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On the Hardening R espons e in Small

Deformat ion of Metals

by

D. A. Caulk arid P. M. Naghdi

Abstract. This paper is concerned with a special class of hardening response
functions for small deformation of elastic-plastic materials , its application to
isotropic metals, and compar ison of the theoret ical results with experimental
cyclic stress-strain curves for two different metals. The theoretical develop-
ment is carried out within the scope of the existing purely mechanical theory
for th e ‘trate~independent

t’ response of elastic-plastic materials, which admits
the existence of a single loading function, as well as certain accepted idealiza-
tions . After summarizing the basic equations for small deformation, detailed
attention is given to the development of a special form of the hardening response
function, motivated mainly by the observation that the stress-strain curves for
uniaxial cyclic loading of a fairly large class of metals attain -- after several
cycles -- the so-called saturation hardening. We exploit this property; and,
in the case of isotropic metals , systematically derive some restrictions on the
constitutive coefficients in the loading function and the hardening
response. Comparison of the results with two sets of experimental data, obtained
from uniaxial cyclic loading of a 3O~4 stainless steel and a 2O2I~ aluminum alloy,
shows good agreement within the understood idealizations of the basic theory.
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1. Introduction

By way of background, it may be recalled that in the usual development of

the general theory of elastic-plastic materials, the rate of plastic strain and

the rate of work-hardening are expressed as linear functions of either the rate

of stress or the rate of strain. However , the coefficient response functions in

these equations, as well as the loading function and other constitutive response

functions , are all independent of the rate of stress , the rate of strain and

time derivatives of other kinematical ingredients. For this reason, such a theory

is sometimes called a “rate-independent” theory of plasticity, in contrast to a

theory which characterizes “rate-dependent” behavior by including rate quantities

in the loading function and/or other constitutive response functions. Moreover ,

sinc e the “rate-independent” formulation of plasticity theory employs constitu-

tive equations for the rate of plastic strain and rate of work-hardening, it is

also referred to as a rate-type theory in contradistinction to a functional-

~~~~ 
theory in which the material response depends on the entire ~~~~ history

of deformation.

The development of the present paper is based on the rate-type theory of

elastic-plastic materials given by Green and Naghdi [1,2), which is constructed

relative to loading surfaces in stress space~ We also utilize the corresponding

formulation of the rate-type theory given by Naghdi and Trapp [3] in which the

basic constitutive equations are expressed relative to loading surfaces in

*strain space. Our aim is to find an acceptable description for the hardening

‘tThe theory of elastic-plastic materials in [1,2] includes thermal effects and
is developed within the framework of a thermodynamical theory, while the d•~veicp-
ment in [3) is carried out in the context of the mechanical theory. A~thcugh
we confine attention to the purely mechanical aspects of the subject, the basic
theory utilized here can easily be interpreted in the context of the isotherm~1
theory. The purely mechanical theory of elastic-plastic materials with ~ar~ e
deformation corresponds to the general developments in ii] prior to tb€~-nc-
dynamical restrictions . We employ here a second form of the theory cf r . ~-~~:i:yrelative to loading surface in stress space given in Section ~+ ~f [ 2 .
*Also reference may be made to Naghdi [id which includes a brief sun::r:: of
the main results in [1,2,3], as well as a discussion of some advantages cf
the formulation relative to loading surfaces in strain space.
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response in small deformation of metals within the scope of the rate-type

theory of plasticity.

Elastic-plastic strain hardening in metals has received considerable

attention in the recent literature. General dissatisfaction has been expressed

with the more traditional kinematic and isotropic hardening rules , especially

for describing the behavior of metals under cyclic loading. Rather than seek a

more general representation of the hardening response within the scope of the

existing rate-type theory of plasticity, many recent studies have sought instead

to introduce modifications in the basic theory. Before discussing the nature

of these modifications, it is useful to review briefly certain idealizations

which are incorporated in the existing rate-type theory of elastic-plastic

materials when the deformation is infinitesimal. General background informa-

tion concerning these idealizations can be found in the papers of Drucker [5]

and Naghdi [6].

Consider the uniaxial stress-strain curves shown in Fig. 1(a) and 1(b).

Such schematic behavior is typical of ductile metals in a homogeneous deforma-

tion. Figur e 1(a) shows loading in tension followed by unloading to zero

stress , followed by reloading in tension. Figure 1(b) is similar, except that

reloading occur s in compression. In the construction of the basic theory of

plasticity, it is customary to idealize the r eloading se~ ient FEG by the dashed

line FEDG. The loading program in Fig. 1(b) differs from that in Fig. 1(a)

only in that reloading occurs in compression. Beyond this fact, the two schematic

figures are similar, and the actual material response bears this out: se~ nent LN

is similar to EG. It also seems consistent, therefore, to idealize KLN by KLZ4N.

In the same spirit, se~ nents AC and HJ are idealized by ABC and 1-if J, respectively.

Some of the idealizations noted above are incorporated in the rate-type theory

of plasticity through the concept of a yield or a loading surface , which places a

sharp distinction between elastic and plastic deformation. If the yield surface

2.



is introduced in the usual way, then a rate-type theory of plasticity with

snail deformation should not be expected to describe the smooth transitic~r,

re~ricns such as EG and LN in Fig. 1(a) and 1(b). Recent investigations have

tried to better represent these transition regions by either introducii:~ auiitior,~l

,riel~ surfaces [7,8,9,10] or by eliminating the yield surface entirely~ Eisenberg

[12] retains the idealization EDG (see Fig. 1(a)), but chooses to describe the

sa~~ients AC and LN more precisely by introducing a discrete memory of the sc-

called “last significant loading event.”

At best , however , the transition regions described above are second order

to the main features of the material response; and it seems premature to intro-

duce refinements that are meant to improve the description of these regions

before the main features of the material response have been represented reas3nably

well in the context of the basic theory. Certainly the shortcomings of

the isotropic and kinematic hardening rules are not entirely due to idealiza-

tions of the rate-type theory. By the same token, a detailed account of the

transition regions should not be looked upon as a remedy for poor description

of the main features of the material behavior .

After a brief review of the basic constitutive equations for an elastic-

plastic material in section 2, we examine in section 3 a linearized version of

the theory appropriate for small deformation of metals. General observations

pertaining to metal hardening, including saturation hardening, are used to

motivate restrictions and special assumptions on the form of the response

~In recent years some authors appear to have placed special emphasis either cr.
the possibility of developing a theory of plasticity without introducing a
‘yield surface’ or on requiring that the theory be capable of predicting the
existence of a ‘yield surface’ rather than postulating the existence of a
or loading surface ab initio. As has been pointed out already by Green and
Naghdi [ii], such endeavors appear at present to be somewhat illusory in the
following sense: whichever way the theory is developed , it must necessarily
involve some assumptions which ultimately result in a yield surface; and it
appears to be largely a matter of taste as to which kind of assumptions are
preferred at the outset of the development of the theory. Additional remarks
and some related references on this point can be found in [11].

3.
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functions. Isotropic metals are considered in section 1~ and the number of

independent material coefficients describing the h:rder.ing response is reduced

to six. These results include, of course, the isotropic and kinematic hardening

rules as special cases . In section 5, the reduced ccnstitutive equations are

expressed relative to a loading surface in strain space and restrictions on the

material coefficients are derived. These restrictions are less stringent than

those which can be deduced via a corresponding development relative to stress

space. A procedure for determining the six material constants from uniaxial

cyclic loading data is outlined in section~~6. In section 7, the theoretical

predictions of material response are compared to some new and existing experi-

mental data in uniaxia cyclic loading. First, the cyclic stress-strain data

for 3O11~ stainless steel obtained by Pugh et al. [13] are compared to predicted

stress-strain curves based on the present developments . Next comparison is made

with experiments on 2O21~ aluminum alloy, which were conducted at Berkeley by

the present authors. In these experiments, cylindrical specimens (of solid

cross-section) were cycled in tension-compression through two different loading

programs of two strain cycles each. For both the stainless steel and the

aluminum alloy, comparison of the theory and experiment shows good agreement

within the understood idealizations of the basic theory.

~Details of the calculations for the constitutive restrictions in section 5 and
for the determination of the material constants in section 6 are provided ,
respectively, in Appendices A and B at the end of the paper.

14~
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2. Notation and Basic Equations.

Let the motion of a body be referred to a fixed system of rectangular

Cartesian coordinate axes and let a typical particle of the body occupy the

position X
A 

in some fixed reference configuration. Further, let x . designate

the position of the particle in the present configuration at time t. Then, a

motion of the body is defined by

x . = xi(xK,t) (1)

and the deformation gradient relative to the reference position is denoted by

F .K =
~~~

2
~ 

. (2)

Throughout the paper , indices take the values 1,2,3 and the usual summation

convention over repeated indices is employed. Lower case indices are associated

with the spatial coordinates x~ and upper case indices refer to the material

coordinates XA . The Lagrangian strain tensor eAB is defined by

e~~ = -~-(c~~~- 6KL) , c~~ = FiKFiL , (3~

where c~~ is the Cauchy-Green measure of deformation and is the Kronecker

delta. -

We summarize here the main constitutive equations of the purely mechanical

theory of elastic-plastic materials contained in the work of Green and Naghdi

[1 ,2]. ifl addition to the strain tensor eAB, at each material point we admit

the existence of (i) a plastic strain specified by a symmetric second-order

tensor t e~ T =e KL(Xi4,
t) which has the same invariance properties as e~1

; (ii) S

scalar-valued function ~~ = K(XM,
t) as a measure of work-hardening; and (iii) a

scalar-valued yield (or loading) function 
~~~~~~~~~~~~ 

where s~~ is the

1•
A~~~ shown by Naghdi and Trapp [114], symmetry of the plastic strain follows
as one result of a work inequality postulated over a closed cycle of homoger.ec-~s
deformation in strain space.

5.



symmetric Piola-Kirchhoff stress tensor . For fixed values of e~~ and ~~, the

eque tion

f(sKL,e~~
,
~
) = 0 (14)

defir.es a closed orientable surface of dimension five in the six-dimensiona l

Euclidean space of the symmetric stress s~~ . We assume the loading function f

to ae continuously differentiable with respect to its arguments .

The constitutive equations for the rate of plastic strain and the rate of

work-hardening, relative to the loading function f, can be expressed in the form

O w h e n f < O
A

O w h e n f = O a n d f < O
eKL O w h e n f = O and f~~~~

A A
X~~~ f w h e n f = 0 a n d f > 0

and

_ 1 - • •P
T~ £KL KL ~

where a superposed dot stands for the material time derivative holding X, fix-cd
A

and. where f is defined by

(T~
~~KL ~~

Also , the scalar X is restricted to assume positive values and h~~ and

are symmetric second order tensors. Each of the latter three quantities is a

function of the list of variables

p (0— ~~~~~~~~~~~ , •

A
The four conditions involving f and f on the right-hand side of (5) ar€~ called

6.
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the loading criteria. Using the conventional terrninolo~~r , in the order listed

the ,- are: the state of ela.stic deformation , unloading from an elastic-plaatic

state , neutral loading and loading fr om an elastic-plastic state.

In the purely mechanical theory, it remains to introduce the constitutiva

equation for the stress and this is specified ay

A
S KL = = (e ,~ T, e~~ ,K) , (~ • )

with the added restriction that

A A

-~~~~~ = -
~~~~~~~~~~

. (12)
~~~~ ~~~

note that the constitutive equation (?)l holds during loading , as well as

durir~ unloading and neutral loading, and that the condition (10) ensures that

the stress is derivable from a potential. We assume that for fixed values of

e and ~ the expression 
~~~ 

is invertible in the form

A
e~~ = e~~ (lc ) . ~1i )

The preceding summary of the basic equations for an elastic-plastic

material began with equation (14) and hence is based on the concept of a yield

s-oz~ ace and loading criteria in stress space. Following Na~~di and Trap~

it is possible to provide an equivalent formulation of the basic equaticns

relative to loading surfaces in strain space and this has certain advartaoes

ich are discussed in [3]. However, since a formulation relative to icadino

sur~
’aces in stress space is useful fcr oertain interpretations , we use tnis

~crzu ation in sections 3 and 14 to motivate special assumptions on the hardenilo

respon se function h~~ and the loading function f. In section 5, the res~~:s

sections 3 and 14 are recast in their corresponding form relative to :caii:~

surfaces in strain space because in that form the derived restricticns on

constitutive coefficients are less stringent.

7. 
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Although the above constitutive equations are fully general in the context

of the purely mechanical theory, it is possible to conceive of a plausible

physical hypothesis tha t will place restrictions on their form . Starting with

an assumption for the work done by body forces and surface tractions in a

closed cycle of homogeneous deformation, Naghdi and Thapp [114,15] have shown,

among other results , that during loading the plastic strain rate must satisfy
A A A

(—
~~~ 

+ ~-~ic& h~~) ~~~ = - ~~ , ~ 
~~ 0 , (12 )

where ~y’ is a nonnegative scalar function of the variables (8) and the stress

rate. Also recall tha t by expressing the stress respons e in the alternative

form (see [114,16])

_
( p p 

~s~~ — ~~~~~~~ ~~~~~~~~~~ ,

the relation (12) may be rewritten as

- ~_J~ (-
~
_

~~ 
+ ~~~~~~~ )~ P 

= (114)KL ~~~~ ~~~~ ~~ 
V 

~~KL

It is clear from (i14) that if the stress response in (13) depends only on

e~~~- e~~ so that ~~/~e~~ =O and 
~
sKL/~

K= 0 , then the plastic strain rate is

directed along the normal to the loading surface in stress space.

In the remainder of this paper we confine attention to a discussion of

the elastic-plastic constitutive equations for infinitesimal strain. Hence , we

assume that the displacement, the displacement gradient, the plastic strain and

the stress (when expressed in a suitable noridimensional form), as well as their

space and time derivatives,are all small of order c. Consistent with these , the

loading function f , the work-hardening parameter ~ and its tine derivative ~

must be at least of order € 2 (see the discussion in secticn 3). In terms of the

components of the displacement vector u
A , the infinitesimal strain tensor e~~

is defined by

8.
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X
A 

= 0(e) ~~~ = 
~
(uK,L~~~L,~:

) ~~~~~~ = o(~ ) , ( 1 5)

where a comma stands for partial differentiation with respect to the material

coordinates XA , which to the order € are coincident with x~ . The infinitesimal

elastic strain tensor eKL is defined by

e peKL = eKL eKL

We also recall here that in the linearized version of the theory the distinc-

tion among the various representations for the stress, namely the nonsymmetric

Piola-Kirchhoff, the symmetric Piola-Kirchhoff and the Cauchy stress , disappears.

In the next section we discuss a form of the preceding constitutive equa-

tions appropriate for metallic materials undergoing small defcrmations.

9.
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3. Work-hardening of Metals in Small Deformation.

Because many ideas in plasticity theory are g~r~ ralizaticna f oil- r- : ticn~

made of material behavior in one dimension , it is useful to fir-vt -:x~n~ rie the

r-~spon~e of a typical metal under a program of uniaxial cyclic 1c:dir~- : - t w~ en

constant strain limits. Consider the loading process i1luFtr~.ted by tne  s~res~--

strain curve in Fig. 2. Loading begins in tension from zero strain (noint 0) on

a sample in the virgin state. As long as the stress remains in the initisi

elastic range , the stress response is otserved to be linear ir. the str~ in .

After the initial yield point (labeled point A) is reached , the plastic strain

increases continuously from zero until unloading takes place at point B. During

unloading from B, the stress response is again linear in the strain and provided

that the strain at B is small, the line BC is usually observed to be parallel to

the stress-strain’ curve OA in the initial elastic range.

Motivated by these observations , we assume a special form for the response

function in (13) and specify the constitutive equation for the stress by

5
K1 

= ~~~~ ( e~~ - e~~ ) = ~~~~~~~ , (17)

where the coefficients LKL~~ 
are all constants. From (10 ) and the symmetry of

5KL’ e~~ and e~5, the coefficients LK~~~ 
possess the symmetries

= 1
L}~~~~ 

= ~~~~~ = .

The assumption (17) also provides the usual interpretation of ~he rlastic

strain as the value of the strain at a given point when th s~ rc-ss th~r~ is

locally reduced to zero.

As the process of uniaxial deformation continues from point C in Fi& . 2,

the material yields in compression at point D and plastic deformation ccour s

continuously to point E, at which unloading as~ain takes place. From th~ .t

point , the process of cyclic loading between constant strain limits is r nea t€d

10. 
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and in most metals hardening (or softening) is observed as the stresL level

during each succeeding strain cycle increases (or decreases); in this cox.n~-ct cr.,

a hardenino response is shown in Fig . 2. For most common metals , the process

of cyclic loading leads to a limiting periodic respons e in which the stress-

strain curve of each succeeding cycle is the same (see FiC. 2). This pher cnanor.

is sorsetilos called saturation harden~~g, and a material is said to saturate

when it reaches this licaitino behavior . How rapidly saturation is reached

during cyclic loading is a property of the metal.

3ased upon these observations of the typical behavior of metals under

cyclic loading, we assume that there is some value of the work-hardening

parameter ~~, sa;: ~; , at which K is zero. Mathematically, this assumption is

expressed as

him K = him hKL (1.()e
~L 

= 0 . (19)
K— K K— K

5 5

A sufficient condition for the restriction (19) to be satisfied is that h~, be

homogeneous in K-K 5
. In particular , we assume that hKL is homogeneous of degree

one in K-K~ and is specified by

K—K
h = ( S 

~~ 
(s e~ 

) ( . - . \

KL K - K KL MN’ MN ‘
O s

where ‘< is the initial value of K and h is a function of s and e~ . Is.
C KL MN

the special case in which h;7 = s~~ , combination of (6) and (20) zives

K-K
= (KO-~S~~

KL
~~

L

Thus , in this special case , the rate of work-hardening K is proportional to the

*b ince the experimental observations that motivate this assumption do not de~a~nd
on the deformation being small , the special form (20) of the hardenino response
function may also be viewed, in the context of finite deformation.

11.
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rate of nonrecoverable work 5KLeKL in the material. Since a notion of this kind

is appealing on physical grounds, it is desirable to have the linearized version

of (6) include (21) as a special case. Hence, we assume that hKL is order £ and

sufficiently smooth so that it may be expressed as a linear function of s~~ and

e~~ . This leads us to write

— s +N p 
22)KL - MKLMN MN

wh er e the constants ~~~~~ and possess obvious symmetries.

The foregoing assumptions for the stress response (17) and the rate of work-

hardening (20) with hKL given by (22 ) are motivated by observations of the behavior

of metals in one dimension. From the same information, however , it is not immediate-

ly clear what may be an appropriate representation for the loading function in the

infinitesimal theory. In the present paper, we assume that f is sufficiently

smooth so that it may be represented as a polynomiah in 5KL’ e~~ and K. In

addition, we note that for (14) to represent a closed surface in stress space,

f must be at least quadratic in the stress. It follows that f must be at least

second order in €. And whatever the order of f, all terms in its polynomial

representation must be the same order in € . Since the ratio (K-K )/(K -K ) is

order 1, it follows from (6), (20) and (22) that K and hence also ~‘c are order

Thus, the loading function must satisfy the relation

f (c s~~~,ce~~~,e2 K ) € nf ( s eP K ) (23 )

when

f 0(n) , n ~ 2 . (214)

Because for each value of the integer n the loading function has a different

general representation, there may be any number of possible forms of the elastic-

plastic constitutive equations, each corresponding to a different n , which are

12.
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compatible with the assumption of small strain. Examples of two commonly ~~~ea

yield functions that  correspond to different orders of f are the lr- :~’ ca and

von Mises yield conditions . Expressed as a polynomial ~~ fl ~~~~~~~~~ the Tresca yield

condition corresponds to n=6 while the von Mises condition corresporios to r=2.

Because we wish to describe the behavior of rietals and since th~ von r4ises

yield condition has been experimentally shown to be a suitable representation

*
for the initial yield surface in isotropic metals, we assume f to be second

order in €. In this case the general representation for f is (see Ref. [1],

Eq. (10.11))

f = B  s S +E e~~e~~ +F s er -K (2~ )KUVIN KL MN KLMN KL MN KI1~IN KL MN

where the constant coeff icients 3
~~MN~ 

and ~~~~~ have obvious symmetries

and without loss in generality we have taken the coefficient of K to be 1.

Naghdi and frapp [15] have shown that for a stress response in the form (17),

convexity of the loading surface in stress space follows from a work inequality.

This requirement may place certain restrictions on the coefficients in (25).

W1~en the stress is specified in the form (17), the relation (114) for the

rate of plastic strain reduces to (see flef. [15], Eq. (214))

p 
-eKL y

~~S ‘
KL

A
Since 1>0 during loading and X>0 it is possible to identify

A
y = Xf (2~ ;

and a comparison of (5) 14 with (27) yields

~KL = 

~~~~

*For example, see Taylor and Quinney [17], Naghdi et al. [18]. or Bertsch and
Findley [19].

13.
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The constitutive equations developed in this section are appropriate for

small deformations of a general anisotropic metal. The case of an initially

isotropic metal is discussed in the next section.

- - ------- -
-
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14. Isotropic Metals.

We now consider a special case of the infinitesimal theory appropriate for

metals which are initially isotropic. Before doing this , it is conveniert to

introduce some additional notation. Let s~~ and e~~ be decomposed in the form

— — 1
SKL = 5ÔKL +TKL ~ 3 ~MM ‘

(29)
p _ -p ~~,pe~~ — e , — 

~~ 

e~~

where and are the deviatoric parts of the stress and the plastic strain,

respectively, and s denotes the mean normal stress.

For an initially isotropic material , ~~~~~ reduces to an isotropic fourth

order tensor and the stress response (17), expressed in inverted form , is given

by

e 1+v v
~~~~~~~~~~~~~~~~~~~~~~ , (30)

where E and v are Young?s modulus and Poisson’s rat io, respectively. Similarly,

the coefficients in the expression (22) for h~~ reduce to fourth order isotropic

tensors and hence this response function can be expressed in the form

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , (31)

where 
~l’~2’~ 3 

and are constants. In addition , the loading function is

restricted to be of the form

f = ~1(s~~
)~ + 

~~~~~~~~~ 
+ B3

(e~~)
2 

+ B14(e KLeKL
)

+ a5
(s~~e~~ )+a6

(s~~e~~ )-K

where the coefficients B1’• .•~B6 are all constants .

In the well-known experiments of ~‘idgeman [20], a large number of metals

were subjected to tensile tests under varying amounts of hydrostatic pressure .

15.
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observed that the initial yield point of each meta l was not altered by tb- rr~~enoe

Cf the added pressure and that the character of the stress-strain cur-Y e ~i-i r -  sut se-

ciu-er .t plastic deformation remained unchanged . In the present paper , we use tn~

first of these observations to place a restriction on the form of th~ loadins

function (32).

Prior to any plastic deformation , e~~~=0 and (32 ) reduces to

f(5K1,0,Ko) = (3al
÷
~2
)
~~~

÷s2TKL~KL K0 , (
~~

)

where we have us ed the decomposition (29) 1. Motivated by the results of

~ridgeman’s experiments, we assume that before any plastic deformation Las

occurred , the yield function is independent of the mean normal stress. ;;ote

that this restriction is confined to the form of the initial yield f u n c ti o n  ca~

no assumption is made regarding subsequent plastic deformation. From this

assumption and (33) we conclude that

~~ [f(s~~ ,C ,K~~] = 0 or 
~~~~~~ 

=

and hence (32 ) may be written in the form

I =

+ ~~~~~~~~~ + B6
(s~~e~~) 

- K , (05)

where by properly adjusting K0, 
we have taken @2

=1. When the loading fu c t ion

is specified in the form (35), the corresponding expression for the plastic

strain rate can be computed from (26) and is given by

eKL = ~~~~~~~~~~~~~~~~~~~~~~ . (~6)

Contracting this expression on the indices K ,L and us ing (29) 2 , we obtain

= 
~
(3B 5+B6

)
~~ 

. (37)

16.
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If we assume that during loading y is a continuous function of time, the unique

solution of (37) which is compatible with a zero initial v a l u e  for is the

trivial solution

(oh)

Hence the plastic volume change is identically zero~ This result follows

directly from and (26) and need not be assumed independently.

The expression (35) for f simplifies as a result of (38), and the rate cf

work-hardening may now be expressed as

= 

~~0~~~5 

. (39)

Hence, we need only retain the deviatoric part of h~~ . In summary then , the

loading function and hardening response are given by the reduced forms

f ( s~~~,e~~~,K) = ~~~~~~~~~~~

= TKLl
~KL 

- 

~~KL~~L + C’1~L~~L 
- K (14o)

< — K

K = 
K0-K5 

~~~~~~~~~~~~~~~~~ ‘

where we have set

B6~~~ ‘ a
3 — B  , . (141)

Apart from the term o
~’1~LY~~

) ,  which is independent of the stress and hence

effectively plays the same role as K in determining the form of the yield

ç surface in stress space , the form of the loading function (140)1 is the sane as

one proposed previously by Ede~ nan and Drucker [22]. As explained in their

paper , a yield function in the form exhibits a Bauschinger effect and

reduces to the von Mises yield condition in the absence of plastic strait .

We close this section by identifying two well-known harden ino l’ul-:s.

emphasize that the restriction (38) is not an essential ingredient of
plasticity theory even for small deformation. It may be imposed ~y -
assuription or, as in the present development, it follows from a yartic :-r
derivation. In this connection, see also [211 .

17.
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namely the isotropic and the kinematic hardening rules, as spec ial cases of the
*above results. First, when

11=~~~=~~~=0and in the 1imit asK ...~~~~, (142)

the expressions (140)12  reduce to

1’ = 
~~KL~~KL K , K = @TKL’Y~~ (143)

This is a form of isotropic hardening. Next, if we set

2 (1414)

the expressions (140 11,2 become

1= ~~~~~ 
- 
~~~~~~~~~ 

- 
~~~~~y~~~~~) - ~~~ , K = 0 (or K = K 0= const.) . (145)

This is the usual form of kinematic hardening.

*
An account of these hardening rules may be found in [6].

18.
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5. Restrictions on the coefficients in the yield function anJ hardenin~~resecnse .

~o far we have used the elastic-plastic constit-otivc- -~q - :~tieua formulated

relative to a loading surface in stress space because this f era. mad~ it more

convenient to appeal to certain physical observations of metal behavior . i~owever ,

since these constitutive equations have certain limitatiena , we consider further

developments in the context of strain space. Before recording the correrpondirLo

forms of (140)
12 

relative to a loading surface in strain space , howe\rer , we need to

recall fri~ [3] certain results in terms of the list of variabl-~ (5)~~.

For fixed values of eKI and K , the loading surface in strain space is

specified by

g(e~~~,e~~~,K )  = 0 . (146)

Relative to g, the constitutive equations for and K are expressed as

0 w h e n g < 0

A
0 w h e n g = 0 a n d g~~~0 , (147)
— A A
~
p
~~g w h e n g = O a n d g > 0

and

where

A

KL

The positive scalar function X and the symmetric second order tensor ±‘uri ot icns

p~~ 
and m~~ depend on

*We do not elaborate here on these limitations which zr- - discussed tv - .ozdc
and Trapp [3].

19.
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= (e~~,e~~,K) . (50)

Following £3], we assume that g is obtained from I through the expression

g(e~~,e~~ ,K) = ~~~~~~~~~~~~~~~~~~~~~ (51)

and that m~~ is obtained from h~~ through the same substitut ion in the

arguments of h~~.

To ensure that succeeding values of strain remain on the yield surface

(51) during loading, we must have g=0 whenever 2>0. This condition, together

with (146) and (149), leads to

+ m~~ ~~
) = -1 . (52 )

A condition analogous to (52 ) also arises in the stress space formulation.

From (52 ) and the sign of X follows the restriction

(53)

which holds at all times during loading. With the help of (51), the corresponding

form of (12 ) relative to strain space is
A A

(—a + ~ ic& 
~ 

= - 
~ 

. (514)p ~K 
mNN MN

To recast (140)
1,2 

in the corresponding forms relative to strain space, we

first take the deviatoric part of the assumed stress response (30):

- = 2~~y~~ , (55)

where .y
~~ 

is the deviatoric part of e~~ and p. is the shear modulus of elasticity.

Combining (51), (55) and (140)1,2, we then have

20.
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g(e~~,e~~,K) = ~~~~~~~~~~~~~~~~~~~~~~~~

= - ~~~~~~~~ + - K , (s6)

m
KL 

= 
K0-K5 

(2
~~~~L

+11
~~L
)

Substitution of (55) into (514) yields

~~~~~~~~~~~~~~~~~~~~~ 
(57)

KL

where the first of (56) has been used to obtain 
~~~~~ 

Now let

2p.Xg , (58)

so that from (147) and (58) we may identify

~KL
~~1KL

The form of the elastic-plastic constitutive equations derived in section 14

for metals has now been completely determined relative to strain space. It

remains to examine the eonsequenc~ s of the restrictio.i (53). Substitution of

(56) and (59) into (53) yields the inequality

2p.[[14
~~~~

_a
~~ L ] [ (

~
+a.+14p . )2p..

~~L + ~~~~~~~~~~~~~~~ > 0 , (60) 
- -

where for convenience we have put

= 
~ K 

= ~~~ 
) 
~ . (61)

The restriction (60 ) holds at all times during loading. Since it does not

involve rate quantities, (60) must then hold for all values of and K

that satisfy g = O .  With the help of (56) 1, g = 0  can be expressed as

2
M

~~
MXL = K -  - 

~~~~L
’
~cL ~ (62)

where M~~ is the deviatoric second order tensor defined by

21.
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For and K to satisfy g=0 , it is sufficient that M~~ satisfy (62).

Thus M~~ is fixed in magnitude, but otherwise unrestricted. Combination of

(63 ) and (60) gives

14p.M~~[(~+~ +14p .)M.~~+ [ (
~ +~

) +
~~

_ 2a]
~~ L) > 0  . (614)

wh ich must hold for all and K , and all M~~ that satisfy (62) .  It follows

from the inequality (614) thatt

j +~~+ 14p. >0 (65)

~ nd

(~ +~~ 14p .)
2
~~~ M~~ [4~(~+~) + T ~- 2~]

2
~~~~~ . (66 )

~!nce (65 ) holds for all values of ~ and O< (K-~ )/ (K -K )~~ i , the coefficients

~ ar.d ~ mua L satisfy

~ +14~ >0 , ~~~+ 9 + 1 4 p.  > 0  . (67)

Substitution of (62 ) into (66) gives

(I÷~
+14p.)

2
K >  [(j~~+14 )

2( ~~)+ ~~~~~~~~~~~~~~~~~~~~~ 
.

a given material, the inequality (68) must hold for all admissible va ues

of the scalars K and K is bounded by 
~~ 

and K~ , and cannot become

unbounded before the material fractures . Thus , the range of admissible v a - oes

for  ~ and depends on the particular material and a general develo~~ ent

of the type considered here can proceed no further than (68).

For details of these calculations , See Appendix A at the end of the paper .
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A sufficient condition that (68 ) be satisfied for all K and is that

the right-hand side of (66) vanish identically, i.e.,

(‘~~~÷~j + (’~~
2

2 )  = 0 . (69 )

Si nce this equation must hold for all admissible values of K , it follows that

= 
2 

and ~~ +2~ = 0 . (70)

Substitution of these restrictions into (56) 12 yields the reduced expressions

g = K = B(
K

)
~~~~L~~~~~ 

. (71)

These restricted constitutive equations satisfy the inequality (53) identically

provided ~ and ~ 
satisfy (67)12

. We emphasize, however , that (70)12 are merely

suff icient  conditions that (68) be satisfied; the only necessary restrictions on

the constitutive coefficients for a general material are (67)1,2
.

A procedure completely analogous to the one employed in this section can

be used to derive restrictions on the coefficients 
~~~~~~~~~~ and ~fl in the stress

space formulation of the basic equations . Similar results follow except tha t

~ and ~ s a t i s f y  the mor e stringent condi tions

(72 )

and the fu ll  set of coefficients satisfy

(i÷~) 2 K >  ~(i+~)
2
(~ - 

~~~~~~~~~~~~~~~~~~~~~~~~~~

for all admissible va lues of K and ~~~~~~ The restrictions (72 ) and (73 )

differ from (67)1,2 
and (68) because the conditions for loading in each formula-

tion are not equivalent . To see this , combine (51), (55) and (140)1 
to obtain

Note that the conditions (
~
°)l 2 are also sufficient that (73 ) be satisfied

for all K and y
~~

, just as in ~}ie strain space formulation

23. 
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A ASince ~~~~~~ dur ing loading, g>0 does not necessarily mean that f > 0 .  Further

discussion of this point can be found in [ 3 ] .

214.
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6. Determination of material coefficients: uniaxial cyclic loading.

In general , there are six material constants

(75)

which must be determined by experiment . For the restricted constitutive equations

(71)12, the number of independent constants is reduced to four since in tha t case

~ and T~ 
are specified by (70)12

. A procedure for determining these constants from

• experiments in un iaxial  cyclic loading is outlined in this section.

Consider f i rs t  a homogeneous extensional deformation in which the only

nonvanishing component of the stress tensor is s11= s ( t )  say. Then , from (29) ,

(3 0) ,  (38) and the symmetry properties for isotropic materials , we have

C- C e 0 0
3 p

~~~~~~~~~ -~~~e 

- e  

~~~~, (76 )

5 = E(e11-e~1
) = E(e-e ) , (77)

where the notations e and e~ are introduced for convenience. Corresponding to

the above homogeneous deformation, the loading functions f and g assume the

simplified forms

I = ~~ s2 -~~s e + ~~~oe - K  , (78)

g = ~~ E2 (e_ e~~) 2 
- ~E(e_e~ )e~ +~~~ ~~~ - K . (79)

Also, during loading , the expression for e is

2 , 14— E (—s-~~e )e
e = 2 —  — ‘ 

(50 )
~

25.
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where in obtaining (80) we have used (52), (57) , (58) and (79) . Since the

deformation is homogeneous , we can obtain the slope of the stress-strain curve

during loading by combining (77) and (80). This calculation gives

14
— s-n eds 3 p -l

e 
(~+n)s + 3(flJ2-a~e

The above expression at the onset of initial yield reduces to

~ J = [ 1+ ± L ~.]~- - 

82de E B+n ( )
ep

and in the limit of saturation hardening the slope becomes

s-ne
u r n  = [

~ + 
ns_3ae~~ 

(83)

Equations (80 ) and (81) hold for all metallic materials without
restr iction , e~~ ept that the deformation is assumed to be infinitesimal

and homogeneous. If we impose the conditions (70)
1,2

, then these

expressions reduce to 
•

1 4 .  14

= 
- 

~~~ Ee 
= 

1 
+ 1]~~ . (814)p 

(B+n+ ~~ E) 
e

Hence, the slope of the stress-strain curve derived from the restricted constitu-

tive equations (71)1,2 
is independent of both s and ~~ but is not constant ~ince

~ depends on K. During loading the slope 
~~~~ 

decr eases from a va lue of
14

[~ 
+ ~~~~]

_l 
(8~)

at the onset of initial yield, to the value

B 3a

at saturation.

Consider now a unia.xial elastic-plastic state specified by

26.
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S = 5
(1) 

, e = e  , K = K  (87)

and suppose that the material is unloaded from this state until it yields again

in the reverse direction at 5 = S ( 2 ).  
Then, since bota S

j )  
and S

(2) 
are roots

of (78) for the same values of e~ and K , we have

* * 3 *

~~(i) + 

~(2) 
= ~e (88)

so that

= 
2 

S
~ 1)

+s
(2) 

. (89 )

~ cperimental data at a number of stress reversals can be used in (89) to obtain

• an estimate of n, and this value can then be used in (62 ) to determine ~ from

the slope of the stress-strain curve just after initial yie1d~ Next , ~ is

determined from (83) together with measured slopes of the stress-strain curve

at various loading points following saturation. A value for K 0 follows from

the initial yield stress , and K8 ~
5 computed from (78) together with experimental

values of stress and plastic strain at saturation. Since T~ does not enter th e

yield function and it drops out of both limiting slopes (82) and (83), we must

determine its value by using the general expression (81). Hence we need to

measure the slope of the stress-strain curve at several loading points between

initial yield and saturation. The value of K at such a loading point is computed

from (78). This value is then used in (81) to estimate an appropriate value

for

The above procedure is suggested as one means of determining th&. six

~When using this procedure, comments in the Introduction (Section i) regarding
the idealized trans ition from elastic to plastic deformation shou1~ be kept in
mind . The gradual transition which is observed experimentally should be idealized
by a discontinuous slope in the stress-strain curve (see Fig. 1) before the data
is used to determine the material coefficients.

27.
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material coefficients from cyclic loading data; by no means is the procedure

unique. If additional experimental information is available, other ways of

determining the coefficients may be more convenient.

28.
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7. Comparison with experiments.

As an example of a metal that may be adequately represented by the restricted

- 
constitutive equations (71), consider the cyclic stress-strain behavior of 3014

stainless steel reported by Thigh et al. [13]. In this study, specimens were

cycled in tension and compression at 6149°C (1200°F) between strain limits of

± 0.01 until saturation was reached. The reported results [13] are reproduced

here in Fig. 3(a). Using the procedure outlined in Section 6, together with the

data of Fig. 3(a), one is able to choose the four material constants in the

restricted constitutive equations (71)1,2 as*

= 14.06 x l0 3 
, = 39x 10 3 

,

— 

K 6 K 6 
(90)

= 0.514 xl0 , = 2.146 xlO ,

where the elastic modulus E is~

E = 123 GPa (or l7.8xl06 psi) . (91)

Theoretical stress-strain curves were determined by explicit numerical integra-

tion of (80 ) using the values (90) and (91) for the material coefficients.

Results of thi s computation are shown in Fig. 3(b); and, on the same graph , the

corresponding experimental curves from Fig. 3(a) are shown for the first two

strain cycles. The comparison for additional strain cycles is not exhibited

in Fig. 3(b) simply because it would crowd the figure.

Consistent with the experimental observations in [ 13] , the theory predicts

that saturation occurs after about four strain cycles. This should be contrasted

with Eisenberg ’s [12] development which shows at least eight cycles before

effect ive saturation . This occurs in spite of his more detailed treatment of

transition from elastic to plastic deformation.

* .Computations leading to these values are given in Appendix B at the end of
the paper .

~The abbreviation GPa stands for Gigs Pascal = l0~ Pascal = 10~ Newton/rn
2. -

29.
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In order to further examine the applicability of the theoretical develop-

ments of the present paper, we conducted cyclic tension-compression tests on

cylindrical specimens of 20214-T35l aluminum alloy (with solid cross-sections)

*
machined from plate stock. The specimen had a gauge length of 2.514 cm. (1 in.) arid

a diameter of 1 cm. (0.375 in.). Each specimen was locked in threaded fixtures and

loaded in a model ~~C SF Instron testing machine at a nominal crosshead speed of

(0.005 in/mm ). Strain was measured with an Instron clip-on extensometer.

Two different loading programs were used, each nonsymrnetric with respect

to zero strain. The results of the two experiments are shown as dashed lines

in figures 14 and 5. At least three specimens were used in each case to ensure

repeatability of the data. Since relatively high stress levels were reached

during the first loading cycle and because the material hardened rather

strongly, the tests were stopped after two loading cycles to avoid buckling

the specimen.

In order to adequately represent the observed behavior of the 20214 aluminum

alloy, it was necessary to use the unrestricted constitutive equations (56)1,2
.

The condition (70)2 
was retained, however, for simplicity~ Values for the five

independent coefficients were selected by fitting the data shown by the dashed

lines in Fig. 14. Although the available experimental data in either loading

program is sufficient to determine n,B and K0 according to the procedure in

section 6, the remaining constants a and K5 are difficult to determine directly

since the experiments did not proceed to saturation. Consequently, a and K5 were

adjusted until the predicted stress-strain curves under the loading program in

Fig. 14 showed reasonable agreement with the experimental data. The results are:

*
- The tests were carried out in the laboratories of the Dept. of Mechanical

Engineering of the University of California , Berkeley, using a standard
Instron testing machine.

tRecall that the conditions (70)1 2 
were only sufficient for satisfaction of

the inequality (53).

30.
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= 0.07 , = 0.023 , = 8x10 3

K K (92)
—

~~~ 

= 18 x 10
6 

, 
-.~~ = 30 x lO

_6

E S

and

E = 69 GPa (or l0~ psi) . (93 )

The values (92) and (93) were then used to compute the stress-strain curves

corresponding to the second loading program shown in Fig. 5. The predicted

stress-strain curves are shown in both Figs. 14 and 5 for comparison. It is

evident that the nature of the agreement is similar in each case. Also , it is

interesting to note that the reasonably good agreement with the behavior of

20214 aluminum alloy was achieved at moderate values for strain, even though the

theor etical development s wer e derived for small deformation.
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Appendix A

We provide here details of the calculations leading to the inequalities

(6~) and (66). For this purpose, it is convenient to regard M.KL 
and 

~~~~~~~ 
as

vectors in the five-dimensional subspace defined by the hypersurface e~~ =0

in six-dimensional strain space and write (62) and (6 14) in the forms

~~~~ 
~
2 

M~ (aM + by~) >0 , (Al)

where

a = , b = -
~~ &(~~-c~)+~~-2a

2 (A2)
2 r i D
C =

First , choose M such that M .  ‘q~~= O .  Then , (Al ) 2 implies that a>.0 and the

inequality (65 ) follows immediately . Next, write the inequality (Al)2 
as

a ( N . M~ + b ( M .  ~P ) > 0 . (A3)

The f i rs t  term in (A3) is nonnegative , in view of (65).  Then , by the Schwartz

inequality , namely I M .  y~~ ~ ~~ 1y
P

1, and the restriction (Al)1, the second term

in (A3 ) satisfies

b(M . y~ ) ~~~ - lbt (M .M)2(?.v
P)2 = -  ~bc~~~~~.~~~)2 . (A14)

In order that (A3 ) hold for all values of and for all M satisfying (Al )1, it

is both necessary and sufficient that a(M . M) - Ibc~
(
~~ 

. ?)~~
>0 or

(A5)

Next , with the use of (Al)1, we obtain
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a2(M M) > b
2(’~?. 

sqP ) (A6 )

— from which and 
~~~~~~ 

follows the result (66).

I
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Appendix B

The material coefficients f c r  the 3014 stainless steel in (90 ) wer e obtained

by the procedure outlined in section 6. This appendix includes details of the

calculations .

First , when (89) is applied to the several stres s reversals of

Fig. 3(a) which go from tension to compression, o~ is consistently calculated

as

~ -0.5 GPa . (~~
)

On the other hand , the stress revers als which go from compr ess ion to tension

consistently give

~y~~~l.5 GPa • (B2)

The difference between these two values, while seemingly large relative to ~~~,

represents only small fluctuations in 
~ (i) and 

~(2) [see Equations (89) ] and

may be due to a slight material anisotropy. We choose the average value

= 0.5 GPa . (B3 )

A value for ~ is obtained fr om the slope of the stress-strain curve just after

initial yield. From (82) and Fig. 3(a)

3.85 GPa = [~ 
+ ~~~]l (314)

and hence (33), (B14) and (91) give

= 0.1477 GPa . (B5 )

Next , IC~~ is computed from (78), evaluated at e~~= 0 .  Based on an initial yield

stress of 110 ?v~ a, we obtain

36.
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~ K0 
= 0.0081 (GPa)2 . (Bc )

A .-~ lue for ~ fo~ low s from exp erimental data at saturat ion . Far  example , f te r

saturation and just before unloading from tension , we have

S = 2~ 8 MPa , e = 0.008 1 . (B7 )

subst itution of these variables into (78) yields

K5 
= 0.037 (GPa)

2 
. (B8)

Appropriate normalization of (B3), (B5), (B6 ) and (B8) with respect to the

elastic modulus in (91) yields the numerical values given in (90).

37.



Captions for Figures

Fig. 1 Mechanical response of a typical ductile metal imder -iniaxi~~

loading with theoretical idealizations indic ted by da~ ned iirA~~

( the symbols 5 and e stand for one-dimension~l c mpcr~r-r.ts of

stress and s t ra in) :  Fig. 1(a ) exhibits loading in simple tension

followed by unloading and reloading in tension , while Fig. 1(b)

exhibits loading in simple tension followed by urJob d inC and

reloading in compression .

Fig. 2 Mechonical response of a typical ductile metal in cyclic Icading ,

exhibiting saturat ion hardening and plotted in the s t ress-s t ra in

(s -e )  plane .
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Fig. 3(a) Experimental stress-strain curves for 3014 stainless steel in

cyclic tension-compression , as reported in Ref .  [13].

Fig. 3(b) Comparison of theoretical cyclic stress-strain behavior for

3014 stainless steel with the experimental data from Ref. [13].

The theoretical stress-strain curves ( ) are calculated using

the constitutive coefficients (90); and comparison with the

experimental data ( -- -- )  is shown for the first two strain

cycles only, since curves for additional cycles would crowd

the figure [compare with Fig. 3(a)].
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Fig. 14 Comparison of the theoretically determined cyclic stress-strain

curve (—) for 20214-T35l aluminum alloy and corresponding

experimental data (----) from the first loading program (initially

between +0.02 and -0.01 strain).

Fig. 5 Comparison of the theoretically determined cyclic stress-strain

curve (—) for 202 14-T35l aluminum alloy and corresponding

experimental data (- - -- )  from the second loadi ng program

(initially between +0 .01 and -0.02 s t ra in ) .
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