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On the Hardening Response in Small

Deformation of Metals
by

D. A. Caulk and P. M. Naghdi

Abstract. This paper is concerned with a special class of hardening response
functions for small deformation of elastic-plastic materials, its application to
isotropic metals, and comparison of the theoretical results with experimental
cyclic stress-strain curves for two different metals. The theoretical develop-
ment is carried out within the scope of the existing purely mechanical theory

for the "rate-independent” response of elastic-plastic materials, which admits
the existence of a single loading function, as well as certain accepted idealiza-
tions. After summarizing the basic equations for small deformation, detailed
attention is given to the development of a special form of the hardening response
function, motivated mainly by the observation that the stress-strain curves for
uniaxial cyclic loading of a fairly large class of metals attain -- after seversal
cycles -- the so-called saturation hardening. We exploit this property; and,

in the case of isotropic metals, systematically derive some restrictions on the
constitutive coefficients in the loading function and the hardening

response. Comparison of the results with two sets of experimental data, obtained
from uniaxial cyclic loading of a 304 stainless steel and a 2024 aluminum alloy,
shows good agreement within the understood idealizations of the basic theory.
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s Introduction

By way of background, it may be recalled that in the usual development of
the general theory of elastic-plastic materials, the rate of plastic strain and
the rate of work-hardening are expressed as linear functions of either the rate
of stress or the rate of strain. However, the coefficient response functions in
these equations, as well as the loading function and other constitutive response
functions, are all independent of the rate of stress, the rate of strain and
time derivatives of other kinematical ingredients. For this reason, such a theory
is sometimes called a "rate-independent" theory of plasticity, in contrast to a

theory which characterizes "rate-dependent" behavior by including rate quantities

in the loading function and/or other constitutive response functions. Moreover,
since the "rate-independent" formulation of plasticity theory employs constitu-
tive equations for the rate of plastic strain and rate of work-hardening, it is
also referred to as a rate-type theory in contradistinction to a functional-
type theory in which the material response depends on the entire past history
of deformation.

The development of the present paper is based on the rate-type theory of
elastic-plastic materials given by Green and Naghdi [1,2], which is constructed

relative to loading surfaces in stress spaceT

We also utilize the corresponding
A formulation of the rate-type theory given by Naghdi and Trapp [3] in which the
basic constitutive equations are expressed relative to loading surfaces in

*
strain space. Our aim is to find an acceptable description for the hardening

*The theory of elastic-plastic materials in [1,2] includes thermal effects &nd

is developed within the framework of a thermodynamical theory, while the develcp-
ment in [3] is carried out in the context of the mechanical theory. Although

we confine attention to the purely mechanical aspects of the subject, the basic k2
theory utilized here can easily be interpreted in the context of the isothermsl
theory. The purely mechanical theory of elastic-plastic materials with larce

' deformation corresponds to the general developments in {1] prior to thermo-

dynamical restrictions. We employ here a second form of the theory of plssticity
relative to loading surface in stress space given in Section 4 of [2].

e

*

Also, reference may be made to Naghdi [L4] which includes & brief summary of
| the main results in [1,2,3], as well as a discussion of some advantages ¢
} the formulation relative to loading surfaces in strain space.

r ' 1.




response in small deformation of metals within the scope of the rate-type
theory of plasticity.

Elastic-plastic strain hardening in metals has received considerable
attention in the recent literature. General dissatisfaction has been expressed
with the more traditional kinematic and isotropic hardening rules, especially
for describing the behavior of metals under cyclic loading. Rather than seek a
more general representation of the hardening response within the scope of the
existing rate-type theory of plasticity, many recent studies have sought instead
to introduce modifications in the basic theory. Before discussing the nature
of these modifications, it is useful to review briefly certain idealizations
which are incorporated in the existing rate-type theory of elastic-plastic
materials when the deformation is infinitesimal. General background informa-
tion concerning these idealizations can be found in the papers of Drucker [5]
and Naghdi [6].

Consider the uniaxial stress-strain curves shown in Fig. 1(2) and 1(b).

Such schematic behavior is typical of ductile metals in a homogeneous deforma-
tion. Figure 1(a) shows loading in tension followed by unloading to zero

stress, followed by reloading in tension. Figure 1(b) is similar, except that
reloading occurs in compression. In the construction of the basic theory of
plasticity, it is customary to idealize the reloading segment FEG by the dashed
line FEDG. The loading program in Fig. 1(b) differs from that in Fig. 1(a)

only in that reloading occurs in compression. Beyond this fact, the two schemetic
figures are similar, and the actual material response bears this out: segment LN
is similar to EG. It also seems consistent, therefore, tc idealize KLN by KIMN.
In the same spirit, segments AC and HJ are idealized by ABC and HIJ, respectively.

Some of the idealizations noted above are incorporated in the rate-type theory
of plasticity through the concept of a yield or a loading surface, which places a

sharp distinction between elastic and plastic deformation. If the yield surface

2.
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is introduced in the usual way, then a rate-type theory of plasticity with
srmzl1l deformation should not be expected to describe the smooth transition

gicns such as EG and LN in Fig. 1(a) and 1(b). Recent investigations have

L2
[

tried to better represent these transition regions by either introducing additionezl
vield surfaces [7,8,9,10] or by eliminating the yield surface entirelyf Eisenberg
[12] retains the idealization EDG (see Fig. 1(a)), but chooses to describe the
segments AC and LN more precisely by introducing a discrete memory of the so-
czlled "last significant loading event."

At best, however, the transition regions described above are second crder
to the main features of the material response; and it seems premature to intro-
duce refinements that are meant to improve the description of these regions
before the main features of the material response have been represented rezsonably
well in the context of the basic thecry. Certainly the shortcomings of
the isotropic and kinematic hardening rules are not entirely due to idealiza-
tions of the rate-type theory. By the same token, a detailed account of the
transition regions should not be looked upon as a remedy for poor description
of the mein features of the material behavior.

After a brief review of the basic constitutive equations for an elastic-
plastic material in section 2, we examine in section 3 a linearized version of
the theory appropriate for small deformation of metals. General observations
pertaining to metal hardening, including saturation hardening, are used to

motivate restrictions and special assumptions on the form of the response

*In recent years some authors appear to have placed special emphasis either cn
the possibility of developing a theory of plasticity without introducing a
'yield surface' or on requiring that the theory be capable of predicting the
existence of a 'yield surface' rather than postulating the existence of a yield
or loading surface ab initio. As has been pointed out already by Green and
Naghdi [11], such endeavors appear at present to be somewhat illusory in the
following sense: whichever way the theory is developed, it must necessarily
involve some assumptions which ultimately result in a yield surface; and it
appears to be largely a matter of taste as to which kind of assumptions are
preferred at the outset of the development of the theory. Additional remarks
and some related references on this point can be found in [11].

3.
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functions. Isotropic metals are considered in section 4 and the number of
independent material coefficients describing the h=rdening response is reduced
to six. These results include, of course, the isotropic and kinematic hardening
rules as special cases. In section 5, the reduced ccnstitutive equations are
expressed relative to a loading surface in strain space and restrictions on the
material coefficients are derived. These restrictions are less stringent than
those which can be deduced via a corresponding development relative to stress
space. A procedure for determining the six material constants from uniaxial
cyclic loading data is outlined in section§6. In section 7, the theoretical
predictions of material response are compared to some new and existing experi-
mental data in uniaxial cyclic loading. First, the cyclic stress-strain data
for 304 stainless steel obtained by Pugh et al. [13] are compared to predicted
stress~strain curves based on the present developments. Next comparison is made
with experiments on 2024 aluminum alloy, which were conducted at Berkeley by
the present authors. In these experiments, cylindrical specimens (of solid
cross-section) were cycled in tension-compression through two different loading
programs of two strain cycles each. For both the stainless steel and the
aluminum alloy, comparison of the theory and experiment shows good agreement

within the understood idealizations of the basic theory.

§Details of the calculations for the constitutive restrictions in section 5 and
for the determination of the material constants in section 6 are provided,
respectively, in Appendices A and B et the end of the paper.

L.




2. Notation and Basic Equations.

Let the motion of a body be referred to a fixed system of rectangular
Cartesian coordinate axes and let a typical particle of the body occupy the
position XA in some fixed reference configuration. Further, let xi designate
the position of the particle in the present configuration at time t. Then, a

motion of the body is defined by
and the deformation gradient relative to the reference position is denoted by
P =S5 ¢ (2)

Throughout the paper, indices take the values 1,2,3 and the usual summation
convention over repeated indices is employed. Lower case indices are associated
with the spatial coordinates Xy and upper case indices refer to the material

coordinates XA‘ The Lagrangian strain tensor €AB is defined by

(yr=8kr) 5 Cxp = Fidfsp o (3)

where KL is the Cauchy-Green measure of deformation and 6KL is the Kronecker
delta.

We summarize here the main constitutive equations of the purely mecheanicsl
theory of elastic-plastic materials contained in the work of Green and Naghdi
[1,2]. In zddition to the strain tensor €,ps at each material point we admit
the existence of (i) a plastic strain specified by a symmetric second-order
PP, e§L==e§L(XM,t) which has the same invariance properties as e’ (Fa) e
scalar-valued function K= K(XM,t) as a measure of work-hardening; and (iii) =

J " z P \ ¥
scalar-valued yield (or loading) function f(sKL,eMN,K/, where s . is the

Yas shown by Naghdi and Trapp [14], symmetry of the plastic strain follows
as one result of a work inequality postulated over a closed cycle of homogenecus
deformation in strain space.
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symmetric Piola-Kirchhoff stress tensor. For fixed values of eﬁN and K, the u

equetion

f(sKL,eﬁN,K) =0 (%)

defirss a closed orientable surface of dimension five in the six-dimensional

Fuclidean space of the symmetric stress SKL® We assume the loading function f

to be continuously differentiable with respect to its arguments.

The constitutive equations for the rate of plastic strain and the rate of

work-hardening, relative to the loading function f, can be expressed in the form

0 when £f < 0O ,
A
= 0 when f = O and f < 0 ,
ek, = (5)
KL 0 when f = O and 9 = 0
A A
ABKLf when f = O and £ >0 ,
and
Eehae (6

where a superposed dot stands for the material time derivative holding XA fixed

A
and where f is defined by

= as SKL = (7)

£lso, the scalar \ is restricted to assume positive values and hy; and 8,
are symmetric second order tensors. Each of the latter three quantities is &

function of the list of variables

o)

V= (s ®) - (8)




the loading criteria. Using the conventional terminoclogy, in the order listed

they are: the state of elastic deformation, unloading from an elastic-plastic

m

tate, neutral loading and loading from an elastic-plastic state.

In the purely mechanical theory, it remains to introduce the constitutive

sqguation for the stress and this is specified by

A
S

i ; ¥ p (o)
SKL ot KL(u/ ) U (eMI\I’eMN’K) 7] XA
with the added restriction that

A A

S
OSyr, By (10)
- . 34 )

%oy %%y,

S
b

rcte that the constitutive equation (9)1 holds during loading, as well as
during unloading and neutral loading, and that the condition (10) ensures thast
the stress is derivable from a potential. We assume that for fixed values of

e~ and K the expression (9)l is invertible in the form

ey, = QKL(U) . (11)
The preceding summary of the basic equations for an elastic-plastic

rztasrial began with equation (4) and hence is based on the concept of & yield
fzce and loading criteria in stress spzce. Following Naghdi and Trapr |2,
it is possible to provide an equivalent formulation of the basic equaticns
relztive to loading surfaces in strain spazce and this has certain advantezes
which are discussed in [3]. However, since a formulation relative to lcsding
surfaces in stress space is useful for certain interpretations, we use th

‘orrmulstion in sections 3 and 4 to motivete special assumptions on the herdsrnins

response function h,. and the loading function f. In section 5, the resulzs ¢

N

KL

sections 3 and L4 are recast in their corresponding form relative to lozdin:z

surfzces in strain space because in that form the derived restrictions cn th

o

constitutive coefficients are less stringent.




Although the above constitutive equations are fully general in the context

of the purely mechanical theory, it is possible to conceive of a plausible

physical hypothesis that will place restrictions on their form. Starting with

an assumption for the work done by body forces and surface tractions in a
closed cycle of homogeneous deformation, Naghdi and Trapp [1L4,15] have shown,

among other results, that during loading the plastic strain rate must satisfy

ag 39 aQ :
KL KL 0 __., 3f Imn |
M MN KL ;

where Y is a nonnegative scalar function of the variables (8) and the stress
rate. Also recall that by expressing the stress response in the alternative

form (see [14,16])

SKL = EKL(eM\I-eﬁN’eIE\,ﬂ\I’K) b (13)

the relation (12) may be rewritten as

A . .
.p aeKL BSBQ 1 BSPQ
e -
aSPQ aeﬁm

-, hMN)ép o RS (1h)

It is clear from (1k4) that if the stress response in (13) depends only on

so that agm/aef:m: 0 and s, r/aK: O, then the plastic strain rate is

My~ M K
directed along the normal to the loading surface in stress space.

In the remainder of this paper we confine attention to a discussion of
the elastic-plastic constitutive equations for infinitesimal strain. Hence, we
assume that the displacement,the displacement gradient, the plestic strain and
the stress (when expressed in a suitable nondimensional form), as well as their
space and time derivatives,are all small of order e€. Consistent with these, the

loading function f, the work-hardening parameter K and its time derivative k

must be at least of order 62 (see the discussion in section 3). In terms of the

components of the displacement vector Uy the infinitesimal strain tensor e,

is defined by




= = = =1 +1 ) 4+ QO = 0(e)
Uy xisiA XA o(e) e, 2(uK,L JL’K, (e™) (e) (15)

where 2 comma stands for partial differentiation with respect to the materisl

coordinates XA, which to the order e¢ are coincident with X The infinitesimal

elastic strain tensor eEL is defined by

e s A (16)

We also recall here that in the linearized version of the theory the distinc-

tion among the various representations for the stress, namely the nonsymmetric

Piola-Kirchhoff, the symmetric Piola-Kirchhoff and the Cauchy stress, disappears.
In the next section we discuss a form of the preceding constitutive equa-

tions appropriate for metallic materials undergoing small deformations.




S Work-hardening of Metals in Small Deformation.

Because many ideas in plasticity theory are generalizations of obsecrvations
made of material behavior in one dimension, it is useful to first examine the
response of a typical metal under a program of unisxial cyclic loading between
constant strain limits. Consider the loading process illustrated by the stress-
strain curve in Fig. 2. Loading begins in tension from zero strain (point O) on
a sample in the virgin state. As long as the stress remains in the initisl
elastic range, the stress response is observed to be linear in the strain.

After the initial yield point (labeled point A) is reached, the plastic strain
increases‘continuously from zero until unloading takes place at point B. During
unloading from B, the stress response is again linear in the strain and provided
that the strain at B is small, the line BC is usually observed to be parallel to
the stress-strain® curve OA in the initial elastic range.

Motivated by these observations, we assume a special form for the response

function in (13) and specify the constitutive equation for the stress by

= P e \
st = Dkna(O o) T ko (17)
where the coefficients LKLMN are all constants. From (10) and the symmetry of
p e s
SKL’ ey and €Rs’ the coefficients LKLMN possess the symmetries

Loy = Tren = ko = Dk D

The assumption (17) also provides the usual interpretation of the plastic
strain as the value of the strain at a given point when the stress there is
locally reduced to zero.

As the process of uniaxial deformation continues from point C in Fig. 2,
the material yields in compression at point D end plastic deformation cccurs
continuously to point E, at which unloading again tskes place. From that

point, the process of cyclic loading between constant strain limits is repeated

10.
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and in most metals hardening (or softening) is observed as the stresc level

during esch succeeding strain cycle increases (or decreases); in this connection,
a hardening response is shown in Fig. 2. For most common metals, the process
of cyclic loading leads to a limiting periodic response in which the stress-
strain curve of each succeeding cycle is the same (see Fig. 2). This phenomenon

is sometimes called saturation hardening, and a material is saild to saturate

when it reaches this limiting behavior. How rapidly saturation is reached
during cyclic loading is a property of the metal.

Based upon these observations of the typical behavior of metals under
cyclic lozding, we assume that there is some value of the work-hardening
parameter «, say Ks’ at which k is zero. Mathematically, this assumption is

expressed as

(v)e =0 . (19;

Jme e =S damshy KL

KL
K —oK.S K -OKS

4 sufficient condition for the restriction (19) to be satisfied is that hFL be

homogeneous in K=K« In particular, we assume that hKL is homogeneous of degree

*
one in K-¥_ and is specified by

K-KS

= = P N\
hKL = (KO-KS)hKL(SMN’em) > (2\/,

. e = : : ho)
where Kc is the initial value of K and hKL is a function of sMN and eKL' In

the special case in which EkL = s,;» combination of (6) =nd (20) gives

s ‘D
S)SKLeKL

Thus, in this special case, the rate of work-hardening k is proportional to the

%*

Since the experimental observations that motivate this assumption do not depend
on the deformation being small, the special form (20) of the hardening response
function may also be viewed in the context of finite deformaticn.

dills




rate of nonrecoverable work SKLéﬁL in the material. €£ince a notion of this kind

is appealing on physical grounds, it is desirable to have the linearized version

of (6) include (21) as a special case. Hence, we assume that h_,_ is order ¢ and

KL

sufficiently smooth so that it may be expressed as z linear function of SKL and
p

K This leads us to write

e

- p
e = Mo T koS (22)

where the constants MKLMN and NKLMN

The foregoing assumptions for the stress response (17) and the rate of work-

possess obvious symmetries.

hardening (20) with EKL given by (22) are motivated by observations of the behavior
of metals in one dimension. From the same information, however, it is not immediate-
1ly 2lear what may be an appropriate representation for the loading function in the
infinitesimal theory. In the present paper, we assume that f is sufficiently

smooth so that it may be represented as a polynomial in s and K. In

KL* M
addition, we note that for (4) to represent a closed surface in stress space,

f must be at least quadratic in the stress. It follows that f must be at least
second order in ¢. And whatever the order of f, all terms in its polynomial
representation must be the same order in e¢. Since the ratio (K-Ks)/(KO-KS) is

order 1, it follows from (6), (20) and (22) that k and hence also K are order €-.

Thus, the loading function must satisfy the relation

f(esKL,eeﬁN,ezK) = enf(sKL,eﬁN,K) (2

w
s

when
=0 n > L)
f= (G ) sy N =2 2 . (2 )

Because for each value of the integer n the loading function has a different
general representation, there may be any number of possible forms of the elastic-

plastic constitutive equations, each corresponding to a different n, which are

12.




compatible with the assumption of small strain. Examples of two commonly used
yield functions that correspond to different orders of f are the Tresca and

von Mises yield conditions. Expressed as a polynomial in s, , the Tresca yield

KL

condition corresponds to n=6 while the von Mises condition corresponds to n=2.
Because we wish to describe the behavior of metals and since the von Mises

yield condition has been experimentally shown to be a suitable representation

*
for the initial yield surface in isotropic metals, we assume f tc be second

order in €. In this case the general representation for f is (see Ref. [1],

Eqie (10,21
= b p 19
f = By koS Bxoa ke T T kxS T ¢ (25)
where the constant coefficients BKLMN’ EKLMN and FKLMN have obvious symmetries

and without loss in generality we have taken the coefficient of K to be 1.
Naghdi and Trapp [15] have shown that for a stress response in the form (17),
convexity of the loading surface in stress space follows from 2 work inequality.
This requirement may place certain restrictions on the coefficients in (25).
When the stress is specified in the form (17), the relation (14) for the

rate of plastic strain reduces to (see Ref. [15], Eq. (24))

P oo 2
g b
KL~ Y 38,

v>0 . (26)
A S 2 : .
Since f>0 during loading and \>0 it is possible to identify
A X
Y= M (27,

and a comparison of (5)) With (27) yields

-
BKL - 38y

S~

N
n
(83]

*For example, see Taylor and Quinney [17], Naghdi et 21. [18], or Bertsch and
Findley [19].

13.




The constitutive equations developed in this section are appropriate for

The case of an initially

small deformations of a general anisotropic metal.

isotropic metal is discussed in the next section.




4. Isotropic Metals.

We now consider a special case of the infinitesimal theory appropriate for

metals which are initially isotropic. Before doing this, it is convenient to

p

introduce some additional notation. Let sKL and eKL be decomposed in the form
S,. = 8§, +7T e
KL KL.© "KL ? 3 MM ?
: (29)
P _ =P _ =P
em'e6m+YpI(1, ) ?_3eMM ’

where XL, and YEL are the deviatoric parts of the stress and the plastic strain,

respectively, and s denotes the mean normal stress.

For an initially isotropic material, LKIMN reduces to an isotropic fourth
order tensor and the stress response (17), expressed in inverted form, is given
by

e _1l+v v
®kr, = "E Skn T E SwvOkr ° (30)

where E and v are Young's modulus and Poisson's ratio, respectively. Similarly,

the coefficients in the expression (22) for EKL

tensors and hence this response function can be expressed in the form

reduce to fourth order isotropic

S Lo b p
Brr, = % Sakr, * “2Cmvdke t %3kn T sk (31)
where al,dz,d3 and ), are constants. In eddition, the loading function is

restricted to be of the form

£ = By ()" * By(ogropy) + B (ef)” * By (eRreky)

TACHE POV RN 2

where the coefficients el,...,a6 are all constants.
In the well-known experiments of Bridgeman [20], a large number of metals

were subjected to tensile tests under varying amounts of hydrostatic pressure.

15.
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observed that the initial yield point of each metal was not altered by the presence
cf the added pressure and that the character of the stress~-strain curve during subse-
quent plastic deformation remained unchanged. In the present paper, we uce the

first of these observations to place a restriction on the form of the loading
function (32).

Prior to any plastic deformation, e§L==O and (32) reduces to

£loyps0sKo) = (38,48, + 8ymmer = Ky 123
where we have used the decomposition (29)1. Motivated by the results of
Eridgeman's experiments, we assume that before any plastic deformation has |
occurred, the yield function is independent of the mean normal stress. Note
that this restriction is confined to the form of the initial yield function znd

no assumption is made regsrding subsequent plastic deformation. From this

assumption and (33) we conclude that

o) o
—_ [f(SKL,v,KO>] =0 or 3Bl+52 =0

(3%)
ds
and hence (32) may be written in the form
R R WC ALY W C A
KL'KL "3' MM L4 TKLVKL
ta P 1T [
+ s5\~mel\rN)+B6(sK:LeKL) K b \:5)

where by properly adjusting Ko’ we have taken 52==l. When the loading function

is specified in the form (35), the corresponding expression for the plastic

strain rate can be computed from (26) and is given by

P

el P D 4 E
ekt = Y2Tyr * Poludxr * P’ (36) i
Contracting this expression on the indices K,L and using (29)2, we obtain
“p i
e = y(3p,+8)e . (37)




If we assume that during loading y is a continuous function of time, the unique
solution of (37) which is compatible with & zero iritial value for eF is the

trivial solution
= -0 . (38)

Hence the plastic volume change is identically zero? This result follows
directly from (3&)l and (26) and need not be assumed independently.
The expression (35) for f simplifies as a result of (38), and the rate of

work-hardening may now be expressed as

Hence, we need only retain the deviatoric part of h In summary then, the

KL*

loading function and hardening response are given by the reduced forms

£lsrsonrsk) = Tl yvieroic)

= kT et R K (5a)
. K_KQ .
MR KoK [STKL*'ﬂvﬁleﬁL )
where we have set
-B6=Ol:013=B,Bu=c,au=T]- (b1)

ipart from the term G(YIP;LYPKL)’ which is independent of the stress and hence

effectively plays the same role as K in determining the form of the yield

(]
m

surface in stress space, the form of the loading function (l+O)l is the same

one proposed previously by Edelman and Drucker [22]. As explained in their

vaper, a yield function in the form (40), exhibits a Bauschinger effect and

1

reduces to the von Mises yield condition in the absence of plastic strzin.

We close this section by identifying two well-known hardening rules,

tVe emphasize that the restriction (38) is not an essentisl ingredient of

plasticity theory even for small deformation. It may be imposed by
assumption or, as in the present development, it follows from a partic.lzr
derivation. In this connection, see also [21].

17.




namely the isotropic and the kinematic hardening rules, as special cases of the

*
above results. First, when

M=a=¢g=0 and in the limit as e =4

the expressions (ho)l o reduce to
b

f='rKLTKL-K s K:BTKLYPKL -

This is a form of isotropic hardening. Next, if we set

the expressions (ho)l o become
b

= @ p a = eaay
f= (TKL * 3 YRL)(TKL -3 yﬁL)- K 5 K=0 (or K-Ko-const.)

This is the usual form of kinematic hardening.

*An account of these hardening rules may be found in [6].

18.
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B Restrictions on the coefficients in the yield function and hardening response.

So far we have used the elastic-plastic constitutive equstions formulsted
relative to a loading surface in stress space because this form made it more
convenient to appeal to certain physical observations of metal behavior. However,
since these constitutive equations have certain limitationsj we consider further
developments in the context of strain space. Before recording the corresponding
forms of (hO)l’2 relative to a loading surface in strain space, however, we need to

2" #

and K, the loading surface in strain space is

recall frem [3] certain results in terms of the list of verisbles (9)

p

For fixed values of eKL

specified by

gleyseysk) = O - (46)

Relative to g, the constitutive equations for éEL and k are expressed as

0 when g < 0 ,
P A /
ek, = 0 when g = O and g £ 0 , (47)
= A A
prLg when g = O and g > 0 ,
and
£= mo o s (48)
where
A .
g = a—z‘g_ eKI' . ‘“‘?)
KL

The positive scalar function \ and the symmetric second order tensor functions

PKL and M depend on

*We do not elaborate here on these limitations which are discussed by Naghdi
and Trapp [3].
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u = (eKL,epmv,K) . (50)
Following [3], we assume that g is obtained from f through the expression
gle, ,ef k) = f(Q (en,ef k) 62 LK) (51)
KL’ "MN’ KL PQ’ RS’ ‘'’ MN’

and that mKL is obtained from h through the same substitution in the

KL
arguments of hKL'
To ensure that succeeding values of strain remain on the yield surface

. A
(51) during loading, we must have g=0 whenever g>0. This condition, together

with (46) and (49), leads to

0%k,

A condition analogous to (52) also arises in the stress space formulation.

From (52) and the sign of X follows the restriction

Oy e Heo (53)
o€y,

which holds at all times during loading. With the help of (51), the corresponding

form of (12) relative to strain space is

A A
9s os

KL , KL i SRR - | (5
T T e ISR cYa_ - (54)
aeMN KL

To recast (40) in the corresponding forms relative to strain space, we

1,2

first take the deviatoric part of the assumed stress response (30):

e
KL

Combining (51), (55) and (uo)l 5» We then have
b

where Y;L is the deviatoric part of e and u is the shear modulus of elasticity.
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g(eKL’eMN’K) = E(YKL’YEL’K)

2e e e
= by Yer Y, 2u0YmYPKL 5 cvﬁvaKL =K (56)
K-K
i S e
"KL T -k (2u8Yiy, + ey -

Substitution of (55) into (54) yields

Sg =Y i s (57)
KL

aYKL

2“Y§L SOl
where the first of (56) has been used to obtain (57)2. Now let
=N\
y = 2uhg (58)

so that from (47) and (58) we may identify

pKL = S 5 (59)
BYKL

The form of the elastic-plastic constitutive equations derived in section 4
for metals has now been completely determined relative to strain space. It
remeins o examine the consequences of the restrictica (53). Substitution of

(56) and (59) into (53) yields the inequality
Qu{[huYf;L-inL][ (B+artl Jouyy + (M-2ue-20 )vﬁL]} >0 (60)

where for convenience we have put

= K=K 5 K=K
Pate=c 8 5 Melg=s Il - (61)
© S o s

The restriction (60) holds at all times during loading. Since it does not
involve rate quantities, (60) must then hold for all values of YKL’YiL and K

that satisfy g=0. With the help of (56)1, g=0 can be expressed as
02
- - - e &
MM, = %= (0 - Tk o (62)

where MKL is the deviatoric second order tensor defined by
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M = 2uvpg - oy (63)

For YKL’YiL and K to satisfy g=0, it is sufficient that M satisfy (62).
Thus MKL is fixed in magnitude, but otherwise unrestricted. Combination of

(63) and (60) gives

huM]Q{(§+a+1+p)MKL+ [La(B+a) +7- 2°]V§L} S (0 (64)

which must hold for all YﬁL and K, and all MKL that satisfy (62). It follows

from the inequality (64) that'

Bra+ly >0 (65)

and
(Bravhy) M M > [3a(Bra) +7- 20152 VB, . (56)

Since (65) holds for all values of & and 0< (k- )/(k -k ) =1, the coefficients

a 2nd p must satisfiy
O.‘+)+'FL>O s a+e+)+p,>o . (67)

Sudstitution of (62) into (66) gives
- 2 i 2 a2 N = .12
(Brothp) k > {(Brovhu) (0~ ) + [Fa(Bra) +T-201 vy vy - (68)

cr 2 given material, the inequality (68) must hold for all admissible vzlues

cf the scalars K and yﬁLyiL: K is bounded by Ko and Ks’ and Y§LY§L cannct bscome
urbounded before the material fractures. Thus, the range of admissible vszlues
for w and YELYﬁL depends on the particular material and a general developreant

of the type considered here can proceed no further than (68).

Y
‘Tor details of these calculations, see Appendix A at the end of the peper.
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A sufficient condition that (68) be satisfied for all K and YﬁL is that

the right-hand side of (66) vanish identically, i.e.,
T T2
(3ap+n) + (3 a°-20) = 0 . (69)
Since this eguation must hold for all admissible values of K, it follows that
2
bo = o and op+271 =0 . (70)

Substitution of these restrictions into (56)l o yields the reduced expressions
b

K- K

g = Mg -k 5 K- B<K ) My Vyr, (71)

These restricted constitutive equations satisfy the inequality (53) identically

provided o and B satisfy (67)l o We emphasize, however, that (70) are merely
>

1,2
sufficient conditions that (68) be satisfied; the only necessary restrictions on
the constitutive coefficients for a general material are (67)1,2

A procedure completely analogous to the one employed in this section can
be used to derive restrictions on the coefficients w,B,0 and T in the stress

space formulation of the basic equations. Similar results follow except that

o and B satisfy the more stringent conditions
>0 G el >0 (72)

and the full set of coefficients satisfy

(B+a)%¢ > {(B+a)%(o - —) + [3a(Bra) + M- 20) vk Vir (73)

*
for all admissible values of K and yp

KLYﬁL' The restrictions (72) and (73)

differ from (67) and (68) because the conditions for loading in each formula-

1,2

tion are not equivalent. To see this, combine (51), (55) and (ho)l to obtain

»*
Note that the conditions are also sufficient that (73) be satisfied ‘
for all K and YKL’ Just as in ﬁ%e strain space formulation. q
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(74)

. A A
Since Ypm’;‘ O during loading, g>0 does not necessarily mean that f>0. Further

discussion of this point can be found in [3].




Determination of material coefficients: uniaxial cyclic loading.

In general, there are six material constants

Q’,B,O’:naKosKs ) (75)

which must be determined by experiment. For the restricted constitutive equastions

the number of independent constants is reduced to four since in that case

(71)1,2>
o 2nd 1 are specified by (70)l o A procedure for determining these constants from
b
experiments in unisxial cyclic loading is outlined in this section.
Consider first 2 homogeneous extensional deformation in which the only

nonvanishing component of the stress tensor is sll==s(t) say. Then, from (29),

(30), (38) and the symmetry properties for isotropic materials, we have

S s 0 0 e 0 0
3 p
= 1. aeas PR 6
Tk, = 0 -3¢ 0 . YpKL—eKL_ 0 2 % 0 , (76)
1 1
o - 0 0 -
0 35 2ep
s = Ele -eP ) = E(e-e_) (77)
T e P

where the notations e and ep are introduced for convenience. Corresponding to
the above homogenecus deformation, the loading functions f and g assume the

simplified forms

-2 .2 St
f = 35 -oase tzoe -k (78)
g = % E2(e-ep)2-aE(e-ep)ep-+% cei- £ o« (79)
Also, during lozding, the expression for ép is
gE(&s-ae Ve
ep —g(§+a+ji E)e+(ﬁ-?. Ea - 20)e ’ ’
3 e 3 '“p
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where in obtaining (80) we have used (52), (57), (58) and (79). Since the
deformation is homogeneous, we can obtain the slope of the stress-strain curve

during loading by combining (77) and (80). This calculation gives

L
ds _ (1 g e, )
i — ] (81)
(B+a)s + 3(n/2-c)ep
The above expression at the onset of initial yield reduces to
2 3
e (e2)
=0 Pta
e
and in the limit of saturation hardening the slope becomes
ds I % s-aeB =l
b de [E 5 as-3oe ] : (83)
K=K D
s
Equations (80) and (81) hold for all metallic materials without
restriction, except that the deformation is assumed to be infinitesimal
and homogeneous. If we impose the conditions (70)l o then these
b
expressions reduce to
S a
el 3 dsg ol -1
B = o , Legy2at (8L)
(B+a+§E) B+a

Hence, the slope of the stress-strain curve derived from the restricted constitu-

tive equations (71)l 5 is independent of both s and ep, but is not constant since
b

3 depends on K. During loading the slope (84), decreases from a value of

a3
[+ = (85)

at the onset of initial yield, to the value

3+ 507" (86)

at saturation.

Consider now a uniaxial elastic-plastic state specified by




5N e A Aol 5 D Ol 50 e Vi

s = stl) g SR BN ., TR (87)

and suppose that the material is unloaded from this stzte until it yields again

* * ¥
in the reverse direction at s=s . Then, since both s. and s are roots
(@) 1) (2)

of (78) for the same values of e and K, we have

* * 3 *
s(l>-+s(2) = 5 o8, (88)
so that
* *
g P R
@=3 = . (89) 4
p

Experimental data at a number of stress reversals can be used in (89) to obtain
an estimate of o, and this value can then be used in (82) to determine g from
the slope of the stress-strain curve just after initial yieldT Next, ¢ is
determined from (83) together with measured slopes of the stress-strein curve

at various loading points following saturation. A value for Ko follows from

the initial yield stress, and Ks is computed from (78) together with experimental
values of stress and plastic strain at saturation. Since T does not enter the
yield function and it drops out of both limiting slopes (82) and (83), we must
determine its value by using the general expression (81). Hence we need to
measure the slope of the stress-strain curve at several loading points between
initial yield and saturation. The value of K at such a loading point is computed
from (78). This value is then used in (8l) to estimate an appropriate value

for 1.

The above procedure is suggested as one means of determining the six

*When using this procedure, comments in the Introduction (Section 1) regarding

the idealized transition from elastic to plastic deformation should be kept in
b mind. The gradual transition which is observed experimentally should be idealized
by a discontinuous slope in the stress-strain curve (see Fig. 1) before the data
is used to determine the material coefficients.

27.




material coefficients from cyclic loading data; by no means is the procedure

unique. If additional experimental information is available, other ways of

determining the coefficients may be more convenient.
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Comparison with experiments.

As an example of a metal that may be adequately represented by the restricted
constitutive equations (71), consider the cyclic stress-strain behavior of 30k

stainless steel reported by Pugh et al. [13]. 1In this study, specimens were

cycled in tension and compression at 6H9OC (l2OOOF) between strain limits of

+ 0.01 until saturation was reached. The reported results [13] are reproduced
here in Fig. 3(a). Using the procedure outlined in Section 6, together with the

data of Fig. 3(a), one is able to choose the four material constants in the

* s
restricted constitutive equations (71)l 5 s i
2 i
11
& = hooexn1o™ i, R agagd é
E E 11
K -6 Ks -6 (90) 1
— = 0.5k x 10 , — =2.k6x10 3 '
where the elastic modulus E is§ !
B = 193 6Py (or 378 10° pei) . . (91)

Theoretical stress-strain curves were determined by explicit numerical integra-
tion of (80) using the values (90) and (91) for the material coefficients.
Results of this computation are shown in Fig. 3(b); and, on the same graph, the
corresponding experimental curves from Fig. 3(a) are shown for the first two
strain cycles. The comparison for additional strain cycles is not exhibited

in Fig. 3(b) simply because it would crowd the figure.

Consistent with the experimental observations in [13], the theory predicts
that saturation occurs after about four strain cycles. This should be contrasted
with Eisenberg's [ 12] development which shows at least eight cycles befcre
effective saturation. This occurs in spite of his more detailed treatment of

transition from elastic to plastic deformation.

*Computations leading to these values are given in Appendix B at the end of
the paper.
9

¥The abbreviation GPa stands for Giga Pascal = 10° Pascal =10 Newton/n®.
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In order to further examine the applicability of the theoretical develop-
ments of the present paper, we conducted cyclic tension-compression tests on
cylindrical specimens of 2024-T351 aluminum alloy (with solid cross-sections)
machined from plate stockf The specimen had a gauge length of 2.54 cm. (1 in.) and
a diameter of 1 em. (0.375 in.). Each specimen was locked in threaded fixtures and
loaded in a model TTC SP Instron testing machine at a nominal crosshead speed of
(0.005 in/min). Strain was measured with an Instron clip-on extensometer.

Two different loading programs were used, each nonsymmetric with respect
to zero strain. The results of the two experiments are shown as dashed lines
in figures 4 and 5. At least three specimens were used in each case to ensure ;
repeatability of the data. Since relatively high stress levels were reached
during the first loading cycle and because the material hardened rather
strongly, the tests were stopped after two loading cycles to avoid buckling
the specimen.

In order to adequately represent the observed behavior of the 2024 aluminum
alloy, it was necessary to use the unrestricted constitutive equations (56)

1.8°
The condition (70)2 was retained, however, for simplicity? Values for the five

independent coefficients were selected by fitting the data shown by the dashed

lines in Fig. 4. Although the available experimental data in either loading
program is sufficient to determine o,B and Ko according to the procedure in
section 6, the remaining constants g and Ky are difficult to determine directly

since the experiments did not proceed to saturation. Consequently, o and Ky were

: adjusted until the predicted stress-strain curves under the loading program in

Fig. L4 showed reasonable agreement with the experimental data. The results are:

*The tests were carried out in the laboratories of the Dept. of Mechanical
Engineering of the University of California, Berkeley, using a standard
Instron testing machine.

f

Recall that the conditions (70)l p Were only sufficient for satisfaction of
the inequality (53). s
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= 0.07 , %=o.oe3 e e BT

=IR

(92)

K K
—2—’:18x10'6 . £ . 30x107° ,
E o
and
E = 69 GPa (or 107 psi) . (93)

The values (92) and (93) were then used to compute the stress-strain curves
corresponding to the second loading program shown in Fig. 5. The predicted
stress-strain curves are shown in both Figs. 4 and 5 for comparison. It is
evident that the nature of the agreement is similar in each case. Also, it is
interesting to note that the reasonably good agreement with the behavior of
2024 aluminum alloy was achieved at moderate values for strain, even though the

theoretical developments were derived for small deformation.
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Appendix A

We provide here details of the calculations leading to the inequalities
(65) and (66). For this purpose, it is convenient to regard M, and YﬁL as
vectors in the five-dimensional subspace defined by the hypersurface eMM==O

in six-dimensional strain space and write (62) and (64) in the forms

Mod=c® , M- (aM+DY) >0 (A1)

where

a=pBrathy , b=3a(Br)+N-20 ,

A 3 (s2)
S R
< = k- (0~ F)ver v,
First, choose M such that M. yp==0. Then, (Al)2 implies that a >0 and the
inequality (65) follows immediastely. Next, write the inequality (Al)2 as

a(M. M) +pM-. V") >0 . (A3)

The first term in (A3) is nonnegative, in view of (65). Then, by the Schwartz
inequality, namely |M. yp|§|bﬂ|yp|, and the restriction (Al)l, the second term

in (A3) satisfies

L
2

b0+ ) =[] (- WEGE - P)F = foe|(F - P)F (A4)

In order that (A3) hold for all velues of yp and for all M satisfying (Al)l, it

L
is both necessary and sufficient that a(‘l!I‘- ’D{I‘) - |oe| (\(p . xp)z >0 or

2 22

B2 (M-M)E>BE (Y - ) (85)

Next, with the use of (Al)l, we obtain

3k.




201 1M) > V(- ) (a6)

. from which and (A2)l , follows the result (66).
b

35.




Appendix B
The material coefficients for the 304 stainless steel in (90) were obtained
by the procedure outlined in section 6. This appendix includes details of the
calculations.
First, when (89) is applied to the several stress reversals cof
Fig. 3(a) which go from tension to compression, o is consistently calculated

as
a=-0.5 GPa . (B1)

On the other hand, the stress reversals which go from compression to tension

consistently give
a=1.5 GPa . (B2)

The difference between these two values, while seemingly large relative to a,
*
(2

may be due to a slight material anisotropy. We choose the average value

e
represents only small fluctuations in S(1) and s ) [see Equations (89)] and

a = 0.5 GPa . (B3)

A value for B is obtained from the slope of the stress-strain curve just after

initial yield. From (82) and Fig. 3(a)

ds = = l ﬂi"l \
b = 3.85 GPa = [§+ B+d] (B4)
e_=0
<
and hence (B3), (B4) and (91) give
B = 0.477 GPa . (B5)

Next, K is computed from (78), evaluated at ep==0. Based on an initial yield

stress of 110 MPa, we obtain
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Ky = 0.0081 (GPa)2 : (B6)

A value for Kg follows from experimental data at saturation. For example, after

szturation and just before unloading from tension, we have
s = 248 MP2 , o ix 0.0081 . (B7)
Substitution of these variables into (78) yields
k, = 0.037 (cPa)® . (88)

Appropriate normalization of (B3), (BS), (B6) and (B8) with respect to the

elastic modulus in (91) yields the numerical values given in (90).




2w

Captions for Figures

Fig. 1 Mechanical response of a typical ductile metal under uniaxisl
loading with theoretical idealizations indicated by dashed lines
(the symbols s and e stand for one-dimensionsl components of
stress and strain): Fig. 1(a) exhibits loading in simple tension
followed by unloading and reloading in tension, while Fig. 1(b)
exhibits loading in simple tension followed by unloasding and

reloading in compression.

Fige 2 Mechanical response of a typical ductile metal in cyclic loading,
exhibiting saturation hardening and plotted in the stress-strain

(s-e) plane.
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Fig. 3(a) Experimental stress-strain curves for 304 stainless steel in

cyclic tension-compression, ss reported in Ref. [13].

Fig. 3(b) Comparison of theoretical cyclic stress-strain behavior for

304 stainless steel with the experimental data from Ref. [13].

The theoretical stress-strain curves ( ) are calculated using ;
the constitutive coefficients (90); and comparison with the
experimental data (----) is shown for the first two strain

cycles only, since curves for additional cycles would crowd

the figure [compare with Fig. 3(a)].




Comparison of the theoretically determined cyclic stress-strain

curve ( ) for 2024-T351 aluminum alloy and corresponding
experimental data (----) from the first loading program (initially

between +0.02 and -0.01 strain).

Rige 5 Comparison of the theoretically determined cyclic stress-strain

curve ( ) for 2024-T351 aluminum alloy and corresponding
experimental data (----) from the second loading program

(initially tetween +0.01 and -0.02 strain).
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tion, detailed attention is given to the development of a ecial form
the hardening response function, motivated mainly by the observation
that the stress-strain curves for uniaxial cyclic loading of a fairly
large class of metals attain -- after several cycles -- the so-called
igéy;ation hardening. We exploit this property; and, in the case of
tropic metals, sysfP®matically derive some restrictions on the
constitutive coefficientd in the loading function and the hardening
: response. Comparison of tke results with two sets of experimental data,
1 obtained from uniaxial cyclic loading of a 304 stainless steel and a
2024 aluminum alloy, shows good agreement within the understood
idealizations of the basic theory.
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