from that nhound.
(Wwill be called cnly after ccnstrained steps in RGITN.)

Parasetars:

REAL#*3 T0LX (Input) The measure of closeness to a bound.

REAL*R FINOAM {Input) Norm of PI, to scal« the toleiance on
reduced-qradient compcnents,

LOGICAL DELETPF {Input) To be passed tc DELCOL,

Method:

Superbasics are spli¢ up depending cn whether *“heir reduced gradient
is small or no*. Ccding cculd ta simplified if the rpurpose stated
above is followed directly.

Tf a variahblae is to te sgueezed, its state, BS(X), is made monbasic at
the aprropriate bound. Arrays G and GED are ccmpacted, and DELCOL
does the same for HE, X and R.

Throughout, snparbasics are rrocessed in reverse order to reduce wcrk
slightly if more than cne jets csqueezed,

L e

SUPPOUTINE STATIE(K,ISTATE)

Subroutines called: Called by:
None CRIVEFR
Purpcse:

To load appropriate character strings into the array

output with a saved bit map or the final sclution.

Parameters:

INTEGER K (Input) Specifies the current
frctlen.

INTEGER ISTATE(3) (Cutpu:) Will contain one of
strings, U characters per word:

K=0 PROCFEDING

1 OP1IMAL SCLN
2 INFEASIELE
3 UNRCUNDED
3 EXCESSE 1IINS
5 EEROR CCNDN
Het hod:
Trivial.

129

ISTATFE, for

state of the

the following

i i+ i

SUBROUTINE TRNSVL(N,N1,NZ,IF,IEN,IPIVEW,PC,RV,PREOKL,ACE,0UT, NEEJ)

Subrcutines called:

None

Purgcse:

Given the row nurbters of the ncrzeros in
matrix A,

sparse

this

rovtine

AP has a nonzero diagonal. If

found

such

+hat ¢the

large as possible.

Parameters:

INTEG™F
INTEGEF
INTEGEE
INTRGER*2

INTEGER®2
INTEGEE*2

INTEGFPE*2
INTEGEE*2
INTEGIR®*2
INTEGER#*2
INTEGER®*2
INTPGER

Method:

N
N1
N2
IP(N1)

IRN(N2Z)
IPIVRW(N)

BC ()
RV (V)
PREORD (N)
ACP (V)
ONT (N)
NEEJ

this is

Called by:

EY

ewach
finds a ccluann
not pos

column of =2 square
permuctation P such that
:sitle, a parmutation is

of consecurive ncnpzero diagonals in AP is as
(Tnput) Diransicr of the matrix.

(Input) Ne1,

(Ingut) No. cf nonzeros in the matrix.

{Input) Points to the first nocnzero in each
colurno.

(Ingput) 1List of row numters for nonzerocs.
(Cutpout) Will cortain the required permutation.
Cecnsidering the wmatrix as an N®N array of
elewents A(I,J), the alements A(I.IFIVRW(I))
will re nonzerc (except if IPIVRW(I) = 0O; see
NREJ below).

work vector.

Work vector.

Work vector.

Work vector.

work vecter.

(Cutput) wWill be nonzerc if the matrix is
structnrallv singular (i.e. singular for all
rossitle wvalues of the nonzeros). Certain
elenmerts of IPIVRW wil! then be zero and it |is
jcseitle rlrerefore tc determine which celumns
cf the matrix must he replaced to cbtain a

nensirgular wmatrix.

This routine is derived directly fros Herwell subroutine NC163 by I.S.
Duff (dated Dec 1975), which nay gince have boen replaced by MCI1A.

130

T e

SUBFQUTINE UNPACK(M,NE,NP1,HA,HE,A,Y,JC)

Subroutines called: Called ty:

None ADCCCL DRIVER FRCTOR LPITN
FGIT{ SOLN

Purpose:

Tc expand the packed cclumn A(JQ) intc the vector VY.

Method:

The parameters and mcthod are cbvious from the code. Ncte that
negative 1tcw idices HA(JY &may cccur in spacial applications (e.q.,
MINCS/GRG), but only their atsclute value is relevant here.

SUBFOUTINE UNPACK(M,NE,NP1,HA,HF,A,Y,JQ)
INTEGER®*? H2(NE),EF (NEY)

FEAL A (NE)

FEAL*8 Y (M)

UNPACK THE JQ-1H CCLUMN CF A

(e NeNe]

no 10 I=1,M
10 Y(I) = 0.0

Jd1 = H2(JQ) +1
J2 = HE(J0+1)

pDC 20 I=J1,J2
IR = HA(I)
IR = IAEBS(IR)
Y(IR) = A(T)
20 CCNTINUE

BETURN
(o4 END OF UNPACK
END

131

11. PERFORMANCE

The proving ground for MINOS has been the U.S. energy-economic moaels
of Alan Manne. These are the models ETA (Manne, 1976) and ETA-MACRO
(Manne, 1977), of which several hundred cases have been run during 1975-77.

In ETA-MACRO, the constraint matrix is approximately 430 x 750 with
2800 nonzero coefficients. The objective function involves 80 variables
nonlinearly. It is of the form

f(K,E,N,I,EC) = 126 §, log C,
t=1
e C =y, +(ac_+bd)P .1 -k,
4, el SR |
d = (B = et)eo(Nt - nt)(1-8)o ,

and the unknowns are the five sets of variables Kt, Et, Nt, It, Ect.

Clearly log Ct is a non-separable function of these variables.

On an IBM System 370 the problem can be run in a 384K region. This
core requirement is made up approximately as follows:

Program code 184K
REAL*8 Z(20000) 160K
1/0 buffers 40K

384K bytes.

From a cold start, using CRASH OPTION 1 with no special initialization
of the nonlinear variables, the run time on an IBM 370/168 is typically
about 100 seconds for 1100 iterations. (The first 500 iterations are primal
simplex iterations obtaining an initial feasible solution.) Restarts with
different bound sets require a few hundred further iterations.

Several factors contribute to the efficiency of these runs. The con-
straints are very sparse, and the LU factorization of each basis typically
has 4 bumps and only 8 spikes. The number of superbasic variables, and
hence the dimension of the reduced Hessian approximation, remains at around

132

30, which is well below the theoretical upper bound of 80. Finally,
although a relatively accurate search is used (ETASCH = 0.01), the line-
search procedure of Gill et al (1976) in this case averages only 2 function
and gradient evaluations per iteration.

12I

changes incorporated in MINOS Version 3.3 will be apparent to the user, as
follows:

1.

ADDENDA TO MINOS USER'S GUIDE

The User's Guide accurately describes MINOS Version 3.1. Some of the

Two additional parameters may be specified in the SPECS file, by cards
of the form

DJ TOLERANCE 1.0E-5

FEASIBILITY TOL 1.0E-4
These reset the variables TOLDJ3 and TOLX respectively (see section 5).

The default value for the feasibility tolerance TOLX is now
max(/EPS, 107°).

Subroutines ALIGN and SQUEEZ have been deleted. The keyword
ALIGNMENT TOLERANCE no longer has the effect described on p. 40 of the
User's Guide.

Variables that are specified to be superbasic in

« an INITIAL bounds set in the MPS file

« an OLD BASIS FILE
will be initialized at the specified values regardless of feasibility.
(Exceptions: "infinite" values are replaced by zero; if the SUPERBASICS

LIMIT has been reached, variables will be made nonbasic at the nearest
bound.) This facilitates initialization at intentionally infeasible
points, and exact reconstruction of solutions from previous runs. The
following parts of the User's Guide should be altered accordingly:

p. 29, 8(a).

p. 62, 8.

MPS FILE is a synonym for INPUT FILE.

T i e L s B b o, i U 0

REFERENCES

R.H. Bartels (1971), "A Stabilization of the Simplex Method", Numerische
Mathematik 16, 414-434.

] AN Py, k

i

e

R.H. Bartels and G.H. Golub (1969), "The Simplex Method of Linear
Programming Using LU Decomposition”. Comm. ACM 1Z, 266-268.

e

R.P. Brent (1973), "Reducing the Retrieval Time of Scatter Storage
Techniques", Comm. ACM 16, 105-109.

1.S. Duff (1975), An algorithm for obtaining a maximum transversal for a
sparse matrix, Subroutine MC21A in the Harwell Subroutine Library,
Harwell, England.

- - AP AT T

I.S. Duff and J.K. Reid§(1976), "An implementation of Tarjan's algorithm
- for the block triangularization of a matrix", AERE Report CSS 29,
‘ Harwell, England.

J.J.H. Forrest and J.A. Tomlin {1972), "Updating Triangular Factors of
the Basis to Maintain Sparsity in the Product Form Simplex Method",
Mathematical Programming 2, 263-278.

P.E. Gi1l, W. Murray, S.M. Picken, H.M. Barber and M.H. Wright (1976),
Subroutines LNSRCH and NEWPTC, Ref. No. E4/16/0/Fcrtran/02/76,
NPL Algorithms Library, DNAC, National Physical Laboratory,
Teddington. (Crown Copyright Reserved.)

T.S. Hedges (1975), An assembly language main program to acquire core at
run-time on TBM Systems 360 and 370. (Unpublished. Documented
in-Tine.)

E. Hellerman and D.C. Rarick (1971), "Reinversion with the Preassigned
Pivot Procedure", Mathematical Programming 1, 195-216.

A. Jain, L.S. Lasdon and M.A. Saunders (1976), "An In-core Nonlinear
Mathematical Programming System for Large Sparse Nonlinear Programs",
presented at ORSA/TIMS joint national meeting, Miami, Florida.

3 A.S. Manne (1976), "ETA: A Model for Energy Technology Assessment", Bell
3 Journal of Economics, Autumn 1976, 381-406.

135

A.S.

B.A.

B.A.

M.A.

M.A.

Manne (1977), ETA-MACRO: A Model of Energy-Economy Interactions",
in C.J. Hitch (ed.), Modeling Energy-Economy Interactions, Resources

for the Future, Washington, D.C., 1977. Also appears as ch. 9 in
R. Pindyck (ed.), Advances in the Economics of Energy and Resources,

vol. 2: The Production and Pricing of Energy Resources, JAI Press,

Greenwich, Connecticut, 1978.

Murtagh and M.A. Saunders (1977), MINOS User's Guide, Report SOL 77-9,
Department of Operations Research, Stanford University, Stanford,
California.

Murtagh and M.A. Saunders (1978), "Large-scale linearly constrained
optimization", Mathematical Programming O, 000-000. (Revised version
of the following report by the same authors: "Nonlinear Programming
for Large, Sparse Systems", Report SOL 76-15, Department of Operations
Research, Stanford University, Stanford, California.)

Saunders (1976), "A Fast, Stable Implementation of the Simplex Method
Using Bartels-Golub Updating", in: J.R. Bunch and D.J. Rose, eds.,
Sparse Matrix Computations (Academic Press, New York and London),
213-226.

Saunders (1977), "Use of MINOS on the Burroughs B6700", SCIN 59,
Applied Mathematics Division, DSIR, Wellington.

136

iManual should facilitate

UNCLASSIFIED

SECURITY CLASSIFICATION OF Tu!S PAGE (When Date Entered)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT DOCUMEMTATION PAGE

T RE-ORY NUMBE® - GOV ACCESSION NO.| 3 RECIFENT S CATALOG NUMBER
[}
SOL 77-31Y |
4. TITLE (and Sudtitle) 5. TYPE OF REPORY A& PERIOD COVERED
MINOS System Manual Technical Report

§. PERFOAMING ORG, mEPORT NUMBER

7. AUTHOR(S) 8. CONTRACY OR GRANT NUMBER(s)
NOO014~75-C-0865V
DAAG-29-74-C-0034
M.A. Saunders

10. PROGRAM ELEMENT PROJECT 1ASK

5 & RG T n E ADDRESS
9. PERFOAMING ORGANIZATION NAME AND AREA A WORK UNIT NUMBE RS

Department of COperations Research--SOL

Stanford University NR-047-~143
L§tanford, CA 94305
i'\ CONTROLLING OFFICE NAME AND ADDRESS 12. REPCRT DATE

Operations Research Program December 1977

Office of Naval Research 13. NUMSER OF PAGES

Arlington, VA 22217 136 O
4 16. SECURITY CLASS. (of this report) 1
iMathematics Division UNCLASSIFIED

U.S. Army Research Office

Box CM, Duke Station Sa Qs:‘.rSSSI{ICATKON/DO'NG“ADW‘Q

‘ Durham, N.C. 27706

16. DISTRIBUTION STATEMENT (of thie Report)

Reproduction in whole or in part is permitted for any purposes of the

&United States Government. LU
B Dwn’! UTION 7% 4o st |

Roone .
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different from Regorty ° * =~ == ™°° AULL TS0l
Dietsibwtian Unlisnited

¢

;: 18. SUFPLEMENTARY NOTES

i

19. KEY WORDS (Contirue on reverss slde if necessary mid identily by Block number)

Linear Programming Mathematical Software
i Nonlinear Programming Large-Scale Optimization
i MINOS Linearly Constrained Optimization
20. ABSTRACT (Continue on reverse alde If y and | fy by blesk ber)

MINOS is a Fortran system for solving large-scale linearly constrained optimizas
tion problems. The System Manual gives an overview of the system, the program-
ming conventions used, data structures, tolerances, and error conditions. De-

for maintaining a sparse LU factorization. The reduced-gradient approach for

handling a nonlinear objective function has been described elseyh;;;,py—ﬁurunﬂr
and'SﬁUﬁHPré; further implementation details are included hcro. Syste

tails are given of a practical implementation,of—the-method-of-Bartels QQQ;Goluﬂ %

€

interfacing of MINOS with othe

FORM
0D .28 1473 :::;v;o‘r::‘:.n:evo:? 1 omsoLETR UNCLASSTF IED l\
; SECURITY CLABBI"'CATION OF THIS YY1 ?‘-\ Date Bnrer

